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numbers
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Abstract

In this paper, we give an overview of our previous paper concerning the investigation of

the algebraic and p‐adic properties of Eisenstein‐Kronecker numbers using Mumford�s theory
of algebraic theta functions.

§1. Introduction

In the paper [BK1], we used Mumford�s theory of algebraic theta functions to

study the algebraic and p‐‐adic properties of Eisenstein‐Kronecker numbers, which are

analogues in the case of imaginary quadratic fields of the classical generalized Bernoulli

numbers, or more precisely, special values of Hurwitz zeta funtions. The purpose of

this paper is to give an overview of the main arguments of [BK1], highlighting the

main ideas. We will first prove that the generating function for Eisenstein‐Kronecker

numbers is in fact given by a theta function which we call the Kronecker theta function.

This theta function differs from the two‐variaule Jacobi theta function studied by Zagier
[Zag] by a simple exponential factor. Then we will show how to use Mumford�s theory of

algebraic theta functions to study the algebraic and p‐‐adic properties of this generating
function. Using this result, when p is an ordinary prime, we will construct a p‐adic

measure interpolating \mathrm{E}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{i}\mathrm{n}\rightarrow Kronecker numbers. We will then use this measure

to construct the two‐variaule  p\leftrightarrow‐adic measure, constructed by Yager [Yag], interpolating
special values of Hecke  L‐functions. Our construction may also be used to construct

the two‐variaule p‐adic measure originally constructed by Manin‐Vishik [MV] and Katz

[Ka]. We refer the reader to [BK1] for details.

The detailed content of this paper is as follows. We first review the cyclotomic
case to demonstrate the type of result we are aiming to prove. Let  $\Gamma$ :=2 $\pi$ i\mathbb{Z} . The

cyclotomic analogue of the Eisenstein‐Kronecker number is the following.
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Definition 1.1. For any z_{0}\in \mathbb{C} and integer b>0 , we let

e_{b}^{*}(z_{0}):=\displaystyle \sum_{n\in $\Gamma$}^{*}\frac{1}{(z_{0}+n)^{b}},
where \displaystyle \sum^{*} means the sum taken over all  n\in $\Gamma$ other than -z_{0} if z_{0}\in $\Gamma$.

The arithmetic importance of e_{b}^{*}(z_{0}) is its relation to critical L‐values of Dirichlet

characters. Let \mathrm{f}=(f) be an ideal in \mathbb{Z} and suppose  $\chi$ is a Dirichlet character of

conductor \mathrm{f} such that  $\chi$(- $\alpha$)=(-1)^{b} $\chi$( $\alpha$) . Then we have by definition

(1) L_{\mathrm{f}}( $\chi$, b)=\displaystyle \frac{(2 $\pi$ i)^{b}}{2f^{b}}\sum_{ $\alpha$\in(\mathbb{Z}/\mathrm{f})^{\times}} $\chi$( $\alpha$)$\epsilon$_{b}^{*}(2 $\pi$ i $\alpha$/f)
for b>0 . We define a function g(z) on \mathbb{C}/ $\Gamma$ by

 g(z):=\displaystyle \frac{\exp(z)}{\exp(z)-1}-\frac{1}{2}
(we subtract \displaystyle \frac{1}{2} so that g(z) becomes an odd function satisfying g(-z)=-g(z) ) and for

any z_{0}\in \mathbb{C} ,
we let g_{z_{0}}(z) :=g(z+z_{0}) . Then g_{z_{\mathrm{O}}}(z) is a generating function

(2) g_{z_{\mathrm{O}}}(z)=$\delta$_{z_{\mathrm{O}}}z^{-1}+\displaystyle \sum_{b>0}(-1)^{b-1}e_{b}^{*}(z_{0})z^{b-1}
of e_{b}^{*}(z_{0}) for b>0 , where $\delta$_{x}=1 if  x\in $\Gamma$ and is zero otherwise. We fix an embedding

 i : \overline{\mathbb{Q}}\mapsto \mathbb{C} . If z_{0}\in $\Gamma$\otimes \mathbb{Q} ,
then the Laurent expansion of g_{z_{0}}(z) has coefficients in

\overline{\mathbb{Q}} . Hence we have e_{b}^{*}(z_{0})\in\overline{\mathbb{Q}} . The mechanism behind this proof is the following. \mathbb{C}/ $\Gamma$
has an algebraic model given by the multiplicative group \mathbb{G}_{m} defined over \mathbb{Q} , with a

uniformization  $\xi$ : \mathbb{C}/ $\Gamma$\cong \mathrm{G}_{rn}(\mathbb{C}) given by z\mapsto\exp(z) . Then g(z) corresponds to

the rational function t/(t-1)-\displaystyle \frac{1}{2} on \mathbb{G}_{m} defined over \mathbb{Q} , and the algebraicity is a

consequence of this fact.

