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On Galois representations of local fields with
imperfect residue fields

By
Kazuma MORITA*

Let K be a complete discrete valuation field of characteristic 0 with residue field k
of characteristic p > 0 such that [k : kP] = p® < +00. Let V be a p-adic representation
of the absolute Galois group Gx = Gal(K/K) where we fix an algebraic closure K of
K. When the residue field & is perfect (i.e. e = 0), Berger has proved a conjecture of
Fontaine (Conjecture 1.1. below) which claims that, if V' is a de Rham representation
of Gk, V becomes a potentially semi-stable representation of Gx . (See Theorem 1.2)
Here, we generalize this result to the case when the residue field k is not necessarily
perfect. For this, we prove some results on p-adic representations in the imperfect
residue field case (see Theorem 1.3.) which are obtained by using the recent theory of
p-adic differential modules and deduce this generalization of the result of Berger as a
corollary. (See Theorem 1.4.)

In this survey article, we first state the results in Section 1. In Section 2, we review
the property of the p-adic periods ring Bgr. Then, in Section 3 and Section 4, we give
a sketch of the proof of Theorem 1.3.

§1. Results

Let K, k, Gk and V be as above. Fontaine, Hyodo, Kato and Tsuzuki define the
p-adic periods rings (associated to K) which are equipped with the continuous action
of Gk. (See [F1], [Kal], [Ka2], [Tz3], [Br2) etc.)

(Qp C) Bcris C Bst - BdR'

With these rings, we classify the p-adic representation V of Gk as follows. We call
the p-adic representation V of Gx

1. a de Rham representation of G if and only if we have the equality

dimg,V = dim g, ex (Bar ® V)% :
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2. a semi-stable representation of G if and only if we have the equality

dimQPV = dim(B“)GK (Bst ® V)GK .

3. a crystalline representation of Gk if and only if we have the equality
dimeV = dim(Bcris)GK ('Bcris ® V)GK'

(In general, we have the inequality dimg, V' > dim g, jox (B ®V)C¥ for x € {dR,st, cris}.)
It is well-known that we have the following implications (see [F1] etc.)

cray. rep. of Gx = st. rep. of Gx = dR. rep. of Gk.

Furthermore, we call the p-adic representation V' of Gk a potentially de Rham
(resp. semi-stable, crystalline) representation of Gx if V' is a de Rham (resp. semi-
stable, crystalline) representation of G, where L/K is a finite extension. Then, it is well-
known that a potentially de Rham representation of Gx is a de Rham representation
of Gk. (See Section 2.) Thus, it is not difficult to see that a potentially semi-stable
representation of Gx is a de Rham representation of Gk. Fontaine conjectured the
converse.

Conjecture 1.1.  If the p-adic representation V is a de Rham representation of
Gxk, then V is a potentially semi-stable representation of Gk .

Then, Berger has proved the following thing.
Theorem 1.2.  The conjecture of Fontaine is true if the residue field k is perfect.

The aim of this note is to give a sketch of the proof of the generalization of this
theorem to the imperfect residue field case. (Theorem 1.5.) For this, we state some
results on p-adic representations in the imperfect residue field case. (Theorem 1.3.)

Let us fix some notations. Fix a lifting (b;)1<i<e of a p-basis of k in Og (the ring
of integers of K), and fix a p™ -th root b:/ P" of b; in K for each m > 1 satisfying
"™y = b Put

K" = UleK(bg/pm, 1<i<e) and K’ = the p-adic completion of KO,

which depend on the choice of {b: /27y, Then, K' is a complete discrete valuation field
with perfect residue field, which is a canonical “perfectzation” of K. Furthermore, we
can regard the Galois group Gx = Gal(K'/K') as a subgroup of Gx (see Section 2 for
details) and think V' as a p-adic representation of Gxs. Then, we obtain the following
theorem ([Mol] and [Mo2]).
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Theorem 1.3. = Let K be a complete discrete valuation ﬁéld of characteristic 0
with residue field of characteristic p > 0 such that [k : k?] < oo and K' be as above. Let
V denote a p-adic representation of Gx. Then, we have the following equivalences.

