Ramification and tame characters of a finite flat representation of rank two

 $\mathbf{B}\mathbf{y}$

Shin HATTORI*

Abstract

Let K be a complete discrete valuation field of mixed characteristic (0,p) with perfect residue field F and uniformizer π . In this paper, we propose an example of the main theorem of the paper [10]. Namely, we calculate the conductor $c(\mathcal{G})$ in the sense of Abbes and Saito for a finite flat group scheme \mathcal{G} over \mathcal{O}_K which is reducible, killed by p and of rank p^2 , and show that the I_K -module $\mathcal{G}(\bar{K})$ contains the fundamental character of level $c(\mathcal{G})$. For this purpose, we show that the Dieudonné functor of Breuil is compatible with the base extension $K(\pi^{1/p})/K$

§ 1. Introduction

Let K be a complete discrete valuation field of mixed characteristic (0,p) with perfect residue field F, $\pi = \pi_K$ be its uniformizer, G_K be its absolute Galois group and I_K be its inertia subgroup. For $j \in \mathbb{Q}_{>0}$, we define a tame character $\theta_j : I_K \to \bar{F}^\times$ to be $\theta_{l'}^{k'}$, where k'/l' is the prime-to-p-denominator part of $j \mod \mathbb{Z}$ ([12]). In other words, we set $\theta_j(\sigma) = (\sigma(\pi^{1/l'})/\pi^{1/l'})^{k'} \mod \mathfrak{m}_{\bar{K}}$, where $\mathfrak{m}_{\bar{K}}$ is the maximal ideal of $\mathcal{O}_{\bar{K}}$. We refer any of \mathbb{F}_p -conjugates of θ_j as the fundamental character of level j.

Let \mathcal{G} be a finite flat group scheme over \mathcal{O}_K . When \mathcal{G} is killed by p and monogenic, that is to say, when the affine algebra of \mathcal{G} is generated over \mathcal{O}_K by one element, it is well-known that the tame characters appearing in the I_K -module $\mathcal{G}(\bar{K})$ are determined by the slopes of the Newton polygon of a defining equation of \mathcal{G} , as follows.

Proposition 1.1 ([12], Proposition 10). Let \mathcal{G} be as above and write the affine algebra of \mathcal{G} as $\mathcal{O}_K[T]/(f(T))$ with f(0)=0. Let s_1,\ldots,s_r be the negatives of the slopes of the Newton polygon of f(T). Then the semi-simplification of the I_K -module $\mathcal{G}(\bar{K}) \otimes_{\mathbb{F}_p} \bar{\mathbb{F}}_p$ is the direct sum of fundamental characters of level s_i .

On the other hand, for an elliptic modular form f of level N prime to p, we also have a description of the tame characters of the associated mod p Galois representation

^{*}Department of Mathematics, Hokkaido University. E-mail: shin-h@math.sci.hokudai.ac.jp

 $\bar{\rho}_f$ ([9, Theorem 2.5, Theorem 2.6], [8, Section 4.3]). This is based on Raynaud's theory of prolongations of finite flat group schemes or the integral p-adic Hodge theory. However, for an analogous study of the associated mod p Galois representation of a Hilbert modular form over a totally real number field, we encounter a local field of higher absolute ramification index. In this case, these two theories no longer work well and we need some other techniques to study the tame characters of a Galois representation.

In this paper, we show the following theorem, which suggests that the semi-simplification of a finite flat representation can be described by the ramification jumps of its finite flat model over \mathcal{O}_K .

Theorem 1.2. Let \mathcal{G} be a finite flat group scheme which is reducible, killed by p and of rank p^2 . Let $c(\mathcal{G})$ be its conductor in the sense of [2], [3]. Then the I_K -module $\mathcal{G}(\bar{K})$ contains the fundamental character of level $c(\mathcal{G})$.

To prove the main theorem, firstly we show compatibility of the theory of Breuil ([5]) with the base extension from K to $K_1 = K(\pi^{1/p})$ (Theorem 3.3). Using this theorem, we can write down a defining equation of \mathcal{G} over \mathcal{O}_{K_1} and calculate explicitly the tubular neighborhoods and conductor of \mathcal{G} as in [10, Section 5].

In fact, we can show this more generally. In [10], we generalize Proposition 1.1 to the higher dimensional case (namely, the case where \mathcal{G} is not monogenic) without any restriction on the absolute ramification index of K, on the residue field F and on \mathcal{G} . There we show that we can, at least for the finite flat case, determine the semi-simplification of a Galois representation using the ramification theory of Abbes and Saito ([2], [3]). The main theorem of [10] is the following, whose proof is given there by totally different method from that of Theorem 1.2 in this paper.

Theorem 1.3 ([10], Theorem 1.1).

Let \mathcal{G} be a finite flat group scheme over \mathcal{O}_K . Write $\{\mathcal{G}^j\}_{j\in\mathbb{Q}_{>0}}$ for the ramification filtration of \mathcal{G} in the sense of [2] and [3]. Then the graded piece $\mathcal{G}^j(\bar{K})/\mathcal{G}^{j+}(\bar{K})$ is killed by p and the I_K -module $\mathcal{G}^j(\bar{K})/\mathcal{G}^{j+}(\bar{K})\otimes_{\mathbb{F}_p}\bar{\mathbb{F}}_p$ is the direct sum of fundamental characters of level j.

