# On Galois representations of local fields with imperfect residue fields

By

#### Kazuma Morita\*

Let K be a complete discrete valuation field of characteristic 0 with residue field k of characteristic p>0 such that  $[k:k^p]=p^e<+\infty$ . Let V be a p-adic representation of the absolute Galois group  $G_K=\operatorname{Gal}(\overline{K}/K)$  where we fix an algebraic closure  $\overline{K}$  of K. When the residue field k is perfect (i.e. e=0), Berger has proved a conjecture of Fontaine (Conjecture 1.1. below) which claims that, if V is a de Rham representation of  $G_K$ , V becomes a potentially semi-stable representation of  $G_K$ . (See Theorem 1.2.) Here, we generalize this result to the case when the residue field k is not necessarily perfect. For this, we prove some results on p-adic representations in the imperfect residue field case (see Theorem 1.3.) which are obtained by using the recent theory of p-adic differential modules and deduce this generalization of the result of Berger as a corollary. (See Theorem 1.4.)

In this survey article, we first state the results in Section 1. In Section 2, we review the property of the p-adic periods ring  $B_{\rm dR}$ . Then, in Section 3 and Section 4, we give a sketch of the proof of Theorem 1.3.

#### § 1. Results

Let K, k,  $G_K$  and V be as above. Fontaine, Hyodo, Kato and Tsuzuki define the p-adic periods rings (associated to K) which are equipped with the continuous action of  $G_K$ . (See [F1], [Ka1], [Ka2], [Tz3], [Br2] etc.)

$$(\mathbb{Q}_p \subset) B_{\mathrm{cris}} \subset B_{\mathrm{st}} \subset B_{\mathrm{dR}}$$
.

With these rings, we classify the p-adic representation V of  $G_K$  as follows. We call the p-adic representation V of  $G_K$ 

1. a de Rham representation of  $G_K$  if and only if we have the equality

$$\dim_{\mathbb{Q}_p} V = \dim_{(B_{\mathrm{dR}})^{G_K}} (B_{\mathrm{dR}} \otimes V)^{G_K} :$$

<sup>\*</sup>Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan. E-mail: morita@math.kyoto-u.ac.jp

<sup>© 2007</sup> Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

2. a semi-stable representation of  $G_K$  if and only if we have the equality

$$\dim_{\mathbb{Q}_p} V = \dim_{(B_{\mathrm{st}})^{G_K}} (B_{\mathrm{st}} \otimes V)^{G_K} :$$

3. a crystalline representation of  $G_K$  if and only if we have the equality

$$\dim_{\mathbb{Q}_p} V = \dim_{(B_{\mathrm{cris}})^{G_K}} (B_{\mathrm{cris}} \otimes V)^{G_K}.$$

(In general, we have the inequality  $\dim_{\mathbb{Q}_p} V \ge \dim_{(B_*)^{G_K}} (B_* \otimes V)^{G_K}$  for  $* \in \{dR, st, cris\}$ .) It is well-known that we have the following implications (see [F1] etc.)

cray. rep. of 
$$G_K \Longrightarrow$$
 st. rep. of  $G_K \Longrightarrow$  dR. rep. of  $G_K$ .

Furthermore, we call the p-adic representation V of  $G_K$  a potentially de Rham (resp. semi-stable, crystalline) representation of  $G_K$  if V is a de Rham (resp. semi-stable, crystalline) representation of  $G_L$  where L/K is a finite extension. Then, it is well-known that a potentially de Rham representation of  $G_K$  is a de Rham representation of  $G_K$ . (See Section 2.) Thus, it is not difficult to see that a potentially semi-stable representation of  $G_K$  is a de Rham representation of  $G_K$ . Fontaine conjectured the converse.

**Conjecture 1.1.** If the p-adic representation V is a de Rham representation of  $G_K$ , then V is a potentially semi-stable representation of  $G_K$ .

Then, Berger has proved the following thing.

**Theorem 1.2.** The conjecture of Fontaine is true if the residue field k is perfect.

The aim of this note is to give a sketch of the proof of the generalization of this theorem to the imperfect residue field case. (Theorem 1.5.) For this, we state some results on p-adic representations in the imperfect residue field case. (Theorem 1.3.)

Let us fix some notations. Fix a lifting  $(b_i)_{1 \le i \le e}$  of a p-basis of k in  $\mathcal{O}_K$  (the ring of integers of K), and fix a  $p^m$  -th root  $b_i^{1/p^m}$  of  $b_i$  in  $\overline{K}$  for each  $m \ge 1$  satisfying  $(b_i^{1/p^{m+1}})^p = b_i^{1/p^m}$ . Put

$$K^{(\prime)} = \cup_{m>1} K(b_i^{1/p^m}, 1 \leq i \leq e)$$
 and  $K' = \text{the $p$-adic completion of } K^{(\prime)}.$ 

which depend on the choice of  $\{b_i^{1/p^m}\}$ . Then, K' is a complete discrete valuation field with perfect residue field, which is a canonical "**perfectzation**" of K. Furthermore, we can regard the Galois group  $G_{K'} = \operatorname{Gal}(\overline{K'}/K')$  as a subgroup of  $G_K$  (see Section 2 for details) and think V as a p-adic representation of  $G_{K'}$ . Then, we obtain the following theorem ([Mo1] and [Mo2]).

**Theorem 1.3.** Let K be a complete discrete valuation field of characteristic 0 with residue field of characteristic p > 0 such that  $[k:k^p] < \infty$  and K' be as above. Let V denote a p-adic representation of  $G_K$ . Then, we have the following equivalences.

- 1. V is a de Rham representation of  $G_K$  if and only if V is a de Rham representation of  $G_{K'}$ .
- 2. V is a potentially semi-stable representation of  $G_K$  if and only if V is a potentially semi-stable representation of  $G_{K'}$ .
- 3. V is a potentially crystalline representation of  $G_K$  if and only if V is a potentially crystalline representation of  $G_{K'}$ .

**Remark 1.4.** Though we don't introduce the definition of Hodge-Tate representations in this note, we also show that V is a Hodge-Tate representation of  $G_K$  if and only if V is a Hodge-Tate representation of  $G_{K'}$ . (For the definition of Hodge-Tate representations, see [F1] etc.)

