RIMS Koékyiroku Bessatsu
B5 (2008), 153-198

On New Expressions of the Painlevé Hierarchies

By

Tatsuya KOIKE*

§0. Introduction

A WKB theoretic study of the (P;)-hierarchy was given in [KKoNT] for J = I,
II-1, II-2, and in [KoN] for J = IV. The purpose of this article is to present a new
expression of such Painlevé hierarchies. Here we discuss (Ps,)-hierarchy instead of
(Pyy.q)-hierarchy; (Ps4)-hierarchy is another expression of (P ;)-hierarchy ([CJP]), and
it is more amenable to our scheme. In our expression, each member of the (P;)-hierarchy,
which will be denoted by (P;),, (m =1,2,3,---), is written down as a system of the
first order nonlinear ordinary differential equations. One of the advantages of the new
expression is that it is more suited for WKB analysis; for example the discussion given in
[KoNT] on the description of the Stokes geometry of (P ),, is simpler and clearer than

that in [KoN]. Our expression is also useful in studying relations between (P;),,, and

degenerate Garnier systems; here we discuss this aspect of (7),,, and (Ps,),,, in parallel
with the discussion of (P ,),, and (Ppy),, given in [Ko]. By using these relations, we
can obtain the Hamiltonian system of (P;),,,, and hence we can construct the instanton-
type solutions by using the method discussed in [T].

The plan of this article is as follows: In § 1, after recalling the definition of the (P})-
hierarchy, we will show that (F;),, is equivalent to the restriction to an appropriate
complex line of the degenerate Garnier system G(m + 5/2;m). Although this was
already shown by Shimomura in [S1], [S2] and [S3] (cf. also [KKoNT]), the emphasis
of our analysis is on the study of the Hamiltonian of G(m + 5/2;m). Note that the
Hamiltonian of (P}),, is also obtained by Takasaki in [Tksl], [Tks2] and [Tks3| by a
different argument. In §2, we study the (Ps,)-hierarchy; we first give a new expression

of (Py,),,, which shall be denoted by (Psy),,, and then give the Lax pair of (Py,),,.

m? m?
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We also show that (ﬁ34)m is equivalent to the restriction to an appropriate complex
line of the degenerate Garnier system G(1,m + 3/2;m). In §3, we will discuss the
(Pjy.o)-hierarchy and the (Ppy)-hierarchy, and give equivalent, but different, expressions
(ﬁII-2)m and (ﬁw)m. We note that (§II-2)m and (ﬁw)m are denoted respectively by
(£1) and (Py) in [Ko].

In ending this introduction we note that all of equations in this article except those
in §1.3 and §2.4 are with a large parameter 1. The usual form can be obtained by
simply setting 7 to one.

§1. (F;)-Hierarchy

§1.1. Equivalence of the (P,)-Hierarchy and the (P,)-Hierarchy

We start our discussion by recalling the basic facts on the (P;)-hierarchy. One
traditional approach to obtain the (F;)-hierarchy is to consider a certain reduction from

the KdV hierarchy (cf. [Ku]). In this expression, we use F, for n = 0,1,2,---, a

polynomial of u = u(t) and its derivatives, defined by the following recursive relation:
1

1.1 Fy=—

( ) 0 2 ;

(1.2) Z JFJ+1+4UZ
7=0
" dF, _

+277_22 n—j dt2 - Z (n = 0).

Here 1 denotes a large parameter for the WKB analy51s. For example, we have

o d?u

(1.3) Fy=u,  Fp=3u"+n"—3,
d*u du du
1.4 Fy =100 + 72 100" +5( 5 ) [ +niS2
(14) 3= e g oG ) 1T g
We can confirm (cf. for example, [KKoNT, Appendix A]) that {F,,} satisfies
dF,., _,dF,  dF, _du

(1.5) i =n 75 +4u 7 +2EFn~

Thus F,, is (a constant multiple of) the Gelfand-Dickey polynomial with a large param-
eter.

Definition 1.1 ((P;)-Hierarchy with a Large Parameter 7, cf. [Ku] for n = 1).
We set:

(1.6) (P o Frpr F B+ o+ e Fo + 298 =0,

where 7 (# 0) and {c, }"*/' are constants.
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Remark.  Without loss of generality, we can choose ¢; = 0 by the translation of
U, ¢,,+1 = 0 by the translation of ¢, and fix v to an arbitrary nonzero constant by the
scalings of u and t.

By using (1.3) and (1.4) one can readily obtain the concrete forms of (P;); and
(P;)y (see Appendix A). In particular, (P;), is nothing but the first Painlevé equation
with a large parameter.

Another approach to the (P;)-hierarchy is given in [S1], [S2] and [S3], where the
monodromy preserving deformation of a certain system of linear ordinary differential

equations is considered. A form somewhat different from his expression is used in
[KKoNT]:

Definition 1.2 ((P)-Hierarchy with a Large Parameter 7).  We set:

([, duy .
n W - 2Uj (] =1,2,--- 7m)7 (1'7‘8‘)

1.7 P, 1 4y, :
(L7 () n 1d_tj =2(ujy tugu;+w;)  (G=1,2,---,m), (L7.D)
| U1 =T, (1.7.¢)

where w,, is a polynomial of {u;,v;} that is determined by the following recursive rela-
tion:

1 n n—1
(1.8) w, = 5 Z Up Uy gg1 T Z U Wy,
k=1 k=1

1 n—1 n—1
-5 Z VRUn_g + Co (2un — Z UpUp_) + Gy
k=1 k=1
Here 7 (# 0) and {¢;}7" are constants.
Remark.  Without loss of generality, we can choose ¢, = ¢,, = 0 and fix 7 to an
arbitrary nonzero constant (cf. Remark after Definition 1.1 and (1.10) below).

