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On the Galois images associated to QM-abelian
surfaces

By

Keisuke ARAT*

Abstract

Let pp/k,p : Gk — Aut(T,E) = GL2(Zy) be the Galois representation determined by
the Galois action on the p-adic Tate module of an elliptic curve E over a number field K. Serre
showed that pz, x,, has an open image if E has no complex multiplication. The author showed
that pg/x,p(Gk) have a uniform lower bound when we fix K, p and vary E. In this paper,
we give a similar result on uniform boundedness of the Galois images associated to abelian
surfaces with quaternionic multiplication.

§1. Introduction

Let k be a field of characteristic 0, and let G, = Gal(k/k) be the absolute Galois
group of k where k is an algebraic closure of k. Let p be a prime number. For an elliptic
curve E over k, let T, E be the p-adic Tate module of E, and let

PE/k,;p : Gk — Aut(TpE) = GLz(Zp)

be the p-adic representation determined by the action of G on T,E. By a number field
we mean a finite extension of Q.
We recall a famous theorem proved by Serre.

Theorem 1.1.  ([Sel], IV-11) Let K be a number field and E be an elliptic curve
over K without complex multiplication. Take a prime p. Then the image pg /k,p(GK)

is open in GLy(Z,) i.e. there exists a positive integer n depending on p, K and E such
that pp/kp(Gk) 2 1+ p"Ma(Zy).

The author showed that the image pg,x ,(Gx) has a uniform lower bound.
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Theorem 1.2.  ([A], Theorem 1.2) Let K be a number field and p be a prime.
Then there exists a positive integer n depending on p and K satisfying the following.

For any elliptic curve E over K without complex multiplication, we have pg/ kp(GK) 2
1+ pan (Zp)

Remark 1.3. In the above theorem, the integer n is effectively estimated if j(E)
is not contained in an exceptional finite set ([A], Theorem 1.3).

The author hopes to give a similar result in a higher dimensional case. In this paper,
we treat so-called QM-abelian surfaces. We will give the main results in Theorem 2.3
and Theorem 5.1.

I would like to thank Professor F. Momose and Doctor T. Yamauchi for suggesting
this subject to me. I would like to thank Professor T. Saito for advice and comments.
I would also like to thank the referee for comments and suggestions. This work was
partly supported by 21st Century COE Program in The University of Tokyo, A Base
for New Developments of Mathematics into Science and Technology.

§2. QM-abelian surfaces and the main theorem

Let Q be an indefinite quaternion division algebra over Q. Let d = disc(Q) be the
discriminant of Q. We know that d is the product of an even number of primes, and
d > 1. Choose a maximal order R of Q. It is known that R is unique up to conjugation
by an element of Q. For a prime p, put R, := R ®z Zy. If p does not divide d, fix an
isomorphism R, & M3 (Zyp).

Definition 2.1.  (cf. [Bu], p.591) Let S be a scheme over Q. A QM-abelian
surface (by R) over S is a pair (4,4) where A is an abelian surface over S (i.e. A is an
abelian scheme over S of relative dimension 2), and ¢ : R < Endg(A) is an injective
ring homomorphism (sending 1 to id). We say two QM-abelian surfaces (4,1), (4’,')
over S are isomorphic if there is an isomorphism A & A’ of abelian schemes over S and
the following diagram is commutative:

R —— Endg(A)
lid l&‘
R —*— Ends(4'),

where the right vertical map is induced by the isomorphism A = A’.

Let k be a field of characteristic 0. It is known that a QM-abelian surface (A4, 1)
over k where i is an isomorphism has a Galois representation which looks like that of
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an elliptic curve ([O], §1). By this reason, a QM-abelian surface is also called a fake
elliptic curve or a false elliptic curve.
Let (A,%) be a QM-abelian surface over k. Suppose the following:

(21) i: R —=— Endi(A) = End(4).

Note that the condition (2.1) corresponds to “no complex multiplication” in the case of
elliptic curves. Take a prime p not dividing d. Then the p-adic Tate module T,Aof A
is a free Rp-module of rank 1. Thus we have a Galois representation

P(A3) b ¢ G —> AutRp (TpA) & R; = GLz(Zp).

The first isomorphism is not canonical, and the second is induced from the isomorphism
R, = Mj(Zy) fixed above. Let

Plai)/kpm * Gk — GL2(Z/p"Z)
be the reduction of P(A,i)/k,p modulo p™. Note that the determinant
det P(A,i)/kyp - Gy — Z;,(

is the p-adic cyclotomic character.

The representation p(4)/k, has an open image just as in the case of an elliptic
curve.

Theorem 2.2.  (/O], Theorem 2.8) Let K be a number field and (A, i) be a QM-
abelian surface over K satisfying (2.1) (with k = K). Take a prime p not dividing d.
Then the representation P(Ai)/K,p has an open image i.e. there exists a positive integer
n depending on p, K, R and (A,41)/K such that Pai) kp(Gr) 2 1+ p"Ma(Z,).

We will show the following theorem asserting that the representation P(A,i)/K,p has
a uniform lower bound. This is one of the main result of this paper.

Theorem 2.3.  Let K be a number field and p be a prime not dividing d. Then
there exists a positive integer n depending on p, K and R satisfying the following: For
any QM-abelian surface (A,1i) over K having the property (2.1) (with k = K ), we have
P4y kp(Gr) 2 1+ p"Ms(Zy).

Let (4,1), (A',4') be QM-abelian surfaces over k. Take a field extension k'/k. We
say (A,%) and (A',) are k'-isomorphic if their base changes (A X Spec(k) Spec(k’), i) and
(A" Xgpec() Spec(k’),i’) are isomorphic. Note that the last “” is the composite

R —'— Endj(4) =22l Frdy (A X spec(k) SPec(k)),
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and similar for the last “i'”.
In Section 5, we will give an effective bound for pa,)/k,p(Gx) except a finite
number of K-isomorphism classes of QM-abelian surfaces.