With Theorem 1.2. and Theorem 1.3., we have the following equivalences:

$$V: \mathrm{dR.}$$
 rep. of  $G_K \Longleftrightarrow V: \mathrm{dR.}$  rep. of  $G_{K'}$   $\updownarrow$   $V: \mathrm{pst.}$  rep. of  $G_K \Longleftrightarrow V: \mathrm{pst.}$  rep. of  $G_{K'}$ 

Thus, we obtain the generalization of Theorem 1.2. to the imperfect residue field case.

**Theorem 1.5.** The conjecture of Fontaine is true even if the residue field k is not necessarily perfect.

For simplicity, in this note, we shall consider only the de Rham representation case of Theorem 1.3..

- § 2. Preliminaries on the p-adic periods ring  $B_{dR}$
- § 2.1. Definitions and properties of the ring  $B_{dR}$
- **2.1.1.** The case e = 0 (i.e. k is perfect)

Let K be as in Introduction and assume that the residue field k is perfect. Choose an algebraic closure  $\overline{K}$  of K and put  $\mathbb{C}_p$  = the p-adic completion of  $\overline{K}$ . Put

$$\widetilde{E} = \varprojlim_{x \mapsto x^p} \mathbb{C}_p = \{(x^{(0)}, x^{(1)}, \ldots) \mid x^{(i)} \in \mathbb{C}_p, (x^{(i+1)})^p = x^{(i)}\}.$$

Define a valuation  $v_E$  on  $\widetilde{E}$  by  $v_E(x) = v_p(x^{(0)})$  where  $v_p$  denotes the normalized valuation of  $\mathbb{C}_p$  by  $v_p(p) = 1$ . Let  $\epsilon = (\epsilon^{(n)})$  be an element of  $\widetilde{E}$  such that  $\epsilon^{(0)} = 1$  and  $\epsilon^{(1)} \neq 1$ . The field  $\widetilde{E}$  is the completion of an algebraic closure of  $k((\epsilon - 1))$  for this valuation. Define  $\widetilde{E}^+$  to be the ring of integers for this valuation. Put  $\widetilde{A}^+ = W(\widetilde{E}^+)$  and

$$\widetilde{B}^+ = \widetilde{A}^+[1/p] = \{ \sum_{k \gg -\infty} p^k[x_k] \mid x_k \in \widetilde{E}^+ \}$$

where [\*] denotes the Teichmüller lift of  $* \in \widetilde{E}^+$ . This ring is equipped with a surjective homomorphism

 $\theta: \widetilde{B}^+ \twoheadrightarrow \mathbb{C}_p: \quad \sum p^k[x_k] \mapsto \sum p^k x_k^{(0)}.$ 

The ring  $B_{\mathrm{dR}}^+$  is defined to be the completion by the Ker  $(\theta)$ -adic topology of  $\widetilde{B}^+$ :

$$B_{\mathrm{dR}}^+ = \lim_{n \ge 0} \widetilde{B}^+ / (\mathrm{Ker}(\theta)^n).$$

This is a discrete valuation ring and  $t = \log([\epsilon])$  (which converges in  $B_{\mathrm{dR}}^+$ ) is a generator of the maximal ideal. Put  $B_{\mathrm{dR}} = B_{\mathrm{dR}}^+[1/t]$ . This is a field and is equipped with an action of the Galois group  $G_K$  and a filtration defined by  $\mathrm{Fil}^i B_{\mathrm{dR}} = t^i B_{\mathrm{dR}}^+$  ( $i \in \mathbb{Z}$ ). The ring  $(B_{\mathrm{dR}})^{G_K}$  is canonically isomorphic to K. If V is a p-adic representation of  $G_K$ , then  $D_{\mathrm{dR}}(V) = (B_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V)^{G_K}$  is naturally a K-vector space. We say that a p-adic representation V of  $G_K$  is a de Rham representation of  $G_K$  if we have

$$\dim_{\mathbb{Q}_p} V = \dim_K D_{\mathrm{dR}}(V)$$
 (we always have  $\dim_{\mathbb{Q}_p} V \geq \dim_K D_{\mathrm{dR}}(V)$ ).

Furthermore, a potentially de Rham representation V of  $G_K$  is a de Rham representation of  $G_K$ . (See [F1].)

## 2.1.2. The case e is general (i.e. k is not necessarily perfect)

Let K be as in Introduction and assume that the residue field k is not necessarily perfect. If we construct  $B_{\mathrm{dR}}^+$ ,  $B_{\mathrm{dR}}$  as in the perfect residue case (we denote  $B_{\mathrm{dR}}^{+,\mathrm{naiv}}$ ,  $B_{\mathrm{dR}}^{\mathrm{naiv}}$ ):

- 1.  $\mathbb{C}_p$  = the *p*-adic completion of  $\overline{K}$
- 2.  $\widetilde{E} = \varprojlim_{x \mapsto x^p} \mathbb{C}_p$  and  $\widetilde{E}^+$
- 3.  $\widetilde{A}^+=W(\widetilde{E}^+), \ \widetilde{B}^+=\widetilde{A}^+[1/p] \ \text{and} \ \theta:\widetilde{B}^+ \twoheadrightarrow \mathbb{C}_p$
- 4.  $B_{\mathrm{dR}}^{+,\mathrm{naiv}} = \varprojlim_{n \geq 0} \widetilde{B}^+ / (\mathrm{Ker}\,(\theta))^n$  and  $B_{\mathrm{dR}}^{\mathrm{naiv}} = B_{\mathrm{dR}}^{+,\mathrm{naiv}}[1/t]$

then contrary to the perfect residue field case, we have  $(B_{dR}^{naiv})^{G_K} \neq K$  in general. Now, we shall recall the imperfect residue field version of  $B_{dR}$ .

