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Pattern formation for adsorbate-induced phase
transition model

By

Kousuke KuTO* and Tohru TSUJIKAWA**

Abstract

Hildebrand [3] proposed an adsorbate-induced phase transition model. For this model,
Takei et al. [6] showed several stationary patterns by the numerical simulations. We prove
the existence of the corresponded patterns by the bifurcation theory from a constant solution.
Moreover, the direction of the bifurcation branch near the bifurcation point is obtained. It is
a pitchfork type for the stripe and square pattern, transcritical type for the hexagonal one.

§1. Introduction

Several people [5], [4], [3] [10] [11] proposed models which describe the process of
pattern formation in the catalytic oxidation of CO molecules on a platinum surface. In

this paper, we consider the model given in [3] as follows:

(4, = DAu+ aV{u(l — u)Vx(p)} — (@™ P £ but+ec in Qx(0,T),

pt=Ap+df(u,p)—6( —1> in Qx(0,7),
(P) 4 Oou  Op ’

5252 on 8Q><(O,T),

\U(',O):’MO, P(aO):PO in Qa

where Q is a bounded domain in R? with the boundary Q and a,b, ¢, d, D, a, 3,¢ are
positive constants. The unknown functions u = u(z,t) and p = p(x,t) denote the
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adsorbate coverage rate of the surface by CO molecules and the structural state of
surface at a position z € Q and time ¢ € [0, o0), respectively. The functions x(p) and
f(u, p) are defined by

(1.1) x(p) =p*(2p=3),  [fu,p) = p(p+u—1)(1-p).

As shown in Tsujikawa and Yagi [9], Takei et al. [8] and [6], there exists a unique global
solution of (P) and an exponential attractor of the corresponding dynamical system.

From the view point of the pattern formation, it is shown the existence of stationary
spot solutions and its stability of (P) with € = 0 in R and R? by using the singular
perturbation method [5], [4]. On the other hand, various types of stationary patterns
by numerical computations in [11], [6] are obtained. They are stationary stripe, square
and hexagonal patterns on the surface.

In this paper, we show the existence of these stationary solutions of (P) for ¢ > 0
by using the bifurcation from the constant solution. To do so, we consider the following
nonlinear elliptic problem:

DAu + aVi{u(l —u)Vx(p)} — (ae®™ @) £ bu+c=0 in Q,

1 .
(SP) Ap+df(u,p)—€(p—§> =0 in €,
%:%: on Of.

It is easy to show that a positive constant solution of (SP) satisfies

c
U= —————
Bx(p) ’
(1.2) aePx\P) 4 b .
Lemma 1.1.  If positive constants a,b,c and (3 satisfy
1 c c
1.3 - < d —— <1,
(1.3) 2 at+b " WP o

there is only one positive constant solution (u*, p*) of (1.2) for any e > 0, which satisfies

1
— < pt <.
5 <P

Proof. By (1.2), (1.3), we have 0 < u < 1 and 0 < p < 1. Since —1 < x(p) < 0
for 0 < p <1 by (1.1), then (1.2) implies
c c c

<u= <
a+b Y aePx(P) +b = ae= P +b

for 0 <p<1.
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Hence (1.3) implies 0 < 1 —u < 1/2. Since f(u,1—u) = f(u,1) = 0 and f(u,p) > 0 for
1—u < p < 1, then the second equation of (1.2) has only one solution p = p* € (1/2,1).
For such a p*, the first equation yields a solution u = u*. O

Here, we remark that there are positive constant solutions (u*,v*) which satisfy
0 < p* < 1/2 for suitable parameter € and d [3].

In this paper, by the bifurcation theory of Crandall and Rabinowiz [1], we treat
« as a bifurcation parameter and show the existence of stripe, square and hexagonal

*

patterns bifurcating from the positive constant solution (u*, p*) obtained in Lemma

1.1. Moreover, the direction of the bifurcation branch is obtained.
§ 2. Degenerate bifurcation at a simple eigenvalue

§2.1. Degenerate condition

To study several patterns including the hexagonal one, we set the following square
domain Q in R?:

(2.1) 0= (0,%) X (o, %) ,

where [ > 0.
Let X and Y be Hilbert spaces defined by

X = H2(Q) x H2(Q), Y = L*(Q) x L*(Q),

where H2(Q) = {u € H?(Q); 3% = 0 on 9Q}.
By defining the operator F' : X x R — Y as