§3. Moduli of QM-abelian surfaces

Let
MZE : (Sch/Q) — (Sets)

be the contravariant functor defined as follows:
(1) For any scheme S over Q,

MPE(S) = {isomorphism classes of QM-abelian surfaces (4,1) over S}.

(2) For any morphism of schemes f : §' — S over Q,

ME(f) ME(S) — ME(8);[(A,d)] — [(4 x5 §',%)]
where the last “4” is the composite

canonical

R —' & Endg(4) =22 Fndg (A xs S').

The functor MP has a coarse moduli scheme X over Q. The scheme X is
a proper smooth curve with constant field Q, called a Shimura curve (cf. [Bu]). Let
g® := g(XE) be the genus of XE. For a prime p, put

-3
<___) = ﬁ -1 ifp=-1 mod 3,

,

1 ifp=1 mod 4,
ifp=-1 mod 4,
0 ifp=2,

i
|
—

Lemma 3.1.  ([Shimi], Chapter 2, Chapter 3) We have
Rott AT w-n- AT (1= (22)) -2 (2= (2
g_4+mH@1)4H1. - 3H1 =)
pld pld pid

In particular, g% = 0 if and only if d € {6,10,22}, and g = 1 if and only if d €
{14, 15,21, 33, 34, 46}.
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Faltings proved the following celebrated theorem known as Mordell’s conjecture.

Theorem 3.2.  ([F], Theorem 7) Let K be a number field and X be a proper
smooth curve over K. If the genus g(X) > 2, then X (K) consists of only finitely many
elements.

Corollary 3.3.  Let K be a number field. If g% > 2, then there are only finitely
many K -isomorphism classes of QM-abelian surfaces over K.

§4. Twists and Galois images

When gF > 2, we show Theorem 2.3 by using the theory of twists.

Lemma 4.1.  (¢f. [$i], X, §2, §5) Let k be a field of characteristic 0, and (A, i), (A',4")
be QM-abelian surfaces satisfying (2.1). If (A,3) and (A',4') are k-isomorphic, then
there exists a field extension L with [L : k] < 2 such that (A,7) and (A',i') are L-
tsomorphic.

Proof. Put Twist((4,4),k) := {(A",i")}/k-isomorphism, where (A”,4") is a QM-
abelian surface over k satisfying (2.1) and isomorphic to (4,3) over k. Then we have a
natural inclusion T'wist((A4, 1), k) < H*(Gg, Aut(4,1)). This map is defined as follows.
Take a k-isomorphism ¢ : (A”,i") — (4,7). Let £ : Gp —> Aut(A,7) be the map
sending o to ¢° o ¢~. Then ¢ represents an element of H 1(Gyg, Aut(4,1)), which is
independent of the choice of ¢.

Next we show Aut(4,1) = {+1}. The inclusion Aut(4,7) D {1} is obvious. To see
the other inclusion, we have Aut(4,i) = Aut(A)NEnd(4,1) C R*N(center of End(4) ® Q) =
R*NQ = 2Z* = {£1}. Thus Aut(4,7) = {+1}, on which Gy acts trivially. Hence we
have an isomorphism H*'(Gy, Aut(4,1)) 2 k* /(k*)?; (¢ : 0+ o( M)/ 'm) > m. This
€ is trivialized by the corresponding extension k( m)/k. O

Lemma 4.2.  ([A], Lemma 2.3) Let n > 1 be an integer. Let H be a subgroup
of GL2(Zyp) containing 1+ p™Ma(Z,), and H' be a closed subgroup of GLz(Z,) which is
a subgroup of H of index 2. If p > 3, then H' D 1 +p"Mo(Zy); if p = 2 and n > 2,
H' 214 p"*t1My(Z,).

Corollary 4.3.  Let K be a number field and (A,i) be a QM-abelian surface
over K with the property (2.1). Then there exzists a positive integer n depending on
D, K, R and (A,9)/K satisfying the following: For any QM-abelian surface (A',%) over
K that is K -isomorphic to (A1) (such an (A',1) automatically satisfies (2.1)), we have
P(ari kp(Gr) 2 1+ p"Ma(Zp).
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Proof. Combining Lemma 4.1, 4.2 and Theorem 2.2, we get the result. O
By Corollary 3.3 and 4.3, we get the following.

Proposition 4.4.  If g > 2, then Theorem 2.8 is true.

§5. Effective version

We give an effective version of Theorem 2.3, though we admit finitely many excep-
tions. We use the following conventions:
1+9°Z, = z,,
1+ p°Ms(Zp) = GL2(Zy),
14 p°My(Z/pZ) = GL2(Z/pZ).
Theorem 5.1. . Suppose g® < 1, so that d € {6,10,22,14,15,21,33,34,46}. For
a prime p not dividing d, there ezists an integer n > 0 satisfying the following condition

(Q)ryp- (C)ryp : Let K be a number field. Then for all QM-abelian surfaces (A,1) over
K with (2.1) but a finite number of K -isomorphism classes , we have

Pea/kp(Gr) 2 (1 + p"Ma(Zp)) 2=

Let n(R,p) > 0 be the minimum integer n satisfying (C)rp. Then n(R,p) is
estimated as follows. When d = 6, we have

(c{1,2} ifp=5,
=1 ifp=T,
n(R,p){ <1 ifp=11,
=1 if p =13,
=0 ifp>17.
When d = 10, we have
<3 ifp=3,
nR,p){=1 ifp="T,
=0 ifp>1lL
When d = 22, we have
<2 ifp=3,

TL(R,p) <1 ifp=5a
=0 ifp=>T.



ON THE GALOIS IMAGES ASSOCIATED TO QM-ABELIAN SURFACES 171

When d € {14,21, 33, 34,46}, we have

<3 ifp=2,
'n(R,p) <1 ifp=3,
=0 ifp>5.