See [KKoNT, §1.1] for the concrete forms of (]31)1, (]31)2 and (]51)3. It was shown
that (P}),, is the same equation with (F;),, as follows:

Theorem 1.3 ([KKoNT, Appendix BJ, [S3]).  If u is a solution of (P),,, then
{u;,v;} defined by
dF;

(1.9) u; =—27HF 0= —2‘2jn‘1d—tj (1<j<m)

satisfies (]Bl)m whose constants are chosen so that

n+1
(1.10) ¥y=4"Ty, ¢,=2"7%"3 Z Cpopr1Cr (0<n<m) with cy=1.
k=0
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Here F,, is defined by

Conversely if {u;,v;} satisfies (ﬁl)m with (1.10), uw = —2(uy, + ¢;), which is obtained
from (1.9) with j =1 and ¢, = 4¢y, is a solution of (Py),,-

It is known that (ﬁI)m (and also (F;),,,) can be obtained as a compatibility condition
of a system of linear equations. Following the traditional terminology, we call them as
the Lax pair. The Lax pair of (FP),, is given in [S3] and [KKoNT] as follows:

Definition 1.4 (Lax Pair of (ﬁI)m) We set:

~ o - 00 =

(112) (G e =AG g 90 =B with 'eb:(z;)
where

1

S 7 U
(1.13) A=| 4 y V() 1(x) ,

Z{me“ — (2 — 28,)U(z) + 2W (z) + m} ~ V()
0 2

1.14 B =
(1.14) %x—l—ul—l—go 0

Here U, V and W are given by
(1.15) U(z) =2 — Z uj:cm_j, Viz) = Z vj:cm_j, W(z) = Z wjxm_j,
j=1 j=1 j=1

where {w;} is defined by (1.8).

In the next subsection, we will determine the Hamiltonian of (F;),,. As a prepa-
ration for it, we determine here the equation which ¢, satisfies, where 1, is the first
ﬁ
component of the solution v of (1.12). First, we can confirm that 1, solves

82¢1 8¢1
(1.16) 922 + "’7(11% + 772(12¢1 =0,

by _ L0y
(1.17) 5 —C 5, TPV
where

B 1 8U B 1 77_1 8V 1 V(J?) 8U

(1.18) 0 = U(z) 9z’ 9 = 52 det A 2y Oz ! 2yU(z) Oz’
(1.19) c_ 2y D _V(w)
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Next we factorize U(z) as

(1.20) Uz) =[] -

j=1
We then obtain

120 g =3

J=1

n~tov Tt s V()
1.22 = —d tA———
(122) 02(%) ~? 2y Ox + 2y ;x—bj

-1 -1 X V(x) — V(b -1 V(b
2 27 ox 2y = x—b; 2y jzlaj—bj

We note that x = b; (1 < j < m), which is a singular point of ¢; and g5, is an apparent
singular point of (1.16) because (1.12) is not singular there. In order to transform g,
into a more appropriate form, we use the following:

Proposition 1.5.  Let {w;} be a polynomial of {u;,v;} defined by (1.8) (it is
not assumed that {u;,v;} is a solution of (ﬁl)m) Then

1 1 1
(1.23) U — (@ - 20, U? +UW + = v2 57 r?™ 4 g™ C(2) — R(z),
where U, V and W are defined by (1.15), and
(1.24) Clz)=> gGa™ 7,
§=0
% 1
(1.25) R(z) = me_” [3 Z wuy + Z (uwy, — 2 VU — ColljUy) |-
n=1 j+k=m+4n+1 j+k=m+n

Since this proposition follows from (1.8) by a straightforward computation, we omit
the proof here. By using Proposition 1.5, we obtain

_ _i 2m—+1 _ i m _ ifv i
(1.26) det A = e 5% C(z) 5 ytU + 5 R(z).
Thus g, becomes the following form:

1 1 t Nt e= V(b;)
1.2 = _gmHl __— _m — ™ J

1 1 0V " V(x) = V(b))

1.28 L(x :——U—l— Rz = 4y — L
(128) (z) 2y 272 (z) 2y Ox ; 2y(z — b;(¢))

Summing up, we obtain the following:
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Proposition 1.6.  The first component ¥, of the solution E) of (1.12) satisfies
(1.16) and (1.17) with (1.21), (1.27) and (1.19).

By the same argument in [Ko], we can show the following:

Theorem 1.7.  The compatibility condition of (1.16) and (1.17) with (1.21),
(1.27) and (1.19) is equivalent to (P;),,-

§1.2. Hamiltonians of (F;),, and the Degenerate Garnier Systems

In this subsection we will find the degenerate Garnier system whose restriction to
an appropriate complex line is equivalent to (ﬁl)m. This result enables us to find the
Hamiltonian for (131)m (and hence for (F),, in view of Theorem 1.3). Our method
here is same with that used in [Kol; it is shown in [Ko] that (Py5),, (resp. (Pry),,) is
exactly the same equation with the restriction to an appropriate complex line of some
degenerate Garnier system studied by Liu and Okamoto (cf. [L]) (resp. that studied by
Kawamuko (cf. [Kwm)])).

As is well-known, the degenerate Garnier systems are obtained through the mon-
odromy preserving deformation of some second order linear ordinary differential equa-
tion (cf. e.g. [O], [Ki], [IKSY], [L] and [Kwm]). As is mentioned in the previous section,
Shimomura already consider the monodromy preserving deformation of an 2 x 2 system
(cf. [S1], [S2] and [S3]). Al-
though we consider the monodromy preserving deformation of some single equation in

of linear ordinary differential equations to obtain (ﬁl)m

~

order to obtain the Hamiltonian of (F),,, our discussion here can be considered as the
reformulation of Shimomura’s one.

Throughout this subsection we set ¢, = 0 in (ﬁl)m. To find the appropriate degen-
erate Garnier system for (ﬁl)m, we transform the variables and constants in (1.16) with
(1.21) and (1.27) by

O]
C_,)m—l—Q C_,)m—|—2 _ (,_)m—l—k—l—l _
(130) ty = 2? t+ 2?2 Cmy T = ﬂ—gcm—k—l—l (2 <k< m)7

where © is a non-zero constant determined by ©2"*3 = 452. We then obtain the
equation of the following form with g = m:

d*y dip
(1.31) Tzt + n°path = 0,



NEW EXPRESSIONS OF THE PAINLEVE HIERARCHIES 159

where

S|
(1.32) pi=-n"> ,

— 2 — )\

j=1 J

g ‘ g ] 9 7y
(1.33) py = — [ -I-thzg“_l -I-Zhjzg_ﬂ +77_1Zﬁ.
j=1 j=1 j=1 J

We consider the monodromy preserving deformation of (1.31).