DA+ aV{u(l —u)Vx(p)} — (aePX) 4 b)u + ¢

Flu.p.e) = Ap+df(u,p)—6(p—1> ’

2

(SP) is rewritten as F'(u, p, a) = 0. Then, the linearized operator F{, ,)(u*,p*, a) of
F(u, p, o) at (u*, p*) with respect to (u, p) is given by

h DA — B—aAA+C h
2.2 F, *pt =
(2:2) (u,p)(uapﬂ)(k) ( v A_W ) (k)’

where

A=—u(1—u")X'(p*), B=ae™ ) b, C=—afx (p*)e*Iu*,

(2.3)
V=dp*(1-p*), W=e—dfy(u’p).
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Remark. Since
X (p*) <0, fo(u*,p*) <0 for small e >0,

A, B, C, V and W are positive constants.
In order to obtain the dimension and the base of Ker F{, , (u*, p*, a), we consider
the following problem:

(L) F(“’p)(u*’p*’a)(D N (g> 6

oh Ok

5 = 5 =0 on Of).
Let
(2.4) bm(x) = cos(Imz), P, (y) = cos(V3Iny).

Then, {dm ()1 (y)}55 =0 is the completely orthonormal system of Hilbert space HZ ().
Therefore, a solution (h(x,y), k(x,y)) of (L) is represented by the following expansions:

25)  h@y)= D hanbn(@Un®), E@y) = D knndm()n ().
m,n=0 m,n=0
Substituting these expansions into (L), we have

[e.9]

Z [{DI?(m?* + 3n*) + B} hypn — {@APP(m® + 3n°) + C} k| b (2) 0 (y) = 0,

m,n=0
00

S WVhin — {00+ 30%) + W} k] b (@)n (y) = 0.

m,n=0

Thus, if there is a nontrivial solution (A, kmpn) which satisfies

DI2(m? 4 3n2) + B —aAI?(m? +3n%) — C\ [ hun 0
(2.6) 50, 9 5 =
1% —1*(m*+3n°) - W Emn 0

for some (m, n, a) € N? x R, that is, (m, n, a) satisfies

DI%2(m? 4 3n?) + B —aAl?(m? + 3n?) - C
%4 —12(m? +3n?) - W

then (L) has a nontrivial solution. Therefore, for any fixed (m, n), there exists « such
that dim Ker F{,, ,(u*, p*, a) > 0 if and only if

_ ADP(m? + 3n?) + BH{I*(m* 4 3n*) + W} — CV
- AVEE(m2 1 3n2)

(2.7) a (=: a(m,n)).
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On the other hand, the map (m,n) — «a(m,n) is not one to one because that (m,n) —
N(m,n) := m? + 3n? is so. For instance, for any (i, j) € N2, it holds that

N(i,i+2j)=N(2i+37,7) = NG +3j,i + 7),
that is,
(2.8) a(i,i+27) = a(204+34,j) = ali + 37,7+ 7).

It follows from (2.8) that dim Ker F{, ,)(u*, p*, a*) =2 for o* = a(2, 0) = a(1, 1)
and dim Ker F,, ,)(u*, p*, a*) =3 for a* = a(1, 3) = a(4, 2) = a(5, 1).

Let d(a*) be a number of elements in the set {(m, n) € N?| o* = a(m, n)}. By
using (2.8), we have

Lemma 2.1.  For any a = a(m, n) given in (2.7), dim Ker F, ,(u*, p*, a(m, n))
is positive. Moreover, if m +n is an even number and Ker F, ,«\(u*, p*, *) > 1 for
any o = a(m, n) give by (2.7), it holds that d(a*) # 3¢ — 2 for some integer £ > 2.
Ifi=0o0rj=01in (2.8), then d(a*) =3¢ —1 and, if i # 0 and i # 0, d(a™*) = 3¢ for
some integer £.

Set

h(w) = u(l =), g(p) = ae™@) 15, 2(p) = p— o

Then, (SP) is rewritten as

DAu+ aV{h(u)Vx(p)} —g(p)u+c=0 in Q,

(SSP) ¢ Ap +df(u,p) —ez(p) =0 in Q,
% — % - on Of.