When d = 15, we have

<5 ifp=2
n(R,p){ ~ z,fp ’
=0 fp>T.
To deduce p(4,i)/x,p(Gr) 2 14+p™M2(Z,) from Theorem 5.1, we use the following.

Lemma 5.2.  ([A], Corollary 2.7) Let H C GLy(Z,) be a closed subgroup and
n, r > 0 be integers. Assumer > 2 if p = 2. If H D (1 + p"My(Z,))3*=! and if
det(H) 2 1+ p"Zy, then H 2 1+ p"t"My(Zy).

Corollary 4.3, Theorem 5.1 and Lemma 5.2 imply Theorem 2.3 for g% < 1.

§6. Level structure on QM-abelian surfaces

To construct a curve with genus at least 2, we introduce a level structure on a
QM-abelian surface.

Definition 6.1.  (cf. [Bu], Definition 1.1, [Bo], §13) Take an integer N > 1 prime
to d. Let S be a scheme over Q and (A4,i) be a QM-abelian surface over S. A level
N-structure on (A4, 1) is an isomorphism of S-group schemes

v:R®zZ/NZ —=— A[N]

which is compatible with the action of R.

Take two QM-abelian surfaces with level N-structure (4,4,7), (4',4',7'). We say
(4,1,7) and (A’,4',4') are isomorphic if there is an isomorphism (4,i) = (4’,4') of
QM-abelian surfaces and the isomorphism is compatible with v and .

Let X®(N) be the moduli scheme over Q associated to the contravariant functor
ME(N) : (Sch/Q) —» (Sets)

defined as follows:
(1) For any scheme S over Q,

MPE(N)(S) = {isomorphism classes of (4,%,7)},
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where (4,1) is a QM-abelian surface over S and v a level N-structure on it.
(2) For any morphism of schemes f : S’ — S over Q,

ME(N)(f) : ME(N)(8) — ME(N)(S'); (4,4, 7)] = [(A x5 8's3,7 x5 §)].

Then XE(N) is a proper smooth curve with constant field Q({x). To see this, first
we define a morphism

XEB(N) — Spec(Q(¢(n))-
For simplicity, suppose N is odd. Take an element o € Q such that a® = —d (such an

do
R®z Z/NZ = M3(Z/NZ). Let * : @ — @Q be the involution defined by z* = a~'z‘a,
where ¢ is the canonical involution on Q. Then * stabilizes R. For any QM-abelian
surface (A,1), there exists a unique principal polarization A : A — A" making the
following diagram commutative ([BC], Proposition (1.5)):

element.exists). We may assume o € R and o maps to via the isomorphism

A2 av

li(r*) li(r)v
‘ y g
Let ey : A[N] x AV[N] — un be the Weil pairing, and define a pairing ( , ) :
A[N] x A[N] — un by (z,y) = en(z,A(y)). Then (, ) is bilinear, alternating,
non-degenerate and satisfies (rz,y) = (z,r*y) for every r € R ([Bu], p.592). Take a
level N-structure v on (A4,4) and identify A[N] = R ®z Z/NZ = My(Z/NZ) by using
10 01
00/’\00) /"

10 01 Lo . o

Not , . ’ _ |

ote that <( 0 O) ( 0 0) > generates uy. In fact, we have (0 O) (0 0 hence
<<é g) ) (2 2) > = 0 for any u,v € Z/NZ. Since (, ) is alternating, < 10 10

00/’\00
10 01
0. As (, )i -d te, )
s (, ) is non-degenerate <(OO 00

Next consider the C-valued points of X®(N) (cf. [Be], §3, §4, [DR], IV.5). Put
H := {2 € C|Imz > 0} and write SR* := {c¢ € R|Nrd(c) = 1}, where Nrd is the reduced
norm. We have an isomorphism of complex manifolds

4. Define a morphism X®(N) — Spec(Q(¢{n)) by (4,4,7) —

/N
N~
|

must generate Ly

Homgpec(g) (Spec(C), XB(N)) =2 SR*\(H x GL2(Z/NZ)),

and the set of connected components of this manifold is identified with (Z/NZ)* via
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determinant. We also have
Homgpec(q(¢n)) (Spec(C), X R(N )) & SR*(N)\H,

where SR*(N) := {c € SR*|c = 1 mod N}. Therefore the constant field of XE(N) is
Q(¢~) because SR*(N)\H is connected.
Put
G := SLy(Z/NZ) C (R ®z Z/NTZ)*.

We have a right action of G on XE(N) :
(4,3, 7)] — [(A,4,7 0 g)]

where (4,4) is a QM-abelian surface, 7 a level N-structure on (4, t) and g € G. For a
subgroup H C G, put
XE = X®(N)/H.

Then X7 is a proper smooth curve with constant field Q(¢y). Let g& be the genus of
XE.

Lemma 6.2. Let K be a number field. If gf} > 2, then there are only finitely
many K-isomorphism classes of QM-abelian surfaces (4,4) over K with the property
(2.1) and satisfying: A conjugate of Pa,i)k,n(Gx) is contained in H.

The genus gF is expressed by using g&. Put -

01 11
o= (_10) ST = (-10) € SLy(Z).