1. V is a de Rham representation of Gk if and only if V is a de Rham representation
of Ggr. '

2. V is a potentially semi-stable representation of Gk if and only if V is a potentially
semi-stable representation of Gk .

3. V is a potentially crystalline representation of Gk if and only if V is a potentially
crystalline representation of Gg:.

Remark 1.4. Though we don’t introduce the definition of Hodge-Tate repre-
sentations in this note, we also show that V is a Hodge-Tate representation of Gx if
and only if V is a Hodge-Tate representation of Gg+. (For the definition of Hodge-Tate
representations, see [F1] etc.)

With Theorem 1.2. and Theorem 1.3., we have the following equivalences:

V :dR. rep. of Gx <= V : dR. rep. of Gg/
(3 » 3

V : pst. rep. of Gg <= V : pst. rep. of Gk

Thus, we obtain the generalization of Theorem 1.2. to the imperfect residue field case.

Theorem 1.5.  The conjecture of Fontaine is true even if the residue field k is
not necessarily perfect.

For simplicity, in this note, we shall consider only the de Rham representation case
of Theorem 1.3..

§2. Preliminaries on the p-adic periods ring Byr

§2.1. Definitions and properties of the ring Bygr

2.1.1. The case e =0 (i.e. k is perfect)
Let K be as in Introduction and assume that the residue field k is perfect. Choose
an algebraic closure K of K and put C, = the p-adic completion of K. Put

E= limg 00 Cp = {(.,L.(O)’x(l)’ ) | z® e (& (w(i+1))p =z®3.
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Define a valuation vg on E by vg(z) = v,(z(¥) where v, denotes the normalized
valuation of C, by vp(p) = 1. Let € = (™) be an element of E such that €@ =

and € s 1. The field E is the completion of an algebraic closure of k((e —1)) for thls
valuation. Define E* to be the ring of integers for this valuation. Put A+ = W(E")
and

§+ = Z'l'[l/p z wk | T € E+}
k>»—oc0

where [*] denotes the Teichmiiller lift of * € E+. This ring is equipped with a surjective

homomorphism
6: Bt »C,: Zpk[xk] — Zpkxgco).
The ring By is defined to be the completion by the Ker (#)-adic topology of B+:

B = imn>0B" /(Ker ()").

This is a discrete valuation ring and ¢ = log([e]) (which converges in BJy) is a generator
of the maximal ideal. Put Bgr = BJi[1/t]. This is a field and is equipped with an
action of the Galois group Gk and a filtration defined by Fil!Bag = t!B} (i € Z). The
ring (Bar)®¥ is canonically isomorphic to K. If V is a p-adic representation of G,
then Dyr(V) = (Bar ®q, V)X is naturally a K-vector space. We say that a p-adic
representation V of Gk is a de Rham representation of Gk if we have

dimg,V = dimgDar (V) (we always have dimg,V > dimgx Dar(V)).

Furthermore, a potentially de Rham representation V of Gk is a de Rham representation
of Gk. (See [F1].)

2.1.2. The case e is general (i.e. k is not necessarily perfect)

Let K be as in Introduction and assume that the residue field k is not necessarily

perfect. If we construct Bly, Bam as in the perfect residue case (we denote Biz™",

Buaiv):
1. C, = the p-adic completion of K
2. E = limgesrCp and ET
3. At = W(E+), B* = A*[1/p] and 0: Bt -+ C,
4. BV = limnsoB+/(Ker (6))" and B3gY = BR™V(1/4]

then contrary to the perfect residue field case, we have (B3aiv)Gx £ K in general. Now,
we shall recall the imperfect residue field version of Bgg.
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First, construct the ring A+ for K as above. Let o:: Ox ®7 A+ —» O /O be the
natural surjection and define AE"K) to be

Al = limn0(0k ®z A)/(Ker ()™

Let Ox : AVE"K) ®z, @, - Cp be the natural extension of § : A*[1/p] - C,. Then, the
imperfect residue field version of BJ is defined to be the Ker (§x )-adic completion of
Al ©2, Qp:

Bir = limnzo(zfm ®z, Qp)/ (Ker (6x)").