Using this generating function, we can also construct a p‐adic measure interpolating

the values e_{b}^{*} (zo). Throughout this paper, we fix an embedding i_{p} : \overline{\mathbb{Q}}\leftarrow*\mathbb{C}_{p} ,
and denote

by W the ring of integers of the completion of the maximal unramified extension of \mathbb{Q}_{p}
in \mathbb{C}_{p} . If z_{0} is a torsion point \neq 1 in \mathrm{G}_{m}(\mathbb{C}) of order prime to p , then g_{z_{0}}(z) corresponds

through  $\xi$ to a rational function defined over  W , and we have

\hat{g}_{z0}j(T) g_{z_{0}}($\chi$_{\ovalbox{\tt\small REJECT}}m)|_{z=\log(1+T)}\in W[[T]],

where T is the formal parameter of the formal group \hat{\mathrm{G}}_{rn} ,
with relation T=t-1 . Using

the standard dictionary between  p\leftrightarrow‐adic measures on \mathbb{Z}_{p} and power series in W[[T]] (see
for example [Hid]), we define the measure $\mu$_{z_{\mathrm{O}}} to be the measure on \mathbb{Z}_{p} corresponding
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to the power series \hat{g}_{z_{\mathrm{O}}}(T) . Since \partial_{\mathrm{t}\mathrm{o}\mathrm{g},T} :=(1+T)\partial_{T}=\partial_{\mathrm{a}} , this measure satisfies the

interpolation property

(3) \displaystyle \int_{\mathbb{Z}_{p}}x^{b-1}d$\mu$_{z_{\mathrm{O}}}(x)=(-1)^{b-1}(b-1)!e_{b}^{*}(z_{0})
for b>1 . This measure may be used to construct the  p\leftrightarrow‐adic  L‐function interpolating
critical L‐values of Dirichlet characters.

The goal of [BK1], and also of this paper, is to use similar ideas to study Eisenstein‐

Kronecker numbers. Let K be an imaginary quadratic field with ring of integers 0_{K}.
We assume in this paper for simplicity that the class number of K is one. See [BK1]
for the general case. Fix an ideal \mathrm{f}\subset O_{K} . Then there exists by the theory of complex
multipIication some complex period  $\Omega$\in \mathbb{C} such that for the lattice  $\Gamma$ := $\Omega$ \mathrm{f} , the complex
torus \mathbb{C}/ $\Gamma$ has an algebraic model  E defined over K

, with standard uniformization

\mathbb{C}/ $\Gamma$\underline{\simeq}E(\mathbb{C}) . Let A be the area of the fundamental domain of  $\Gamma$ divided by  $\pi$=

 3.1415\cdots
, and \langle z, w } =\exp((z\overline{w}-w\overline{z})/A) , where \overline{z} and \overline{w} are the complex conjugates

of z and w.

Definition 1.2. For z_{0}, w_{0}\in \mathbb{C} and integers b>a+2 , we define the Eisenstein‐

Kronecker number e_{a,b}^{*}(z_{0}, w_{0}) to be the sum

e_{a,b}^{*}(z_{0}, w_{0}):=\displaystyle \sum_{ $\gamma$\in $\Gamma$}^{*}\frac{(\overline{z}_{0}+\overline{ $\gamma$})^{a}}{(z_{0}+ $\gamma$)^{b}}\langle $\gamma$, w_{0}\},
where \displaystyle \sum^{*} means the sum taken over all  $\gamma$\in $\Gamma$ other than -z_{0} if  z_{0}\in $\Gamma$ . We may extend

the definition to  a\geq 0, b>0 using analytic continuation (See Definition 2.4).

The arithmetic importance of e_{a,b}^{*}(z_{0}, w_{0}) is its relation to critical L‐values of Hecke

characters on K (see (12).) The observation for our research is the fact that the generat‐
ing function, which plays the role of g(z) above, is given by the Kronecker theta function

 $\Theta$(z, w) . Since this function is not a rational function, the translation $\Theta$_{z_{0},w_{\mathrm{O}}}(z, w) of

this function is taken using the theory of algebraic theta functions of Mumford, which

uses extra exponential factors to preserve the algebraicity. As an analogy of (2), we

have

(4) $\Theta$_{z_{\mathrm{O}},w_{0}}(z, w)=\langle w_{0}, z_{0}\}$\delta$_{z_{0}}z^{-1}+$\delta$_{w_{\mathrm{O}}}w^{-1}

+\displaystyle \sum_{a,b\geq 0}(-1)^{ $\alpha$+b}\frac{e_{a,b+1}^{*}(z_{\mathrm{O}},w_{0})}{A^{a}a!}z^{b}w^{C $\lambda$}.
We will systematically use Mumford�s theory to study the algebraic and p‐adic properties
of this function. In particular, we prove that e_{a,b}^{*}(z_{0}, w_{0}) is algebraic if z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q}.
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In addition, when p\geq 5 is ordinary (i.e. if p splits as p=\mathrm{p}\mathfrak{p}^{\star} in O_{K} ), we will prove

a p‐integrality statement for $\Theta$_{z_{0},w_{0}}(z, w) . We will then use this result to construct a

p‐‐adic measure analogous to (3) interpolating the values e_{a,b}^{*}(z_{0}, w_{0}) . At the end, we

will use this measure to construct Yager�s measure interpolating critical values of Hecke

L‐functions.

Construction of a two‐variable distribution when p is supersingular interpolating

Eisenstein‐Kronecker numbers will be given in a subsequent paper [BK2]. The construc‐

tion of the two‐variaule p‐adic distribution as in [BK1] and [BK2] play an important role

in explicit calculation of the \mathrm{p}‐adic elliptic polylogarithm in [BKT], extending previous

results of [Ba] to two variables.

The authors would like to thank the organizers Ki‐ichiro Hashimoto, Yukiyoshi

Nakkajima and Hiroshi Tsunogai for the opportunity to give a talk at this conference.

The authors would also like to thank the referee for carefully reading the manuscript and

giving appropriate comments. Part of this research was conducted while the first author

was visiting the École Normale Superieure at Paris, and the second author Institut de

Mathématiques de Jussieu. The authors would like to thank their hosts Yves André

and Pierre Colmez for hospitality.