First, construct the ring  $\widetilde{A}^+$  for K as above. Let  $\alpha: \mathfrak{O}_K \otimes_{\mathbb{Z}} \widetilde{A}^+ \twoheadrightarrow \mathfrak{O}_{\overline{K}}/p\mathfrak{O}_{\overline{K}}$  be the natural surjection and define  $\widetilde{A}^+_{(K)}$  to be

$$\widetilde{A}_{(K)}^+ = \varprojlim_{n \geq 0} (\mathfrak{O}_K \otimes_{\mathbb{Z}} \widetilde{A}^+) / (\operatorname{Ker}(\alpha))^n.$$

Let  $\theta_K : \widetilde{A}_{(K)}^+ \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \twoheadrightarrow \mathbb{C}_p$  be the natural extension of  $\theta : \widetilde{A}^+[1/p] \twoheadrightarrow \mathbb{C}_p$ . Then, the imperfect residue field version of  $B_{\mathrm{dR}}^+$  is defined to be the Ker $(\theta_K)$ -adic completion of  $\widetilde{A}_{(K)}^+ \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ :

$$B_{\mathrm{dR}}^+ = \varprojlim_{n \geq 0} (\widetilde{A}_{(K)}^+ \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) / (\mathrm{Ker}\, (\theta_K)^n).$$

Fix a lifting  $(b_i)_{1\leq i\leq e}$  of a p-basis of k in  $\mathcal{O}_K$  as in Introduction. Let  $\widetilde{b_i}=(b_i^{(n)})\in\widetilde{E}^+$  such that  $b_i^{(0)}=b_i$ , and then the series which defines  $\log([\widetilde{b_i}]/b_i)$  converges in  $B_{\mathrm{dR}}^+$  to an element  $t_i$ . This ring  $B_{\mathrm{dR}}^+$  is endowed with an action of the Galois group  $G_K$  and a filtration defined by  $\mathrm{Fil}^iB_{\mathrm{dR}}^+=m_{\mathrm{dR}}^i$  where the maximal ideal  $m_{\mathrm{dR}}$  of  $B_{\mathrm{dR}}^+$  is generated by  $\{t,t_1,\ldots,t_e\}$ . Put  $B_{\mathrm{dR}}=B_{\mathrm{dR}}^+[1/t]$ . Then, K is canonically embedded in  $B_{\mathrm{dR}}$  and  $(B_{\mathrm{dR}})^{G_K}=K$ . If V is a p-adic representation of  $G_K$ , then  $D_{\mathrm{dR}}(V)=(B_{\mathrm{dR}}\otimes_{\mathbb{Q}_p}V)^{G_K}$  is naturally a K-vector space. We say that a p-adic representation V of  $G_K$  is a de Rham representation of  $G_K$  if we have

$$\dim_{\mathbb{Q}_p} V = \dim_K D_{\mathrm{dR}}(V)$$
 (we always have  $\dim_{\mathbb{Q}_p} V \ge \dim_K D_{\mathrm{dR}}(V)$ ).

Furthermore, we can show that a potentially de Rham representation V of  $G_K$  is a de Rham representation V of  $G_K$  in the same way as in the perfect residue field case.

#### § 2.2. Comparison of the case 2.1.1 and 2.1.2

Fix the notations as in Section 2.1.2 and let  $K^{(\prime)}$  and K' be as in Introduction. First, by the construction, we see that there exists a  $G_K$ -equivariant injection

$$(2.1) f: B_{dR}^{+,\text{naiv}} \hookrightarrow B_{dR}^{+}.$$

On the other hand, since K' is a complete discrete valuation field with perfect residue field, we can construct the ring  $B_{\mathrm{dR}}^{+,\prime}$  for K' as in Section 2.1.1. We will see that there exists a morphism from the ring  $B_{\mathrm{dR}}^+$  to the ring  $B_{\mathrm{dR}}^{+,\prime}$ . Since  $K^{(\prime)}$  is a Henselian discrete valuation field, we have an isomorphism  $G_{K'} \simeq G_{K^{(\prime)}}(\subset G_K)$ . With this isomorphism, we identify  $G_{K'}$  as a subgroup of  $G_K$ . Then, there exists a  $G_{K'}$ -equivariant surjection

$$(2.2) g: B_{\mathrm{dR}}^+ \twoheadrightarrow B_{\mathrm{dR}}^{+,\prime}.$$

Now, we will show that there exists a morphism between the ring  $B_{\mathrm{dR}}^{+,\mathrm{naiv}}$  with the ring  $B_{\mathrm{dR}}^{+,\prime}$ . We have a bijective map from the set of finite extensions of  $K^{(\prime)}$  contained in  $\overline{K}$ 

to the set of finite extensions of K' contained in  $\overline{K'}$  defined by  $L \mapsto LK'$ . Furthermore, LK' is the p-adic completion of L. Hence, we have an isomorphism of rings

$$\mathfrak{O}_{\overline{K}}/p^n\mathfrak{O}_{\overline{K}}\simeq \mathfrak{O}_{\overline{K'}}/p^n\mathfrak{O}_{\overline{K'}}$$

where  $\mathcal{O}_{\overline{K}}$  and  $\mathcal{O}_{\overline{K'}}$  denote rings of integers of  $\overline{K}$  and  $\overline{K'}$ . Thus, the fields  $\mathbb{C}_p(K)$  (= the p-adic completion of  $\overline{K'}$ ) and  $\mathbb{C}_p(K')$  (= the p-adic completion of  $\overline{K'}$ ) are isomorphic (we will simply write  $\mathbb{C}_p$ ). In the end, we have an isomorphism of rings

$$B_{
m dR}^{+,
m naiv}\simeq B_{
m dR}^{+,\prime}$$

which coincides with the composition ((2.1) and (2.2))

$$g \circ f: B_{\mathrm{dR}}^{+,\mathrm{naiv}} \hookrightarrow B_{\mathrm{dR}}^{+} \twoheadrightarrow B_{\mathrm{dR}}^{+,\prime}$$

From now on, we identify the ring  $B_{dR}^{+,\text{naiv}}$  with the ring  $B_{dR}^{+,\prime}$ . Then, it is well-known that the homomorphism

(2.3) 
$$f: B_{\mathrm{dR}}^{+,\prime}[[t_1,\ldots,t_e]] \to B_{\mathrm{dR}}^+$$

is an isomorphism of filtered algebras. (See [Br2] and [Ka1].) From this isomorphism, it follows easily that

$$i: B_{\mathrm{dR}}^{+,\prime} \hookrightarrow B_{\mathrm{dR}}^{+} \quad \text{and} \quad pr: B_{\mathrm{dR}}^{+} \twoheadrightarrow B_{\mathrm{dR}}^{+,\prime}: \ t_i \mapsto 0$$

are  $G_{K'}$ -equivariant homomorphisms and the composition

$$pr \circ i: B_{\mathrm{dR}}^{+,\prime} \hookrightarrow B_{\mathrm{dR}}^{+} \twoheadrightarrow B_{\mathrm{dR}}^{+,\prime}$$

is identity.