§ 2. Review of the ramification theory of Abbes and Saito

Let K be a complete discrete valuation field with residue field F which may be imperfect. Set $\pi = \pi_K$ to be a uniformizer of K. The separable closure of K is denoted by \bar{K} and the absolute Galois group of K by G_K . In [2] and [3], Abbes and Saito defined the ramification theory of a finite flat \mathcal{O}_K -algebra of relative complete intersection. In this section, we gather the necessary definitions and briefly recall their theory.

Let A be a finite flat \mathcal{O}_K -algebra and \mathbb{A} be a complete Noetherian semi-local ring (with its topology defined by $\operatorname{rad}(\mathbb{A})$) which is of formally smooth over \mathcal{O}_K and whose quotient ring $\mathbb{A}/\operatorname{rad}(\mathbb{A})$ is of finite type over F. A surjection of \mathcal{O}_K -algebras $\mathbb{A} \to A$ is called an embedding if $\mathbb{A}/\operatorname{rad}(\mathbb{A}) \to A/\operatorname{rad}(A)$ is an isomorphism. For an embedding $(\mathbb{A} \to A)$ and $j \in \mathbb{Q}_{>0}$, the j-th tubular neighborhood of $(\mathbb{A} \to A)$ is the K-affinoid variety $X^j(\mathbb{A} \to A)$ constructed as follows. Write j = k/l with k, l non-negative integers. Put $I = \operatorname{Ker}(\mathbb{A} \to A)$ and

$$\mathcal{A}_0^{k,l} = \mathbb{A}[I^l/\pi^k]^{\wedge},$$

where \wedge means the π -adic completion. Then $\mathcal{A}_0^{k,l}$ is a quotient ring of the Tate algebra $\mathcal{O}_K\langle T_1,\ldots,T_r\rangle$ for some r. Its generic fiber $\mathcal{A}_K^j=\mathcal{A}_0^{k,l}\otimes_{\mathcal{O}_K}K$ is independent of the choice of a representation j=k/l ([3, Lemma 1.4]) and set

$$X^j(\mathbb{A} \to A) = \operatorname{Sp}(\mathcal{A}_K^j).$$

We put $F(A) = \operatorname{Hom}_{\mathcal{O}_{K}\text{-alg.}}(A, \mathcal{O}_{\bar{K}})$ and

$$F^{j}(A) = \varprojlim \pi_{0}(X^{j}(\mathbb{A} \to A)_{\bar{K}}).$$

Here $\pi_0(X_{\bar{K}})$ denotes the set of geometric connected components of a K-affinoid variety X and the projective limit is taken in the category of embeddings of A. Note that the projective family $\pi_0(X^j(\mathbb{A} \to A)_{\bar{K}})$ is constant ([3, Section 1.2]). These define contravariant functors F and F^j from the category of finite flat \mathcal{O}_K -algebras to the category of finite G_K -sets. Moreover, there are morphisms of functors $F \to F^j$ and $F^{j'} \to F^j$ for $j' \geq j > 0$.

Suppose that A is of relative complete intersection over \mathcal{O}_K and $A\otimes_{\mathcal{O}_K}K$ is etale over K. Then the natural map $F(A)\to F^j(A)$ is surjective. The family $\{F(A)\to F^j(A)\}_{j\in\mathbb{Q}_{>0}}$ is separated, exhaustive and its jumps are rational ([2, Proposition 6.4]). The conductor of A is defined to be

$$c(A) = \inf\{j \in \mathbb{Q}_{>0} | F(A) \to F^j(A) \text{ is an isomorphism}\}.$$

If B is the affine algebra of a finite flat group scheme \mathcal{G} over \mathcal{O}_K which is generically etale, then B is of relative complete intersection (for example, [5, Proposition 2.2.2]) and the theory above can all be applied to B. By the functoriality, $F^j(B)$ is endowed with a G_K -module structure ([1, Lemme 2.1.1]) and the natural map $\mathcal{G}(\bar{K}) = F(B) \to F^j(B)$ is a G_K -homomorphism. Let \mathcal{G}^j denote the schematic closure ([11]) in \mathcal{G} of the kernel of this homomorphism. It is called the j-th ramification filtration of \mathcal{G} . We refer c(B) as the conductor of \mathcal{G} , which is denoted also by $c(\mathcal{G})$. We put

$$\mathcal{G}^{j+}(\bar{K}) = \bigcup_{j'>j} \mathcal{G}^{j'}(\bar{K}).$$

We write the j-th tubular neighborhood of B with respect to some embedding as $X_{\mathcal{G}}^{j}$ by abuse of notation.