§2. Kronecker theta function

In this section, we first define and investigate the properties of Eisenstein‐Kronecker‐

Lerch series and Eisenstein‐Kronecker numbers. Then, after reviewing the theory of line

bundles and theta functions on a general complex torus, we prove that the Kronecker

theta function  $\Theta$(z, w) is a generating function of Eisenstein‐Kronecker numbers. In

this section, we let  $\Gamma$ be a general lattice \mathbb{C}.

Definition 2.1. ([W] VIII §12) Let a be an integer \geq 0 . For z, w\in \mathbb{C} , we define

the Eisenstein‐Kronecker‐Lerch function K_{a}(z, w, s) by

(5) K_{a}(z, w, s^{\circ},  $\Gamma$)=\displaystyle \sum_{ $\gamma$\in $\Gamma$}^{*}\frac{(\overline{z}+\overline{ $\gamma$})^{a}}{|z+ $\gamma$|^{2s}}\langle $\gamma$, w\rangle ({\rm Re} s>a/2+1) ,

where \displaystyle \sum^{*} means the sum taken over all  $\gamma$\in $\Gamma$ other than -z if z is in  $\Gamma$.

We omit  $\Gamma$ from the notation if there is no fear of confusion. The function  K_{a}(z, w, s)
may be continued analytically in s as follows.

Proposition 2.2. Let a be an integer \geq O. The function  K_{\mathfrak{a}}(z, w, s) continues

meromorphically to a function on the whole s ‐plane, with possible poles only at s=0

(if (x=0_{f}z\in $\Gamma$) and at s=1 (if a=0_{f}w\in $\Gamma$) .
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Proof. See [W] VIII §13 for the proof. \square 

From the definition of Eisenstein‐Kronecker‐Lerch series, we have the following
differential equations.

Lemma 2.3. Let a be an integer >0 . For z, w\in(\mathbb{C}\backslash  $\Gamma$) , the function K_{a}(z, w, s)
as a real analytic function in z and w satisfles the differential equations

\partial_{z}K_{a}(z, w, s)=-sK_{a+1}(z, w, s+1)

\partial_{\overline{z}}K_{a}(z, w, s)=(a-s)K_{a-1}(z, w, s)

\partial_{w}K_{a}(z, w, s)=(\overline{z}K_{a}(z, w, s)-K_{ $\zeta$ \mathrm{J},+1}(z, w, s))/A

$\mu$_{w}K_{a}(z, w, s)=(K_{a-1}(z, w, s-1)-zK_{a}(z, w, s))/A.

Eisenstein‐Kronecker numbers are defined as follows.

Definition 2.4 (Eisenstein‐Kronecker number). For any z_{0}, w_{0}\in \mathbb{C} and inte‐

gers a\geq 0, b>0 , we define the Eisenstein‐Kronecker number e_{a,b}^{*}(z_{0}, w_{0}) by the

formula

e_{a,b}^{*}(z_{0}, w_{0}):=K_{a+b}(z_{0}, w_{0}, b) .

We next review the theory of line bundles and theta functions on a general complex
torus following Mumford [Mum2]. Let V be a complex vector space. For a lattice  $\Lambda$\subset V,
consider the complex torus \mathrm{T}=V/ $\Lambda$ . The holomorphic line bundles on \mathrm{T} are classified

by the following theorem.

Theorem 2.5 (Appell and Humbert). The group \mathrm{P}\mathrm{i}\mathrm{c}(\mathbb{T}) of isomorphism classes

of holomorphic line bundles on \mathbb{T} is isomorphic to the group of pairs (H, a) , where

(i) H is a Hermitian form on V.

(ii) E={\rm Im} H takes integral values on  $\Lambda$.

(iii)  $\alpha$ :  $\Lambda$\rightarrow U(1) :=\{z\in \mathbb{C}||z|=1\} is a map such that  $\alpha$( $\gamma$+$\gamma$^{\ovalbox{\tt\small REJECT}})
=\exp( $\pi$ iE( $\gamma,\ \gamma$^{\ovalbox{\tt\small REJECT}})) $\alpha$( $\gamma$) $\alpha$($\gamma$^{r}) .

One may construct from a pair (H,  $\alpha$) a line bundle L(H,  $\alpha$) on \mathbb{T}=V/ $\Lambda$ . Any
meromorphic section of  L(H,  $\alpha$) over \mathrm{T} is given by a meromorphic function  $\theta$ :  V\rightarrow \mathbb{C}

satisfying the transformation formula

(6)  $\theta$(v+ $\gamma$)= $\alpha$( $\gamma$)\displaystyle \exp[ $\pi$ H(v,  $\gamma$)+\frac{ $\pi$}{2}H( $\gamma$,  $\gamma$)] $\theta$(v) .

Definition 2.6. We call any meromorphic function  $\theta$ :  V\rightarrow \mathbb{C} satisfying the

transformation formula (6) a reduced theta function associated to L(H,  $\alpha$) .
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Example 2.7. We define  $\theta$(z) to be a reduced theta function associated to

L(H,  $\alpha$) for V=\mathbb{C},

H(z_{1}, z_{2})=\displaystyle \frac{z_{1}\overline{z}_{2}}{ $\pi$ A},  $\alpha$( $\gamma$)=\left\{\begin{array}{ll}
1 &  $\gamma$\in 2 $\Gamma$\\
-1 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
The divisor of  $\theta$(z) is (O). We normalize this function so that $\theta$^{\ovalbox{\tt\small REJECT}}(0)=1.