Fix a lifting (b;)1<i<e Of a p-basis of k in Ok as in Introduction. Let b; = (b§”)) € E+
such that b§°) = b;, and then the series which defines log([b;]/;) converges in B} to
an element t;. This ring BJ is endowed with an action of the Galois group Gk and a
filtration defined by Fil’Bjy = mjp where the maximal ideal mqg of BJy is generated
by {t,t1,... ,tc}. Put Bar = BJiz[1/t]. Then, K is canonically embedded in Bgg and
(Bar)®* = K. If V is a p-adic representation of Gk, then Dar(V) = (Bar ®q, V)Cx
is naturally a K-vector space. We say that a p-adic representation V of Gx is a de
Rham representation of Gg if we have

dimg,V = dimg Dar (V) (we always have dimg,V > dimg Dgr(V)).

Furthermore, we can show that a potentially de Rham representation V of Gk is a de
Rham representation V' of G in the same way as in the perfect residue field case.

§2.2. Comparison of the case 2.1.1 and 2.1.2

Fix the notations as in Section 2.1.2 and let KV and K’ be as in Introduction.
First, by the construction, we see that there exists a Gx-equivariant injection

(2.1) fi B < B,

On the other hand, since K’ is a complete discrete valuation field with perfect residue
field, we can construct the ring BJy for K’ as in Section 2.1.1. We will see that there
exists a morphism from the ring BIR to the ring B('fﬁ' . Since K() is a Henselian discrete
valuation field, we have an isomorphism Gx' ~ G (C Gg). With this isomorphism,
we identify Gk as a subgroup of Gk. Then, there exists a G -equivariant surjection

(2.2) g: Bir — By

Now, we will show that there exists a morphism between the ring Bgﬁ“ai" with the ring
B:ﬁ’{ . We have a bijective map from the set of finite extensions of K() contained in K
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to the set of finite extensions of K’ contained in K’ defined by L — LK'. Furthermore,
LK’ is the p-adic completion of L. Hence, we have an isomorphism of rings

Og/p"0x = Og7/p"Ogr

where O and O denote rings of integers of K and K'. Thus, the fields C,(K) (= the
p-adic completion of K) and C,(K') (= the p-adic completion of K') are isomorphic
(we will simply write C;). In the end, we have an isomorphism of rings

B = By
which coincides with the composition ((2.1) and (2.2)) -
gof:BIg™" < Bl » By

From now on, we identify the ring B;'é“ai" with the ring BJy. Then, it is well-known
that the homomorphism

(2.3) F i Bi [ty - o te]] = By

is an isomorphism of filtered algebras. (See [Br2] and [Kal].) From this isomorphism,
it follows easily that

. +’, + . + +1’ . .
i: By — Bjg and pr:Bjg —» Big: ti—0
are G gr-equivariant homomorphisms and the composition
p?‘Oi:B:ﬁ;: — B;{'R — B:r’{,

is identity.

§3. Preliminaries on p-adic differential modules

In this section, we will introduce the recent theory of p-adic differential modules
which plays an important role in this note. First, let us fix the notations. Put K, K Q)
and K’ as in Introduction. Put K& = Up»oK " ((m) and K’y = UmzoK’ (Gom) where
(pm denotes a primitive p™-th root of unity in K such that C;’m,,,l = (pm. Let K ! denote
the p-adic completion of K . These fields K. () and K are independent of the choice
of {b}/""} (K, isn’t). Then, we have |

K/ oK' >KY.

Let Hy denote the kernel of the cyclotomic character x : Gk — Zy. Note that, since
we have Hx ~ G ., the subgroup Hg of Gk is independent of the choice of K’. Define



ON GALOIS REPRESENTATIONS OF LOCAL FIELDS WITH IMPERFECT RESIDUE FIELDS 137

T'x = Gx/Hg. Let Ty = Gal(K$)/K")) be the subgroup of T'x. Let T; (i # 0) be the
subgroup of I'x such that actions of 3; € T; (¢ # 0) are given by

Bi(e™) =™ and Bi(6) = b\ (3 # j).
Define the homomorphism ¢; : T'; — Zy, such that we have

Bi(b™) = b ()60,

§3.1. Definitions of p-adic differential modules

We will give the definitions of p-adic differential modules Dgen (V'), Dpyi(V), DE(V)
and DJ_ (V) which are obtained by Sen, Brinon, Fontaine and Andreatta-Brinon. We
will have the following diagram:

(Biz ®q, V)H* > DE(V) > D} 4(V)
{ { {
(Cp®q, V)#E > Dsen(V) D  Dgu(V).

