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Ramification and tame characters of a finite flat
representation of rank two

By

Shin HATTORI*

Abstract

Let K be a complete discrete valuation field of mixed characteristic (0,p) with perfect
residue field F' and uniformizer 7. In this paper, we propose an example of the main theorem
of the paper [10]. Namely, we calculate the conductor ¢(G) in the sense of Abbes and Saito for a
finite flat group scheme G over Ox which is reducible, killed by p and of rank p?, and show that
the Ix-module G(K) contains the fundamental character of level ¢(G). For this purpose, we
show that the Dieudonné functor of Breuil is compatible with the base extension K(r'/?)/K

§1. Introduction

Let K be a complete discrete valuation field of mixed characteristic (0,p) with
perfect residue field F', 7 = 7x be its uniformizer, G be its absolute Galois group and
Iy be its inertia subgroup. For j € Qsg, we define a tame character 0; : Ix — F*
to be 8%, where '/l is the prime-to-p-denominator part of J mod Z ([12]). In other
words, we set 8;(c) = (a(r/")/x1/¥)¥ mod mg, where mg is the maximal ideal of
Og. We refer any of Fy,-conjugates of 6; as the fundamental character of level j.

Let G be a finite flat group scheme over Ox. When § is killed by p and monogenic,
that is to say, when the affine algebra of G is generated over Ok by one element, it is
well-known that the tame characters appearing in the Ix-module G(K) are determined
by the slopes of the Newton polygon of a defining equation of G, as follows.

Proposition 1.1 ([12], Proposition 10).  Let G be as above and write the affine
algebra of G as Ok[T]/(f(T)) with f(0) = 0. Let s1,...,s, be the negatives of the
slopes of the Newton polygon of f(T'). Then the semi-simplification of the Ix-module
G(K) ®F, Fp is the direct sum of fundamental characters of level s;.

On the other hand, for an elliptic modular form f of level N prime to p, we also
have a description of the tame characters of the associated mod p Galois representation
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p¢ ([9, Theorem 2.5, Theorem 2.6], [8, Section 4.3]). This is based on Raynaud’s theory
of prolongations of finite flat group schemes or the integral p-adic Hodge theory. How-
ever, for an analogous study of the associated mod p Galois representation of a Hilbert
modular form over a totally real number field, we encounter a local field of higher ab-
solute ramification index. In this case, these two theories no longer work well and we
need some other techniques to study the tame characters of a Galois representation.

In this paper, we show the following theorem, which suggests that the semi-simpli-
fication of a finite flat representation can be described by the ramification jumps of its
finite flat model over O.

Theorem 1.2. Let G be a finite flat group scheme which is reducible, killed by p
and of rank p*. Let c(G) be its conductor in the sense of [2], [3]. Then the Ix-module
G(K) contains the fundamental character of level ¢(G).

To prove the main theorem, firstly we show compatibility of the theory of Breuil
([5]) with the base extension from K to K; = K(n'/?) (Theorem 3.3). Using this
theorem, we can write down a defining equation of G over Ok, and calculate explicitly
the tubular neighborhoods and conductor of G as in [10, Section 5].

In fact, we can show this more generally. In [10], we generalize Proposition 1.1
to the higher dimensional case (namely, the case where G is not monogenic) without
any restriction on the absolute ramification index of K, on the residue field F' and on
G. There we show that we can, at least for the finite flat case, determine the semi-
simplification of a Galois representation using the ramification theory of Abbes and
Saito ([2], [3]). The main theorem of [10] is the following, whose proof is given there by
totally different method from that of Theorem 1.2 in this paper.

Theorem 1.3 ([10], Theorem 1.1).

Let G be a finite flat group scheme over Ox. Write {G7}jcq., for the ramification
filtration of G in the sense of [2] and [3]. Then the graded piece G¥(K)/G'*(K) is
killed by p and the Ix-module G%(K)/Gi*(K) ®r, Fp is the direct sum of fundamental
characters of level j.