The function  $\theta$(z) is the Weierstrass  $\sigma$‐function  $\sigma$(z) up to a simple exponential

factor. This function was used by Roberts [Robl] in his construction of elliptic units.

Example 2.8 (Kronecker theta function). We define  $\Theta$(z, w) to be the Kronecker

theta function

 $\Theta$(z, w):= $\theta$(z+w)/ $\theta$(z) $\theta$(w) .

This function is a reduced theta function associated to the line bundle L(H,  $\alpha$) for

V=\mathbb{C}\times \mathbb{C},

H((z_{1}, w_{1}), (z_{2}, w_{2}))=\displaystyle \frac{z_{1}\overline{w}_{2}+z_{2}\overline{w}_{1}}{ $\pi$ A},
 $\alpha$($\gamma$_{1}, $\gamma$_{2})=\displaystyle \frac{$\gamma$_{1}\overline{ $\gamma$}_{2}-$\gamma$_{2}\overline{ $\gamma$}_{1}}{2A} $\Phi$

This line bundle is the Poincaré bundle. The divisor of  $\Theta$(z, w) is \triangle-(E\times\{0\})-(\{0\}\times E)
of E^{2}=(\mathbb{C}/ $\Gamma$)^{2} , where \triangle is the image of the map  x\mapsto(x, -x) ,

and the residue at z=0

and w=0 is the constant one. This function satisfies the translation formula

(7)  $\Theta$(z+$\gamma$_{1}, w+$\gamma$_{2})=\displaystyle \exp[\frac{$\gamma$_{1}\overline{ $\gamma$}_{2}}{A}]\exp[\frac{z\overline{ $\gamma$}_{2}+w\overline{ $\gamma$}_{1}}{A}] $\Theta$(z, w)
for any $\gamma$_{1}, $\gamma$_{2}\in $\Gamma$.

We will next give a relation between the Kronecker theta function and Eisenstein‐

Kronecker‐Lerch series.

Lemma 2.9. Let f(z, w) :=\exp[z\overline{w}/A]K_{1}(z, w, 1) . Then this function satisfies
the following.

1. f(z, w) satisfies the transformation formula (7).

2. f(z, w) is a meromorphic function in z and w , holomorphic except simple poles

when  z\in $\Gamma$ or  w\in $\Gamma$.

3. The residue of f(z, w) at z=0 and w=0 is equal to one.

Proof The proof is given in [BK1] Proposition 1.12 (ii) . \square 
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Theorem 2.10 (Kronecker).

 $\Theta$(z, w)=\displaystyle \exp[\frac{z\overline{w}}{A}]K_{1}(z, w, 1) .

Proof By the property of  $\Theta$(z, w) and Lemma 2.9, the difference

 $\Theta$(z, w)-\exp[z\overline{w}/A]K_{1}(z, w, 1) is a holomorphic function on \mathbb{C}^{2} satisfying (7). Since

H is not positive definite, the line bundle L(H,  $\alpha$) is not ample hence has no non‐zero

holomorphic sections. Therefore, the above difference must be zero as desired. \square 

The above equality is used to prove that $\Theta$_{z_{\mathrm{O}},w_{\mathrm{O}}}(z, w) below is a generating function

for the values e_{(x,b}^{*}(z_{0}, w_{0}) .

Theorem 2.11. For any z_{0}, w_{0}\in \mathbb{C} , let

$\Theta$_{z_{0},w_{\mathrm{O}}}(z, w):=\displaystyle \exp[-\frac{z_{0}\overline{w}_{0}}{\mathrm{A}}]\exp[-\frac{z\overline{w}_{0}+w\overline{z}_{0}}{A}] $\Theta$(z+z_{0}, w+w_{0}) .

Then the Laurent expansion of this function at the origin is given by (4).

Proof. Let \overline{K}_{a+b}(z, w, b) :=\exp[-w\overline{z}/A]K_{a+\ell)}(z, w, b) . Then by Lemma 2.3, we

have

\partial_{z}\overline{K}_{ $\alpha$+b}(z, w, b)=-b\overline{K}_{a+b+1}(z, w, b+1) ,

\partial_{w}\overline{K}_{ $\alpha$+b}(z, w, b)=-\tilde{K}_{a+b+1}(z, w, b)/A.

Hence when z_{0}, w_{0}\not\in \mathrm{F} , the coefficient of z and w in the Taylor expansion of \overline{K}_{1}(z+
z_{0}, w+w_{0} , 1 ) at the origin is given by

\displaystyle \sum_{a,b\geq 0}(-1)^{a+b}z^{b}w^{a}\tilde{K}_{a+b+1}(z_{0}, w_{0}, b+1)a!A^{a}
By definition and the previous theorem, $\Theta$_{z_{0},w_{0}}(z, w) is equal to

\displaystyle \exp[\frac{w_{0}\overline{z}_{0}}{A}]\exp[\frac{(z+z_{\{j})\overline{w}+(w+w_{0})\overline{z}}{A}]\tilde{K}_{1}(\sim 7+z_{0}, w+w_{0},1) .