§2.2. Local bifurcation of stripe and square types

If dim Ker F{,, ,)(u*, p*,a(m,n)) = 1, the local bifurcation theorem by Crandall-
Rabinowitz [1, Theorem 1.7] is applicable to our problem. In this case, we have

(2.9) Ker Fy ) (u”, p, a(m, n)) = span { (zm(z)w(r;(iz (y)> } ’

where &(x,y) = ¢pm(x)Vn(y). Let hyypn be normalized as Ay, = 1. Then, kyy,, is given
by

V
m2+3n?) + W

(2.10) kemn = B (> 0).

Since ¢o and vy are constants, it follows from (2.9) that for m = 0 or n = 0, the
bifurcating solution at a(m,n) corresponds to the stripe pattern. On the other hand,
if mn # 0, the bifurcating solution corresponds to the square pattern [7].
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Theorem 2.2.  If dimKer F, ,(u*, p*, a(m, n)) = 1, there exists a positive
constant § such that for any s € (—0,0), there is a nonconstant solution (u(s), p(s), a(s))
of (SP) in the neighborhood of (u*, p*,a(m,n)) € X x R, which satisfies

u(s u* D(z,y) u(s)
(2.11) p(s) | =| p* + 5| kmn®@(z,y) | +5° | pls) |,
a(s) a(m,n) 0 a(s)

where (u(s), p(s),a(s)) € X x R.

Proof. In order to verify all assumptions of the Crandall-Rabiniwitz Theorem [1,
Theorem 1.7], in addition to (2.9), we have to show

D(z,y)

Ermn®(, y)) ¢ Range F(y,,)(u”, p*, a(m,n)),

(2.12) Flu,p).a (u*, p*, a(m,n)) (

where F, ;) o(u*, p*, ) is the Fréchet derivative of Fi, ,)(u, p, a) with respect to «
at (u*, p*). Since (2.2) implies

(2.13) Flupalu, % alm, ) (Z) - (; AA’“) ,

it holds that

krmn®(z,y)

B (Akmnl2(m2 + 3n2)d(z, y)
~\o

Flup),a(u”, p*, a(m,n)) (cp(a:,y) )
(2.14)

*

,p*,a(m,n)) is given by

L = .
Ak —a(m,n)AA+CA-W ) \k

As a similar way to Ker F{, ,y(u*, p*, @), there is a positive constant k,,, such that

(2.15) Ker L}, = span { (ffxg()x y)) } .

It follows from the Fredholm alternative (e.g., [2, Appendix D]) that

On the other hand, the adjoint operator Ly, of F, . (u

(2.16) Range F{,,,)(u*, p*, a(m,n)) = (Ker L}, )"
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By using (2.14) and (2.15), it is easy to show that
b(x,y)
kmn®(,y)

Then we get (2.12) by (2.16). Therefore, we can use the Crandall-Rabiniwitz Theorem
to get a local branch (u(s), p(s), a(s)) (=0 < s < §) of solutions of (SP), which is
represented by

u(s) _ (), [ 2) 2 (U
(2.17) (p(8)>—<p*>+ (kmncﬁ(az,y)>+ (ﬁ(s))

and

F(u,p),a(U*ap*aa(m>n)) ( ) ¢ (Ker L:;m)J_'

(2.18) a(s) = a(m, n)+ sa(s).

Finally, we show &(0) = 0. Note that for s € (—4,6),

// (z,y)u(z,y,s)dzdy =0,
b, p(s) :2// (z,y) p(x,y,s) dxdy = 0.
Q

k= kmn, o =a(m,n).

(2.19)

For simplicity, we denote

Substituting (2.17) into the first equation of (SSP), we have

(2.20) DAu(z) + as)V{h(u(s))Vx(p(s))} — g(p(s))u(s) + ¢ = 0.

A second differentiation of (2.20) with respect to s gives

DA (s) + o (s)V{h(u(s))Vx(p(s))}
+2a/(5)V [ (u(s))u' () Vx(p(5)) + h(u(s)) VX' (p(s
a(s) VIR (u(s))u' (s)*X/ (p
+ 20 (u(s))u (s){x’
(u(s){X" (p(s
"(p())p" (5)Vp(s) + X' (p(5)) V" (s)}]
= 9" (p(s))p'(s) u(s) — g'(p(s))p" (s)u(s)
(s

(p )P’ (s)}]

()Vo(s) + h'(u(s))u” ()X (p(s)) Vp(s)
X" (p(s))p'()Vp(s) + X' (p(s))Vp'(s)}
)

(2.21)
)P (8)2Vp(s) +2x" (p(3))p' (5) V' (s)

+h
+x'

—29'(p(5))p' (s)u/ (s) — g(p(s))u" (s) = 0.

