1	Title:
2	Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal
3	
4	Authors:
5	Takashi Yamano ^{1, 2} , Hiro Iguchi ^{1, 2} , and Hideya Fukuzawa ^{1, 2*}
6	¹ Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
7	² Japan Science and Technology Agency, ALCA, Kyoto, 606-8502, Japan
8	
9	Keywords:
10	algae; Chlamydomonas reinhardtii; electroporation; square electric pulse;
11	transformation
12	
13	Corresponding author:
14	Hideya Fukuzawa
15	E-mail: fukuzawa@lif.kyoto-u.ac.jp
16	Tel: +81-75-753-4298
17	Fax: +81-75-753-9228

1 Abstract

- 2 Chlamydomonas reinhardtii is widely used to study many biological processes
- 3 including biofuel production. Here, we present a rapid transformation technique for
- 4 cell-walled *Chlamydomonas* strains without cell-wall removal using a square electric
- 5 pulses-generating electroporator. This method could be applied to transformation of
- 6 other industrially useful algae by optimizing the electric conditions.

1 Chlamydomonas reinhardtii, a single-cell green alga, is widely used for elucidating $\mathbf{2}$ fundamental biological processes, including photosynthesis, cell cycle regulation, and 3 cell motility as well as metabolic processes for biofuel production because it is relatively easy to transform. Its genome sequence is available (1), and three methods of 4 $\mathbf{5}$ DNA-mediated transformation have been reported for this organism: bombardment with 6 DNA-coated microprojectiles (2, 3), vortexing with glass beads (4), and electroporation $\overline{7}$ (5). For nuclear genome transformation, the transformation efficiencies of the glass beads method and electroporation are approximately 10^3 and 10^5 transformants per μg 8 9 DNA, respectively (5). However, these procedures require the use of cell-wall-less (*cw*) 10 mutant strains or the removal of cell wall from wild-type cells by treatment with the 11 zinc-containing metallo-protease gametolysin for cell wall degradation (6, 7). Both 12approaches are associated with difficulties: cw mutants are fragile and not suitable for 13 some experiments, such as the measurement of photosynthetic activity, and preparation 14of gametolysin and removal of the cell wall are time-consuming. To overcome these 15difficulties, we present here a rapid transformation technique of wild-type 16 Chlamydomonas without cell-wall removal using a square electric pulse generating 17electroporator, NEPA21 (Nepa Gene, Japan). 18 Although NEPA21 is widely used to transfect animal cells *in vivo* and *in vitro* 19 (8, 9), the electroporator has not been applied to land plants, fungi, and algal cells so far. 20In contrast to other electroporators, such as Gene Pulser series (Bio-Rad, USA) or ECM

21 series (BTX, USA), NEPA21 has three-step multiple electroporation pulses, resulting in

higher transformation efficiency and lower damage to the cells. The first pulse is a

23 poring pulse (Pp) with high voltage and short pulse length. The second pulse consists of

24 multiple transfer pulses (Tp) with low voltage and long pulse length for delivering

1	exogenous DNA into cells. The third pulse is polarity-exchanged Tp for efficient
2	delivery of DNA molecules into cells. In summary, six parameters, voltage [V], pulse
3	length [msec], pulse interval [msec], number of pulses, decay rates [%], and polarity,
4	are set for respective Pp and Tp. In addition, values of electrical impedance between the
5	electrodes [Ω], actual voltage [V], current [A], and energy [J] can be measured.
6	Exogenous DNA was prepared as follows. A 1,999-bp DNA fragment
7	containing the hygromycin-resistant gene aph7" was amplified by PCR from plasmid
8	pHyg3 (10) using PrimeSTAR GXL DNA Polymerase (TAKARA, Japan) using
9	35 cycles of denaturation for 10 sec at 98°C, annealing for 15 sec at 60°C, and
10	extension for 2 min at 68°C with a forward primer
11	(5'-GCACCCCAGGCTTTACACTTTATGCTTCC-3') and reverse primer
12	(5'-CCATTCAGGCTGCGCAACTGTTGG-3'). The PCR product was purified using a
13	PCR purification kit (QIAGEN, USA) and the concentration was adjusted to
14	200 μ g mL ⁻¹ .
15	Chlamydomonas reinhardtii strain C-9 (originally provided from the IAM
16	culture collection at the University of Tokyo and kept in our laboratory. C-9 is available
17	from National Institute for Environmental Studies, Japan, as strain NIES-2235) was
18	used as a representative of cell-walled wild-type cells (11). For pre-cultivation, cells
19	were grown in 5 mL Tris-Acetate-Phosphate (TAP) medium for ~24 h with vigorous
20	shaking under continuous illumination at 50 μ mol photons m ⁻² s ⁻¹ . One-day before
21	transformation, 5 mL of pre-cultured cells was transferred into 100 mL TAP medium in
22	a 300 mL-flask and grown for ~24 h. The flask was agitated on a gyratory shaker
23	(100 rpm) at 25°C under continuous illumination until the cell densities reached 1–2 \times
24	10^6 cells mL ⁻¹ , corresponding to an optical density of 0.3–0.4 at 730 nm. The cultured