Example 2.1. For integers $0 \le s_1, \ldots, s_r \le e$, let $\mathcal{G} = \mathcal{G}(s_1, \ldots, s_r)$ denote the Raynaud \mathbb{F}_{p^r} -vector space scheme ([11]) over \mathcal{O}_K defined by the r equations

$$T_1^p = \pi^{s_1} T_2, T_2^p = \pi^{s_2} T_3, \dots, T_r^p = \pi^{s_r} T_1.$$

We set

$$j_k = (ps_k + p^2s_{k-1} + \dots + p^ks_1 + p^{k+1}s_r + p^{k+2}s_{r-1} + \dots + p^rs_{k+1})/(p^r - 1).$$

Then we have ([10, Theorem 5.5])

$$c(\mathcal{G}) = \sup_{k} j_k.$$

In this case, we see that the I_K -module $\mathcal{G}(\bar{K})$ is given by the fundamental character of level $c(\mathcal{G})$. For the proof, we refer to [10], where we take an appropriate syntomic cover of the affine algebra of \mathcal{G} and compare its j-th tubular neighborhood with $X_{\mathcal{G}}^{j}$.

§ 3. Proof of Theorem 1.2

In this section, we assume that K is as in Section 1 and write its residue field as k in place of F, in accordance with [5].

Let \mathcal{G} be a finite flat group scheme over \mathcal{O}_K which is reducible, killed by p and of \mathbb{F}_p -rank two. Namely, we have an exact sequence

$$0 \to \mathcal{G}(e-r) \to \mathcal{G} \to \mathcal{G}(e-s) \to 0$$

for some integers $0 \le r, s \le e$.

To state our result, let us recall the theory of filtered ϕ_1 -modules of Breuil ([5]). In the following, we take the divided power envelope of a W-algebra only with respect to the compatibility condition with the natural divided power structure on pW.

Let e be the absolute ramification index of K, W=W(k) and σ be the Frobenius of W. We fix once and for all a uniformizer π of K. Let $E(u)=u^e-pF(u)$ be the Eisenstein polynomial of π over W and set $S=S_\pi=(W[u]^{\operatorname{PD}})^\wedge$, where the divided power envelope of W[u] is taken with respect to an ideal (E(u)) and \wedge means the π -adic completion. The ring S is endowed with a σ -semilinear map $\phi: u \mapsto u^p$, which we also call Frobenius, and the natural filtration induced by the divided power structure. We set $\phi_1=p^{-1}\phi|_{\operatorname{Fil}^1S}$ and $c=\phi_1(E(u))\in S^\times$. We define ϕ , ϕ_1 and a filtration on $S_n=S/p^n$ similarly.

In [5], the following categories of filtered ϕ_1 -modules are defined. Set ' \mathcal{M} to be the category consisting of following data;

- an S-module M and its S-submodule Fil^1M containing $Fil^1S.M$,
- a ϕ -semilinear map $\phi_1 : \operatorname{Fil}^1 M \to M$ satisfying

$$\phi_1(s_1m) = \phi_1(s_1)\phi(m),$$

where $s_1 \in \operatorname{Fil}^1 S$, $m \in M$ and $\phi(m) = c^{-1} \phi_1(E(u)m)$.

Let \mathcal{M}_1 be the full subcategory of \mathcal{M} consisting of M satisfying

- the S_1 -module M is free of finite rank,
- $\phi_1(\operatorname{Fil}^1 M)$ generates M as an S-module.

and \mathcal{M} be the minimal full subcategory of $'\mathcal{M}$ which contains \mathcal{M}_1 and stable under extension.

The category \mathcal{M} is shown to be categorically anti-equivalent to the category $(p\text{-Gr}/\mathcal{O}_K)$ of finite flat group schemes over \mathcal{O}_K which is killed by some p-power ([5]). Let us recall the definition of this equivalence. Let $\mathrm{Spf}(\mathcal{O}_K)_{\mathrm{syn}}$ be the category of formally syntomic p-adic formal schemes, endowed with the Grothendieck topology generated by the surjective families of formally syntomic morphisms. Write $(\mathrm{Ab}/\mathcal{O}_K)$ for the category of abelian sheaves on $\mathrm{Spf}(\mathcal{O}_K)_{\mathrm{syn}}$. The sheaves $\mathcal{O}_{n,\pi}$ and $\mathcal{J}_{n,\pi}$ are defined by the formula

$$\mathcal{O}_{n,\pi}(\mathfrak{X}) = \mathrm{H}^0_{\mathrm{crys}}((\mathfrak{X}_n/S_n)_{\mathrm{crys}}, \mathcal{O}_{\mathfrak{X}_n/S_n})$$

and

$$\mathcal{J}_{n,\pi}(\mathfrak{X}) = \mathrm{H}^0_{\mathrm{crys}}((\mathfrak{X}_n/S_n)_{\mathrm{crys}}, \mathcal{J}_{\mathfrak{X}_n/S_n}),$$

where $\mathfrak{X}_n = \mathfrak{X}/p^n$. We also set $\mathcal{O}_{\infty,\pi} = \varinjlim \mathcal{O}_{n,\pi}$ and $\mathcal{J}_{\infty,\pi} = \varinjlim \mathcal{J}_{n,\pi}$. We let the crystalline Frobenius map be denoted by $\phi : \mathcal{O}_{n,\pi} \to \mathcal{O}_{n,\pi}$. We can define the natural morphism $\phi_1 : \mathcal{J}_{n,\pi} \to \mathcal{O}_{n,\pi}$ which makes the following diagram commutative.