§2. Review of the ramification theory of Abbes and Saito

Let K be a complete discrete valuation field with residue field F which may be
imperfect. Set # = wx to be a uniformizer of K. The separable closure of K is denoted
by K and the absolute Galois group of K by Gg. In [2] and [3], Abbes and Saito defined
the ramification theory of a finite flat Og-algebra of relative complete intersection. In
this section, we gather the necessary definitions and briefly recall their theory.
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Let A be a finite flat Ok-algebra and A be a complete Noetherian semi-local ring
(with its topology defined by rad(A)) which is of formally smooth over @k and whose
quotient ring A/rad(A) is of finite type over F. A surjection of Ox-algebras A — A is
called an embedding if A/rad(A) — A/rad(A) is an isomorphism. For an embedding
(A — A) and j € Qso, the j-th tubular neighborhood of (A — A) is the K-affinoid
variety X7(A — A) constructed as follows. Write j = k/I with k, [ non-negative integers.
Put I = Ker(A — A) and

Alg,l — A[Il/ﬂ'k]/\,

where A means the m-adic completion. Then A’g’l is a quotient ring of the Tate algebra
Ok(T1,...,T,) for some r. Its generic fiber Al = A{,‘” ®oy K is independent of the
choice of a representation j = k/I ([3, Lemma 1.4]) and set

X7(A— A) = Sp(A%).
We put F(A) = Homealg. (4, Oz) and
FI(4) = limmo(X9 (A — A)g).

Here m(X z) denotes the set of geometric connected components of a K-affinoid variety
X and the projective limit is taken in the category of embeddings of A. Note that
the projective family mo(X7(A — A)gz) is constant ([3, Section 1.2]). These define
contravariant functors F and F7 from the category of finite flat Ox-algebras to the
category of finite G'x-sets. Moreover, there are morphisms of functors F — FJ and
Fi' — Fi for j' > j > 0.

Suppose that A is of relative complete intersection over O and 4 ®c « K is etale
over K. Then the natural map F(A) — F7(A) is surjective. The family { F(A) —
FI(A)}jcqs, is separated, exhaustive and its jumps are rational ([2, Proposition 6.4]).
The conductor of A4 is defined to be

¢(A) = inf{j € Q50|F(A) — FI(A) is an isomorphism}.

If B is the affine algebra of a finite flat group scheme G over QO which is generically
etale, then B is of relative complete intersection (for example, [5, Proposition 2.2. 2]) and
the theory above can all be applied to B. By the functoriality, F7(B) is endowed with a
Gx-module structure ([1, Lemme 2.1.1]) and the natural map G(K) = F(B) — F¥(B)
is a Gg-homomorphism. Let G7 denote the schematic closure ([11]) in G of the kernel
of this homomorphism. It is called the j-th ramification filtration of G. We refer ¢(B)
as the conductor of G, which is denoted also by ¢(G). We put

G'H(R) = Ujis;69' (KR).
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We write the j-th tubular neighborhood of B with respect to some embedding as Xg.
by abuse of notation.

Example 2.1.  For integers 0 < sy,... ,8, < ¢, let G = G(s1,...,8,) denote the
Raynaud F,--vector space scheme ([11]) over O defined by the r equations

I7 = 91Ty, T8 = 7T, ..., TF = n°T1.
We set ‘
k= (psk +PPsk—1 + ... + D81 + P s + P sy o+ sk41) /(07 - 1),
Then we have ([10, Theorem 5.5])
c(9) = Slllcpjk-

In this case, we see that the Ix-module G(K) is given by the fundamental character of
level ¢(G). For the proof, we refer to [10], where we take an appropriate syntomic cover
of the affine algebra of § and compare its j-th tubular neighborhood with X7.

§3. Proof of Theorem 1.2

In this section, we assume that K is as in Section 1 and write its residue field as k
in place of F, in accordance with [5].

Let G be a finite flat group scheme over Ok which is reducible, killed by p and of
Fp-rank two. Namely, we have an exact sequence

0—-+Gle—r)—>G—Gle—s5)—=0

for some integers 0 < r,s <e.

To state our result, let us recall the theory of filtered ¢;-modules of Breuil ([5]). In
the following, we take the divided power envelope of a W-algebra only with respect to
the compatibility condition with the natural divided power structure on pW.

Let e be the absolute ramification index of K, W = W (k) and ¢ be the Frobenius
of W. We fix once and for all a uniformizer 7 of K. Let E(u) = u® — pF(u) be the
Eisenstein polynomial of m over W and set S = Sy = (W[u|FP)", where the divided
power envelope of W u] is taken with respect to an ideal (E(u)) and A means the m-adic
completion. The ring S is endowed with a o-semilinear map ¢ : u + uP, which we
also call Frobenius, and the natural filtration induced by the divided power structure.
We set ¢1 = p~'d|lprg and ¢ = ¢1(E(u)) € §*. We define ¢, ¢; and a filtration on
Sp = S/p™ similarly.