First, we find that (1.31) has an irregular singular point at z = co whose Poincaré
rank is g + 3/2. It also has a regular singular point at z = A; (1 < j < g). We
assume that these singular points Ay, Ay, .-+, A, are apparent ones (recall that z = b;
is an apparent singular point in (1.16)). The Riemann scheme of (1.31) becomes the
following (see [O, p.609] for the definition of the following Riemann scheme):

;

Z=XN o Z2=)g z=00(1/2)
0 UL 0 _nh 0 --- 0 ULYES 1
g+3/2 g+1/2 1/2 4
92 . 92 o 0 o 0o ... _% 1
L g+3/2 g+1/2 1/2 4 )
Here {T; }?Ié is recursively defined by
(134) TO = 17 Tl = 07 2T'OTvn—l—l + Zz—van—j—l—l = tg—n—l—l (1 =n< g)
j=1
For example we have
1 1 1 5

(1.35) TO - 1, T]. — O, T2 - Etg, T3 — ?tg—].’ T4 - tg_2 — gtg .

Concerning the assumption of the apparent singular points, we can show the fol-
lowing by the same argument as in [L, Proposition 2.1] (cf. also [O]):

Lemma 1.8.  The singular points Ay, -+, A, in (1.31) are apparent ones if and
only if {h;} in py is given by h; = h; for 1 <i < g, where h; is a rational function in
{1y} defined by the following:

— g . . g
(1.36) By= D NN [ = {02+ )4
Jj=1 k=1 i,J i
1 9 N;N" + NN ok
7, 0=1 J l

J#
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where

(1.37) Az) = (=) (x=Ay), N;= N = (=1)" el ()

and el(j) is the l-th symmetric polynomial in {\_; k # j}, i.e.
g g—1
(1.38) [T +x) =3 e xot-1,
n=1 =0
n#j
We consider ¢t = (t;,---,t,) as a deformation parameter, and we would like to

determine the condition on {A;, y;. } so that the monodromy data (in our case Stokes
multipliers of (1.31) at z = o0) is preserved. It is known (cf. [O], [U], [JMU], [IKSY])
that the monodromy data is preserved if and only if there exist rational functions A;,
B; (1<j<g)in zso that (1.31) and

oY oY

. — - A ) <5<
(1.39) L Ajm, tnBi (1<) <g)

are completely integrable. We obtain the following;:

Theorem 1.9.  The monodromy data of (1.31) is preserved if and only if {\;, i3, }
satisfies the following completely integrable Hamiltonian system with time variables t =

(tl,... 7tg):

O\ OH op ; OH
1.4 ] = k A k(1< k<
(1.40) 7t né?uj’ o, "aAj (1<j4,k<g),
where
g
(1.41) Hy =Y a,, ,(t)h,
p=1

Here {a; . (t)} is determined by the following recursion relation for each j:

k

(142) (29 — 2k — 1)aj’k(t) + 2(29 — 2k + l — ].)tg_l_'_za/j’k_l(t) = 5k,g—j'
=2

Following the commonly used terminology (cf. [Ki]), we refer to (1.40) as
G(g+5/2:9).

As is well-known, (1.40) becomes P; when g = 1. Equation (1.40) with g = 2 is obtained
in [Ki].
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This theorem will be proved in the next subsection. In the course of the proof of
Theorem 1.9, we will find that A; in (1.39) has the following form:

g g
1
(1.43) A=) N N9 Fa, ().

Remark. ~ We will show in the next subsection that {a; ;(¢)} satisfies

(1.44) Z (29 =2m +2p —1)a;, )T, = 655, (0<m < g—1),
p,k,1>0
p+k+Il=m

where {7} is defined by (1.34), or in a matrix form,

Iy 00 (1,49-101,4g-2""" Q19
aas | D To | et fzez G0 || Ty T
Tg—l T T Ag,g-1%g,g-2""" Qg0 T1 TO
1 1
_ d _ — ).
fag(l g 57

Once this Theorem 1.9 is established, we can determine the Hamiltonian of (ﬁl)m
as follows:

Theorem 1.10.  Let K be a rational function of {\;, p,,t} defined by

(1.46) K = 0Y%H, ,
t,=01/2ty20-m-1¢,  t,=20-(m-itDe . (2<5<m)

where H, is a Hamiltonian of G(m + 5/2;m) defined in (1.41) and
(1.47) @M T3 — 452,

Then {u;,v;} is a solution of (ﬁl)m if and only if {\;, .} defined by
(1.48) H (z—0),), pu,=0"""12V(©)\) 1<j<m)

s a solution of the following Hamiltonian system:

d\; 9K dy, 0K
=5, =Nz U=sgs
. op;  dt IN,

(1.49)
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Proof. By the same argument given in [Ko, §2.3], it is enough to verify the fol-
lowing equations:

(1.50) p1=0q(0z2), py| _=0%¢(0z), O7'C=4

with (1.29) and (1.30), where © is determined by (1.47). In fact these relations (1.50)
imply that the compatibility condition of (1.16) and (1.17) is equivalent to that of (1.31)
and (1.39) with j = 1. The first and third equation of (1.50) follows by a straightforward
computation. To show the second relation, we need to prove the following:

m
(1.51) O’L(Oz) == h;z" .
j=1
To prove (1.51), we note that {h;} is uniquely determined by the condition that
Ay, e, A, are apparent singular points of (1.31) (cf. Lemma 1.8). Since x = by,--- ,b,,

are also apparent singular points, the second equation of (1.50) follows from the unique-
ness of {h;}. O

Remark.  Takasaki obtained the Hamiltonian of (F;),, in [Tksl], [Tks2] and
[Tks3] by considering the Hamiltonians of the so-called string equations of type (2,2g+1)
and the associated commuting flows. The Hamiltonians that Takasaki obtained is re-
lated to ours by the the following canonical transformation: Let us transform {tj} by

2

(1.52) S2g-2n43 = 50901 3 T, (

2<n<g+1).