$$\begin{array}{ccc}
\mathcal{J}_{n,\pi} & \xrightarrow{\phi_1} & \mathcal{O}_{n,\pi} \\
\uparrow & & \downarrow \times p \\
\mathcal{J}_{n+1,\pi} & \xrightarrow{\phi} & \mathcal{O}_{n+1,\pi}
\end{array}$$

Let $\mathcal{G} \in (p\text{-Gr}/\mathcal{O}_K)$ and $M \in \mathcal{M}$. Define

$$\mathrm{Mod}_K(\mathcal{G})=\mathrm{Hom}_{(\mathrm{Ab}/\mathcal{O}_K)}(\mathcal{G},\mathcal{O}_{\infty,\pi})$$

and

$$\operatorname{Gr}_K(M) = \operatorname{Hom}_{M}(M, \mathcal{O}_{\infty, \pi}).$$

Then the main theorem of [5] is the following.

Theorem 3.1 ([5]). The functor Gr_K defines an anti-equivalence of categories $\mathcal{M} \to (p\text{-}Gr/\mathcal{O}_K)$ and its quasi-inverse is Mod_K .

Now let us return to our \mathcal{G} . Let $M = \operatorname{Mod}_K(\mathcal{G})$ be the filtered ϕ_1 -module of \mathcal{G} . Replacing K with an unramified extension, we may assume that we have an exact sequence in \mathcal{M}

$$0 \to M(s) \to M \to M(r) \to 0$$
,

where M(s) is the filtered ϕ_1 -module defined by $M(s) = S_1 e$, $\mathrm{Fil}^1 M(s) = u^s S_1 e$ and $\phi_1(u^s e) = e$. By [7, Lemma 5.2.2], we may assume that $\tilde{M} = M/\mathrm{Fil}^p S.M$ is of the following type;

- $\tilde{M} = \tilde{S}_1 e_0 \oplus \tilde{S}_1 e_1$, where $\tilde{S}_1 = k[u]/(u^{ep})$
- $\operatorname{Fil}^1 \tilde{M} = \langle u^s e_0, u^r e_1 + f e_0 \rangle$, where $f \in u^{\sup(0, r+s-e)} \tilde{S}_1$
- $\phi_1(u^s e_0) = e_0$ and $\phi_1(u^r e_1 + f e_0) = e_1$.

Put $m = v_u(f)$. Then we have the following theorem.

Theorem 3.2. If $s, m \ge r$, then $c(\mathcal{G}) = p(e-r)/(p-1)$. Otherwise, $c(\mathcal{G})$ is equal to

$$\begin{cases} \sup(p(e-r)/(p-1), p(e-s)/(p-1)) \text{ if } m \ge (ps-r)/(p-1), \\ p(e-r)/(p-1) + (r-m) \text{ if } m < (ps-r)/(p-1). \end{cases}$$

Moreover, the I_K -module $\mathcal{G}(\bar{K})$ contains the fundamental character of level $c(\mathcal{G})$.

To prove this theorem, we first write down a defining equation of \mathcal{G} . This is possible after taking a base extension from K to $K_1 = K(\pi_1)$, where $\pi_1 = \pi^{1/p}$ ([5, Proposition 3.1.2]) and using the theorem below.

Theorem 3.3. Let $S' = S_{\pi_1}$ be the p-adic completion of the divided power envelope constructed as S starting from $E_1(v) = E(v^p) \in W[v]$ and consider a map $S \to S'$ defined by $u \mapsto v^p$. Then we have a canonical isomorphism of filtered ϕ_1 -modules

$$\operatorname{Mod}_{K_1}(\mathcal{G} \otimes_{\mathcal{O}_K} \mathcal{O}_{K_1}) \simeq \operatorname{Mod}_K(\mathcal{G}) \otimes_S S'.$$

Then we can calculate the tubular neighborhoods of $\mathcal{G} \times_{\mathcal{O}_K} \mathcal{O}_{K_1}$ and its conductor. As for the assertion on the tame character, we know from [6, Theorem 3.4.3] that it suffices to consider $\mathcal{G} \times_{\mathcal{O}_K} \mathcal{O}_{K_1}$. We can easily check from the shape of a defining equation of \mathcal{G} over \mathcal{O}_{K_1} that if m > (ps-r)/(p-1) and s < r, then the I_{K_1} -module $\mathcal{G}(\bar{K})$ splits. Hence this assertion follows from the assertion on the conductor.

We omit the calculation here as it is just the same as in the proof of [10, Theorem 5.5]. In the rest of this paper, we prove Theorem 3.3.

Lemma 3.4. The S-module S' is free of finite rank.

Proof. The W[u]-algebra W[v] is free of finite rank. We have

$$(E(u))W[v] = (E_1(v)).$$

Therefore $W[v]^{\text{PD}} = W[u]^{\text{PD}} \otimes_{W[u]} W[v]$ from [4, Proposition 3.21] and $W[u]^{\text{PD}} \to W[v]^{\text{PD}}$ is also free of finite rank. Thus

$$(W[v]^{\operatorname{PD}})^{\wedge} = (W[u]^{\operatorname{PD}})^{\wedge} \otimes_{W[u]^{\operatorname{PD}}} W[v]^{\operatorname{PD}}.$$

This concludes the proof.