## $\S$ 3. Preliminaries on p-adic differential modules

In this section, we will introduce the recent theory of p-adic differential modules which plays an important role in this note. First, let us fix the notations. Put K,  $K^{(\prime)}$  and K' as in Introduction. Put  $K^{(\prime)}_{\infty} = \bigcup_{m \geq 0} K^{(\prime)}(\zeta_{p^m})$  and  $K'_{\infty} = \bigcup_{m \geq 0} K'(\zeta_{p^m})$  where  $\zeta_{p^m}$  denotes a primitive  $p^m$ -th root of unity in  $\overline{K}$  such that  $\zeta_{p^{m+1}}^p = \zeta_{p^m}$ . Let  $\hat{K}'_{\infty}$  denote the p-adic completion of  $K'_{\infty}$ . These fields  $K^{(\prime)}_{\infty}$  and  $\hat{K}'_{\infty}$  are independent of the choice of  $\{b_i^{1/p^m}\}$  ( $K'_{\infty}$  isn't). Then, we have

$$\hat{K}'_{\infty} \supset K'_{\infty} \supset K'_{\infty}$$
.

Let  $H_K$  denote the kernel of the cyclotomic character  $\chi: G_{K'} \to \mathbb{Z}_p^*$ . Note that, since we have  $H_K \simeq G_{K_\infty^{(\prime)}}$ , the subgroup  $H_K$  of  $G_K$  is independent of the choice of K'. Define

 $\Gamma_K = G_K/H_K$ . Let  $\Gamma_0 = \operatorname{Gal}(K_{\infty}^{(\prime)}/K^{(\prime)})$  be the subgroup of  $\Gamma_K$ . Let  $\Gamma_i$   $(i \neq 0)$  be the subgroup of  $\Gamma_K$  such that actions of  $\beta_i \in \Gamma_i$   $(i \neq 0)$  are given by

$$eta_i(\epsilon^{(n)}) = \epsilon^{(n)}$$
 and  $eta_i(b_j^{(n)}) = b_j^{(n)} \ (i 
eq j).$ 

Define the homomorphism  $c_i:\Gamma_i\to\mathbb{Z}_p$  such that we have

$$\beta_i(b_i^{(n)}) = b_i^{(n)} (\epsilon^{(n)})^{c_i(\beta_i)}.$$

### $\S 3.1.$ Definitions of p-adic differential modules

We will give the definitions of p-adic differential modules  $D_{\rm Sen}(V)$ ,  $D_{\rm Bri}(V)$ ,  $D_{\rm dif}^+(V)$  and  $D_{e-{\rm dif}}^+(V)$  which are obtained by Sen, Brinon, Fontaine and Andreatta-Brinon. We will have the following diagram:

$$(B^+_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V)^{H_K} \supset D^+_{\mathrm{dif}}(V) \supset D^+_{e-\mathrm{dif}}(V)$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ 
 $(\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{H_K} \supset D_{\mathrm{Sen}}(V) \supset D_{\mathrm{Bri}}(V).$ 

The following results in Section 3.1.1 and 3.1.3 are obtained when V is a p-adic representation of  $G_L = \operatorname{Gal}(\overline{L}/L)$  where L is a complete discrete valuation field of characteristic 0 with perfect residue field of characteristic p > 0. However, in Section 3.1.1 and 3.1.3, for simplicity, we will state the results when V is a p-adic representation of  $G_{K'}$ .

#### 3.1.1. The module $D_{Sen}(V)$

In the article [S3], Sen shows that the  $\hat{K}'_{\infty}$ -vector space  $(\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{H_K}$  has dimension d (=  $\dim_{\mathbb{Q}_p} V$ ) and the union of the finite dimensional  $K'_{\infty}$ -subspaces of  $(\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{H_K}$  stable under  $\Gamma_0$  ( $\simeq G_{K'}/H_K$ ) is a  $K'_{\infty}$ -vector space of dimension d stable under  $\Gamma_0$  (called  $D_{\mathrm{Sen}}(V)$ ). We have  $\mathbb{C}_p \otimes_{K'_{\infty}} D_{\mathrm{Sen}}(V) = \mathbb{C}_p \otimes_{\mathbb{Q}_p} V$  and the natural map  $\hat{K}'_{\infty} \otimes_{K'_{\infty}} D_{\mathrm{Sen}}(V) \to (\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{H_K}$  is an isomorphism. Furthermore, if  $\gamma \in \Gamma_0$  is close enough to 1, then the series of operators on  $D_{\mathrm{Sen}}(V)$ :

$$\frac{\log(\gamma)}{\log(\chi(\gamma))} = -\frac{1}{\log(\chi(\gamma))} \sum_{k > 1} \frac{(1 - \gamma)^k}{k}$$

converges to an operator  $\nabla^{(0)}: D_{\mathrm{Sen}}(V) \to D_{\mathrm{Sen}}(V)$  and does not depend on the choice of  $\gamma$ .