We also define {L,,,_;}_, by

H, 1 T, L,
H. 3 T, T L
(1.53) .2 _ .1 0 3

Then by using (1.45), we can verify that
(1.54) (A p, Hyt) — (A, Ly s)
is a canonical transformation. The Hamiltonians which Takasaki obtained in [Tks3] are

L17L37 U 7L2g—1'

§1.3. Proof of Theorem 1.9

In this section we give a proof of Theorem 1.9. This theorem can be shown by
following the argument given in [L] and [Kwm]. In the following we set the large
parameter 1 to one to make equations simple.
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We first transform (1.31) into the so-called SL-type, i.e. the equation without the
first derivative term, by the following change of the unknown function:

(1.55) =II —1/24

Then (1.31) becomes

d230
(1.56) W — Qe =0,
where
2g+1 . i1 I _ j oy J 3
(1.57) Q=722M 4 Y 4297 4y Rt =y 5t ) 2z — N2
j=1 j=1 j=1 & J =1 (2 J)

(we set here h, = h; to guarantee that A; is a non-logarithmic singular point) with

(1.58) ch-iYy sy
- iTH T LTy, TS
=17
k#j
Remark.  If we expand @) near z = A; as
(1.59) P QEZQU)
then it is easy to see Q(()j) = 3/4 and QEJ) = —v;. Our assumption that z = A; is
non-logarithmic gives (cf. [O, (2.4)], [Kwm, Lemma 3.3|, [L, p.583])
(1.60) 9 = w,)2.

It was shown in [O, Proposition 1.2 (p.584), Proposition 1.3 (p.585)] that the
monodromy data of (1.31) is preserved if and only if the monodromy data of (1.56)
is preserved, and that the monodromy data of (1.56) is preserved if and only if there
exists rational functions Ajy,---, A, such that (1.56) and the following equations are

completely integrable:

dp 0o 104
(1.61) 6—% = AJ@ ~ 55 7

Note that the compatibility condition of (1.56) and (1.61) is given by

(1.62) @j'—§ 323 - Q__A_+_6t 0 (1<j<g),
0A;, OA. . OA.
(1.63) m, =t % g O g 1<ij<y).

Sig ot, 3tj J 0z Oz
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We also note that the transformation
(1.64) (A Hot) = (A, v, K, 1)

is canonical, where K; for 1 < j < g is obtained by substituting (1.58) into H ;- Thus
if we establish the following theorem for (1.56) we obtain Theorem 1.9:

Theorem 1.11. The monodromy data of (1.56) is preserved if and only if
{)\j, Wy} satisfies the following completely integrable Hamiltonian system with time vari-
ables t = (ty,--- ,t,):

ON: 0K J oh.
(1.65) L -k _ ap g p(t) =2,

ot, o, I; =\

8,uj 8Kk 5 8Ep
199 WD LRy

for1<j<y.
Now we prove Theorem 1.11. We divide our proof into several steps.

1st Step: Analytic Properties of {A,}.

Lemma 1.12.  If A; is rational in z and satisfies (1.62), then A(z).A; is a poly-
nomial in z whose degree is at most j — 1.

This lemma can be proved by the same argument as in [L] and [Kwm, Lemma 3.1].
See these references for its details.

2nd Step: Local Expansion near z = oco. To determine 6§k) in (1.97), we compute
the expansion of A; near oo as follows:

Lemma 1.13.  If A; is rational in z and satisfies (1.62), then we obtain
g—1
(1.67) Ay = a0z F 00 (2] o),
k=0

where {a;, (t)} is defined by (1.42).

Proof. By substituting the expansion

0 %
(1.68) Ay =S AR Q= gt N Qe
k=0 1=0
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into (1.62), we obtain

o
(1.69) ©;=—22713"2" 3" (29— 2k — 1 - 1)Q{™ ALY + 291971 1 O(2971).

n=0 k+l=n
Hence ©; = 0 gives
(1.70) S 2g-2k—1-1)QAY =5, (0<n<g-1).
k+l=n
Since
(L.71) 0= Q=00 QY =t (2<I<g ),
we can verify that A;?,j) = a; (1) O

Remark.  In this proof, we also show that if A; satisfies (1.67), then
-1
(1.72) 0, =0(="") (|z] = o0)

Lemma 1.14.  If©; =0 holds for 1 < j < g, then

(1.73) A; =T(z)7" ZTsz +0(z79 Y (|z] — 0),
0
where
g+1
(1.74) T(z) =292 Ty
1=0

and {T,}J2, is defined by (1.34).
Proof. First we note that the following holds:
(1.75) Q(2) =T +0(E="91 (2] — ).

From ©; = 0, we obtain

0 0Q [ 10°A;  0Q _
1/2 1/2 = J _ Y% 4
(1.76) 2Q (Q Aj) = 8t + 5 9.3 o, +0(z7%).
Hence
9 1/2 _ 6Q1/2 —2—9/2
(1.77) a(Q Aj) = o, +O(z ).
Then, by substituting (1.73) into (1.77), we can confirm (1.73) holds. O

We note that (1.45) can be obtained by considering the expansion of the both side
of (1.76) near z = occ.
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Proposition 1.15.  If A; satisfies (1.62) for 1 < j < g, then
(1.78) Zi, =071 (2] = ).

Proof. From (1.73), we fist obtain

0A; 0A, oT [* 0T oT oT
J 1 —2(_ = el il —g—1
(1.79) ot, ot () ( ot Jo o, 8tj/0 ot, d’z)+0(’z )
On the other hand, since
0A;
(1.80) Aia_J
=0T or [*oT 0T
— el —g—1 2 el -1~" —g—2
(T L ook ))( eyttt athrO( )
oT oT =0T 0T 8T
_ _p39L oL ol ol oL —g—2
T az/o o, ), o, ot Jo ar, 2 TOET)

Hence we obtain

0A, A, oT [*0T . T [* 0T
7 . T —2( =7 il O il —g—2
5. gy =T (8tj ot 8ti/0 o, d=) +0(=707).