Since $\Theta$_{z_{0},w_{\mathrm{O}}}(z, w) is holomorphic at the origin and the second exponential above is

equal to one when \overline{z}=\overline{w}=0 , our assertion follows from the fact that e_{a,b}^{*}(z_{0}, w_{0})=
\exp[w_{0}\overline{z}_{0}/A]\tilde{K}_{a+b}(z_{0}, w_{0}, b) . The case when z_{0} or  w_{0}\in $\Gamma$ follows using a similar ar‐

gument, paying careful attention to the poles of  $\Theta$_{z_{0},w_{\mathrm{O}}}(z, w) . See [BK1] §1.4 for de‐

tails. \square 
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§3. Algebraicity

In this section, using the fact that  $\Theta$(z, w) is a generating function for Eisenstein‐

Kronecker numbers, we give a simple proof of Damerell�s theorem concerning the alge‐

braicity of such numbers. Let K be an imaginary quadratic field of class number one

as in the introduction, and let \mathrm{f} be an ideal in O_{K} . Then by the theory of complex

multiplication, there exists an elliptic curve E and an invariant differential  $\omega$ defined

over  K and a complex number  $\Omega$ , such that we have a complex uniformization

 $\xi$:\mathbb{C}/ $\Gamma$\rightarrow\underline{\simeq}E(\mathbb{C})

where  $\Gamma$ := $\Omega$ \mathrm{f} corresponds to the period lattice of  $\omega$ . We first prove that the Laurent

expansion of  $\Theta$(z, w) at the origin has coefficients in K.

Lemma 3.1. The Laurent expansion of  $\Theta$(z, w) at the origin has coefficients in

K.

Proof. We first prove that the Taylor expansion of  $\theta$(z) at the origin has coefficients

in K . Take an a \in 0_{K} such that  $\alpha$\not\in \mathbb{Z} . The function $\theta$_{ $\alpha$}(z) := $\theta$(z)^{N(cx)}/ $\theta$( $\alpha$ z) is

periodic with respect to  $\Gamma$
, and in fact corresponds to a rational function of  E defined

over K . Hence the Taylor expansion of $\theta$_{c\ell}(z) at z=0\mathrm{h}\mathrm{a}_{\vee}^{\mathrm{q}} coefficients in K . The

statement for  $\theta$(z) is obtained from the statement for $\theta$_{ $\alpha$}(z) by inductively comparing the

coefficients. The statement for  $\Theta$(z, w) now follows, since  $\Theta$(z, w) := $\theta$(z+w)/ $\theta$(z) $\theta$(w) .

\square 

Remark 3.2. The condition a \not\in \mathbb{Z} is necessary to inductively compare the

coefficients of  $\theta$(z) and $\theta$_{ $\alpha$}(z) . Hence the assumption that  $\Gamma$ has an  O_{K}‐structure plays
an important role in the proof.

In order to prove the algebraicity of the Laurent expansion of $\Theta$_{z_{0},w_{0}}(z, w) , we

will use the theory of algebraic theta functions due to Mumford. We first review the

general theory. Consider again a general complex torus \mathrm{T}=V/\mathrm{A} . Assume that \mathrm{T} has

an algebraic model A defined over a number field F , with an isomorphism \mathbb{T}\rightarrow\underline{\simeq}\mathrm{A}(\mathbb{C}) .

Let  $\theta$(v) be a theta function associated to L , satisfying the translation formula (6). We

assume in addition that

1.  $\theta$(v) is odd, in other words  $\theta$(-v)=- $\theta$(v) .

2. The divisor of  $\theta$(v) (the theta divisor) is defined over F.

Suppose we know the property of  $\theta$(v) at a neighborhood of v=0 . Mumford�s theory

allows us to deduce the properties of  $\theta$(v) at arbitrary torsion points from its property

at v=0.
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We take a  v_{0}\in \mathbb{Q}\otimes $\Lambda$ corresponding to a torsion point of  A . We let n be an integer
such that  nv_{0}\in 2 $\Lambda$ , and we let  q_{0} be a point such that 2q_{0}=v_{0} . Then we have the

following:

Lemma 3.3. The function

p(v) :=\exp[- $\pi$ H(nv, q_{0})] $\theta$(q_{0}+nv) $\theta$(nv)^{-1}

is meromorphic in v and is periodic with respect to  $\Lambda$.

Proof. Since H is a hermitian form, the exponential term is holomorphic in v.

The lemma follows from the transformation formula (6), noting that  nq_{0}\in $\Lambda$ for our

choice of  n. \square 

We have assumed that the divisor of  $\theta$(v) is defined over F . Then from the explicit
description of  $\rho$(v) , we see that the divisor of  $\rho$(v) is defined over F. This implies that

there exists some constant c\in \mathbb{C}^{\times} such that the function c $\rho$(v) corresponds to a rational

function on A defined over F. Since  $\rho$(-v)^{-1} $\rho$(v)=(c $\rho$(-v))^{-1}(c $\rho$(v)) , we see that

(8)  $\rho$(-v)^{-1} $\rho$(v)=\displaystyle \exp[-2 $\pi$ H(nv, q_{0})]\frac{ $\theta$(q_{0}+nv)}{ $\theta$(-q_{0}+nv)}
is also a rational function defined over \overline{F} independent of the choice of c . Taking change
of coordinates v\mapsto v+(q_{0}/n) , we have

(9) r(v):= $\rho$(-v-(q_{0}/n))^{-1} $\rho$(v+(q_{0}/n))

=\exp[- $\pi$ H (nv , v_{0} ) -\displaystyle \frac{ $\pi$}{2}H(v_{0}, v_{0})] $\theta$(v_{0}+nv) $\theta$(nv)^{-1},
which corresponds to a rational function defined over \overline{F} independent of the choice of c.

This method of first taking q_{0} in order to remove the constant c is the key in Mumford�s

theory. We define Mumford�s algebraic theta function (at point v_{0} ) by

(10) $\theta$_{v_{0}}^{\mathcal{M}}(v):=r(v/n) $\theta$(v) .