## 3.1.2. The module $D_{Bri}(V)$

In the article [Br1], Brinon generalizes Sen's work above. He shows that the union of the finite dimensional  $K_{\infty}^{(\prime)}$ -subspaces of  $(\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{H_K}$  stable under  $\Gamma_K$  is a  $K_{\infty}^{(\prime)}$ -vector

space of dimension d stable under  $\Gamma_K$  (we call it  $D_{\mathrm{Bri}}(V)$ ). We have  $\mathbb{C}_p \otimes_{K_{\infty}^{(\prime)}} D_{\mathrm{Bri}}(V) = \mathbb{C}_p \otimes_{\mathbb{Q}_p} V$  and the natural map  $\hat{K}'_{\infty} \otimes_{K_{\infty}^{(\prime)}} D_{\mathrm{Bri}}(V) \to (\mathbb{C}_p \otimes_{\mathbb{Q}_p} V)^{H_K}$  is an isomorphism. As in the case of  $D_{\mathrm{Sen}}(V)$ , the  $K_{\infty}^{(\prime)}$ -vector space  $D_{\mathrm{Bri}}(V)$  is endowed with the action of the operator

$$\nabla^{(0)} = \frac{\log(\gamma)}{\log(\chi(\gamma))} = -\frac{1}{\log(\chi(\gamma))} \sum_{k>1} \frac{(1-\gamma)^k}{k}$$

if  $\gamma \in \Gamma_0$  is close enough to 1. In addition to this operator  $\nabla^{(0)}$ , if  $\beta_i \in \Gamma_i$  is close enough to 1, then the series of operators on  $D_{\text{Bri}}(V)$ :

$$\frac{\log(\beta_i)}{c_i(\beta_i)} = -\frac{1}{c_i(\beta_i)} \sum_{n>1} \frac{(1-\beta_i)^n}{n}$$

converges to an operator  $\nabla^{(i)}: D_{\mathrm{Bri}}(V) \to D_{\mathrm{Bri}}(V)$  and does not depend on the choice of  $\beta_i$ .

## **3.1.3.** The module $D_{dif}^+(V)$

Let the ring  $B_{\mathrm{dR}}^+$  be as in Section 2.1.2. In the article [F5], by using Sen's theory, Fontaine shows that the union of  $K'_{\infty}[[t,t_1,\ldots,t_e]]$ -submodules of finite type of  $(B_{\mathrm{dR}}^+\otimes_{\mathbb{Q}_p}V)^{H_K}$  stable under  $\Gamma_0$  ( $\simeq G_{K'}/H_K$ ) is a  $K'_{\infty}[[t,t_1,\ldots,t_e]]$ -module of rank  $d=\dim_{\mathbb{Q}_p}V$  stable under  $\Gamma_0$  (called  $D_{\mathrm{dif}}^+(V)$ ). We have  $B_{\mathrm{dR}}^+\otimes_{K'_{\infty}[[t,t_1,\ldots,t_e]]}D_{\mathrm{dif}}^+(V)=B_{\mathrm{dR}}^+\otimes_{\mathbb{Q}_p}V$  and the natural map  $(B_{\mathrm{dR}}^+)^{H_K}\otimes_{K'_{\infty}[[t,t_1,\ldots,t_e]]}D_{\mathrm{dif}}^+(V)\to (B_{\mathrm{dR}}^+\otimes_{\mathbb{Q}_p}V)^{H_K}$  is an isomorphism. Furthermore, if  $\gamma\in\Gamma_0$  is close enough to 1, then the series of operators on  $D_{\mathrm{dif}}^+(V)$ :

$$\frac{\log(\gamma)}{\log(\chi(\gamma))} = -\frac{1}{\log(\chi(\gamma))} \sum_{k>1} \frac{(1-\gamma)^k}{k}$$

converges to an operator  $\nabla^{(0)}: D^+_{\mathrm{dif}}(V) \to D^+_{\mathrm{dif}}(V)$  and does not depend on the choice of  $\gamma$ .

**Remark 3.1.** This  $D_{\text{dif}}^+(V)$  is a little different from the original one constructed by Fontaine in [F5].

**3.1.4.** The module  $D_{e-dif}^+(V)$  Let the ring  $B_{\mathrm{dR}}^+$  be as in Section 2.1.2. In the article [A-B], Andreatta and Brinon generalize Fontaine's work above. They show that the union of  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]]$ -submodules of finite type of  $(B_{\mathrm{dR}}^+\otimes_{\mathbb{Q}_p}V)^{H_K}$  stable under  $\Gamma_K$  is a  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]]$ -module of rank d stable under  $\Gamma_K$  (we call it  $D_{e-\mathrm{dif}}^+(V)$ ). We have  $B_{\mathrm{dR}}^+\otimes_{K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]]}D_{e-\mathrm{dif}}^+(V)=B_{\mathrm{dR}}^+\otimes_{\mathbb{Q}_p}V$  and the natural map  $(B_{\mathrm{dR}}^+)^{H_K}\otimes_{K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]]}D_{e-\mathrm{dif}}^+(V)\to (B_{\mathrm{dR}}^+\otimes_{\mathbb{Q}_p}V)^{H_K}$  is an isomorphism. As in the case of  $D_{\mathrm{dif}}^+(V)$ , the  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]]$ -module  $D_{e-\mathrm{dif}}^+(V)$  is endowed with the action of

the operator

$$\nabla^{(0)} = \frac{\log(\gamma)}{\log(\chi(\gamma))} = -\frac{1}{\log(\chi(\gamma))} \sum_{k>1} \frac{(1-\gamma)^k}{k}$$

if  $\gamma \in \Gamma_0$  is close enough to 1. In addition to this operator  $\nabla^{(0)}$ , if  $\beta_i \in \Gamma_i$  is close enough to 1, then the series of operators on  $D_{e-\mathrm{dif}}^+(V)$ :

$$\frac{\log(\beta_i)}{c_i(\beta_i)} = -\frac{1}{c_i(\beta_i)} \sum_{n > 1} \frac{(1 - \beta_i)^n}{n}$$

converges to an operator  $\nabla^{(i)}: D_{e-\mathrm{dif}}^+(V) \to D_{e-\mathrm{dif}}^+(V)$  and does not depend on the choice of  $\beta_i$ .