The following results in Section 3.1.1 and 3.1.3 are obtained when V is a p-adic represen-
tation of G, = Gal(Z/L) where L is a complete discrete valuation field of characteristic
0 with perfect residue field of characteristic p > 0. However, in Section 3.1.1 and 3.1.3,
for simplicity, we will state the results when V is a p-adic representation of G K-

3.1.1. The module Dg,,(V)

In the article [S3], Sen shows that the K”_-vector space (Cp®q, V)H¥ has dimension
d (= dimg, V') and the union of the finite dimensional K, -subspaces of (C, ®q, V)
stable under T'o (=~ Gg'/Hg) is a K/ -vector space of dimension d stable under Ty
(called Dgen(V)). We have Cp @k, Dsen(V) = C,®q, V and the natural map K/ ® K,
Dsen(V) = (Cp ®q, V)Hx is an isomorphism. Furthermore, if v € T is close enough
to 1, then the series of operators on Dge,(V):

log(y) ___ 1 (1=
1%uw»‘1%um@§ R

converges to an operator V(©) : Dg., (V) — Dgen (V) and does not depend on the choice
of ~.

3.1.2. The module Dg,.;(V)
In the article [Br1], Brinon generalizes Sen’s work above. He shows that the union of
the finite dimensional K -subspaces of (C, ®q, V)#* stable under I'g is a K. 0 -vector



138 KAZUMA MORITA

space of dimension d stable under I'x (we call it Dg,i(V)). We have C, ® KO Dg,i(V) =
Cp ®q, V' and the natural map K. ® KO Dgyi(V) = (Cp ®q, V)#¥ is an isomorphism.
As in the case of Dgen(V), the K-vector space Dg,;(V) is endowed with the action of
the operator

© _ logly) _ (1-7*
V= Toglx) ~ Tog x(v ;

if v € Ty is close enough to 1. In addition to this operator v© if §; € I is close
enough to 1, then the series of operators on Dp,i(V):

log(8;) — (1-8)"

Ci(ﬁi) cz ﬂz ng:l

converges to an operator V) : Dg,;(V) — Dp(V) and does not depend on the choice
of ﬁ,,

3.1.3. The module D(’l"if(V)

Let the ring B}, be as in Section 2.1.2. In the article [F5], by using Sen’s the-
ory, Fontaine shows that the union of K/ [[t,%1,... ,te]|-submodules of finite type of
(Bz ®q, V) stable under T'q (~ Gg'/Hk) is a K. [[t,t1,... ,t]l-module of rank
d = dimg, V stable under Ty (called DE(V)). We have B;'R QK [t t1,e.. tel] DL(V) =
Bix ®q, V' and the natural map (BlR)Ex ® K [[tt1,.. ,te]]D;ll_if(V) — (B ®q, V)Hx is
an isomorphism. Furthermore, if 4 € I'g is close enough to 1, then the series of operators
on DL(V):

log(v) (-7
log(x('y)) 108(X 7)) ,;1

converges to an operator V(® : DE.(V) — D(V') and does not depend on the choice
of 7.

Remark 8.1.  This DE,(V) is a little different from the original one constructed
by Fontaine in [F5].

3.1.4. The module D} (V) Let the ring Bjy be as in Section 2.1.2. In the
article [A-B], Andreatta and Brinon generalize Fontaine’s work above. They show
that the union of K{) (it,t1,. .. ,te]]-submodules of finite type of (Bjy ®q, V)F¥ sta-
ble under T'x is a Ké'o)[[t,tl,... ,te]]-module of rank d stable under I'x (we call it
D} 4¢(V)). We have B ® ) (4.4,.... 2. Po-ait(V) = Bdg ®¢, V and the natural map
(Br)F* @ KD [tst1,en stel) D} (V) = (Bl ®q, V)¥x is an isomorphism. As in the
case of DE,(V), the K [[t, t1,... ,t.]l-module DF 4(V) is endowed with the action of
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the operator

© _ _log(v) 1-*
V= gl log(x(m,;

if v € T is close enough to 1. In addition to this operator VO if 8; € T; is close
enough to 1, then the series of operators on D;"_dif(V):

log(ﬁz _ 1 - ﬁz
cz(ﬁz ,31.) Z

converges to an operator V) : DI (V) — D} (V) and does not depend on the
choice of ;.

