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On several multiple zeta functions
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Abstract

In the introduction, a hypothetical relationship between new kind of multiple zeta func-
tions and classical, basic zeta functions in number theory is stated. Some facts which may
support validity of such relationship are outlined in the rest of the notes. Whereas the Rie-
mann hypothesis is an assertion on the value distribution of Mébius function, the present work
suggests that the value distribution of the power residue symbols are as intimately connected
with the Riemann hypothesis as Mébius function.

Introduction.
We consider a multiple zeta function of the form
my mo ms 1
ml,g; ms <7772) (:r—n_g) (m—l) {m1m2m3(2°‘ ’
e —1+ =3

where m; € 0 = Zw],w =e5 = -——2;, m; = 1(mod3), (m;,m;) =1, and (%)

stands for the cubic residue symbol of F = Q( =3).

It is expected that the convergence or holomorphy of this function in the region
Rea > op implies the holomorphy of

Aos) = 163 Co (35 ~ 2)L(s,m)""

in the region Res > o + L except the zeros of M(2s, K3 ), where (r is the Dedekind
zeta functmn of F, L(s,n) is the L-function of the Grossencharakter 71 determined by
n(c) = B l, (¢ =1 (mod 3)), of F, K i is a Bessel function, and M means the Mellin

transform defined by -
af)= [ rewd
We also consider a multiple zeta function of the form
> () () () ey,
m1, ma, my
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It is expected that that the convergence or holomophy of this function in the region
Rea > o(, implies the holomorphy of

—-1
Az i(s)=8- 33s+3 (1 — gls—) ¢r(s)"1L(3s — g,"S)

1
in the region Res > o( + = except zeros of M(2s+ 1, K z).
In the sequel, we outline some facts which may be evidences supporting validity of
preceeding assertions.

§1. Cubic theta function.

On the upper half space H = {u = (z,v)|z € C,v > 0}, we define a function by the
Fourier series

O(u) = 8(z,v) =v¥ + Y 7(m)vKy (4n|mlv)e(mz),
m#0

(m € ﬁo),e(z) = exp(27i(z + %)), and call it cubic theta function. The Fourier
coeflicients are concretely givien by

T(m) = 2(%)_lg(c)’—§ 3%, (casel),
T(m) = 2((—32(‘3)_15](@'-;E 3%,  (case2),
r(m) =21 (22) 7 g(0) 25 (cases),

3%, (cased),

r(m) = 29(c)| >

¢= e’"), using cubic Gauss sums

g(c) = Z (%)e(g-), (c=1 (mod 3)),
dmode
(5, c)=1

for four cases

m=+ =30 tedd, (N 20), (casel),
—53N—-1

m=+4w —3 cd®, (N 2 0), (case2),
m=tw? —3" ‘edd, (N 2 0),(case3),

m=+ =3 %, (N20), (cased),

where c are all quare free, and ¢,d =1 (mod 3). Otherwise 7(m) = 0.
An important property of the cubic theta function is that it is an automorphic
function. Since H = SL(2,C)/SU(2), SL(2,C) operates on H. Put in particular

r'= {o- = (32) ;0= ((1)(1)> (mod3)},



ON SEVERAL MULTIPLE ZETA FUNCTIONS 125

(o € SL(2,0)), then O(u) satisfies
0(ou) = x(0)0(u), (o el).

Here, x is given by x(o) = (2) or x(o) = 1 according as ¢ # 0 or ¢ = 0, and is a
character (representation) of I in the sense that x(c102) = x(1)x(02), (05 € T'), holds.
We call x a metaplectic character, and §(u) a metaplectic automorphic function.

§2. Dirichlet series involving powers of cubic Gauss sums.
We now propose to investigate in general Dirichlet series of the form

T(m)™
z ITnIZs )

where 7 is a natural number, because powers of cubic Gauss sums have various inter-
esting properties. The series A;(s) can be treated in a usual way within the theory
of automorphic forms, and, as for Ay(s), Rankin’s method is applicable to it. On the
contrary, it is difficult to handle A3(s), but, by virtue of the important relation

K = )5 = wlenC)

containing Mobius function u, a direct computation using explicit form of 7(m) in §1
gives rise to

Ag(s) = 16 3¢ (35 — g)L(s, 1,

as appeared in the former half part of introduction. This case is therefore remarkable.