Thus (1.78) follows. O

(1.81) A

3rd Step: Local expansion near z = ).

;- We prove the following general property:

Proposition 1.16 (cf. [Kwm, Proposition 3.3] and [L, Theorem 5.1]).  Assume

that Q and A; have the following local expansion near z = A;:

1 = n l 3 l l
(1.82) Q=WZQ%>@—A» @ =75 Q'=-u @' =ud

¢
(1.83)  A;= _A ZA

By substituting these expansion into (1.62) and (1.63), we obtain the following local

ezpansion of ©; and =, ;:

 ( = =)
(1.84) j_ T 429 Zz— A\ =55 = 32 (2= A"

Note that @(l% and = ()0 are trivially vanish. If @(l)l = @(l; =0 hold for 1 < 5 < g,
then X\; and v, satisfy

[ ) !
(1.85) 8tl = 2400, — A,

31/ ) A ! !
(1.86) = ABQY + Al — o A,

J
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and we obtain @% = @gli =0and=", =0 for 1 <4,5 <g. If we further assume

—i,7,1
! (1 —(1 —(l =
(L.87) ok =0 and =0),=2{),=20,=50;=0

for 1 <i,j <g, then (1.85) and (1.86) are completely integrable in the sense of Frobe-
nius.

Proof. To prove this proposition, we explicitly compute @(;f and ”(l)- for 0 <
k < 5. The higher order coefficients of ©; are given as follows:

0 _ (l) (l o _ 2 W
! 3V ! ! 1) A ! 2 WA !
159 @;,;:—[3—; 3 A~ A - A<>Q<>}, e;,z:—gA;,;Qy—zAg;,
J
(1L90) ©% = - Q(l) FO (@9 1 4,0 AY, — 300 4G, — 40> A, + 511.49)
) 8Q3
A T

We also obtain the following:

=( l (z OPN{ —(1 - 0
B = (A( 10 —Afel), Ei2 = 5t = 5 220,
? J
-0 A(l) DA _o  OAD AN
S8 T 8752- - ot — 20205 = 3203, Eij4= o, - at, — 4y Zy 5 — 42 4,
—0 8A(l) 3A(l)

? J

Here and in what follows, we fix ¢, 7,1 to simplify the notation, and we put

1) 40 _ 40 40
(1.91) = A AT — A AT

0¥ " j,q

Now the first assertion follows from these concrete expressions. We next show the
completely integrability of (1.85) and (1.86). To this purpose it suffices to show

(19) g 2 (240, - AY) - (2A§%z Al =
(1.93) ai (A%~ Al —A(%Q(”) 8t( S A0~ A, — AP =0,

First we verify (1.92). The left-hand side of (1.92) becomes

(1.94)

(l) ) (l) O]
21/ (('3.4 3.4 ) [A(l) 81/l A(l) al/l] _ [3A _ 3.»4
"\ ot ot ot 0ot ot, ot I

J ? J
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To eliminate terms in (1.94) which include ¢-derivatives, we use (1.86) for the second

term, and El]) g = _Elj) 3 = 0 for the first and the third terms. Then we obtain

Thus (1.92) holds. In a similar manner we can show (1.93); the left-hand side of (1.93)
becomes

(1.96)

3 oAV, A » (8A(l) aA§f§> (A(”% 4 aul>
2 6t. ot "\ o, ot; 720t 2ot

2 J

2AY)  0AY QY QY
(1) _ 70 O O
— s ( ot ot > (AJO ot ~Aio ot )

We can then show that (1.96) vanishes by using (1.86) for the third term, @;l% =0

for the fifth term, and 51(152 = 5%4 = ”(lj) 5 = 0 for the first, the second and fourth
terms. 0

4th Step: Derivation of the Nonlinear Equations. At this step, we combine
local analytic properties near the singular points obtained at the previous steps to
determine the nonlinear equations which govern the monodromy preserving deformation.
First, from Lemma 1.12 we can assume that A, has the following form:

g B(k) B('l) 6(9)
1.97 = J - _J AT R
(197) 4 Zz—)\k z—)\1+ +z—)\g
Hence we obtain
(1.98) AT = BN F + - BN

where A;f),j) is a coefficients of (1.67). Hence from Lemma 1.13 we obtain
(1.99) BINF 4+ BN =0, (1) (1<) <g).

Because it is linear in ﬁj(.k), we can solve (1.99) as follows:

g—1
k _
(1.100) B =S N NIPEG, (1),
p=0

See, e.g. [L, Proposition 2.1 (p.570)] for the inverse of the Vandermonde matrix appear-
ing in the left-hand side of (1.99). We also obtain from (1.97) that

5(’6)

—w (n>1).

l l l
(1.101) AN =0 A = (—yn Tty o
k;él
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Hence it follows from Proposition 1.16 that ©; = 0 gives the following differential
equations of {\;, y; }:

(k)
o\ 0 B
(1.102) L =20, — J .
k£l
(k) (k)
ov By, 3B (1) A1)
(1.103) L= |- —L 1 +370Q5.
ot ;[(Al—w 2()\l—>\k)3] i s
k£l

Proposition 1.17.  Assume A; is given by (1.97) satisfying (1.99). Then the
condition ©; = Z,; ; =0 for 1 <4,j < g is equivalent to (1.102) and (1.103), where O
and =, ; are defined by (1.62) and (1.63) respectively. Moreover if one of these conditions

is satisfied, then (1.102) and (1.103) are completely integrable.

Proof.  Since the necessity is obvious from the discussion given above, we show the
sufficiency. By its definition ©, is a rational function in 2 which is holomorphic except
z= Ay, -, A, If we assume that (1.102) and (1.103) hold, then Proposition 1.16 tells
us that ©; has zeros at {A, - ,)\g}. Thus ©; is a polynomial which has, at least, g
zeros. On the other hand, ©; is of O(297") near z = oo (cf. (1.72)). Thus ©; should
vanish identically.