Let the categories of filtered ϕ_1 -modules over S' be denoted by $'\mathcal{M}'$ and \mathcal{M}' . From the lemma above, we can define a filtered ϕ_1 -module structure on $M' = M \otimes_S S'$ for any $M \in {}'\mathcal{M}$ by $\mathrm{Fil}^1 M' = (\mathrm{Fil}^1 M) \otimes_S S'$ and $\phi_{1,M'} = \phi_1 \otimes \phi$. If $M \in \mathcal{M}$, then we have $M' \in \mathcal{M}'$.

For a presheaf \mathcal{F} on $\mathrm{Spf}(\mathcal{O}_K)_{\mathrm{syn}}$, we let $\mathcal{F}|_{\mathcal{O}_{K_1}}$ denote the restriction of \mathcal{F} to $\mathrm{Spf}(\mathcal{O}_{K_1})_{\mathrm{syn}}$. If \mathcal{F} is a sheaf on $\mathrm{Spf}(\mathcal{O}_K)_{\mathrm{syn}}$, then $\mathcal{F}|_{\mathcal{O}_{K_1}}$ is also a sheaf on $\mathrm{Spf}(\mathcal{O}_{K_1})_{\mathrm{syn}}$. By [5, Corollaire 2.3.3], we have the following exact sequences in $(\mathrm{Ab}/\mathcal{O}_{K_1})$.

$$(1) 0 \to \mathcal{O}_{r,\pi}|_{\mathcal{O}_{K_1}} \stackrel{\times p^s}{\to} \mathcal{O}_{r+s,\pi}|_{\mathcal{O}_{K_1}} \to \mathcal{O}_{s,\pi}|_{\mathcal{O}_{K_1}} \to 0$$

$$(2) 0 \to \mathcal{J}_{r,\pi}|_{\mathcal{O}_{K_1}} \stackrel{\times p^s}{\to} \mathcal{J}_{r+s,\pi}|_{\mathcal{O}_{K_1}} \to \mathcal{J}_{s,\pi}|_{\mathcal{O}_{K_1}} \to 0$$

Consider an \mathcal{O}_{K} ,-algebra

$$\mathfrak{A}' = \mathcal{O}_{K_1}\langle X_1', \ldots, X_r' \rangle / (f_1, \ldots, f_s),$$

where $\mathcal{O}_{K_1}\langle X_1',\ldots,X_r'\rangle$ is the π -adic completion $\mathcal{O}_{K_1}[X_1',\ldots,X_r']^{\wedge}$ and f_1,\ldots,f_s is a transversally regular sequence in that ring. Then $\mathrm{Spf}(\mathfrak{A}')\in\mathrm{Spf}(\mathcal{O}_{K_1})_{\mathrm{syn}}$. Put

$$\mathfrak{A}'_{i} = \mathcal{O}_{K_{1}} \langle X_{0}'^{p^{-i}}, \dots, X_{r}'^{p^{-i}} \rangle / (X_{0}' - \pi_{1}, f_{1}, \dots, f_{s})$$

and $\mathfrak{A}'_{\infty} = \varinjlim \mathfrak{A}'_{i}$. Note that the formal scheme $\operatorname{Spf}(\mathfrak{A}'_{i})$ is a covering of $\operatorname{Spf}(\mathfrak{A}')$ in $\operatorname{Spf}(\mathcal{O}_{K_{1}})_{\operatorname{syn}}$. The W-algebra \mathfrak{A}'_{i} is isomorphic to

$$\mathcal{O}_{K}[T]/(T^{p}-\pi)\langle {X_{0}'}^{p^{-i}}, \dots, {X_{r}'}^{p^{-i}}\rangle/(X_{0}'-T, f_{1}, \dots, f_{s})$$

$$= W[u,T]/(E(u), T^{p}-u)\langle {X_{0}'}^{p^{-i}}, \dots, {X_{r}'}^{p^{-i}}\rangle/(X_{0}'-T, f_{1}, \dots, f_{s})$$

$$= W\langle {X_{0}'}^{p^{-i}}, \dots, {X_{r}'}^{p^{-i}}\rangle/(E(X_{0}'^{p}), f_{1}, \dots, f_{s}).$$

We also set

$$A_{\infty}^{'}=\mathfrak{A}_{\infty}^{'}/p=k[{X_{0}^{'}}^{p^{-\infty}},\ldots,{X_{r}^{'}}^{p^{-\infty}}]/({X_{0}^{'}}^{ep},ar{f}_{1},\ldots,ar{f}_{s}),$$

where \bar{f}_i is the image of f_i . Put $\mathcal{O}_{r,\pi}(\mathfrak{A}'_{\infty}) = \varinjlim_i \mathcal{O}_{r,\pi}(\mathfrak{A}'_i)$ and $\mathcal{J}_{r,\pi}(\mathfrak{A}'_{\infty}) = \varinjlim_i \mathcal{J}_{r,\pi}(\mathfrak{A}'_i)$.