Then we have

$\theta$_{v_{0}}^{J $\Lambda$}(v)=\displaystyle \exp[- $\pi$ H(v, v_{0})-\frac{ $\pi$}{2}H(v_{0}, v_{0})] $\theta$(v+v_{0}) .

Since r(v) corresponds to a rational function defined over \overline{F} , one may deduce algebraicity
results at v=0 for $\theta$_{v_{\mathrm{O}}}^{44}(v) from corresponding results for  $\theta$(v) .
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Since  $\Theta$(z, w) is odd and its divisor  $\Delta$-(E\times\{0\})-(\{0\}\times E) is defined over K,

we may apply the above theory. Let z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q} . Then by definition, we have

$\Theta$_{z_{0},w_{\mathrm{O}}}(z, w)=\displaystyle \exp[\frac{w_{0}\overline{z}_{0}-z_{0}\overline{w}_{0}}{2A}]$\Theta$_{z_{0},w_{0}}^{f.\{}(z, w) .

This gives the following theorem.

Theorem 3.4. Suppose z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q} . Then the Laurent expansion of $\Theta$_{z_{0},w_{\mathrm{O}}}(z, w)
at the origin has coeficients in K.

Proof. Since the difference between $\Theta$_{z_{\mathrm{O}},w_{\mathrm{O}}} and $\Theta$_{z_{0},w_{0}}^{\mathcal{M}} is a root of unity, it is

sufficient to prove the statement for $\Theta$_{z_{0},w_{0}}^{\mathrm{A}4} . In the construction of $\Theta$_{z_{0}}^{\mathrm{A}\ovalbox{\tt\small REJECT}_{w_{0}}},(z, w) , we may

take  $\rho$(z, w) hence r(z, w) to be a rational function on E\times E defined over K. Hence the

Laurent expansion of r(z, w) at the origin has coefficients in K. Since $\Theta$_{z_{0},w_{0}}^{J\mathrm{A}}(z, w) :=

r(z/n, w/n) $\Theta$(z, w) , our assertion now follows from Lemma 3.1. \square 

Since $\Theta$_{z_{0},w_{0}}(z, w) is a generating function for Eisenstein‐Kronecker numbers, the

above theorem gives the following.

Theorem 3.5 (Damerell). Let  $\Gamma$ be as above. For any  z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q} and

integers a>0, b\geq 0 , we have

e_{a,b}^{*}(z_{0}, w_{0})/A^{a}\in\overline{K}.

§4. p‐integrality

In this section, we prove the p‐integrality of the Laurent expansion of $\Theta$_{z_{0},w_{0}}(z, w)
with respect to the variable of the formal parameter, when the elliptic curve E has

good ordinary reduction at p . We will then use this fact to construct p‐adic measures

interpolating Eisenstein‐Kronecker numbers.

Let p\geq 5 be a prime for which E has good ordinary reduction. This condition is

equivalent to saying that (p) splits as (p)=\mathfrak{p}\mathrm{p}^{*} in 0_{K} . We fix a Weierstrass model \mathcal{E}

of E over O_{K} , given by the equation

\mathcal{E}:y^{2}=4x^{3}-g_{2}x-g_{3}

with good reduction at p . We denote by \hat{\mathcal{E}} the formal group of \mathcal{E} with respect to the

parameter t=-2x/y , and we denote by  $\lambda$(t) the formal logarithm of \hat{\mathcal{E}}. We also fix

an embedding i_{p} : \overline{\mathbb{Q}}\mapsto \mathbb{C}_{p} such that the completion of K in \mathbb{C}_{p} is K_{\mathfrak{p}} , and let W be

the ring of integers of the completion of the maximal unramified extension of \mathbb{Q}_{p} as in

the introduction. Then we have the following lemma, due to Bernardi, Goldstein and

Stephens.
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Lemma 4.1 ([BGS] Proposition III.1). We let \hat{ $\theta$}(t) := $\theta$(z)|_{z= $\lambda$(t)} be the formal
composition of the Taylor expansion of  $\theta$(z) at z=0 with  $\lambda$(t) . Then we have

t^{-1}\hat{ $\theta$}(t)\in W[[t]]^{\times}

Using this lemma, we have the following.

Proposition 4.2. Let \hat{ $\Theta$}(s, t) := $\Theta$(z, w)|_{z= $\lambda$(s),w= $\lambda$(t)} be the formal composition

of the Laurent expansion of  $\Theta$(z, w) at the origin with z= $\lambda$(s) and w= $\lambda$(t) . Then we

have

\hat{ $\Theta$}(s, t)-s^{-1}-t^{-1}\in W[[s, t

Proof The statement follows from the previous lemma and the definition of  $\Theta$(z, w) .

\square 

Again using the method of Mumford, we may prove a p-‐integrality statement for

$\Theta$_{z_{\mathrm{O})}w_{0}} (z, w) .