It also follows from Proposition 1.16 that A(2)Z, ; is polynomial in z. From (1.78),
we obtain A(2)Z;; — 0 as |z| — co. Hence Z, ; identically vanishes.

The completely integrability follows from Proposition 1.16. O

5th Step: Derivation of the Hamiltonians. To finish the proof of Theorem 1.11,
we will show that the nonlinear equations (1.102) and (1.103) can be expressed as the
Hamiltonian system (1.40). To this purpose we put

(1.104)
") g . g 9 g
4 = (Ag)? "+ Zti()\k)gﬂ_l + Z hi(Ag)?™" = Z 10y, N2 )\
i=1 i=1 i=1 A i=1
1#£k 17k
Then we can easily confirm that
(1.105) & =g,
We can also confirm from its definition that
0, (k)
1
(1.106) 0a" _ 9% _ _ (k #1).

v, oy, A=\,
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Hence (1.102) becomes

N, 0 S 008” w 0d;"
(1.107) a, =28y, = > 8] o, =25 (2”15l»k_ o, )
o, =

In a similar manner, since we obtain

(1.108)

3Q§l)‘ PN 3

S T I W S W WA Ts WS W UR A

from the definition of q( ) we find that (1.103) becomes

ov g & 8q(k) . 8q(l) 9 . 8q(k)

1.1 _l:§:<.> 2 Ho% _ (k) 943

(1.109) o, kzlﬁ" o T, kzzlﬁﬂ o,
i

It then follows from
(k
(1.110) &), = ()

(cf. (1.60) and (1.105)) and the chain-rule of differentiations that

(1.111) 8q_§m’ - gy | oh,
' o\ Ih=n Oh, lh=n 0N’
p=1
() YO
(1.112) 2y, — 22 _ 5 9% ‘ p

dy, ’h:ﬁ 2= Ohy, In=r oy,
(k)

0
Hence the relation aq; = (A,)?7P together with (1.99) entails the following:

P

2 0945 | Fhy N e 2y ohy <
(1.113) ot; Z & 8h ’h:ﬁ ov, Z( K710 Z = p@u

pvkzl p,k=1

ay k aq oh g r Oh,,
1.114 l: (W2 | e _ gp<>
L IS T IR i
Thus the proof of Theorem 1.11 completes. O

§2. (Psy)-Hierarchy

§2.1. (P;,)-Hierarchy and Its Equivalent Form

It is known that the second Painlevé equation has an equivalent form, which is called
Py, (cf. [I]). In [CJP], Clarkson, Joshi and Pickering discussed its higher order version,
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which is referred to as (Ps,)-hierarchy, and construct the Bécklund transformations
between each member of (P;,)-hierarchy and that of (P ,)-hierarchy. Here we follow
[CJP] for the formulation of this hierarchy:

Definition 2.1 ((P;,)-Hierarchy with a Large Parameter n).  We set:

PF, _2(d.7-"m
dt? dt

where F,, is given in (1.11), and v (# 0), x and {c,}]L, are constants with ¢, = 1.

2
(2.1) (Paa)m: 207 2(F + 291) + 27) + 4u(F,, + 27t)* = —K?,
See Appendix A for the concrete forms of (Pyy); and (Psy), with a large parameter.

Remark.  Without loss of generality, we can choose c,, = 0 by the translation of
t, and fix 7 to an arbitrary nonzero constant by the scalings of u and ¢t. Thus (Psy),,
essentially contains m constants.

Next we introduce the (]334)—hierarchy by the following:

Definition 2.2 ((Py,)-Hierarchy with a Large Parameter ).  We set:

[ duy ,
n E:Q’Uj (] = 1’2’... ’m)’ (228.)
—1dvj .
(22) (ﬁ34) . 77 % = 2(”1“3 ‘I— u]+1 ‘I— 'LUJ) (] = 1, 27 e ,m)7 (2.2.b)
Uppp1 = —W,y, + Colly, — Yt(uy +¢p)
(v, — 0~ 17/2)? — &2
2.2.
~ LT (2.2)

where {w;} is a polynomial of {u;,v;} defined by (1.8), and ¥ (# 0), k and {¢;}7, are

constants.

Remark.  Without loss of generality, we can choose ¢,,_; = ¢,, = 0 and fix ¥ to
an arbitrary nonzero constant (cf. Remark after Definition 2.1 and (2.3) below).

We note a similarity of the form of (ﬁI)m and (Py,),,. In fact the difference appears
only at (1.7.c) and (2.2.c) ((1.7.a) and (1.7.b) are exactly the same with (2.2.a) and
(2.2.b)).

The equivalence of (Psy),, and (§34)m is given through the following correspon-
dence:

Theorem 2.3.  Ifu is a solution of (Psy),,, then {u;,v;} defined by (1.9) satis-
fies (Psy),, whose constants are chosen as follows:

n+1

(2.3) F=damly, F=2""k, 5, =270 ¢ 0
k=0
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Conversely if {u;,v;} satisfies (Pay),, with (2.3), u = —2(u, + &) (which follows from
(1.9) with j =1, i.e. uy = —F,/2 and ¢; = 4¢y) is a solution of (Psy).

The purpose of this subsection is to prove Theorem 2.3. After preparing several
lemmas (Lemmas 2.4 through 2.6) we give its proof at the end of this subsection. First
of all we determine the recursive relation by which F,, is determined:

Lemma 2.4. {F,} defined by (1.11) satisfies the following:

(24) Fpir = E:fhjfﬁi+4u§:

B . n df- 1n+1
+ 27 2 Z n—j dt2 - Z Z Zo Cn—j+1¢5-
j=

(2.4) with F; = 1/2 enables us to determine F,, for n > 1 recursively. This Lemma
can be proved by (1.11) and (1.2). Since the proof is straightforward, we omit its details
here.