#### § 3.2. Properties of differential operators

First, we consider the "meaning" of the equation  $\nabla^{(j)}(F) = 0$ . By definitions of differential operators, it follows easily that F is fixed by actions of an open subgroup of  $\Gamma_j$ . Thus, we can say that

"Find solutions  $\{f_k\}_{k=1}^{d=\dim_{\mathbb{Q}_p}V}$  (linearly independent over K) of  $\nabla^{(j)}(f_k)=0$  for  $0 \leq j \leq e$  in  $D_{e-\mathrm{dif}}^+(V)[1/t]$ "

1

"V is a potentially de Rham rep. of  $G_K$ , that is, a de Rham rep. of  $G_K$ ".

Thus, the theory of p-adic differential modules plays an important role in the proof of Theorem 1.3. Now, we will describe actions of operators  $\nabla^{(j)}$   $(0 \le j \le e)$  on the module  $D_{e-\mathrm{dif}}^+(V)$ . First, by a standard argument, we can show that, if  $x \in D_{e-\mathrm{dif}}^+(V)$ , we have

$$\nabla^{(0)}(x) = \mathrm{lim}_{\gamma \to 1} \frac{\gamma(x) - x}{\chi(\gamma) - 1} \quad \text{and} \quad \nabla^{(i)}(x) = \mathrm{lim}_{\beta_i \to 1} \frac{\beta_i(x) - x}{c_i(\beta_i)}.$$

With this presentation, we can easily describe actions of operators  $\nabla^{(j)}$   $(0 \le j \le e)$  on the ring  $K_{\infty}^{(\prime)}[[t, t_1, \ldots, t_e]]$  as follows.

Lemma 3.2. We have

$$abla^{(0)}=trac{d}{dt} \quad and \quad 
abla^{(i)}=trac{d}{dt_i} \quad (i 
eq 0) \quad on \ K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]].$$

We extend naturally actions of  $K_{\infty}^{(i)}$ -linear derivations  $\nabla^{(0)}$  and  $\nabla^{(i)}$   $(i \neq 0)$  on  $D_{e-\mathrm{dif}}^+(V)$  to  $D_{e-\mathrm{dif}}(V) = D_{e-\mathrm{dif}}^+(V)[1/t]$  by putting  $\nabla^{(0)}(\frac{1}{t}) = -\frac{1}{t}$  and  $\nabla^{(i)}(\frac{1}{t}) = 0$   $(i \neq 0)$ . Now, compute the bracket [ , ] of operators  $\nabla^{(j)}$   $(0 \leq j \leq e)$ .

**Proposition 3.3.** On the  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]][1/t]$ -module  $D_{e-\mathrm{dif}}(V)$  as above, we have the following relation

1. 
$$\nabla^{(0)}\nabla^{(i)} - \nabla^{(i)}\nabla^{(0)} = \nabla^{(i)}$$
 for all  $i \neq 0$ :

2. 
$$\nabla^{(j)}\nabla^{(i)} - \nabla^{(i)}\nabla^{(j)} = 0 \text{ for all } i, j \neq 0.$$

The following proposition describe actions of  $\nabla^{(i)}$   $(i \neq 0)$  and plays a key role in the proof of Theorem 1.3..

**Proposition 3.4.** Let M be a finite generated free  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]][1/t]$ -module endowed with  $K_{\infty}^{(\prime)}$ -linear operators  $\{\nabla^{(j)}\}_{j=0}^e$  which satisfy Leibniz rule and relations in Proposition 3.3. Assume that M has a basis  $\{g_j\}_{j=1}^d$  over  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]]$  [1/t] which satisfies  $\nabla^{(0)}(g_j)=0$ . Then, the action of  $\nabla^{(i)}$   $(i\neq 0)$  is given by

$$abla^{(i)}(g_j) = t \sum_{k=1}^d c_k g_k, \ c_k \in K_{\infty}^{(i)}[[t, t_1, \dots, t_e]] \ and \ \nabla^{(0)}(c_k) = 0.$$

*Proof.* Since  $\{g_j\}_{j=1}^d$  forms a basis of M over  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]][1/t]$ , we have

(3.1) 
$$\nabla^{(i)}(g_j) = \sum_{k=1}^d a_k g_k \qquad (a_k \in K_{\infty}^{(i)}[[t, t_1, \dots, t_e]][1/t]).$$

Then, by the relation of Proposition 3.3., we have

$$\sum_{k=1}^{d} \nabla^{(0)}(a_k) g_k = \sum_{k=1}^{d} a_k g_k$$

(note that we have  $\nabla^{(0)}(g_j) = 0$  by hypothesis). Hence, we obtain the differential equation

$$\nabla^{(0)}(a_k) = a_k.$$

Define  $c_k = a_k/t$ , then it satisfies  $\nabla^{(0)}(c_k) = a_k/t - a_k/t = 0$  and we see that  $c_k$  is contained in  $K_{\infty}^{(l)}[[t, t_1, \dots, t_e]]$ . Thus, the solutions of this differential equation have the following forms

(3.2) 
$$a_k = c_k t$$
 where  $c_k \in K_{\infty}^{(\prime)}[[t, t_1, \dots, t_e]]$  and  $\nabla^{(0)}(c_k) = 0$ .

Hence, we have, from (3.1) and (3.2),

$$abla^{(i)}(g_j) = t \sum_{k=1}^d c_k g_k \qquad ext{where} \ \ c_k \in K_\infty^{(\prime)}[[t,t_1,\ldots,t_e]] \ \ ext{and} \ \ 
abla^{(0)}(c_k) = 0.$$

Corollary 3.5. With notations as in Proposition 3.4. above, we have

$$(
abla^{(1)})^{k_1}\cdots(
abla^{(e)})^{k_e}(g_j)=t^{k_1+\cdots+k_e}\sum_{k=1}^d c_kg_k,\ c_k\in K_\infty^{(\prime)}[[t,t_1,\ldots,t_e]]\ \ and\ \ 
abla^{(0)}(c_k)=0.$$