In [5], the following categories of filtered ¢;-modules are defined. Set ‘M to be the
category consisting of following data;
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e an S-module M and its S-submodule Fil' M containing Fil'S. M,
e a ¢-semilinear map ¢; : Fil'lM — M satisfying
p1(s1m) = ¢1(s1)$(m),
where s; € Fil'S, m € M and ¢(m) = ¢~ 1¢1(E(u)m).
Let M be the full subcategory of ‘M consisting of M satisfying
o the Si-module M is free of finite rank,
o ¢, (Fil' M) generates M as an S-module.

and M be the minimal full subcategory of ‘M which contains M; and stable under
extension. '

The category M is shown to be categorically anti-equivalent to the category (p-Gr/Ok)
of finite flat group schemes over O which is killed by some p-power ([5]). Let us recall
the definition of this equivalence. Let Spf(Ox )syn be the category of formally syntomic
p-adic formal schemes, endowed with the Grothendieck topology generated by the sur-
jective families of formally syntomic morphisms. Write (Ab/Ox) for the category of
abelian sheaves on Spf(Ok )syn. The sheaves On,x and Jy,  are defined by the formula

0"7':7((%) = H(c)rys((:{n/‘gn)cry& O.‘:E,,/Sn)
and
Jn,w(?e) = H(c)rys((fn/sn)crys’ «736,,/5,,),

where X, = X/p”. We also set Ouor = lig Op 7 and Joo,n = l_igjn,,,. We let the
crystalline Frobenius map be denoted by ¢ : O, » — On,». We can define the natural
morphism ¢; : Jp.x — Op » which makes the following diagram commutative.

¢
Jn,w —1> On,fr

| |

¢
TInst,e — Ongin

Let G € (p-Gr/Ok) and M € M. Define

Modk (9) = Hom(ap/04) (G, Oco,r)

and
Grg (M) = Hom (M, Oco ).

Then the main theorem of [5] is the following.
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Theorem 3.1 ([5]).  The functor Grx defines an anti-equivalence of categories
M = (p-Gr/Ok) and its quasi-inverse is Modg.

Now let us return to our G. Let M = Modg(G) be the filtered ¢1-module of
G. Replacing K with an unramified extension, we may assume that we have an exact
sequence in M
0— M(s) > M— M(r)—0,
where M(s) is the filtered ¢;-module defined by M(s) = Sie, Fil' M(s) = u*Sie and

¢1(u’e) = e. By [7, Lemma 5.2.2], we may assume that M = M/Fil’S.M is of the
following type;

o M = Sieq @ S1e1, where §; = k[u]/(u®?)
® FillM — (useo’urel + fe()), where f = uSuP(O,r+s—e)S’1
o fu(utes) = eo and gr(ues + feo) = ei.

Put m = v, (f). Then we have the following theorem.

Theorem 3.2. If s,m > r, then ¢(G) = p(e — r)/(p — 1). Otherwise, c¢(G) is
equal to

sup(p(e —7)/(p —1),p(e—s)/(p—1)) f m > (ps —r)/(p - 1),
ple—r)/(p=1)+(r—m)ifm<(ps—r)/(p—1).

Moreover, the Ic-module G(K) contains the fundamental character of level ¢(G).

To prove this theorem, we first write down a defining equation of G. This is possible
after taking a base extension from K to K; = K(m;), where 71 = wl/p ([5, Proposition
3.1.2]) and using the theorem below.

Theorem 3.3.  Let S’ = Sy, be the p-adic completion of the divided power enve-
lope constructed as S starting from E;(v) = E(vP) € Wv] and consider a map S — S’
defined by u > vP. Then we have a canonical isomorphism of filtered ¢;-modules

Modg, (G ®o, Ok,) ~ Modg(G) ®s s’

Then we can calculate the tubular neighborhoods of G x 0, Ok, and its conductor.
As for the assertion on the tame character, we know from [6, Theorem 3.4.3] that it
suffices to consider G Xp, Ogk,. We can easily check from the shape of a defining
equation of G over Ok, that if m > (ps —7)/(p — 1) and s < r, then the Ix,-module
G(K) splits. Hence this assertion follows from the assertion on the conductor.

We omit the calculation here as it is just the same as in the proof of [10, Theorem
5.5]. In the rest of this paper, we prove Theorem 3.3.
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Lemma 3.4.  The S-module S’ is free of finite rank.

Proof. The Wuj-algebra W{v] is free of finite rank. We have
(E(u)Wv] = (E1(v)).

Therefore W[v]™® = W ([u]"® @, W[v] from [4, Proposition 3.21] and W[uJFP? —
W v]FP is also free of finite rank. Thus

(WIPP)" = (W[u]"P)" @wpueo W[b]FP.
This concludes the proof. O

Let the categories of filtered ¢;-modules over S’ be denoted by ‘M’ and M’. From
the lemma above, we can define a filtered ¢;-module structure on M’ = M ®g S’ for
any M € 'M by Fil' M’ = (Fil' M) ®s §" and ¢y 4 = ¢1 ® . If M € M, then we have
M eM.