We then transform (2.4) to an equivalent form by using

dF,
2. =n ==
( 5) gn 77 dt Y
1 d
(2.6) W, =n" i +2F, F, — Foo

Lemma 2.5. If {F,} satisfies (2.4), then a sequence {F,,,G,, W, } satisfies the
following recursion relation for n > 1:

n—1 n—1 n—1
(27) Wy ==2> Fuu W= > FuriFiir + 9 Guyj
j=1

=0 j=1
n—1 n+1
+201(‘7: +Z n—j J> ch j+165-
j=1

Conversely if F, is given, then (2.5), (2.6) and (2.7) determine {F,,G,, W, },>1
uniquely and recursively, and {F, } thus obtained satisfies (2.4) with u = F; — ¢y/2.

Proof. We first assume {F, } satisfies (2.4). It then follows from (2.5) and (2.6)
that

dF
2‘ —1 n —
d2
(2.9) 2T o W, 4 F

dt?
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d2
i in (2.4) to obtain

d
By (2.8) and (2.9) we can eliminate dFy and

dt dt?

(210) Fpyr= =Y FpjFj +4ud F
- pard

n n+1
+2an—j(_2flfn+wn+fn+l Zgn jg + — ch j—|—1cj

n—1 n
= > F,_ ij+1+2fofn+1+22fn W= 6,9,
j=0 j=0 j=0

n—l—l

—I—QClz}' JFi+ ch 4165
Jj=

Since Fy, = 1/2 and G, = W, = 0, we obtain (2.7).

To show the converse, we first observe that {F,,,G,,, W, } is uniquely determined.
If F, is given, then G, and W, are determined from (2.5) and (2.7). Next we assume
{F;,G;,W,;}}—; is given. Since (2.6) implies

(2.11) F, 199,

nt1 =T + 21T = W,

{F;,G;,W;}7_, uniquely determines ¥, ;. Then G, ., is determined by (2.5), and
W, 1 is determined by (2.7). Thus {F,,G,,W,} is uniquely and recursively deter-
mined. Finally, by substituting (2.5) and (2.6) into (2.7), we can confirm that {F,}
satisfies (2.4). O

In order to rewrite (2.1) in terms of {F,,G,, W, }, we introduce the following
quantity I, :

& F, iF,,
oy (m 27> + du(F,, + 298) + K2

2.12 I, =2 2
(212) Ly =22 (F, +200) -

Lemma 2.6. We obtain

1
(2.13) I, = 2(F,, +27t) [Wm — ey Fy 4 Frn + Ayt (Fy - Ecl)}

- (gm + 2’7)2 + /i2

to find that (Psy),, is equivalent to

ic ) T (gm +2’V)2 B KJQ
! 2(F,, +2vt)

(2.14) Fpp1 = Wy + 1 Fp, — Ayt (Fy — 5



174 TAaTsuyA KOIKE

Proof. Since

d*F, dF 2
(2.15) L, = 2(F, + 201) [n‘2 "+ 2u(F, + 2vt)] - 77‘2(—’” + 27) + K2,

dt? dt
d d?
we obtain (2.13) by eliminating % and d;m in (2.15) by (2.8) and (2.9). O

We now arrive at the following proposition that relates a solution of (Psy),, with
the structure of {F,,,G,,, W, }:

Proposition 2.7.  If u is a solution of (Psy),,, then F,, defined by (1.11), G,
defined by (2.5) and W,, defined by (2.6) satisfy (2.7) and (2.14).
Conversely if {F, Y"1, {G,}™, and {W,}"_, are given so that (2.5), (2.6), (2.7)

and (2.14) are satisfied, then w = F| — c,/2 satisfies (Psy),,-

Proof. We first assume that u is a solution of (Pj,),,. Since F,, satisfies (2.4), it
then follows from Lemma 2.5 that {F,, }, {G,,} and {W,} satisfy (2.7). They also satisty
(2.14) by Lemma 2.6.

Conversely, if we assume (2.5) through (2.7) and (2.14), then Lemma 2.5 implies
that {F,} satisfies (2.4) with u = F; — ¢,/2. Since it follows from Lemma 2.6 that
(2.14) implies I,, = 0, u is a solution of (Py,),,- O

Proof of Theorem 2.3. Let us introduce {uj, v, wj} by the following:

We then find that (2.5) and (2.6) are coincident with (2.2.a) and (2.2.b) respectively,
(2.7) reads as (1.8), and (2.14) becomes (2.2.c). Thus Theorem 2.3 follows from Propo-
sition 2.7. O

§2.2. Lax Pairs of (P,,)-Hierarchy and (P,,)-Hierarchy

In this subsection we derive the Lax pair of (]334),” from that of (Ps,),,. The Lax
pair of the (Ps,)-hierarchy is given in [GP]. Let us first recall its explicit form with the
addition of the large parameter.

Definition 2.8 (Lax Pair of (Pyy),,). We set:

— —
(2.17) (Lgg)pm : 40 'z —— =AY, n'—— =By
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with

A, A 1 00 0 1
2.18 A= "1 "2 ) =4+ , B= ;
(2.18) <A21 —Ay, ot A(F,, +29t) \I,, 0 r—u0

OF
1 —77_1(3— + 27) 2(F +21)
(219)  Ao=+ 0 t L oF :
N aE 2@ —u)(F+29t) n (E +27)
where
(2.20) F=> (4z)" I F,
j=0

and I,,, is given in (2.12).