Lemma 3.5. There exists a canonical isomorphism

$$\mathcal{O}_{n,\pi}(\mathfrak{A}'_{\infty}) = \mathrm{H}^0_{\mathrm{crys}}(\mathfrak{A}'_{\infty}/p^n/S_n) \to \left(W_n(A'_{\infty}) \otimes_{W_n,\sigma^n} W_n[u]\right)^{\mathrm{PD}}.$$

Here the divided power envelope is taken with respect to the kernel of a surjection

$$W_n(A'_{\infty}) \otimes_{W_n, \sigma^n} W_n[u] \to \mathfrak{A}'_{\infty}/p^n$$
$$(x_0, \dots, x_{n-1}) \otimes 1 \mapsto \sum_{k=0}^{n-1} p^k \hat{x}_k^{p^{n-k}}$$
$$1 \otimes u \mapsto X'_0^p$$

where \hat{x}_k denotes a lifting of x_k in $\mathfrak{A}'_{\infty}/p^n$.

Proof. We repeat exactly the same argument as in [5, Lemme 2.3.2]. Indeed, this surjection induces a PD-thickening

$$(W_n(A_\infty') \otimes_{W_n,\sigma^n} W_n[u])^{\operatorname{PD}} \to \mathfrak{A}_\infty'/p^n$$

of $\mathfrak{A}'_{\infty}/p^n$ over S_n and thus we have the natural projection

$$\mathrm{H}^0_{\mathrm{crys}}(\mathfrak{A}'_{\infty}/p^n/S_n) \to (W_n(A'_{\infty}) \otimes_{W_n,\sigma^n} W_n[u])^{\mathrm{PD}}.$$

Its inverse map is defined as follows. For any affine PD-thickening $U \to T$ of $\mathfrak{A}'_{\infty}/p^n$ over S_n , we have a map

$$(W_n(A'_{\infty}) \otimes_{W_n, \sigma^n} W_n[u])^{\operatorname{PD}} \to \Gamma(U, \mathcal{O}_U)$$
$$(x_0, \dots, x_{n-1}) \otimes 1 \mapsto \sum_{k=0}^{n-1} p^k \hat{t}_k^{p^{n-k}}$$
$$1 \otimes u \mapsto u.$$

where \hat{t}_k is a lifting of x_k in $\Gamma(T, \mathcal{O}_T)$. This is a well-defined ring homomorphism, patches in the non-affine case and induces the inverse map of the natural projection.

Let us define a morphism $\Psi_M : \operatorname{Gr}_K(M)|_{\mathcal{O}_{K_1}} \to \operatorname{Gr}_{K_1}(M')$ of $(\operatorname{Ab}/\mathcal{O}_{K_1})$ as follows. For any $\mathfrak{X}' \in \operatorname{Spf}(\mathcal{O}_{K_1})_{\operatorname{syn}}$, we want to set

$$\Psi_{M,\mathfrak{X}'}: \mathrm{Hom}_{'\mathcal{M}}(M,\mathcal{O}_{n,\pi}(\mathfrak{X}')) \to \mathrm{Hom}_{'\mathcal{M}'}(M \otimes_S S',\mathcal{O}_{n,\pi_1}(\mathfrak{X}'))$$

by $f \mapsto (m \otimes s' \mapsto s'.\operatorname{pr}^*_{{\mathfrak X}'}(f(m)))$, where

$$\mathrm{pr}_{\mathfrak{X}'}^*: \mathcal{O}_{n,\pi}(\mathfrak{X}') = \mathrm{H}^0_{\mathrm{crys}}(\mathfrak{X'}_n/S_n) \to \mathrm{H}^0_{\mathrm{crys}}(\mathfrak{X'}_n/S_n') = \mathcal{O}_{n,\pi_1}(\mathfrak{X}')$$

is the natural pull-back. The map $\operatorname{pr}_{\mathfrak{X}'}^*$ respects the filtration. To show the compatibility with ϕ_1 , note that we have a diagram

where the vertical arrows are the pull-backs and the left and right squares are commutative. The composites of the horizontal maps are ϕ . From the exact sequences (1) and (2), we see that the middle square is also commutative. In other words, the map $\operatorname{pr}_{\mathfrak{X}'}^*$ is compatible with ϕ_1 . Therefore, we get a morphism of $(\operatorname{Ab}/\mathcal{O}_{K_1})$

$$\Psi_M: \mathrm{Gr}_K(M)|_{\mathcal{O}_{K_1}} \to \mathrm{Gr}_{K_1}(M').$$

Theorem 3.6. The canonical map Ψ_M is an isomorphism.

Proof.

As the functor Gr_K is exact, by devissage we may assume that pM=0. The sheaves of both sides come from finite flat group schemes $\operatorname{Gr}_K(M)\times_{\mathcal{O}_K}\mathcal{O}_{K_1}$ and $\operatorname{Gr}_{K_1}(M')$. Thus the bijectivity can be checked after taking the functor Mod_{K_1} . In other words, it suffices to show that

$$\Phi_M: M' = M \otimes_S S' \to \mathrm{Hom}_{(\mathrm{Ab}/\mathcal{O}_{K_1})}(\mathrm{Hom}_{{}'\mathcal{M}}(M,\mathcal{O}_{1,\pi}|_{\mathcal{O}_{K_1}}),\mathcal{O}_{1,\pi_1}),$$

defined by $m \otimes s' \mapsto (f \mapsto s'.\operatorname{pr}^*(f(m)))$ is an isomorphism of $'\mathcal{M}'$. Here pr^* denotes the pull-back map $\mathcal{O}_{1,\pi}|_{\mathcal{O}_{K_1}} \to \mathcal{O}_{1,\pi_1}$.