For a presheaf F on Spf(Ox)syn, we let F lok, denote the restriction of F to
Spf(Ok, )syn- If F is a sheaf on Spf(Ox )syn, then ~7'-|0x1 is also a sheaf on Spf(Ok, )syn.
By [5, Corollaire 2.3.3], we have the following exact sequences in (Ab/ Ok,).

S

(1) 0— 0.,«,11-|0K1 >'<£> Or+s,7r'0xl - Os,ﬂ‘loxl -0
xp°®

(2) 0— Jr,nloxl - jT+S,W|OK1 - t73,7\'|(91(1 —0

Consider an Ok, -algebra

2[, = 0K1<X£,.-- ,X',,->/(f1a"' sfs)’

where Ok, (X1,...,X]) is the 7-adic completion O, [X],... y XN and fi,...,fsisa
transversally regular sequence in that ring. Then Spf(2') € Spf(Ok, Jsyn- Put

Q[; = 01{1 (X(/)p_"' o ’Xr’*p_z>/(X(l) - ﬂ.l’fl" v ’fs)

and A = IQQ[; Note that the formal scheme Spf(2;) is a covering of Spf (') in
Spf(Ok, )syn- The W-algebra 91; is isomorphic to

OKITI/(T? =) (X5 . X7V (X =T .. o £o)
= W, T1/(B(), T —u)(X§? ... X2 V(X =T, frye. o fo)
= WX XV EEE) fuy e fo).
We also set
A =oo /o= kIXE o X V(XS Foyeen o o),
where f; is the image of f;. Put O, (%) = lim ;O (%;) and Ty, x (Al,) = lim 5T (A1)
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Lemma 3.5.  There exists a canonical isomorphism
O n (o) = Bhya (Ao 8"/ 1) = (Wi ALp) @ m Walu])”™.
Here the divided power envelope is taken with respect to the kernel of a surjection
Wa(AL) ®Wn;a" Whlu] = 24, /p"

n—1
n—k
(iL’o,.. . )xn—l) @l Zpki‘i
k=0

1@um XF

where %), denotes a lifting of x5, in A/ /p".

Proof. We repeat exactly the same argument as in [5, Lemme 2.3.2]. Indeed, this
surjection induces a PD-thickening

(Wa(A) @, on Walu)™” — Ao /p"
of AL /p™ over S, and thus we have the natural projection
HO, (o /"/Sn) = (Wa(Al) @won Walul)™-

Its inverse map is defined as follows. For any affine PD-thickening U — T of 24, /p"
over Sy, we have a map

(W (AL) ®w, on Walu])"> = T(U, Oy)
n—1

n—k
(Zoyer+ yZp—1) @1+ Zpkﬂ';
k=0

1®u— u,

where #y, is a lifting of xx, in I'(T, O7). This is a well-defined ring homomorphism, patches
in the non-affine case and induces the inverse map of the natural projection. O

Let us define a morphism ¥ : Grg (M)|o,, — Gr, (M') of (Ab/Ok,) as follows.
For any X’ € Spf(Ok, )syn, We want to set

U, : Homep (M, Onm(%')) — Hom/ pr (M ®s s, On,m (:’f’))
by f— (m® s +— s .pry,(f(m))), where

pris : Ona(X) = ngys(x,n/ Sn) = ngys(xln/ S':z) = Onm (X)
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is the natural pull-back. The map pr}, respects the filtration. To show the compatibility
with ¢1, note that we have a diagram

4 Xp
jn+1,1r|(9x1 —— Jn,wloxl —1"") 01’1,7\"0}{1 E— O‘n+1,7l"<')x1

! ! ! |

1 Xp
Jn+1,7r1 E— Jn,wl EE— On,ﬂ'l — on+1,1r1a

where the vertical arrows are the pull-backs and the left and right squares are commu-
tative. The composites of the horizontal maps are ¢. From the exact sequences (1) and

(2), we see that the middle square is also commutative. In other words, the map prk
is compatible with ¢1. Therefore, we get a morphism of (Ab/Ok,)

Uns : Grg(M)lok, — Gri, (M').

Theorem 3.6.  The canonical map Uy is an isomorphism.

Proof.