An integral representation of routine form can be given to A,(s). Let 0, (u) =
0r(2,v) be the n-ple convolution of #(u) as a function on C/30. The convolution of
functions on C/30 is defined by

. s+ 0g-na,

C/3a

where |dt| is the Euclidean measure on C. Put 0,(v) = 6,(0,v), let Z,(s) be
En(s) = / (mg "V 6n(0) ~ v F 2 2,

my = 9—? being the surface area of C/30. Then,

[ _ *© Ny K 4 n 23dv
En(s) = A > T(m)™" Ky (4xlmlv)™v —

m#0

T(m —9s_
=> Irrflz*)Jf" (4m) 727" M (25 +n, KT),
m#0
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and thus A, (s) takes place here. This integral representation itself is not very effective,
but, to determine the region of holomorphy of A3(s), it is enough to reveal the behavior
of the integrand
my 203(v) — v = Z T(m)3v3K% (4nrlm|v)?,
m#0
1 . . . . .
(m e 5—_:30)’ as v — 0, since this integrand is rapidly decreasing as v — co. So we

go back to the origin from where the cubic theta function comes from.

§3. Metaplectic Eisenstein series.
We define an Eisenstein series

E(u,0) = E(z,v,0) = ) x(0)v(ow)%, (Rea > 2),
Too\T

with the metaplectic character x in §1. Here, v(u) stands for the v-coordinate of v =

(2,v) € H. lfu=(z,v),0 = ZZ € SL(2,C), then
v(ou) = S —
T ez +dJ? + 202’

As a function of z with period 30, the Fourier expasion of E(u, @) is given by computing

E(u,a)e(—mz)|dz|
C/30

= / Z(S) v e(—mz)|dz|,
/50 22 \a) ez AP+ ePo?)2
(c=0,d = 1(mod3), (¢, d) = 1). The result is

E(u, @) = v* + p(a)v*™

m5? Y (20T (@)l ()
m#0
WK 41 (4m|m|v)e(mz),

(me 3——1\/—_——50), where ., () is a Dirichlet series. In particular,

T
a—1

o(a) = my' ——wo(),

and

N a—(3ae 1 \"1¢r(Ba—3)
pole) = 4:37 (1= g ) Ty
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Since @o(a) has a pole of first order at 4, the genera.l theory of Eisenstein series
shows that E(u, ) itself has a pole of first order at 2 3, and produces there the residual
form

pw) = p(z,9) = lim (o - 3) B(w, )

4
3

This is, together with E(u, c), a metaplectic automorphic function. The constant term
of p(u) is v} multiplied by a constant. Dividing p(u) by the constant, there arises what
we call cubic theta function.

Let E,(z,v,0) = Ep(u,0) be the n-ple convolution of E(u,a) = E(z,v,a) as a
function of z with period 30, and let

En(s, )

= [ 5 Ea0,0,0) - (07 + plapoty e
0

Then, 4
En(s, a) = —n2_43+"0‘"2n7r—28+na—n1-\(a) -n,
Pm ()"
Z Iml27:"’7'°‘+2" (28 +mn, KZ—-I)'
m#0

If enough information on the behavior of E, (0, v, @) as v — 0 is obtained, the region
of holomorphy of the Dirichlet series contained in Zn(s, ), and as a consequence, the
region of holomorphy of Z3(s) or of L(s,n)~! will possibly be deduced. Toward this
aim, we adopt termwise convolution of Eisenstein series.

84. Termwise convolution.

To observe the behavior of E,(0,v,a) as v — 0, it suffices to observe the behavior
of the value E3(v, o) at z = 0 of the triple convolution of E(u,a) —v® = E(z,v, a) —v®,
since the behavior of v* is very clear. The expression E(z,v, @) — v* means the sum of
all terms in the Eisenstein series such that c 0.

Now,
E3(’U, a) = / / (E(Zl + 22,0, Ot) - Ua)~
C/3a JC/30

(E(—z1,v,0) -”a)(E( 22,0, ) — v*)|dz1||dzs|

va
/C/ao ~/C/30 dl (lea(z1 + 22) + d1]? + [es [2o2)e

,vcx
( ) (I — caz1) + d2|? + |ca|2v2)e '

c3 v
(E?:) (I = caza) + d3|? + |es|20?)e |z lldzs].