From (2.17) and (2.18), (u(s), p(s )) satisfies

) s
(u(0),w'(0), u"(0)) = (u*, ®,2u(0)), (p(0),0'(0), p"(0)) = (p*, k2, 25(0)),
) )-

(2.22)
((0), a/(0)) = (a”, &(0)
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Substituting s = 0 into (2.21) and using (2.22) we get
2DAG(0) + 2kh(u*)x (p*)a(0)Ad
(2:23) 20" (kR (w )X (p") + K2R )X (p*)}V (VD) + 20" h(u*)X (p*) Ap(0)
— K2u*g" (p*)®% — 2u*g' (p*)p(0) — 2kg' (p*) D — 29(p*)a(0) = 0.
By (2.19), the inner product of (2.23) and & implies
2\kh(w)X (p)21136(0)
(2.24) =20 {kh' ()X (p) + B2 h(w)X" (0" ) H(D, [VO*) — N, %)}
— (K g" (p") + 2kg(p*))(®, 8?),
where ) is a positive constant such that —A® = A& in Q.
Note that (®,$%) = 0 and (®, |[VP|?) = 0. Therefore, (2.24) implies &(0) = 0, that is,

there exists a function &(s) such that a(s) = a(m, n) + s2a(s). Thus, the proof of this
theorem is completed. Ol

§2.3. Local bifurcation of hexagonal type

Here, we only consider the case of dim Ker F\,, ,)(u*, p*, a(m,n)) = 2. Especially,
we treat «(2,0) = «(1,1) from (2.8), which implies

Ker F(,, py(u*, p*, (2,0)) = Ker F, ,(u", p*, (1, 1))

(225) o [ (@000 (0@ 6:w)
koo ¢2(x) Yo(y) ) 7\ k11 ¢1(x) ¥ (y)
Since we can not directly apply the Crandall-Rabinowitz Theorem to this case because

of
dim Ker F{,, ) (u*, p*,a(m,n)) =2 # 1,

we exchange the considered function space from H2(Q2). Following the approach in
Nishida et al. [7], we introduce the subspace HZ, . (Q) in H*(Q):

(2.26)

Hpovo = {v(x,y) = i Bmn (%(w)%(y) + cos

m-+n=even

I(m—3n)x V3l(m +n)y
5 cos 5

l I(m — G
+ cos (m —;371)3: cos V3 (m2 n)y> : Z *(m? + 3n%)262, < oo},

m-+n=even

In this case, a function belonging to HZ. () has 27/3-invariance around the center of

exa
the domain with respect to the rotation. In order to obtain the solution corresponding
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to the hexagonal pattern, it is enough to show the existence of the solution in HZ,_ (Q).
It follows from (2.26) that

B2(2)ho(y) + cos(lz) cos(V/3ly) + cos(lx) cos(V/3ly)
= P2(x)o(y) + 2¢1(x)¢1(y)

for (m,n) = (2,0). Consequently, we take the coefficients {3, | m+n = even} in (2.26)
as

1 if (m,n)=(2,0),

0 otherwise,

ﬁmn =

that is, ¢o(z)o(y) + 2¢1(x)1(y) € HE.,,. Note that
dim Ker F{,, ) (v, p*,a(1,1)) = dim Ker F{,, ,y(u", p*, ®(2,0)) = 2

in X from (2.25).
Let @(z,y) = ¢o(2)tho(y)+261 (2)1h1 (y). In order to apply the Crandall-Rabinowitz
Theorem, we restrict the domain of F' and rewrite it as F, that is,

F:HZ  xH  xR-—Y,

Ker F(u,p)(u*,p*,oz(l, 1)) = Ker F(u’p)(u*,p*,a(Q,O))

(2.27) . q%(a;’y)
- koo® (2, )

and
dim Ker ﬁ’(uvp)(u*,p*, a(1,1)) = dim Ker ﬁ’(uvp)(u*,p*, a(2,0)) = 1.