For a € SLy(Z) or R, we also use the same letter to denote the reduction of . Put
Fixe = Fix¥? := {gH € G/H|agH = gH}.
Let SRy be the inverse image of H by the natural surjection
SR* — SL2(Z/NZ).
Lemma 6.3.  (c¢f. [Shimu/, Proposition 1.40) We have
g5 =1+ (9r ~ Dum + %(wH — )+ %(&LH — vs)

=14 —1+1r+ls) —-lu—— v
= gr 1 35/kH 172 " 3%

06 () 3)
vy = riFix,, vs := siFix,,
pe = [SR*/{£1}: (SR, -1)/{=£1}].

where
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Proof. We show the formula over C. We call ¢ € SR* an elliptic element if
|Tr(c)| < 2, where Tr is the reduced trace. For a subgroup U C SR*, a point z € H is
called an elliptic point of U if there exists an elliptic element ¢ € U such that c(z) = z.
By abuse of language, we sometimes call a point on U\H an elliptic point if it is the
image of an elliptic point on H of U. It is known that r (resp. 8) is the number of elliptic
points of order 2 (resp. 3) on SR*\H. The index up is the degree of the quotient map
¢ : SRS\H — SR*\H, because the group of all holomorphic automorphisms of H is
SLo(R)/{+1}. We show vy (resp. v3) is the number of elliptic points of order 2 (resp.
3) on SRS\H. Let Py,..., P, (resp. Q1,...,Qs) be the elliptic points of order 2 (resp.
3) on SR*\H. We have a decomposition

{elliptic points of order 2 of SR}}

= H{ elliptic points of order 2 of SR} above P;}

i=1
C{elliptic points of order 2 of SR*}
CH.

Let B; € H be a lift of P;. Choose a generator o; of the cyclic group {g € SR lgP; =
P;} =2 Z/4AZ. The map

{elliptic points of order 2 of SR} above P;}
— {ge SR*|g"Y0:9 € SR5}/SR} :
gP; — g"'SR}

is well-defined, and it induces a bijection

SR} \{elliptic points of order 2 of SRy above P;}
~(g € SR|g~\o1g € SRS}/SES.

The mod N map induces a bijection {g € SR*|g~'0:9 € SR }/SRy = Fix,,. Hence
we have

{elliptic points of order 2 on SRy \H}
=S8R} \{elliptic points of order 2 of SRy}

= H SR} \{elliptic points of order 2 of SR} above P;}

i=1

.
=[] Fix,..
i=1
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Thus v is the number of elliptic points of order 2 on SR} \H since o; is conjugate to
o in G. The assertion for v3 is verified in the same way.
Applying Hurwitz’ formula to the map ¢, we have

208 -2=020"-2ur+ Y, (ex-D+ > (ex-1)
X—P,... P Y—=Q1,...,Qs

where ex (resp. ey) is the ramification index of ¢ at X (resp. Y). Let P € SR*\H
be an elliptic point of order e where e is 2 or 3. Let Xy,...,X, € SRE\H (resp.
Xat1y-++ s Xats € SRE\H) be the elliptic points of order e (resp. non-elliptic points)
lying over P. Then we have ug = a +eb. Thus 35, plex —1) = 37 (ex; — 1) +
Z;‘:Z silex; —1) =0+ (e—1)b = <L(uy —a). Let a; be the number of elliptic points
of order 2 on SRz \H above P;. Then vy = 377 a;. Hence Yy, ,p  p(ex —1) =
Sim13(km — @) = 3(rpm — vg). Similarly Yy 0 o (ey — 1) = 2(spy — vs).
Therefore gff =1+ (g% — )pg + 3 > xwspy,.. p(ex —1) + i Y veqr,...0.ley —1) =
1+ (g% = Dum + §(rue — v2) + 3(sum — vs). O

Note that if H contains —1, then py =[G : H].

§7. Conjugate elements in SLy(Z/p"Z)

We refer to the results of [A] in order to estimate the genus g&.

Lemma 7.1.  ([A], Lemma 2.1) Let H be a closed subgroup of GL3(Z,). Then
H contains SLy(Zy) if and only if H mod p? contains SL2(Z/p*Z).
Assumep > 5. Then H contains SLy(Zy) if and only if H mod p contains SLy(Z/pZ).

Lemma 7.2. ([A], Lemma 2.2) Let n > 1 be an integer. If p = 2, assume
n 2 2. Let H be a closed subgroup of GLa(Zy). Then H contains 1 + p"Mz(Z,)
(resp. (14 p"Ma(Zp))%*=1) if and only if H mod p™t! contains 1 + p"My(Z/p"+1Z)
(resp. (1 +p"Ma(Z/p"t1Z))4=1).

Definition 7.3.  (cf.-[A], Definition 3.7) Let n > 1 be an integer and H C

SL2(Z/p™Z) be a subgroup. We call H a slim subgroup if
H 2 (1 -I-pn—lIVIz(Z/an))det::l.

Note that a slim subgroup of SLy(Z/pZ) is just a proper subgroup.
Consider subgroups of GL2(Z/pZ). A Borel subgroup is a subgroup which is

conjugate to { ;* ; the normalizer of a split Cartan subgroup is conjugate to
%
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{(3 2) , (0 ;) } When p > 3, the normalizer of a non-split Cartan subgroup is
*

Ay
is a fixed element. Assume p > 5. The quotient group PGL2(Z/pZ) of GL2(Z/pZ) has
a subgroup which is isomorphic to Sy; it has a subgroup which is isomorphic to As if
and only if p = 0,41 mod 5. Take a subgroup H (of GL2(Z/pZ)) whose order is prime
to p. We call H an exceptional subgroup if it is the inverse image of a subgroup which
is isomorphic to Ay, Sy or As by the natural surjection GLy(Z/pZ) — PGLy(Z/pZ).
Put :

. Ty r ¥y
conjugate to { (/\y m) , (_ _w) I(z,y) € Fp x Fy\ {(0,0)} ¢, where A € F¥ \ (Fy)?

o)
o2
oo{ () (5 ) rmecm

:= (an exceptional subgroup) N SLy(Z/pZ).

Proposition 7.4.  ([Se2], p.284) Let H be a mazimal subgroup of SLo(Z/pZ).
If p > 5, then H is GLo(Z/pZ)-conjugate to B,C,D or E. If p = 3, then H is
GL2(Z/3Z)-conjugate to B,C or D.

We review the number of elements conjugate to o, 7 in the maximal subgroups
B,C, D, E of SLy(Z/pZ).