We have $\operatorname{rank}_{S_1'}(M \otimes_S S') = \operatorname{rank}_{S_1}(M)$ and

$$\operatorname{rank}_{S'_{1}}(\operatorname{Hom}_{(\operatorname{Ab}/\mathcal{O}_{K_{1}})}(\operatorname{Hom}_{\mathcal{M}}(M,\mathcal{O}_{1,\pi}|_{\mathcal{O}_{K_{1}}}),\mathcal{O}_{1,\pi_{1}}))$$

$$=\operatorname{rank}_{S'_{1}}(\operatorname{Mod}_{K_{1}}(\operatorname{Gr}_{K}(M)\times_{\mathcal{O}_{K}}\mathcal{O}_{K_{1}}))=\operatorname{rank}_{S_{1}}(M).$$

By [5, Lemme 3.3.2], it suffices to show $Ker(\Phi_M) \subseteq Fil^p S'_1 M'$.

Take an adapted basis $\{e_1, \ldots, e_d\}$ of M. Let $m = \sum_{i=1}^d s_i' e_i$ be an element of $\operatorname{Ker}(\Phi_M)$. Consider the affine algebra R_M of $\operatorname{Gr}_K(M)$ and the element $f \in \operatorname{Hom}_S^{'\mathcal{M}}(M, \mathcal{O}_{1,\pi}(R_M)) \simeq \operatorname{Gr}_K(M)(R_M)$ corresponding to id_{R_M} . Then, from the proof of [5, Proposition 3.1.5], we have

$$f(e_i) \equiv \bar{X}_{i,0} + u\bar{X}_{i,1} + \dots + u^{p-1}\bar{X}_{i,p-1} \mod \mathcal{J}_{1,\pi}^{[p]}(R_M),$$

where $X_{i,0},\ldots,X_{i,p-1}$ are the generators of R_M as in [5, p.507] and $\bar{X}_{i,k}$ is the image of $X_{i,k}$ in R_M/p . Here we regard $\bar{X}_{i,k}$ as an element of $\mathcal{O}_{1,\pi}(R_M)$ by the natural map $(R_M/p)\otimes_{k,\sigma}k[u]\to\mathcal{O}_{1,\pi}(R_M)$. Let us write f_1 for the image of f by the natural map

$$\operatorname{Hom}_{{}'\mathcal{M}}(M,\mathcal{O}_{1,\pi}(R_M)) \to \operatorname{Hom}_{{}'\mathcal{M}}(M,\mathcal{O}_{1,\pi}(R_M')),$$

where $R'_M = R_M \otimes_{\mathcal{O}_K} \mathcal{O}_{K_1}$. As $m \in \text{Ker}(\Phi_M)$, we have

$$\sum s_i' \operatorname{pr}_{R_M'}^*(f_1(e_i)) = 0.$$

Let $\bar{X}'_{i,k}$ be the image of $\bar{X}_{i,k}$ by the natural map $(R'_M/p) \otimes_{k,\sigma} k[v] \to \mathcal{O}_{1,\pi_1}(R'_M)$. Now we claim that $\operatorname{pr}^*_{R'_M}(\bar{X}_{i,k}) = \bar{X}'_{i,k}$. It is sufficient to show this equality on an appropriate syntomic cover of R'_M . Thus we may consider $\operatorname{pr}^*_{R'_{M,\infty}} : \mathcal{O}_{1,\pi}(R'_{M,\infty}) \to \mathcal{O}_{1,\pi_1}(R'_{M,\infty})$, where $R'_{M,\infty}$ is the ring constructed from $\mathfrak{A}' = R'_M$ as in the proof of Lemma 3.5. Then the composite

$$((R'_{M,\infty}/p)\otimes_{k,\sigma}k[u])^{\operatorname{PD}}\overset{\operatorname{pr}^*}{\to}\operatorname{H}^0_{\operatorname{crys}}((R'_{M,\infty}/p)/S'_1)\overset{\operatorname{can.}}{\to}((R'_{M,\infty}/p)\otimes_{k,\sigma}k[v])^{\operatorname{PD}}$$

maps $1 \otimes u$ to $1 \otimes v^p$ and $r \otimes 1$ to $\hat{r}^p \otimes 1$, where \hat{r} is a lifting of r by the canonical surjection $((R'_{M,\infty}/p) \otimes_{k,\phi} k[v])^{\text{PD}} \to R'_{M,\infty}/p$. We may take \hat{r} to be $r^{1/p} \otimes 1$. Thus the claim follows.