# § 4. Proof of Theorem 1.3. in the de Rham representation case

Let us recall some notations

- o K is a complete discrete valuation field of characteristic 0 with residue field k of characteristic p > 0 such that  $[k : k^p] = p^e < \infty$ :
  - o V is a p-adic representation of  $G_K$  of dimension d over  $\mathbb{Q}_p$ :
- $\circ K'$  = the *p*-adic completion of  $\bigcup_{m\geq 0} K(b_i^{1/p^m}, 1\leq i\leq e)$  is the complete discrete valuation field of characteristic 0 with perfect residue field:
  - $\circ$  there exists a  $G_K$ -equivariant isomorphism

$$B_{\mathrm{dR}} = B_{\mathrm{dR}}^{+}[1/t] \simeq B_{\mathrm{dR}}^{+,\prime}[[t_1,\ldots,t_e]][1/t].$$

# (1) V: de Rham rep. of $G_K \Longrightarrow V$ : de Rham rep. of $G_{K'}$

*Proof.* Since V is a de Rham representation of  $G_K$ , there exists a  $G_K$ -equivariant isomorphism of  $B_{dR}$ -modules:

$$(4.1) B_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V \simeq (B_{\mathrm{dR}})^d.$$

Now, by tensoring  $B'_{dR} \otimes_{B_{dR}}$  (which is induced by the  $G_{K'}$ -equivariant surjection  $pr: B_{dR} \twoheadrightarrow B'_{dR}$ ) over (4.1), we obtain a  $G_{K'}$ -equivariant isomorphism of  $B'_{dR}$ -modules:

$$B'_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V \simeq (B'_{\mathrm{dR}})^d$$
.

This means that V is a de Rham representation of  $G_{K'}$ .

## (2) V: de Rham rep. of $G_{K'} \Longrightarrow V$ : de Rham rep. of $G_K$

This is the difficult part of this note and the theory of p-adic differential modules plays a central role in the following proof. We have to bridge the gap between  $G_K$  and  $G_{K'}$ . Then, roughly speaking, since the differential operators  $\{\nabla^{(i)}\}_{i=1}^e$  reflect this difference, it suffices to construct the solutions  $\{f_k\}_{k=1}^{d=\dim_{\mathbb{Q}_p}V}$  of  $\nabla^{(i)}(f_k)=0$  for  $1\leq i\leq e$ .

**Lemma 4.1.** If V is a de Rham representation of  $G_{K'}$ , there exists a  $G_{K'}$ -equivariant isomorphism

$$B_{\mathrm{dR}}\otimes D_{e-\mathrm{dif}}(V)\simeq (B_{\mathrm{dR}})^d.$$

*Proof.* Since V is a de Rham representation of  $G_{K'}$ , there exists a  $G_{K'}$ -equivariant isomorphism of  $B'_{dR}$ -modules:

$$(4.2) B'_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V \simeq (B'_{\mathrm{dR}})^d.$$

Now, by tensoring  $B_{dR} \otimes_{B'_{dR}}$  (which is induced by the  $G_{K'}$ -equivariant injection  $i: B'_{dR} \hookrightarrow B_{dR}$ ) over (4.2), we obtain a  $G_{K'}$ -equivariant isomorphism of  $B_{dR}$ -modules:

$$B_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V \simeq (B_{\mathrm{dR}})^d$$
.

On the other hand, we have a  $G_K$ -equivariant isomorphism

$$B_{\mathrm{dR}} \otimes D_{e-\mathrm{dif}}(V) \simeq B_{\mathrm{dR}} \otimes_{\mathbb{Q}_p} V.$$

Thus, we obtain the desired isomorphism.

Finally, we shall give the proof of (2).

*Proof.* We shall construct the  $K_{\infty}^{(\prime)}$ -linearly independent elements  $\{f_j^{(*)}\}_{j=1}^d \in D_{e-\mathrm{dif}}(V)$  such that  $\nabla^{(i)}(f_j^{(*)}) = 0$  for  $0 \le i \le e$  and  $1 \le j \le d$ .

(A) Construction of  $\{f_j^{(*)}\}_{j=1}^d \in D_{e-\mathrm{dif}}(V)$ 

Since V is a de Rham representation of  $G_{K'}$ , we have a basis  $\{f_j\}_{j=1}^d$  of  $D_{e-\text{dif}}(V)$  over  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]][1/t]$  such that, from Lemma 4.1.,

$$\nabla^{(0)}(f_j) = 0 \quad \text{for all } 1 \le j \le d.$$

Thus, we can apply Corollary 3.5. to the  $K_{\infty}^{(i)}[[t,t_1,\ldots,t_e]][1/t]$ -module  $D_{e-\mathrm{dif}}(V)$  generated by  $\{f_j\}_{j=1}^d$  and then we can deduce

$$(\nabla^{(1)})^{k_1}\cdots(\nabla^{(e)})^{k_e}(g_j)=t^{k_1+\cdots+k_e}\sum_{k=1}^d c_kg_k,\ \ c_k\in K_\infty^{(\prime)}[[t,t_1,\ldots,t_e]]\ \ {
m and}\ \ \nabla^{(0)}(c_k)=0.$$

Then, if we define  $f_j^{(*)} \in D_{e-\mathrm{dif}}(V)$  (converge for  $(t, t_1, \ldots, t_e)$ -adic topology) by

$$f_j^{(*)} = \sum_{0 \le k_1, \dots, k_e} (-1)^{k_1 + \dots + k_e} \frac{t_1^{k_1} \cdots t_e^{k_e}}{k_1! \cdots k_e! t^{k_1 + \dots + k_e}} (\nabla^{(1)})^{k_1} \cdots (\nabla^{(e)})^{k_e} (f_j),$$

it follows easily that we have  $\nabla^{(i)}(f_j^{(*)}) = 0$  for  $0 \le i \le e$ .

(B)  $\{f_j^{(*)}\}_{j=1}^d \in D_{e-\text{dif}}(V)$  is linearly independent over  $K_{\infty}^{(\prime)}$ By the presentation of  $f_j^{(*)}$ , we have

$$f_j^{(*)} = f_j + g_j$$
 where  $f_j \not\in g_j \in (t_1, \dots, t_e) D_{e-\mathrm{dif}}(V)$ .