Lemma 7.5.  ([A], Lemma 4.9) In SLy(Z/pZ), the number of elements conjugate
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too, T in B, C, D, E is as follows.

fzp

#B N Conj(o) = {0

\

(2p

BN Conj(r) =<0

#C N Conj(o) = 4

fC N Conj(r) =

D N Conj(o) =

§D N Conj(r) =

tE N Conj(c

$E N Conj(r) < {8

\

;
|
:
A

(1

ifp=1 mod4,
ifp=-1 mod 4,
fp=2.

fp=1 mod 3,
ifp=-1 mod 3,
ifp=3.

rp+1 ifp=1 mod 4,
p—1 ifp=-1 mod 4,

ifp=2.
ifp=1 mod 3,
ifp#1 mod 3.

p+1 ifp=1 mod 4,
p+3 ifp=-1 mod 4,

ifp=3orp=1 mod 3,
ifp>5andp=—-1 mod 3.

ifp=+41 mod 5,
ifp>5andp#+1 mod 5.

ifp=+1 mod 5,
ifp>5andp£ -+l mod 5.

177

Now we recall maximal subgroups of SL2(Z/4Z) whose image mod?2 is SLy(Z/2Z).

Lemma 7.6.

which is a mazimal subgroup, and is not a normal subgroup.

We review the number of elements conjugate to 0,7 in A; C SLy(Z/4Z).

([A], Lemma 4.7) Let A G SLy(Z/AZ) be a proper subgroup. As-
sume A maps surjectively mod 2 onto SLo(Z/2Z). Then A is conjugate to

)
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Lemma 7.7. ([A], Lemma 4.10) In SLy(Z/4Z), we have

$A; N Conj(o) = 3,
§4; N Conj(r) = 2.

We review the number of elements conjugate to o, 7 in SLy(Z/p"Z).

Lemma 7.8. ([A], Lemma 5.1) Let n > 1 be an integer. In SLo(Z/p"Z) we
have

((p+1)p* ! ifp=1 mod 4,

(p—1)p* ! 4fp=-1 mod4,
3 ifp=2andn=1,
3.22n3 fp=2andn>2,

#Conj(o) = <

\
r(p +1)p** ! ifp=1 mod 3,
fConj(r) =S (p—1)p**~ ! ifp=-1 mod3,
[4- 32n-2 ifp=3.

We control the number of elements conjugate to o, 7 contained in a slim subgroup.
Let n > 1 be an integer and let H be a subgroup of SLo(Z/p"Z). For an integer
1<t <n,put

H; = HN (1 +p"My(Z/p"Z)) = Ker (modp® : H — SLy(Z/p'Z)).

We identify H/H; with H mod p.
For p > 3, define a sequence {a(c,p)n }n>2 as follows:

a(,p)n = 2p°" 7Y +2(1 - 1)(p* ~ 1)p" 7Y,
where n = 21 or 2/ + 1. For p > 5, define a sequence {a(7,p)n}n>2 by
a(T7p)n = a’(aa p)'m

Proposition 7.9.  ([A], Corollary 6.9, 6.10) Let n > 2 be an integer and let
H C SLy(Z/p"Z) be a slim subgroup. If p > 3, then we have

§H N Conj(c) < a(o,p)n + ™ (§(H/H1) N Conj(o) — 2).
If p > 5, then we have

$H N Conj(t) < a(r,p)n + p"* (#(H/H1) N Conj(r) — 2).
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Define a sequence {a(7,3)n}n>2 as follows:

32 ifn=2,
a(T,3)n 1= (4n—11)-3" ifn=20>4,
(4n—-9)-3" ifn=2+1.

Proposition 7.10.  (fA], Corollary 6.11) Let n > 2 be an integer and let H C
SLy(Z/3™Z) be a slim subgroup. Then we have

H N Conj(7) < a(7,3)n + 3"~ (#(H/Hy) N Conj(t) — 1).

Define a sequence {a(7,2)n}n>5 as follows:

(31 = 5) - 27+1 if n = 21,
a(1,2)p :=
(8 —7)-2™1 ifp =2 —1.

Proposition 7.11.  ([A], Proposition 6.16) Let n > 5 be an integer and let H C
SLy(Z/2"Z) be a skim subgroup. Then we have

§H N Conj(7) < a(7,2)n + 2" 2(§(H/Hsz) N Conj(T) — 8).

§8. Proof of the effective version

For each d and p, we find a suitable n and show g& > 2 for any slim subgroup
H C SLy(Z/p™Z) (with H 3 —1), and prove Theorem 5.1.
Case d = 6. If H contains —1, then

R_q,. 1, _ o fFix,  fFix,
by Lemma 6.3. Put ) )
§im1-3 X, #Fix,

[G:H] T[G:H]
An easy group theory (cf. [A] Lemma 4.1) shows

3 3ﬁH N Conj(o) _,4H N Conj(r)

0=1 §Conj(o) §Conj(7)

Now we find a suitable n and show § > 0 for any slim subgroup H C SLy(Z/p"Z).

Proposition 8.1.  Assume p > 17. For any slim subgroup H C SLy(Z/pZ), we
have § > 0.
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Proof. In SLy(Z/pZ), we have §Conj(c) > (p — 1)p and §Conj(r) > (p — 1)p by
Lemma 7.8. Suppose H C B. Lemma 7.5 shows §H N Conj(c) < 2p and fH NConj(7) <
2p. Therefore § >1—3- (PEI;.)p —4. (pzp — =15 5 .

-p = p-1
Next suppose H C C,D or E. Lemma 7.5 shows $H N Conj(o) < 2p and §H N
Conj(7) < 2p. The calculation in the case H C B shows ¢ > 0. O

Proposition 8.2.  Assume p = 13. Take a slim subgroup H C SLy(Z/13Z). If
H is contained in C, D or E, then § > 0.