1	cells were collected by centrifugation at $600 \times g$ for 5 min and re-suspended in TAP
2	medium containing 40 mM sucrose to a final density of 1×10^8 cells mL ⁻¹ . Then, 2 μ L
3	of 200 μ g mL ⁻¹ pHyg3 PCR products was added to 38 μ L of the cell suspension. As a
4	result, 4×10^6 cells and 400 ng DNA were suspended in the total volume of 40 µL. The
5	cell suspension was placed into an electroporation cuvette with a 2 mm gap (NEPA
6	GENE, Japan). The measured value of electrical impedance was within 500–600 Ω in
7	the cell conditions described above. Parameters of Pp were optimized as described
8	below and those of Tp were fixed at a ten polarity-exchanged pulse of 20 V with
9	50 msec pulse length, 50 ms pulse interval, and a 40% decay rate.
10	After electroporation, an aliquot of the cell suspension from the cuvette was
11	transferred into 10 mL TAP medium containing 40 mM sucrose. After incubation at dim
12	light (2–3 μ mol photons m ⁻² s ⁻¹) for 24 h, the cells were collected by centrifugation at
13	$600\times g$ for 5 min and plated onto 1.5% agar TAP plate containing 30 $\mu g~mL^{\text{-1}}$
14	hygromycin B. The plate was incubated at 25°C under continuous illumination at
15	80 μ mol photons m ⁻² s ⁻¹ . Colonies of hygromycin-resistant transformants were visible
16	4 days later.
17	To determine the optimum transformation conditions, transformation
18	efficiency as a function of the voltage of Pp and its pulse length was evaluated. The
19	voltage dependency of transformation with different pulse lengths of 2, 4, 6, and 8 msec

20 were plotted (Fig. 1A). In this experiment, the number of pulses, pulse interval, and

21 decay rates of Pp were kept constant at two pulses, 50 msec, and 40%, respectively.

22 When the Pp was 200 V and 250 V, maximum transformation efficiency was obtained

23 with an 8 msec pulse length. In contrast, the transformation efficiency with Pp = 300V

24 was highest with a 6 msec pulse length and decrease at 8 msec, suggesting that cell

 $\mathbf{5}$

damage caused by excess energy with high voltage and long pulse length led to the
decrease in efficiency. Next, in order to optimize the levels of energy of the Pp, we
evaluated parameters of Pp (Fig. 1B). For instance, energy by two Pps with 50 msec
pulse length and 40% decay rates was calculated using following equation,

5 Energy =
$$V_{1st} \times 0.05 \times A_{1st} + V_{1st} \times (1-0.4) \times 0.05 \times A_{2nd}$$

6 where V_{1st} , A_{1st} , A_{2nd} are actual voltage of the first pulse, actual current of the first pulse, 7 and actual current of the second pulse, respectively. Optimal transformation efficiency 8 was obtained with a Pp energy of 1.0–1.5 J. In addition, transformation efficiency was 9 evaluated as a function of the concentration of exogenous DNA (Fig. 1C). With 10 increasing DNA concentrations from 40 to 200 ng, the number of transformants 11 increased, reaching a maximum at a concentration of approximately 200-800 ng. Above 12this DNA concentration, the transformation efficiency decreased. 13 From these results, the final transformation conditions applicable to the 14Chlamydomonas strain C-9 are summarized in Fig. 1D. The optimal transformation 15efficiency was obtained by application of two Pps of 250 V with 8 msec pulse length,

16 50 msec pulse interval, and 40% decay rates. Using these conditions, electroporation of

 $17 \qquad 4 \times 10^6 \text{ cells (} 1.0 \times 10^8 \text{ cells mL}^{-1}\text{) resulted an average of 3,880 transformants per } \mu\text{g}$

18 DNA for strain C-9 (Table 1, Fig. 2A), which was about 26-fold higher than the

19 150 transformants per μ g DNA for strain C-9 strain with the previous electroporation

```
20 procedure without cell-wall removal.
```

21 Transformation efficiency of cell-wall removed C-9 was also examined.

22 Under optimal electric conditions described above, electroporation of cell-wall removed

23 C-9 resulted an average of 2,702 transformants per μ g DNA. In contrast, the

transformation efficiency increased 2.8 times to 7,614 transformants per μg DNA by

application of two Pps of 200 V with 5 msec pulse length, 50 msec pulse interval, and
 40% decay rates, suggesting that high voltage and long pulse length led to cell damage
 for cell-wall removed C-9 and the decrease in efficiency.