As the functor Gry is exact, by devissage we may assume that pM = 0. The sheaves
of both sides come from finite flat group schemes Grx (M) xo, Ok, and Grg, (M’).
Thus the bijectivity can be checked after taking the functor Modg,. In other words, it
suffices to show that

D M = M ®g S - Hom(Ab/@Kl)(HOm/M(M, 01,"‘01{1 ),01,7.-1)',

defined by m ® s’ = (f ~ ¢'.pr*(f(m))) is an isomorphism of ‘AM’. Here pr* denotes
the pull-back map O1,x|o,, = O1,r,.
We have ranks: (M ®s S’) = rankg, (M) and

rankg,v{ (HOHI(Ab/@K1 ) (Hom/M(M, Ol,ﬂ-loKI ), (91,-,1-1 ))
= rankgi (1\/10(1[{1 (GrK(J\/I) XOg OK1 )) = I‘ank,sv1 (M)

By [5, Lemme 3.3.2], it suffices to show Ker(®,s) C Fil? S} M".

Take an adapted basis {e1,...,eq} of M. Let m = E?=1 sie; be an element of
Ker(®s). Consider the affine algebra Rys of Grg (M) and the element
f € Homd" (M, O, - (Ry)) =~ Grx(M)(Rps) corresponding to idg,,. Then, from the
proof of [5, Proposition 3.1.5], we have

fle)=Xio+uXin+- - +uP " XKipoy  mod TP (Rar),

where X;,... ,Xip1 are the generators of Ry as in [5, p.507] and X; j is the image
of X in Rpr/p. Here we regard Xi,k as an element of Oy (Rps) by the natural map
(R /p) ®k,0 klu] = O1,x(Rpr). Let us write f; for the image of f by the natural map

Hom’M(Ma OI,W(RM)) — Hom p (M7 01,"(R§VI))7
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where Ry, = Ry ®ox Ok,. As m € Ker(®1s), we have

> sipryy (fi(e:)) = 0.

Let X/, be the image of Xik by the natural map (R};/p) ®k,o k[v] = O1x, (Ryy)-
Now we claim that pr, (Xik) = X[} It is sufficient to show this equahty on an
appropriate syntomic cover of R};. Thus we may consider pr R, : O1,2(R) Mo0) —
O1,m (Ri,00)> Where Ry . is the ring constructed from A = R’ as in the proof of
Lemma 3.5. Then the composite

((R/Mf,oo/p) ®k,0‘ k[u])PD N cxys((RM oo/p)/s ) ng ((RI oo/p) ®l¢ c [v])PD

maps 1®u to 1®@v? and r ® 1 to #P ® 1, where 7 is a lifting of r by the canonical
surjection (Rl ./P) ®k.¢ k[v])FP — R} o/p. We may take 7 to be r1/? ®1. Thus the
claim follows.

Now we have

d
ZS,IL'(XLO + ’UPX.;J + M + 'Up(p—l)X,,{,p_l) = 0
t=1

in Oy,x, (Ry)/ Jl P+ (Rjy)- This equation also holds in

01,7"1 (R{I\J,(X))/‘jl,ﬂ'l (Rg\/[,oo)

and its subring

(R 00/ D))/ (vF = Xg) = (R 00/P) )/ (vP = m1)

(see [5, Lemme 2.3.2]). As R}, , is the direct limit of syntomic covers of Rj, /D is
a subring of R}, ./p. Thus the equation

Zsi( Xio+0PX] + -+ PP VX ) =0

=1

holds in (R}, /p)[v]/(vP —m1). Let us write 5} for s} mod v € k. Taking mod v, we have

/D) W)/ (v,vP — 1) = R}y /m1 = Rpr/m. From the proof of [5, Proposition 3.1.1],
we know that X10,...,Xa,0 are linearly independent over k in Ry /m. Thus 8, =0and
s} € vS] +FilP ] for all 1. Take s’(l) € S satisfying sj ’(1) € Fil’S]. Then we have

vz ¢ (Ko + 0P Xf -+ PP ) =0
t=1
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in (R};/p)[]/(vP — 71). However,

Riy/p = (Ok, /p)®N = (k[T)/(T°P))®N

for some N and

(K{T1/ (T[] (07 = T) = klol/ ("),

Thus (R},/p)[v]/(vP — m) is finite flat over k[v]/(v®"), and we have
d = 2
D (Ko + 0P Xy oo+ PN ) € L Ry /)] /(07 — ).
i=1

Taking mod v and repeating this procedure show s; € v°°S% + Fil? Si = Fil’S!. In
other words, m € Fil’S{M’. This concludes the proof. O

Remark 3.7. In general, let L be a totally ramified extension over K of degree
¢’ whose uniformizer is denoted by 7. When we define Sy, = Sr. as above, there exists
a morphism S — Sf, respecting the filtration and ¢; if and only if 7!'2/ = 71'(;;_1 for some
7.
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