Theorem 4.3. Let z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q} be torsion points whose order n is prime
to p , and let \hat{ $\Theta$}_{z_{0},w_{0}}(s, t) :=$\Theta$_{z_{\mathrm{O}},w_{\mathrm{O}}}(z, w)|_{z= $\lambda$(s),w= $\lambda$(t)} be the formal composition of the

Laurent expansion of $\Theta$_{z_{\mathrm{O}},w_{0}}(z, w) at the origin with z= $\lambda$(s) and w= $\lambda$(t) . Then we

have

\hat{ $\Theta$}_{z_{0},w_{0}}^{*}(s, t):=\hat{ $\Theta$}_{\tilde{\mathcal{L}}}0,w_{0}(s, t)-\langle w_{0)}z_{0}\}$\delta$_{z_{\mathrm{O}}}s^{-1}-$\delta$_{w_{0}}w^{-1}\in W[[s, t

Proof. Since the difference between $\Theta$_{z_{0},w_{0}} and $\Theta$_{z_{\mathrm{O}},w_{0}}^{\mathcal{M}} is a root of unity of order

prime to p , it is sufficient to prove the statement for $\Theta$_{z_{\mathrm{O}},w_{\mathrm{O}}}^{\mathcal{M}} . In the construction of

$\Theta$_{z_{\mathrm{O}},w_{0}}^{J\ovalbox{\tt\small REJECT}} , we may take  $\rho$(z, w) hence r(z, w) so that it is defined over W . Using the fact

that the only possible poles of r(z, w) at the formal neighborhood \hat{\mathcal{E}}\times\hat{\mathcal{E}} of the origin is

the origin itself, we can prove that

\hat{r}(s, t):=r(z, w)|_{z= $\lambda$(s),w= $\lambda$(t)}\in W[s^{-1}, t^{-1}][[s_{t}t

By substituting into the equality \hat{ $\Theta$}_{z_{0}}^{J\backslash 4_{w_{0}}},([n]s, [n]t)=\hat{r}(s, t)\hat{ $\Theta$}([n]s, [n]t) the inverse

power series of [n]s and [n]t , which also have coefficients in W , we have \hat{ $\Theta$}_{z_{\mathrm{O}},w_{0}}(s, t)\in
 W[s^{-1}, t^{-1}][[s, t Our assertion now follows from the explicit shape of the poles of

$\Theta$_{z_{\mathrm{O}},w_{0}}(z, w) . \square 

Remark 4.4. In the above theorem, the condition that p is ordinary is crucial

in proving the integrality. The coefficients of \hat{ $\Theta$}_{z_{\mathrm{O}},w_{\mathrm{O}}}(s, t) is p‐adically unbounded when

p is supersingular
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We use the above theorem to construct our p‐adic measure. It is known that there

exists an isomorphism of formal groups

$\eta$_{p}:\hat{\mathcal{E}}\rightarrow\underline{\simeq}\hat{\mathrm{G}}_{m}

over W , which is expressed in the form $\eta$_{p}(t)=\exp( $\lambda$(t)/$\Omega$_{\mathfrak{p}})-1 for some suitable p‐‐adic

period $\Omega$_{\mathfrak{p}}\in W^{\times} . We let  $\iota$(T)=$\Omega$_{\mathrm{p}}T+\cdots be the inverse power series of $\eta$_{p}(t) , and we

let

\hat{ $\Theta$}_{z_{\mathrm{O}},w_{0}}^{* $\iota$}(S, T):=\hat{ $\Theta$}_{z_{0},w_{0}}^{*}(s, t)|_{s= $\iota$(S),t= $\iota$(T)}.
Using the standard dictionary between p-‐adic measures on (\mathbb{Z}_{p})^{2} and formal power series

in W[[S, T we may define the measure $\mu$_{z_{0},u\prime 0} as follows.

Definition 4.5. Let z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q} be torsion points of order prime to p . We

define $\mu$_{z_{0},w_{0}} to be the p‐adic measure on \mathbb{Z}_{p}\times \mathbb{Z}_{p} characterized by the formula

\displaystyle \int_{\mathbb{Z}_{\mathrm{p}}^{2}}(1+S)^{x}(1+T)^{y}d$\mu$_{z_{0},w_{0}}(x, y)=\hat{ $\Theta$}_{z_{\mathrm{O}},w_{\mathrm{O}}}^{*L}(S, T) .

When z_{0},  w_{0}\not\in $\Gamma$ , we have \hat{ $\Theta$}_{z_{0},w_{0}}^{*}=\hat{ $\Theta$}_{z_{0},w_{0}} . Note that the differential \partial_{\mathrm{l}\mathrm{o}\mathrm{g},S} :=

(1+S)\partial_{S} corresponds to the differential $\Omega$_{\mathrm{p}}^{-\mathrm{i}}\partial_{z} through the equality z= $\lambda$\circ $\iota$(S) , and

similarly for \partial_{\mathrm{l}\mathrm{o}\mathrm{g},T} . Since $\Theta$_{z_{0},w_{0}}(z, w) is a generating function of Eisenstein‐Kronecker

numbers, the measure $\mu$_{z_{0},w_{0}} in this case satisfies the interpolation property

(11) \displaystyle \frac{1}{$\Omega$_{|\mathrm{J}}^{a+b-1}}\int_{\mathbb{Z}_{\mathrm{p}}^{2}}x^{b-1}y^{a}d$\mu$_{z_{\mathrm{O}},w_{0}}(x, y)=(-1)^{a+b-1}(b-1)!\frac{e_{a,b}^{*}(z_{0},w_{0})}{A^{a}}
for integers a\geq 0 and b> O. When z_{0} or  w_{0}\in $\Gamma$ , we cannot calculate directly the

interpolation property of  $\mu$_{z_{\mathrm{O}},w_{0}} . We calculate instead the interpolation property of the

restriction of $\mu$_{z_{\mathrm{O}},w_{0}} to (\mathbb{Z}_{p}^{\times})^{2} (See [BK1] Proposition 3.6 for details.)