- 4 To examine whether this method is applicable to other cell-walled wild-type
 - 5 Chlamydomonas strains, we evaluated the transformation efficiency of strains CC-124,
 - 6 CC-125, and CC-1690 using the same electroporation conditions (Table 1). Although
 - 7 the transformation efficiencies of CC-124 (2,930 \pm 471 cells) and CC-1690 (3,400 \pm
 - 8 327 cells) were similar or slightly decreased compared to that of C-9 (3,880 \pm 470 cells),
 - 9 the efficiency with strain CC-125 was only 10% (404 ± 37 cells) of that of C-9.

10 However, changing the Pp to one pulse of 300 V with an 8 msec pulse length resulted in

11 an increase in the transformation efficiency to $1,920 \pm 110$ cells per μg DNA. In those

12 conditions, energy of one Pp was 1.23-1.31 J, which is in the range of optimum energy

13 (1.0-1.5 J) of two Pps (Fig. 1B), suggesting that larger energy is needed to induce pore

14 formation for strain CC-125 compared to other wild-type strains.

In addition, we could introduce a longer plasmid, pTT1-*LciB*-GFP (12), with
the length of 7,800-bp into C-9 cells without removal of the cell wall. Although the
transformation efficiency was ~500 transformants per μg DNA, LCIB-GFP localization
could be observed in the transformed cells (Fig. 2B).

In previous methods, it takes at least several days for preparation of the gametolysin before the transformation. In contrast to that, cell-walled strains can be directly transformed by DNA without any preparation or cell-wall removal using this method. Additionally, by optimizing the electric conditions, the square electric pulse generating electroporator could be applied to transformation of other industrially useful algae.

1		We thank Dr. Kentaro Ifuku (Kyoto university) and Mr. Yasuhiko Hayakawa						
2	(N	(Nepa Gene Co., Ltd.) for helpful discussions and suggestions. This research was						
3	supported by JST, ALCA.							
4								
5	Re	ferences						
6	1.	1. Merchant, S., Prochnik, S., Vallon, O., Harris, E., Karpowicz, S., Witman, G.,						
7		Terry, A., Salamov, A., Fritz-Laylin, L., Maréchal-Drouard, L., and other 107						
8		authors: The Chlamydomonas genome reveals the evolution of key animal and						
9		plant functions. Science, 318 , 245–250 (2007).						
10	2. Boynton, J., Gillham, N., Harris, E., Hosler, J., Johnson, A., Jones, A.,							
11		Randolph-Anderson, B., Robertson, D., Klein, T., Shark, K., and Sanford, J.:						
12		Chloroplast transformation in <i>Chlamydomonas</i> with high velocity microprojectiles.						
13		Science, 240 , 1534–1538 (1998).						
14	3.	Blowers, A., Bogorad, L., Shark, K., and Sanford, J.: Studies on Chlamydomonas						
15		chloroplast transformation: foreign DNA can be stably maintained in the						
16		chromosome. Plant Cell, 1 , 123–132 (1989).						
17	4.	Kindle, K.: High-frequency nuclear transformation of <i>Chlamydomonas reinhardtii</i> .						
18		Proc. Natl. Acad. Sci. USA, 87, 1228–1232 (1990).						
19	5.	Shimogawara, K., Fujiwara, S., Grossman, A., and Usuda, H.: High-efficiency						
20		transformation of Chlamydomonas reinhardtii by electroporation. Genetics, 148,						
21		1821–1828 (1998).						
22	6.	Kinoshita, T., Fukuzawa, H., Shimada, T., Saito, T., and Matsuda, Y.: Primary						
23		structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii:						