128 Tomio KuBOTA

To proceed further, some notation should be prepared. We decompose c; as
e1 = congnach = (Aoch)(Apny)(Agng)Arerma,
Cy = congnlc'z = ()\066)()\%71&)()\’1%,1))\2827712,
es = conanach = (Aoch)(An)(Agng) Asesms,
where ¢, are mutually prime, so are n;, t0o, and (n;, c;) = 1. Among the symbols, A;, AL
are powers of =3, ¢ = 1, and all others are = 1 (mod 3). Thus,
[e1, c2, €3] = coninanscichcy
= co(A1n1) (Aama) (Agns)-
-(Are1m1)(Aoeama)(Ase3ms)

is a Le.m. of ¢, c9,c3, and A;, A} are 1 except at most one, respectively. Furthemore we
determine & by .
' d d d
¢ Cc2 C3 [01, ¢z, ¢3)
On the other hand, putting

0 =) = e Bea> D),

we denote by 73(z) the triple convolution of v;1(z,) on C, i.e.
v3(2) = v3(2: @)

—_-/C/C‘h(z-%-tl + ta)y1(—t1)71(—t2)|dt1 || dta].

In addition, S will stand for a complete system of representatives of 0 mod coninans,
and w;, (i = 1,2,3), will be parameters running through S.

A rather long computation in which cubic reciprocity law is repeatedly needed
yields finally

1
E3('U, O‘) = ZZ 100l6a|n1n2n3|4a.

k+#0 co,n
M1 -1 H2 -1 M3 _1jk(60)n )\78a ,'l‘)
> <n_'1) (772) ('ﬁg) I/\1A2:\3|2a '

Aep

m=p(modcgningns)

A2 =1 /X3 —1 /75X -
(Feeete)” (heen) T (R
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mymams/ \my/ \ms/ \m; / Imimgma[2’
4—3a k
v 3 7T
vcon1n2n3c'lc2c3

]0 Co, N, E —3a
0).
+ZZ |%l6a|n1n2n3'4a 73(0)

Cg,nN €

Here, ji, (k € 0), is a finite sum similar to the Jacobi sum, and symbols without index
like n are abbreviations of triples like n1,ng, ns.

Now, passing to the formal Mellin transform, the above formula turns finally into

.70(00:7% 8) 4—3a
E , 0))-
/o 3(v, @) — Z Z ICO|6a|n1n2n3I4av 73(0))

co,m €

dv
cvzs pR—
v

I;g;z |%|2s+3a+4|n1n2n3|25+a+4

N

m=u(modconinang)

X2 1A Ashiesen\ 1 A dogreg -1
(Fom) () ()

2s—30+4
'(mm{fgmg) (Z_;) (%)( 3) |m1|:;|2:n3;s “at4’

‘M (-2s+ 3a — 4,73).

Actually this formula contains multiple zeta functions announced in the introduc-
tion, and so, we are lead to the hypotheses stated there.

It should be noted that all our arguments after §1 concern solely the former half part
of the introduction. Corresponding arguments for the latter half are similar. The only

difference is that we have to apply the differential operator % on the triple convolution
of E(z,v,a).

Epilogue.
It seems to be fairly hard to investigate numbers o and 0§ in the introduction,
but an observation of the double convolution of Eisenstein series compared with results
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coming from Rankin’s method, it is to a certain extent plausible that the double zeta

function
Z (m1> 1
e ) T e 126
g T2 Imymag|2
(m1 = mg = 1(mod3), (mq,mg) = 1), is holomorphic in Rea > -g- So, for instance,
the comparison of 2 and o concerning

S EEE)
i mamg (27 N Mg/ My Imimams |2
becomes a big question. Following hypotheses in the introduction, we can drive a
vague imagination that, if o) = %, then Riemann’s hypothesis for (r(s) can be valid,
if o = 2, then Riemann’s hypothesis for (r(s) is valid only up to Res > %, and if
oy = -2—, then Riemann’s hypothesis is false, that is, there exsists no region of the form
Res > 1 —¢, (e > 0), in which {#(s) has no zero.

By means of the Fourier coefficients {a,,} of an automorphic form, a Dirichlet
series with the same coefficients is defined whose properties can be investigated fairly
precisely. As for the coefficients {am},{bm} of two automorphic forms, the properties
of the Dirichlet series with coefficients {ambm } may also be studied by Rankin method,
for instance. Nevertheless, for the coefficients {am}, {bm}, {cm} of three automorphic
forms, it is very difficult to consider the properties of the Dirichlet series with coefficients
{ambmem }, and, at least, no generally applicable, functional analytic method is expected
presently. But, if such method were invented, we would not need complicated discussions
as in the present notes.

The autor has not yet sufficiently determined zeros of M(s, K :I; ) and M(s,7s3).
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