Now we have

$$\sum_{i=1}^{d} s_{i}'(\bar{X}_{i,0}' + v^{p}\bar{X}_{i,1}' + \dots + v^{p(p-1)}\bar{X}_{i,p-1}') = 0$$

in $\mathcal{O}_{1,\pi_1}(R_M')/\mathcal{J}_{1,\pi_1}^{[p]}(R_M')$. This equation also holds in

$$\mathcal{O}_{1,\pi_1}(R'_{M,\infty})/\mathcal{J}_{1,\pi_1}^{[p]}(R'_{M,\infty})$$

and its subring

$$(R'_{M,\infty}/p)[v]/(v^p-X'_0)=(R'_{M,\infty}/p)[v]/(v^p-\pi_1)$$

(see [5, Lemme 2.3.2]). As $R'_{M,\infty}$ is the direct limit of syntomic covers of R'_M , R'_M/p is a subring of $R'_{M,\infty}/p$. Thus the equation

$$\sum_{i=1}^{d} s_i'(\bar{X}_{i,0}' + v^p \bar{X}_{i,1}' + \dots + v^{p(p-1)} \bar{X}_{i,p-1}') = 0$$

holds in $(R'_M/p)[v]/(v^p-\pi_1)$. Let us write \bar{s}'_i for $s'_i \mod v \in k$. Taking mod v, we have

$$\sum_{i=1}^d \bar{s}_i' \bar{X}_{i,0}' = 0$$

in $(R'_M/p)[v]/(v, v^p - \pi_1) = R'_M/\pi_1 = R_M/\pi$. From the proof of [5, Proposition 3.1.1], we know that $X_{1,0}, \ldots, X_{d,0}$ are linearly independent over k in R_M/π . Thus $\bar{s}'_i = 0$ and $s'_i \in vS'_1 + \operatorname{Fil}^p S'_1$ for all i. Take $s'_i^{(1)} \in S'_1$ satisfying $s'_i - vs'_i^{(1)} \in \operatorname{Fil}^p S'_1$. Then we have

$$v\sum_{i=1}^{d} s_{i}^{\prime(1)}(\bar{X}_{i,0}^{\prime} + v^{p}\bar{X}_{i,1}^{\prime} + \dots + v^{p(p-1)}\bar{X}_{i,p-1}^{\prime}) = 0$$

in $(R'_M/p)[v]/(v^p-\pi_1)$. However,

$$R_M'/p \simeq (\mathcal{O}_{K_1}/p)^{\oplus N} \simeq (k[T]/(T^{ep}))^{\oplus N}$$

for some N and

$$(k[T]/(T^{ep}))[v]/(v^p-T) \simeq k[v]/(v^{ep^2}).$$

Thus $(R_M'/p)[v]/(v^p-\pi_1)$ is finite flat over $k[v]/(v^{ep^2})$, and we have

$$\sum_{i=1}^{d} s'_{i}^{(1)}(\bar{X}'_{i,0} + v^{p}\bar{X}'_{i,1} + \dots + v^{p(p-1)}\bar{X}'_{i,p-1}) \in v^{ep^{2}-1}(R'_{M}/p)[v]/(v^{p} - \pi_{1}).$$

Taking mod v and repeating this procedure show $s_i' \in v^{ep^2}S_1' + \operatorname{Fil}^pS_1' = \operatorname{Fil}^pS_1'$. In other words, $m \in \operatorname{Fil}^pS_1'M'$. This concludes the proof.

Remark 3.7. In general, let L be a totally ramified extension over K of degree e' whose uniformizer is denoted by π_L . When we define $S_L = S_{\pi_L}$ as above, there exists a morphism $S \to S_L$ respecting the filtration and ϕ_1 if and only if $\pi_L^{e'} = \pi \zeta_{p-1}^i$ for some i.

Acknowledgments. The author would like to thank Takeshi Saito for many valuable discussions. He also would like to thank an anonymous referee for a number of comments improving the paper.

References

- [1] A. Abbes and A. Mokrane: Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes, Publ. Math. IHES 99 (2004), 117-162.
- [2] A. Abbes and T. Saito: Ramification of local fields with imperfect residue fields I, Amer.
 J. Math. 124 (2002), 879-920.
- [3] A. Abbes and T. Saito: Ramification of local fields with imperfect residue fields II, Documenta Math. Extra volume: Kazuya Kato's Fiftieth Birthday (2003), 5-72.
- [4] P. Berthelot and A. Ogus: *Notes on crystalline cohomology*, Princeton Univ. Press and Univ. of Tokyo Press, (1978).
- [5] C. Breuil: Groupes p-divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), 489-549.
- [6] C. Breuil: Integral p-adic Hodge theory, Advanced Studies in Pure Math. 36 (2002), pp.51-80.
- [7] C. Breuil, B. Conrad, F. Diamond and R. Taylor: On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc., 14 (2001), 843-939.
- [8] C. Breuil and A. Mézard: Multiplicités modulaires et représentations de $GL_2(\mathbb{Z}_p)$ et de $Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ en l=p, Duke Math. J. 115 (2002), 205-310.

- [9] B. Edixhoven: The weight in Serre's conjectures on modular forms, Invent. Math. 109 (1992), 563-594.
- [10] S. Hattori: Tame characters and ramification of finite flat group schemes, to appear in J. of Number Theory.
- [11] M. Raynaud: Schémas en groupes de type (p,...,p), Bull. Soc. Math. France 102 (1974), 241-280.
- [12] J.-P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.