Theorem 2.3. For a = «(2,0)(= «(1,1)), there exists a positive constant §
such that for s € (—0,0) there is a nonconstant solution (u(s), p(s), a(s)) of (SP) in
the neighborhood of (u*, p*,«(2,0)) € HZ, . x HZ, . X R, which satisfies

exa hexa

u(s)\  [w . @(mly) $2 u(s)
(2.28) (p(8)> = (p*> + (kzo@(:c,y)> - (ﬁ(s)> ,
where (0(s), p(s)) € Hegn X Hiora-

Proof. Owing to (2.27), it suffices to show that

A

D(z,y)

2.29 Fru o, p*,a(2,0 A
( ) ( ,p), ( p ( )) <k20¢(x7y)

) ¢ Range F(u,p) (U*a p*a 04(29 0))
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From (2.13), we have

s (t5,)-(24)

On the other hand, the adjoint operator L* of F(u,p) (u*, p*,(2,0)) is given by

() DA - B 1% h
k] \—a@,04A+CA-W ) \k)’

As a similar way to f/fnn in Theorem 2.2, there is a positive constant £* > 0 such that

(2.31) Ker L}, = span { (f*%}?y)) } .

By (2.30) and (2.31), it is easy to show that

A

(2.32) Flupya(u®, p*,a(2,0)) (f%él)) ¢ (Ker Lig)™.

Combining Fredholm alternative with (2.32) yields (2.29).

8§ 3. Direction of the bifurcation

In order to show the type of the bifurcation, we show the expansion of a(s) with
respect to s. Let a(s) = a(m,n) + sa(s). If &(0) # 0, the bifurcation is transcritical.
When &(0) = 0, the bifurcation is supercritical if 42(0) > 0 and subcritical if
44.(0) < 0.

§3.1. Transcritical bifurcation of hexagonal type
Theorem 3.1.  Let a(s) = a(2,0) + sa(s) in Theorem 2.3. Then, &(0) satisfies
812 kh(u*)x'(p*)a(0)

3.1
. A P{kh(u)x(p*) + K2 h(u*)x" (%)} — K*u*g" (p*) — 2kg(p").

Proof. By the same process to obtain (2.24), we get
2Akh(u*)x (p™)|®]|56(0)
(3:2) =20 {kh' (u* )X (p*) + K h(u)X" (0" H(®, [VO[*) — N, %)}
— (K2urg(p7) + kg (o)), B2).
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By (3.2) and
R R R 2
33) 0.9 = LT G VaR).~ Vir (85 - D0 A4,
(3.1) is obtained. O

Lemma 1.1 and Theorem 3.1 imply that

Remark. Since h(u*) > 0,x(p*) < 0,X'(p*) < 0,x"(p*) > 0,9(p*) > 0 and
g" (p*) > 0, the bifurcation of hexagonal type is generically transcritical.

On the other hand, it follows from (2.8) that for a(1, 3) = a(4, 2) = «a(5, 1),
dim Ker ﬁ’(u’p)(u*, p*, a(l, 3)) =1 and

Ker F(u,p)(u*, P, a(l, 3)) = {(q/:;(;;(i) y)> },

where *(z, y) = ¢1(z)¢3(y) + dath2(y) + ¢5(x)¢1(y) and ki3 given by (2.10).
Remark. Theorems 2.3 and 3.1 hold for a(1, 3) = a(4, 2) = a(5, 1).

§ 3.2. Pitchfork bifurcation of stripe and square types

In view of (2.11), we remember that the bifurcation of stripe or square pattern
is pitchfork type. Then we need to investigate the sign of &(0) in (2.11) to know the
direction of the pitchfork bifurcation. Here, a(m,n) and ki, stand in (2.7) and (2.10).
We obtain the exact expression of &(0) from the following Theorem 3.2 and Lemma 3.3.

Theorem 3.2.  Let a(s) be the function defined in (2.11). Then,

6AkR(u*)x' (") |23 &(0)
= — 6kg'(p")P — 62" kh'(u")X'(p")Q
— 6{Aa" N (u)x'(p") + A" kh(u*)X" (p*) + ku*g" (p*) + g'(p")} R
+ 60”1 (u*)X (p*)S
= 3a*k{h" ()X () — kh (u*)X" (0" ) 17, [VE[)
— {BAQTEZR (w )X (%) + A K h(u*) X" () + KPutg" (p") + 3k2g" (p*) @1

where

(3.4) (P.Q.R,S) := ((a(0),2%), (a(0), [VD[*), (p(0), 2%), {p(0), [VD[*)).
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Lemma 3.3.  The above (P,Q, R, S) satisfies

L 4D M N P
4N2D L x~nMml||o
2df, (u*, p*) 0 K 4 R
0 2df, (u*, p*) 4\* K S

(3.5) ) ) A
H(P%, |VO|") + J[|®]l;

(\H + J){(®?,|VP|?)
G||2|1 ’
G(2?,|VP[|?)
where L = —4AD —2g(p*), M = —4X " h(u*)X'(p*) — 2u™g'(p*), N = 4a”h(u*)x'(p*),
K = 2{dfp(U*’p*) —& - 2/\}> G = d{fuu( *ap*) + 2fup(U*ap*)k + fpp(U*7p*)k2}f
H = 4o {kh/ ()X’ (p*) + E*h(u*)x" (p*)} and J = k*u*g"(p*) + 2kg(p*).