Proof. In SLy(Z/13Z), we have {Conj(c) = fConj(r) = 14 - 13 by Lemma 7.8.
Suppose H C E. Lemma 7.5 shows §H NConj(c) < 18 and §H NConj(r) < 8. Therefore
5>1-38. 18 4. B i85

Next suppose H C C or D. Lemma 7.5 shows §H N Conj(c) < 14 < 18 and

#H N Conj(7) < 2 < 8. The calculation in the case H C E shows § > 0. O

Proposition 8.3.  Assume p = 13. Take a slim subgroup H C SLy(Z/13%Z). If
H/H, is contained in B, then 6 > 0.

Proof. In SLy(Z/13?Z), we have {§Conj(c) = §Conj(r) = 14 - 13* by Lemma 7.8.
Lemma 7.5 shows that in SLy(Z/13Z) we have §B N Conj(s) = §B N Conj(t) = 26.
By Proposition 7.9, we have $H N Conj(o) < a(o,13)2 + 13(26 — 2) = 50 - 13 and
§H N Conj(r) < a(r,13)s +13(26 — 2) = 50~ 13. Therefore § > 1—3. 2135 —4. 205 =
i~ 0 O
169 ~

Proposition 8.4.  Assume p = 11. Take a slim subgroup H C SLy(Z/11Z). If
H is contained in B, C or D, then § > 0.

Proof. In SLg(Z/11Z), we have §Conj(o) = §Conj(7) = 110 by Lemma 7.8.

Suppose H C D. Lemma 7.5 shows §H N Conj(c) < 14 and §H N Conj(r) < 2.
Therefore § > 1 -3 24 —4. 2. =5 >0.

Next suppose H C B or C. Lemma 7.5 shows §H N Conj(s) < 10 < 14 and

$H N Conj() = 0 < 2. The calculation in the case H C D shows § > 0. a

Proposition 8.5.  Assume p = 11. Take a slim subgroup H C SLy(Z/ 1127). If
H/H; is contained in E, then § > 0.

Proof. In SLy(Z/112Z), we have §Conj(o) = §Conj(r) = 10 - 113 by Lemma 7.8.
Lemma 7.5 shows that in SLy(Z/11Z) we have § ENConj(s) < 30 and ENConj(r) < 20.
By Proposition 7.9, we have §H N Conj(s) < a(o,11)z + 11(30 — 2) = 50 - 11 and
§H N Conj(7) < a(r,11)3+11(20—2) = 40-11. Therefore § > 1 -3 L% —4- {5 =
2 >0. O
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Proposition 8.6.  Assume p = 7. Take a slim subgroup H C SLy(Z/7Z). If H
s contained in C or D, then § > 0.

Proof. In SLg(Z/7Z), we have §Conj(c) = 42 §Conj(r) = 56 by Lemma 7.8.

Suppose H C C. Lemma 7.5 shows §H N Conj(s) < 6 and {H N Conj(r) < 2.
Therefore § >1-3- 5 -4-Z =3 >0.

Next suppose H C D. Lemma 7.5 shows §H N Conj(s) < 10 and $H N Conj(r) = 0.
ThereforeJZ1—3~%—4-0:%>0. 0

Proposition 8.7.  Assume p = 7. Take a slim subgroup H C SLy(Z/7%Z). If
H/H, is contained in B or E, then § > 0.

Proof. In SLy(Z/7*Z), we have §Conj(c) = 6- 7% and §Conj(r) = 8- 7% by Lemma
7.8.

Suppose H/H; C B. Lemma 7.5 shows that in SLy(Z/7Z) we have §B N Conj(c) =
0 and §B N Conj(r) = 14. Thus §H N Conj(c) = 0. By Proposition 7.9, we have
45 0 Conj(7) < a(r,7)2 +7(14 — 2) = 26 - 7. Therefore § >1-3-0—4. 287 =36 5 g,

Next suppose H/H; C E. Lemma 7.5 shows that in SLy(Z/7Z) we have §E N
Conj(e) < 18 and §E N Conj(r) < 8. By Proposition 7.9, we have §H N Conj(o) <
a(o,T)2 + 7(18 — 2) = 30 - 7 and §H N Conj(7) < a(T,7)2 + 7(8 — 2) = 20 - 7. Therefore
6>1-3-3%1 —4. 81 =25 O

Proposition 8.8.  Assume p = 5. Take a slim subgroup H C SLy(Z/5Z). If H
is contained in C, then § > 0.

Proof. In SLy(Z/5Z), we have #Conj(c) = 30 and #Conj(r) = 20 by Lemma 7.8.
Lemma 7.5 shows that in SLy(Z/5Z) we have §C N Conj(c) = 6 and §C N Conj(r) = 0.
Therefore § >1-3- 5 -4.0=2>0. O

Proposition 8.9.  Assume p = 5. Tuke a slim subgroup H C SLy(Z/52Z). If
H/H; is contained in B or D, then § > 0.

Proof. In SLy(Z/5°Z), we have §Conj(c) = 6-5° and §Conj(r) = 4-5% by Lemma
7.8.

Suppose H/H; C B. Lemma, 7.5 shows that in SLy(Z/5Z) we have B N Conj(c) =
10 and §B N Conj(r) = 0. Thus $H N Conj(r) = 0. By Proposition 7.9, we have
#H N Conj(o) < a(0,5)2 + 5(10 — 2) = 90. Therefore § > 1—3- 2 —4-0= 16 > 0.

Next suppose H/H; C D. Lemma 7.5 shows that in SLy(Z/5Z) we have §D N
Conj(o) = 6 and §D N Conj(r) = 2. By Proposition 7.9, we have {H N Conj(c) <
a(0,5)2 + 5(6 — 2) = 70 and $H N Conj(r) < a(0,5)2 + 5(2 — 2) = 50. Therefore
621-3- % -4- 2% =58>0 O



182 KEISUKE ARAI

Proposition 8.10.  Assume p = 5. Take a slim subgroup H C SLo(Z/5%Z). If
H/H, is contained in E, then § > 0.