Remark 4.6. In [BK2], extending previous results of Boxall [Box2] and Schneider‐

Teitelbaum [ST], we develop a theory associating p‐adic distributions to two‐variable

power series which are not necessarily  p\leftrightarrow‐integral, enabling our construction also in the

supersingular case.

We use the measure $\mu$_{z_{0},w_{0}} to construct the two‐variaule p‐adic L‐fUnction of Yager

[Yag], interpolating special values of Hecke  L\rightarrow functions. We first review the relation

between Eisenstein‐Kronecker numbers and Hecke  L‐functions.

Let  $\varphi$ be a Hecke character of  K of infinity type ( 1, 0) with values in K . Assume

in addition that the conductor \mathfrak{f} of  $\varphi$ is prime to  p , and assume w_{\mathrm{f}}=1 ,
where w_{\mathrm{f}} is

the number of roots of unity in K congruent to one modulo \mathrm{f} . Then there exists a CM

elliptic curve E over K whose Grössencharakter is  $\varphi$ . We fix a Weierstrass model of  E
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over 0_{K} with good reduction at p , and let  $\Gamma$ be its period lattice. Let  $\Omega$ be a complex
number such that  $\Gamma$= $\Omega$ \mathfrak{f} . The Hecke L‐fUnction L_{\mathrm{f}}(\overline{ $\varphi$}^{a}, s) for a\geq 0 may be expressed
in terms of Eisenstein‐Kronecker‐Lerch series as follows.

L_{\mathrm{f}}(\displaystyle \overline{ $\varphi$}^{a}, s)=\sum_{a}\frac{\overline{ $\varphi$}^{a}(a)}{N(a)^{s}}=\sum_{ $\alpha$\in \mathcal{O}_{K}}\frac{\overline{ $\varphi$}^{a}( $\alpha$)}{| $\alpha$|^{2s}}=\sum_{ $\alpha$\in(\mathcal{O}_{K}/\mathrm{f})^{\times}}K_{a}( $\varphi$( $\alpha$), 0, s;\mathrm{f})
=\displaystyle \frac{| $\Omega$|^{2s}}{\overline{ $\Omega$}^{a}}\sum_{ $\alpha$\in(\mathcal{O}_{K}/\mathrm{f})^{\times}}K_{a}( $\varphi$( $\alpha$) $\Omega$, 0, s) .

Since \mathrm{A} :=A( $\Gamma$)=N(\mathrm{f}) $\Omega$\overline{ $\Omega$}\mathrm{A}(\mathcal{O}_{K})=N(\mathrm{f}) $\Omega$\overline{ $\Omega$}(d_{\overline{K}}/2 $\pi$) , where -d_{K} is the discriminant

of K
, the above equality gives

(12) [\displaystyle \frac{2 $\pi$}{d_{\overline{K}}}]^{a}\frac{L_{\mathrm{f}}(\overline{ $\varphi$}^{a+b},b)}{$\Omega$^{a+b}}=N(\mathrm{f})^{a}\sum_{ $\alpha$\in(\mathcal{O}_{K}/\mathrm{f})^{\times}}\frac{e_{a,b}^{*}( $\varphi$( $\alpha$) $\Omega$,0)}{A^{a}}.
Hence the special values of Hecke L‐fUnctions may be expressed in terms of Eisenstein‐

Kronecker numbers. We now define the measure $\mu$_{ $\varphi$} as follows.

Definition 4.7. We define the measure $\mu$_{ $\varphi$} on \mathbb{Z}_{p}\times \mathbb{Z}_{p} as

$\mu$_{ $\varphi$}(x, y)=\displaystyle \sum_{ $\iota$ x\in(\mathcal{O}_{K}/\mathrm{f})^{\times}}$\mu$_{ $\varphi$( $\alpha$) $\Omega$,0}(x, N(\mathrm{f})y) .

Then this measure satisfies the interpolation property of Yager.

Proposition 4.8. For any integer a\geq 0 and b>0 , we have

\displaystyle \frac{1}{$\Omega$_{\mathrm{p}}^{a+b}}\int_{(\mathbb{Z}_{p}^{\times})^{2}}x^{b-1}y^{a}d$\mu$_{ $\varphi$}(x, y)
=(-1)^{a+b-1}(b-1)![\displaystyle \frac{2 $\pi$}{d_{\overline{K}}}]^{a}(1-\frac{ $\varphi$(\mathfrak{p})^{a+b}}{N\mathrm{p}^{a+1}})(1-\frac{\overline{ $\varphi$}(\overline{\mathfrak{p}})^{a+b}}{N\overline{\mathfrak{p}}^{b}})\frac{L_{\mathrm{f}}(\overline{ $\varphi$}^{a+b},b)}{$\Omega$^{a+b}}.

Proof. This is [BK1] Proposition 3,8, and follows essentially from the interpolation
property (11) of $\mu$_{z_{\mathrm{O}},w_{0}} . The crucial step in the proof is the explicit calculation of the

restriction of the measure on \mathbb{Z}_{p}^{2} to (\mathbb{Z}_{p}^{\times})^{2} . This is done by calculating the translations

by p‐th roots of unity of the power series \hat{ $\Theta$}_{z_{0},w_{0}}^{* $\iota$}(s, t) used in defining the measure, and

then applying a certain distribution formula. See [BK1] §2.4 for details. \square 

The measure $\mu$_{z_{0},w_{0}} may also be used to construct the two‐variaule p‐adic L‐function

of Manin‐Vishik [MV] and Katz [Ka]. See [BK1] §3.3 for details.
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