Proof. 1t follows from (2.23) and &(0) = 0 that
2DAG(0) + 2a* {kh (u*) X' (p*) + E*h(u*) X" (p*)}V(SV D)
(3.6) + 22" h(u")x' (p")Ap(0)
— k*u*g" (p*)P* —2u*g'(p*)p(0) — 2kg' (p*)P* — 29(p")u(0) = 0.
The inner product of (3.6) and &2 implies
2D(Au(0), P*) + 20 {kR' (u*)X' (p*) + E*h(u*)X" (p*) WV (PV D), P?)
+ 20 h(u*)x' (p*)(A5(0), 2°)
— k*utg" (p")|Pl[5 — 2u”g' (p*)(p(0), D*) — 2kg’(p™)||DIl3 — 29(p*)(@(0),2?) = 0.
Since
(3.7) (AF, %) = 2(F,|VP|*) — 2MF, %), (V(®VP),d?) = —2(* |VD|*),
it holds that
(—4AD — 2g(p™))P +4DQ
— (Axa"h(u)X (p7) + 2u™g'(p")) R + 4" h(u")X (p)S
=da”™ {kI/ (u*)xX(p") + E*h(u*)X" (p") {P*, [ VO[*)
+{k*u"g" (") + 2kg (0} P[5

(3.8)

On the other hand, the inner product of (3.6) and |V®|? implies
2D(A(0), [VO[*) + 27 {kh' (w)X'(p") + K*h(u*)X" (0" ) H{V(2VD), [VP|*)
+ 20" h(w)X (P )(AH(0), [VOP) — k*u*g" (p*) (2%, |VD|*)
= 2u”g'(p"){p(0), [VPI*) — 2kg' (p")(P*, | VO|*) — 29(p")(@(0), |VD|*) =
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Since
(3.9) (AF,|[VO[2) = 202(F,@%) — 2\(F, [V[2), (V(®V®), [Va[2) = 2002, |VO[2),

it holds that

4N*DP — {4\D +29(p*)}Q

+ AN h(u* )X (0" )R — {4 h(u)X (p*) + 2u™g (p*)}S
=4ra* {kh' (u)X (") + k2 h(u*)X" (p*) } (2%, [VP[)

T {B2urg (p) + 2hg! ()} (@2, [V[2).

(3.10)

Next, substituting (2.11) into the second equation of (SSP), we have

Ap(s) + df (u(s), p(s)) —ez(p(s)) = 0.
A second differentiation of this equation with respect to s gives

Ap"(s) + dfuu(u(s), p(s))u'(s)*
(3.11) + 2dfup(u(s), p(s))u' ()0 (5) + dfpp (uls), p(s))p (5)”
+dfu(u(s), p(s))u" (s) + dfp(u(s), p(s))p" (s) — ep”(s) =0

by z(p) = p — 3. Substituting s = 0 into (3.11) and (2.22), we get

2A5(0) + df yu (u*, p*)D? + 2dfup(u*, p*)kD* + df ,p(u*, p* ) K> &?

(3.12) X ) i
+ 2df ., (u”, p*)u(0) + 2df, (u”, p*)p(0) — 2ep(0) = 0.