§3.2. Properties of differential operators

First, we consider the “meaning” of the equation V() (F) = 0. By definitions of
differential operators, it follows easily that F' is fixed by actions of an open subgroup of
I';. Thus, we can say that

“Find solutions {fk}d_d‘m“"’ (linearly independent over K) of VU)(f,) = 0 for
0<j<einDf (V)[1/1] ‘

U

“V’ is a potentially de Rham rep. of G, that is, a de Rham rep. of Gg™.

Thus, the theory of p-adic differential modules plays an important role in the proof
of Theorem 1.3. Now, we will describe actions of operators V@) (0 < j < e) on the
module D_;.(V). First, by a standard argument, we can show that, if z ¢ DI (W),
we have

Bi(z) —x

ci(B:)
With this presentation, we can easily describe actions of operators V(%) (0<j<e)on
the ring K. )[[t t1,... ,te]] as follows.

VO (z) =lim,,; E ; and V®(z) = limg,_,;

Lemma 3.2. We have

d ; d
0 2 B =t (; Ot ta, ..., te]].
\Y tdt and V tdti (1#£0) on K[t t1,...,te]

We extend naturally actions of K)-linear derivations V© and V@ (¢ # 0) on
DI_4(V) t0 De-ait(V) = D}_4,(V)[1/4] by putting VO@) =-1 and V@) =0
(i # 0). Now, compute the bracket [ , ] of operators V() (0<ji<e).

Proposition 3.3.  On the K{[[t,t,,... yte]][1/t]-module De_qi:(V) as above, we
have the following relation
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1. VOVE _ v@OYO =V for all i #0:
2, VOV - vOTVE =0 for all 1,5 # 0.

The following proposition describe actions of V® (i # 0) and plays a key role in
the proof of Theorem 1.3..

Proposition 8.4.  Let M be a finite generated free KY [[t,t15. - . ste]][1/t]-module
endowed with K -linear operators {V\W)¥;_, which satisfy Leibniz rule and relations in
Proposition 3.3. Assume that M has a basis {g;};=, over Ky ([t,t1,- .. s te]] [1/¢] which
satisfies V(0 (g;) = 0. Then, the action of V& (i #£0) is given by

d
VD(g;) =t crgr, ok € KQ[t,b1,... ,te]] and v (¢) = 0.
k=1
Proof. Since {gj};’L1 forms a basis of M over K& [[t,t1,... »te]][1/t], we have

d

(3'1) v(i) (gj) = Z L3173 (a'k € Kgg[[t’tla v ate]][l/t])'
k=1

Then, by the relation of Proposition 3.3., we have

d d
> VO (ar)gr =Y argr
k=1 k=1

(note that we have V(®(g;) = 0 by hypothesis). Hence, we obtain the differential
equation

VO (ag) = ay.

Define cx = ax/t, then it satisfies VO (c) = ag/t — ax/t = 0 and we see that cj is

contained in KO [[t,t1,... ,to]]. Thus, the solutions of this differential equation have

the following forms
(3.2) ar = cxt  where cx € KQ[[t,t1,... ,to]] and V@(cx) =0.

Hence, we have, from (3.1) and (3.2),

d
v (g;) = thkgk where ¢ € KO[[t,t1,... ,te]] and vO(ex) = 0.
k=1
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Corollary 3.5.  With notations as in Proposition 3.4. above, we have

d
(V)kr .. (wle)yke (g5) = that+he chgk, cx € KO[[t,t1,... ,t]] and VO(e) = 0.
k=1

§4. Proof of Theorem 1.3. in the de Rham representation case

Let us recall some notations

o K is a complete discrete valuation field of characteristic 0 with residue field k of
characteristic p > 0 such that [k : k7] = p°® < co:

o V is a p-adic representation of G of dimension d over Qp:

o K' = the p-adic completion of Um0 K (b: /P m, 1 < i< e) is the complete discrete
valuation field of characteristic 0 with perfect residue field:

o there exists a Gg-equivariant isomorphism

Bar = Bip[1/t] ~ B [[t1,.. . , t)[1/1].