Since  $\{f_j\}_{j=1}^d$  forms a basis of  $D_{e-\operatorname{dif}}(V)$  over  $K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]][1/t]$ , it is, in particular, linearly independent over  $K_{\infty}^{(\prime)}$  ( $\subset K_{\infty}^{(\prime)}[[t,t_1,\ldots,t_e]][1/t]$ ). Then, it follows easily that  $\{f_j^{(*)}\}_{j=1}^d$  is linearly independent over  $K_{\infty}^{(\prime)}$  in  $D_{e-\operatorname{dif}}(V)$ .

(C) Conclusion

Therefore, on the K-vector space generated by  $\{f_j^{(*)}\}_{j=1}^d$ ,  $\log(\gamma)$  and  $\log(\beta_i)$  act trivially  $(\Leftrightarrow \nabla^{(0)}(f_j^{(*)}) = 0$  and  $\nabla^{(i)}(f_j^{(*)}) = 0$  for all  $1 \leq j \leq d$ ). Thus, this means that  $\Gamma_K$  acts on this K-vector space via finite quotient and there exists a finite extension L/K such that  $\{f_j^{(*)}\}_{j=1}^d$  forms a basis of  $D_{dR}(V_L)$  over L ( $\subset K_{\infty}^{(\prime)}$ ) where  $V_L$  denotes the restriction of V to  $G_L$ . Since a potentially de Rham representation of  $G_K$  is a de Rham representation of  $G_K$ , we complete the proof.

#### References

- [A] André, Y.: Filtrations de type Hasse-Arf et monodromie p-adique. Invent. Math. 148 (2002), 285–317.
- [A-B] Andreatta, F.; Brinon, O.: Preprint.
- [Be1] Berger, L.: Représentations p-adiques et équations différentielles. Invent. Math. 148 (2002), 219-284.
- [Be2] Berger, L.: An introduction to the theory of p-adic representations. Geometric aspects of Dwork theory. Vol. I, II, 255–292, 2004.
- [Br1] Brinon, O.: Une généralisation de la théorie de Sen. Math. Ann. 327 (2003), 793-813.
- [Br2] Brinon, O.:Représentations cristallines dans le cas d'un corps résiduel imparfait. Preprint.
- [C-C1] Cherbonnier, F.; Colmez, P.: Représentations p-adiques surconvergentes. Invent. Math. 133 (1998), 581–611.
- [C-C2] Cherbonnier, F.; Colmez, P.: Théorie d'Iwasawa des représentations p-adiques d'un corps local. J. Amer. Math. Soc. 12 (1999), 241-268.
  - [C1] Colmez, P.: Théorie d'Iwasawa des représentations de de Rham d'un corps local. Ann. of Math. (2) 148 (1998), 485-571.
  - [C2] Colmez, P.:Les conjectures de monodromie p-adiques. Séminaire Bourbaki. Vol. 2001/2002. Astérisque No. 290 (2003), Exp. No. 897, 53-101.
  - [F1] Fontaine, J-M.:Le corps des périodes p-adiques. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 59–111.
  - [F2] Fontaine, J-M.: Représentations p-adiques semi-stables. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 113–184.
  - [F3] Fontaine, J-M.: Représentations l-adiques potentiellement semi-stables. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 321–347.
  - [F4] Fontaine, J-M.: Représentations p-adiques des corps locaux. I. The Grothendieck Festschrift, Vol. II, 249–309, Progr. Math., 87, 1990.
  - [F5] Fontaine, J-M.: Arithmétique des représentations galoisiennes p-adiques. Cohomologies p-adiques et applications arithmetiques. III. Astérisque No. 295 (2004), 1–115.
- [F-W] Fontaine, J-M.; Wintenberger, J-P.:Le "corps des normes" de certaines extensions algebriques de corps locaux. C. R. Acad. Sci. Paris Sér. A-B 288 (1979), A367-A370.

- [H] Hyodo, O.: On variation of Hodge-Tate structures. Math. Ann. 284 (1989), 7-22.
- [Ka1] Kato, K.: Generalized explicit reciprocity laws. Algebraic number theory. Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 57–126.
- [Ka2] Kato, K.:p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmetiques. III. Astérisque No. 295 (2004), 117–290.
- [Ke] Kedlaya, K.: A p-adic local monodromy theorem. Ann. of Math. (2) 160 (2004), 93-184.
- [L] Lazard, M.:Les zéros des fonctions analytiques d'une variable sur un corps valué complet. Inst. Hautes Études Sci. Publ. Math. 1962 47-75.
- [Me] Mebkhout, Z.: Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique. Invent. Math. 148 (2002), 319-351.
- [Mo1] Morita, K.: Hodge-Tate and de Rham representations in the imperfect residue field case. In preparation.
- [Mo2] Morita, K.: Crystalline and semi-stable representations in the imperfect residue field case. In preparation.
  - [S1] Sen, S.: Ramification in p-adic Lie extensions. Invent. Math. 17 (1972), 44-50.
  - [S2] Sen, S.:Lie algebras of Galois groups arising from Hodge-Tate modules. Ann. of Math. (2) 97 (1973), 160-170.
  - [S3] Sen, S.: Continuous cohomology and p-adic Galois representations. Invent. Math. 62 (1980/81), 89-116.
  - [Tj] Tsuji, T.:p-adic etale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137 (1999), 233-411.
- [Tz1] Tsuzuki, N.: Slope filtration of quasi-unipotent overconvergent F-isocrystals. Ann. Inst. Fourier 48 (1998), 379–412.
- [Tz2] Tsuzuki, N.:Finite local monodromy of overconvergent unit-root F-isocrystals on a curve. Amer. J. Math. 120 (1998), 1165-1190.
- [Tz3] Tsuzuki, N.: Variation of p-adic de Rham structures. Non-published.
- [Wa1] Wach, N.: Représentations p-adiques potentiellement cristallines. Bull. Soc. Math. France 124 (1996), 375-400.
- [Wa2] Wach, N.: Représentations cristallines de torsion. Compositio Math. 108 (1997), 185–240
  - [Wi] Wintenberger, J-P.:Le corps des normes de certaines extensions infinies de corps locaux: applications. Ann. Sci. École Norm. Sup. (4) 16 (1983), 59-89.