The inner product of (3.12) and @2 implies

2df, (u*, p*)P + 2{df,(u", p*) —e —2A}R + 48

(313) . - * %\ 7.2 4
= — d{ fuu(u*, p*) + 2fup(u*, p )k + fop(u®, p*)E2}|| P4

by (3.7). Similarly, computing the inner product of (3.12) and |V®|? and using (3.9),

we obtain
(3.14) 2df, (u*, p*)Q + 4N’ R + 2{df,(u*, p*) — e — 2A\}R
= — d{ fuu (W, p*) + 2fup(u”, pF)k + fpp(u”, p")K*HE?, [VO[?).
Therefore, (3.5) is shown by (3.8), (3.10), (3.13) and (3.14). O

Proof of theorem 3.1.
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The third differentiation of (2.20) with respect to s implies

DA™ (s) + o™ (s)V{h(u(s))Vx(p(s))}
+3a”(s)V [0 (u(s))u'(s)Vx(p(s) + h(u(s)) V{X'(p(s))p'(s)}]
+30/(s) VIR (u(s))u' (5)*Vx(p(s)) + h(u(s)u” (s)Vx(p(s))
+2h’(U(8)) "(5)VAX (p(5))p (s)}
+ h(u(s))V{x" (p(s))p'(s)* +X'(

p(s))p" (s)}]
a(s) VIR (u(s)u'(s)*Vx(p(s)) + 30" (u(s))u' (s)u” () Vx(p(s))

(3.15) + 31" (u(s)u' () VX (p()p ()} + 1 (u(s))u" (s)Vx(p(5))
+ 30/ (u(s))u” (s) VX' (p(s))p'(5)}
+3h’(U(8))U’( VX" (p(5))p'(5)* + X' (p(5))0" (5)}

+ h(u(s))V{x ”’( ())0'(5)* +3x" (p())p ()0 () + X' (p(s))p" (5)}]
= 9" (p(s)p (s)°u(s) — 39" (p())p' (s)p" (s)u(s) — 39" (p(s))p (s)*u' (s)
g'(p(s ))p’”(S)U(S)—3g( (s)p" (s)u'(s) = 3¢ (p(s))p" (s)u" (s)
— g(p(s))u”(s) = 0.

It follows from (2.11) that

(u"(0), p"(0),a"(0)) = 6(a'(0), 7'(0), &' (0)).
Substituting s = 0 into (3.15), we have

6AT (0) + 6kh(u*)x (p*)a(0)Ad

+ 3a* kR (u*) X (p*)V(D*VP) + 6a* kN (u*)x (p*)V{u(0)V}

+ 3a* k2R (u*) X" (p*)V(®VD?) + 6a*h (u*) X' (p*)V{®V5(0)}

+ @ B h(u*)X" (p")AD® + 6 kh(u*)X" (p*) A{®pH(0)}

+ 60" h(u*)X (p*)AF'(0) — k2u*g" (p*)@° — 6ku*g" (p*)p(0) — 3k g" (p*)®°
— 6u”g'(p")p'(0) — 69'(p")p(0)® — 6kg’(p™)u(0)® — 6g(p")u'(0) = 0.

By the inner product of (3.16) and ¢ and (2.19), it holds that

(3.16)

— 6kh(u)x(p")a(0)(AD, D)

=3 kR (u*)x' (p*)(V(P*VD), D) + 6a*kh’ (u*) X' (p*)(V{u(0)VD}, D)
+ 3 K2 (u )X (p*)(V(EVP?), @) + 60" (u*)x' (0*)(V{DV 5(0)}, D)
+a EPh(u*)X" (0")(AD?, ) + 60" kh(u*)X" (p*)(A{Dp(0)}, D)
— k2ug" (0|95 — GkU*g”( )(p(0), ®*) — 3k*g" (p*)||®||3
— 69 (p*)(p(0),2%) — 6kg' (p*)((0), D°).

(3.17)
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Also, we note
(V{a(0)Ve}, &) = —(a(0), [VP]*) = -Q,
(V{DV5(0)}, ) = (5(0),IVE[*) — A(p(0), 9%) = S — AR,
(A{Pp(0)}, ) = —\(p(0), P*) = —AR.
Thus, (3.17) is rewritten as
6AER(w )X (p")2136(0)

= — 6kg'(p")P — 6" kR (u™)x' (p")@Q
— 6{0a" W (u")X (p") + Aa"kh(u*)X" (p*) + ku"g" (p*) + ¢’ (p")} R

(3.18) , ,
+6a"h (u")x (p*)S
+ 30 kR (u*) X (p*) (V(D2V D), D) + 3a* k2 h (u*)x" (p*)(V(DPVD?), D)
+a’ kP h(ut) )" (0" ) (AP, &) — kPu*g" (p™)|D]|5 — 3k*g" (") |93
By using

(V(BVP),B) = (@, [VE]?), (V(@VE),B) = —(@2,|VE]) — A}

and (3.18), the formulation of &(0) in this theorem is obtained.
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