(1) V: de Rham rep. of Gx = V: de Rham rep. of G

Proof.  Since V' is a de Rham representation of G, there exists a G'x-equivariant
isomorphism of Byr-modules:

(4.1) Bar ®q, V = (Bar)*.

Now, by tensoring Bljp®p,, (which is induced by the Gy -equivariant surjection pr :
Byr — Bgg) over (4.1), we obtain a Gg/-equivariant isomorphism of B/ jg-modules:

Bjr ®q, V =~ (Bir)“.
This means that V' is a de Rham representation of Gx. O

(2) V: de Rham rep. of Gg' = V: de Rham rep. of Gx

This is the difficult part of this note and the theory of p-adic differential modules
plays a central role in the following proof. We have to bridge the gap between Gy
and Ggr. Then, roughly speaking, since the differential operators {V®}¥S_, reflect
this difference, it suffices to construct the solutions {fk}z:?lmq”v of VO(f) = 0 for
1<i<e.

Lemma 4.1. IfV is a de Rham representation of Gy, there ewists a G-
equivariant isomorphism
Byr ® De—aif(V) = (Bar)®.
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Proof. Since V is a de Rham representation of Gk, there exists a G xs-equivariant
isomorphism of B)jz-modules:

(4.2) Bjr ®q, V = (Br)™

Now, by tensoring Bar®s;,, (which is induced by the Ggr-equivariant injection ¢ :
Blig < Bar) over (4.2), we obtain a Ggr-equivariant isomorphism of Bqr-modules:

B4r ®q, V = (Bar)%
On the other hand, we have a G g-equivariant isomorphism
Bar ® De—qif(V) =~ Bar ®q, V.
Thus, we obtain the desired isomorphism. O

Finally, we shall give the proof of (2).

Proof. We shall construct the Kc(,g-linearly independent elements { f§*)}?=1 €
De—qit(V) such that VO (f{”) =0for 0<i<eand1<j<d.

(A) Construction of { f;*)}?ﬂ € De—ait(V)

Since V is a de Rham representation of Gk, we have a basis {fj};’=1 of De_ait(V)
over Kg,)[[t,th .+ yte]][1/t] such that, from Lemma 4.1.,

VO(f)=0 foralll<j<d.
Thus, we can apply Corollary 3.5. to the K. o [[t,t1,- .. »te]l[1/t]-module D._gi¢(V') gen-

erated by {fj};'i.__l and then we can deduce

d
(VDY (Ve (gg) = 150 37 gy, e € KQ[lty - tel] and VO (ey) =
k=1

e

Then, if we define f;*) € De_git(V) (converge for (t,t1,... ,te)-adic topology) by

k1 k
(*) _ Z kytetke b1 coctel D\k )\ ke
f] - (_1) whet P .lke!tkl'f""'l'ke (v( )) Tees (v( )) (f.?)’

0<ky,un. yke
it follows easily that we have V() ( fyg*)) =0for0<i<e.

(B) { fjg*)}?:l € De_qgit(V) is linearly independent over K
By the presentation of fé*), we have

.7(*) = fj+g; where f; & g; € (t1,... ,te)De—ait(V).
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Since { fj}j=1 forms a basis of D,_a¢(V') over K$) ([ t1,... ,te]][1/4], it is, in particular,
linearly independent over K (c K9 [[t,t1,. .. ,te]][1/¢]). Then, it follows easily that
{ f;*)}?_:l is linearly independent over K&) in De_qis(V).

(C) Conclusion

Therefore, on the K-vector space generated by { f}*)};’gl, log(7) and log(B;) act
trivially (& V(©)( f}*)) =0 and V[ f}*)) =0for all 1 < j < d). Thus, this means that
Ik acts on this K-vector space via finite quotient and there exists a finite extension
L/K such that { f;*)}?=1 forms a basis of Dar (V1) over L (C K<) where V;, denotes
the restriction of V' to G. Since a potentially de Rham representation of Gx is a de
Rham representation of G, we complete the proof. O
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