1		similarity of functional domains to matrix metalloproteases. Proc. Natl. Acad. Sci.					
2		USA, 89 , 4693–4697 (1992).					
3	7.	Kubo, T., Saito, T., Fukuzawa, H., and Matsuda, Y.: Two tandemly-located					
4		matrix metalloprotease genes with different expression patterns in the					
5		Chlamydomonas sexual cell cycle. Curr. Genet., 40, 136–143 (2001).					
6	8.	Miyata, S., Komatsu, Y., Yoshimura, Y., Taya, C., and Kitagawa, H.: Persistent					
7		cortical plasticity by upregulation of chondroitin 6-sulfation. Nat. Neurosci., 15,					
8		414–422 (2012).					
9	9.	. Kusuzawa, S., Honda, T., Fukata, Y., Fukata, M., Kanatani, S., Tanaka, DH.,					
10		and Nakajima, K.: Leucine-rich glioma inactivated 1 (Lgi1), an epilepsy-related					
11		secreted protein, has a nuclear localization signal and localizes to both the					
12		cytoplasm and the nucleus of the caudal ganglionic eminence neurons. Eur. J.					
13		Neurosci., 36 , 2284–2292 (2012).					
14	4 10. Berthold, P., Schmitt, R., and Mages, W.: An engineered <i>Streptomyces</i>						
15		hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in					
16		Chlamydomonas reinhardtii. Protist, 153, 401–412 (2002).					
17	11	. Harris, E.: The genus Chlamydomonas, p. 1-24. In Harris, E., Stern, D., Witman, J.					
18		(eds), The Chlamydomonas Source Book, vol. 1. Elsevier, Amsterdam (2009).					
19	12. Yamano, T., Tsujikawa, T., Hatano, K., Ozawa, S., Takahashi, Y., and						
20		Fukuzawa, H.: Light and low-CO ₂ -dependent LCIB-LCIC complex localization in					
21		the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas					
22		reinhardtii. Plant Cell Physiol., 51 , 1453–1468 (2010).					
23							

1 Figure legends

 $\mathbf{2}$ Fig. 1 (A) Effects of voltage of Pp and pulse length on transformation efficiency. The 3 number of transformants per µg DNA was plotted at voltages of 200, 250, and 300 V 4 with different pulse length; 2 msec, 4 msec, 6 msec, and 8 msec. (B) Relationship $\mathbf{5}$ between energy of Pp and transformation efficiency. Each white circle represents the 6 data from one experiment. (C) Effect of DNA concentration on transformation 7 efficiency. Strain C-9 was transformed with the indicated concentrations of pHyg3 PCR 8 product. (D) Schematic of electric pulses delivered by NEPA21. Assignable parameters 9 are represented. Pp, Tp, and polarity-exchanged Tp are shown as black, white, and gray 10 bars, respectively. Optimal transformation parameters applicable to strain C-9 are 11 indicated. 1213 Fig. 2 (A) Colonies of hygromycin-resistant transformants plated on TAP agar medium 14containing 30 µg mL⁻¹ hygromycin B. (B) Fluorescent signal of LCIB-GFP derived 15from transformants with the pTT1-LciB-GFP plasmid using NEPA21. Obvious ring 16 fluorescence signals are present around the pyrenoid structure, as previously shown (12). 17White bar is 5 µm.

В

Device used for	Strain	Cell wall degradation by gametolysin	Electric conditions of Pp	Number of transformants
electroporation				per µg DNA
	C 0	-	V _{1st} : 250 V for 8 msec	3,880 ± 470
	C-9		V _{2nd} : 150 V for 8 msec	
		+	V _{1et} : 250 V for 8 msec	2,702 ± 303
	C-9 C-9		V = 150 V for 8 msec	
			\mathbf{v}_{2nd} . 150 \mathbf{v} for 8 msec	
		+	V_{1st} : 200 V for 5 msec	7,614 ± 693
			V _{2nd} : 120 V for 5 msec	
	CC-124	-	V _{1st} : 250 V for 8 msec	2,930 ± 471
NEPA21 (NEPA GENE)			V _{2nd} : 150 V for 8 msec	
	CC-125	-	V _{1st} : 250 V for 8 msec	404 ± 37
			V _{2nd} : 150 V for 8 msec	
	66.105		200 11 6 0	1.020 + 110
	CC-125	-	300 V for 8 msec 1,	$1,920 \pm 110$
	CC-1690	-	V _{1st} : 250 V for 8 msec	3,400 ± 327
			V _{2nd} : 150 V for 8 msec	
	C 0		200 1/	150 + 25
Gene-Pulser (Bio-Rad)	C-9	-	300 V	150 ± 25

To match the experimental conditions, carrier DNA or starch embedding methods (5) was not used for either transformation procedure. The amount

of exogenous DNA and the number of cells for each transformation were constant at 400 ng and 4.0×10^6 cells, respectively. V_{1st} and V_{2nd} are first and second poring pulse, respectively.