Proof. In SLg(Z/5%Z), we have §Conj(c) = 6 -5° and §Conj(r) = 4-55 by Lemma
7.8. Lemma 7.5 shows that in SLo(Z/5Z) we have fENConj(o) < 18 and §ENConj(T) <
8. By Proposition 7.9, we have §H N Conj(c) < a(c,5)s + 5%(18 — 2) = 66 - 5 and
#H N Conj(7) < a(r,5)s + 5%(8 — 2) = 56 - 52. Therefore § > 1 —3- %35; —4.568

36
m>o. O

(Proof of Theorem 5.1 when d = 6) Put

2 ifp=25,
n'(R,p) =41 ifpe{7,11,13},
0 ifp>17.

Let (A,4) be a QM-abelian surface over K satisfying (2.1) and p4,i),x,p(Gk) 2 (1 +

p" FPIMy(Z,))%=1. By Lemma 7.1 and 7.2, we have B4 ;)/x pn' e+ (Gx) 2 (1 +

p" (BP)M,(Z/p™ (Rop)+17))det=1 " (More precisely, we should replace n'(R, p) by n’(R, p)—
1,n/(R,p) — 2 according to the shape of B4 ;), k,p)- Replacing K by K (G (rmr+1); We

may assume P4, k' o+ (GK) C SLy(Z/p™ (BP)H1Z), We may also assume that

P(Ai)/ K pr' (RpI+1 (Gg) is contained in a slim subgroup H C SLy(Z/ p™ (BP)H1Z) satisfy-

ing H > —1 (see [A], proof of Proposition 3.8). By Lemma 6.2, we know that there are

only finitely many K-isomorphism classes of such (4,%)’s. Therefore n(R,p) < n/(R,p).

To exclude n(R,p) = 0 for p = 5 (resp. p = 7, resp. p = 13), we have only to see

g8 = gB =1 (resp. g& = 1, resp. g% = 1) where n = 1.

Case d = 10. If H contains —1, then
1 fFix
R _ ol T
gH—1+3[G.H]<1 4[G:H])
by Lemma 6.3. Put

5=1—4 fFix, 1 _4ﬂHﬁConJ('r)’

[G:H] §Conj(r)
Proposition 8.11.  Assume p > 11. For any slim subgroup H C SLz(Z/ pZ), we
have § > 0.

Proof. 1In SLy(Z/pZ), we have §Conj(t) > (p — 1)p by Lemma 7.8.
Suppose H C B. Lemma 7.5 shows § HNConj(7) < 2p. Therefore § > 1—4-(5%% =
=2 >0 '



ON THE GALOIS IMAGES ASSOCIATED TO QM-ABELIAN SURFACES 183

Next suppose H C C, D or E. Lemma 7.5 shows fHNConj(T) < 2p. The calculation
in the case H C B shows § > 0. O

Proposition 8.12.  Assume p = 7. Take a slim subgroup H C SLa(Z/7Z). If
H is contained in C,D or E, then § > 0.

Proof. In SL3(Z/7Z), we have §Conj(r) = 56 by Lemma 7.8. Since H C C, D or
E, Lemma 7.5 shows §# N Conj(r) < 8. Therefore § >1—4- & = 2 >0, O

Proposition 8.13.  Assume p = 7. Take a slim subgroup H C SLe(Z/7?Z). If
H/H, is contained in B, then § > 0.

Proof. In SLy(Z/7°Z), we have §Conj(r) = 8- 73 by Lemma 7.8. Lemma 7.5
shows that in SLy(Z/7Z) we have §B N Conj(r) = 14. By Proposition 7.9, we have
HH N Conj(r) < a(r,7)2 + 7(14 — 2) = 26 - 7. Therefore § > 1 —4- 27 = $>0 O

Proposition 8.14.  Assume p = 3. For any slim subgroup H C SL, (Z/3*Z), we
have § > 0.

Proof. In SLy(Z/3'Z), we have Conj(r) = 4 - 3% by Lemma 7.8. Similarly
#SL2(Z/3Z) N Conj(t) = 4. By Proposition 7.10, we have §H N Conj(r) < a(r,3)s +

3%(4—1) =235 Therefore § > 14235 =1 >, O

Case d = 22. If H contains —1, then

R §Fix, fFix,
gf}—l+g[G.H] (5—3[G:H] —S[G:HJ

by Lemma 6.3. Put

{Fix, _g fFix, 5 3]3H N Conj(o) _ 8{1H N Conj (7')'

§:=5— 3[G ‘H] [G:H Conj(o) §Conj(r)

Proposition 8.15.  Assume p > 7. For any slim subgroup H C SL, (Z)pZ), we
have § > 0.

Proof. In SLy(Z/pZ), we have §Conj(c) > (p — 1)p and §Conj(r) > (p — 1)p by
Lemma 7.8.

Suppose H C B. Lemma 7.5 shows §H N Conj(c) < 2p and §H N Conj(7) < 2p.
Therefore § > 5~ 3. (pfﬁyp -8 (pfﬁ)p = 5£:f7 > 0.

Next suppose H C C or D. Lemma 7.5 shows {HNConj(c) < 2p and {H NConj(T) <
2p. The calculation in the case H C B shows § > 0.
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Finally suppose H C E Lemma 7 5 shows $H N Conj(c) < 30 and §H N Conj(r) <
20. Therefore § > 5 — W (—— =5 %‘—l)—”r@ > 0if p > 8 When
p = 7, we have {H N onJ(a) 18 and $H N Conj(r) < 8 by Lemma 7.5. Thus
§>5-3-2-8. & =22>0 O

Proposition 8.16.  Assume p = 5. Take a slim subgroup H C SLo(Z/5Z). If
H is contained in B, C or D, then § > 0.

Proof. In SLy(Z/5Z), we have §Conj(c) = 30 and fConj(r) = 20 by Lemma 7.8.

Suppose H C B. Lemma 7.5 shows §H N Conj(c) < 10 and §H N Conj(r) = 0.
Therefore § >5—3-33 —8-0=4>0.

Next suppose H C C. Lemma 7.5 shows fHNConj(c) < 6 < 10 and {H NConj(r) =
0. The calculation in the case H C B shows § > 0.

Finally suppose H C D. Lemma 7.5 shows §HNConj(o) < 6 and §H NConj(r) < 2.

Therefore § > 5—3- & — 8 &= 18>0 O

Proposition 8.17.  Assume p = 5. Take a slim subgroup H C SLy(Z/5%Z). If
H/H; is contained in E, then é > 0.

Proof. In SLy(Z/52Z), we have §Conj(o) = 6-5° and §Conj(r) = 4-5% by Lemma
7.8. Lemma 7.5 shows that in SLy(Z/5Z) we have § ENConj(o) < 18 and fENConj() <
8. By Proposition 7.9, we have {H N Conj(c) < a(0,5)2 + 5(18 —2) = 26 - 5 and
$EHNConj(r) < a(r,5)2+5(8—2) = 16-5. Therefore § > 5-3-253-8-3%8 = 2 > 0. O

Proposition 8.18.  Assume p = 3. For any slim subgroup H C SLZ(Z/ 33Z), we
have 6 > 0.

Proof. In SLy(Z/33Z), we have §Conj(c) = 2-3° and §Conj(r) = 4-3* by Lemma
7.8. Similarly §SL2(Z/3Z)NConj(c) = 6 and §SL2(Z/3Z)NConj(7) = 4. By Proposition
7.9, we have §H N Conj(c) < a(0, 3)s +3%(6—2) = 22-3%. By Proposmon 7.10, we have

$HNConj(t) < a(T, 3)3+3%(4—1) = 4-33. Therefore § > 5—3- 223 25 -8 igi =¥>0 0O

Case gF = 1 (equivalently d € {14,15,21,33,34,46}). If H contains —1, then we
know

from Lemma 6.3. Thus we have g& > 2 if at least one of the following two conditions
is satisfied:
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e 7 >0 and §H N Conj(c) < §Conj(c).

¢ 5> 0 and §H N Conj(r) < fConj(r).

The values of 7, s depending on d are as follows:

d r s
14 2 0
15 0 2
21 4 0
33 4 2
34 0 4
46 2 4

Note that in any case we have (r,s) # (0,0).

Proposition 8.19.  Assume p > 5. For any slim subgroup H C SLy(Z/pZ), we
have § > 0,

Proof. In SLy(Z/pZ), we have §Conj(s) = (p = 1)p and §Conj(t) = (p £ 1)p by
Lemma 7.8.

Suppose H C B,C or D. Lemma 7.5 shows {H N Conj(o) < 2p < Conj(o) and
$H N Conj(r) < 2p < §Conj(r). Therefore g& > 2.

Next suppose H C E. Lemma 7.5 shows

30 < iConj(c) ifp>7,

#H N Conj(o) <
18 < §Conj(c) if p =5,

and

20 < §Conj(r) ifp > 7,

H N Conj
HEL 1 Coni(r) < {8 < §Conj(r) if p=>5.

Therefore gft > 2. O

Proposition 8.20.  Assume p = 3. For any slim subgroup H C SL, (Z/3*Z), we
have g& > 2.

Proof. In SL3(Z/3%Z), we have §Conj(s) = 54 and }Conj(r) = 36 by Lemma 7.8.
Similarly §SL2(Z/3Z) N Conj(c) = 6 and {SLy(Z/3Z) N Conj(r) = 4. By Proposition
7.9, we have $H N Conj(o) < a(0,3)2 + 3(6 — 2) = 30 < #Conj(c). By Proposition 7.10,
we have N Conj(r) < a(r,3)2 + 3(4 — 1) = 18 < §Conj(7). Therefore g& > 2. a
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Proposition 8.21.  Assume p = 2. Take a skim subgroup H C SLy(Z/2Z). If
H is contained in B, then gk > 2.

Proof. Tn SLy(Z/2Z), we have §Conj(c) = 3 and §Conj(r) = 2 by Lemma 7.8.
Lemma 7.5 shows §H N Conj(c) < 1 < §Conj(c) and §H N Conj(r) = 0 < Conj(r).
Therefore g& > 2. O

Proposition 8.22.  Assume p = 2. Take a slim subgroup H C SLy(Z/2°Z). If
H/H, is equal to the whole SLy(Z/2Z), then gf > 2.

Proof. In SLy(Z/22Z), we have §Conj(c) = 6 and §Conj(r) = 8 by Lemma 7.8. By
Lemma 7.6, we may assume H C A;. Lemma 7.7 shows §H N Conj(c) < 3 < §Conj(o)
and §H N Conj(r) < 2 < §Conj(r). Therefore gk > 2. O

Proposition 8.23. Assume p = 2 and d € {21,33}. Take a slim subgroup
H C SLy(Z/2Z). If H is contained in F, then git > 2.

Proof. In SLo(Z/2Z), we have §Conj(c) = 3 by Lemma 7.8. We can easily see
§EH NConj(c) = 0 < Conj(c). Since d € {21, 33}, we have r > 0. Therefore gf >2. [

Proposition 8.24. Assume p = 2 and d = 15. Take a slim subgroup H C
SLo(Z/25Z). If H/Hy is contained in F, then gft > 2.

Proof. InSLy(Z/2°Z), we have §Conj(r) = 2° by Lemma 7.8. Similarly §(H/H3)N
Conj(t) < #SL2(Z/2%Z) N Conj(r) = 2°. By Proposition 7.11, we have §H N Conj(7) <
a(r,2)s + 2%(2° — 8) = 5- 2% < {Conj(r). Since d = 15, we have s > 0. Therefore

E>2 O
9g = <

This completes the proof of Theorem 5.1. When p = 2, a slight difference occurs
between the power of 2 in Proposition 8.21-8.24 and n(R,2) in Theorem 5.1. See [A],
proof of Proposition 3.8 for details.
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