We note that the Lax pair (2.17) is slightly different from that given in [GP]; the
second term in A is missing in [GP]. Without this term, the compatibility condition

dl
gives only —™ = 0, not I,, = 0, where I, is defined by (2.12). This is the reason why
we add the second term in A. The addition of this term is obtained by using the idea
given in [GJP2]. A straightforward computation gives
—1I 0
104 "
ot

0B 1
—1 _
—dn e A B = 4(F,, + 27t) 1 OrFm + 2

2.21
( ) m Nz

Hence the compatibility condition of (2.17) coincides with (Ps,),,-
We derive a Lax pair of (Ps,),, from that given in (2.17) by rewriting each compo-
nent of A and B using(1.9) and (2.16). First we note that

(2.22) F=> (4a)" 7 F; = (dz)"Fy + Y _(da)" I F; = 22" U (=),
§=0 j=1
OF & , dF;, & ;
—1 _ m— —1 J m— _ 2m
(2.23) o= 2(4@«) Tt = 2(4@«) G, = =2V (),
Jj=1 7=1
where
(2.24) U(z) =a™ — Z uja:m_j, V(z) = Z vja:m_j.
j=1 j=1
Hence we obtain
1 oOF 1
A - _ -1/ 2) _ 22m—1 P St
=50 (G +27) V@) =503,
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It also follows from (2.13) that

1 L,0*F

1 (G +29)% —
— — At n
To rewrite Ay, further we use the following:
Lemma 2.9.  If u satisfies (Psy),,, then
1
where F is given in (2.20) and
m m ]
(2.27) G=> ()G, W=> (da)" W,
j=1 j=1

Proof. Multiplying (4x)™ ™ with (2.6), and adding it for n = 1,2,...,m, we
obtain

m 6 m m
m—n —1 m—n m—n
(2.28) 2 (4z)™ "W, = +27 ;(4@«) F, - ;(433) ot
_10¢
="+ 2P (F = Fol42)™)
— 42 (F — Foldx)™ — Fy(42)™ 1) — Fra
_1aaf+ (4 )m+1—(4$—2f1)f_fm+l
This completes the proof. O
0?F 0g . : .
As S = g it follows from (2.26) that the right-hand side of (2.25) becomes
1 1
(229)  —5 [Wla) — 542" 4 (4 — F)F + ] + (@ — 0)(F + 290
1 (gm + 27)2 B ’i2
+§ Wi — 1 Fp + Frngq + 40t WFE. 59D
1.1
=3 [5(4:1:)"”'1 —W(z) — (22 — 1) F + dyt(z — u)]

(G, +27)? — K2 B ic F
4(F,, + 27t) g thm

1
—I-?Wm + 2ytu —

We then use (2.14) to obtain

1

1 1
(2.30) Ay = 4mx™ T — (x — Ecl)}_ - EW + 2vt(x — u) — EFerl'
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Hence it follows from (2.22), (2.23) and

m

(2.31) W= 22"y (z) with W(z) = ija:m—j

j=1
that
2m—1[o..m+1 1 . 1
Ay =2 22 —(z — 501)U +2W 4+ At(z + 2uy + Ecl) + 2up, 4]

=22 2™ — (3 — 26))U 4 2W + At (z + 2uy + 2¢)) + 2u,, 4]

Here we used the relation ¢; = 4¢,, which follows from (1.10). Summing up the results
obtained so far, we find that A can be written as follows:

1 - ~
Viz) =507 U(z) + 47t
__ 9o2m—1
(2:32) A=2 227 = (@ = )U AW L
+ 7tz + 2uy + 2¢0) + 2um41 2" 7

After the transformation of the unknown vector of (2.17)

i 1 0 4
(2:33) 0= (O 2) o,

we obtain a Lax pair of (Py,),,.

Definition 2.10 (Lax Pair of (Pyy),,). We set

U L S 11 - o= (Y
(2.34) (Lag)m = 1 173;% =Av 15 =By with ¢ = <¢; 7
where
1 1 - ~
EV(@ — Zﬂ_l’y U+dyt
_ 1 -
(2.35) A= Zqopmtt _ (z — 25U + 2w 1 1 .|
T 0 {5 V(@) - 707}
+t (2 + 2uy + 2¢4) + 2u,, , } 2 4
0 2
2.36 B = 1 _
( ) —x + Uq + Co 0

2

Then we obtain the following theorem:

Theorem 2.11.  The compatibility condition of (2.34) is expressed by (Pyy),,-
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Although Theorem 2.11 is evident from our discussions given above, we can also
confirm it by direct computations. To show it, let us define A (1 =1,2,3) by

0A 0B A A
ey r—+AB-BA= |1 % |,
Then we obtain
Proposition 2.12. We have
1 - —1d m—j
(2.37) A = 5 Z{n 7 — 2uyu; — 2ujyy — 2w, ™,
i du; .
(2.39) D WETR P
j=1
1 ~ 1 _ ou ow
(2.39) Ag = —Z(CE + 2uy +2¢) Ay + > ! [(u1 +2¢y) — 5 T o
1 4d ~ ~ 1. ~
+ 57 %[um—i—l +Jt(uy +¢o)] + EV(Ul +¢).

Proposition 2.13.  If {u;,v;} satisfies (Pay),,. we obtain

) 2% =y 25) 0 ) Ly Tt + )]+ Ay 4 E) = 0
7 1 o) g n o U U + o) +7(ug +¢9) = 0.
Theorem 2.11 readily follows from Proposition 2.12 and Proposition 2.13: in fact,
if (2.34) is compatible, we obtain A; = A, = A3 = 0. As is easily confirmed from
Proposition 2.12, A; = A, = 0 implies that {u;,v;} satisfies (Psy),,- Then, from
Proposition 2.13, we obtain A3 = 0. Thus the compatibility condition is equivalent to
(Pys)m
Since Proposition 2.12 can be verified by straightforward computations, we omit
its proof. The proof of Proposition 2.13 is also computational, but it contains some
delicate points. For the sake of the convenience of the reader, we briefly describe how
we proceed. The key lemma is the following

Lemma 2.14. If {wj} is a polynomial of {u;,v;} defined by (1.8), we obtain

dw,, " du,,_ dv
(2.40) 7S — (uy + 2C0 = Z {——k + 2(uyuy, + wpgy +wy) §

dun i

d
nk} vk

—Z{

d
—I—Z{ wn B (uy +26,) ugt_k Pug.
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This lemma can be verified by differentiating (1.8) with respect to t. Using this
lemma, we obtain Proposition 2.13 (i) by the induction on j. The proof of Proposition
2.13 (ii) proceeds as follows. Since u,, , is given by (2.2.c), we obtain

1

—1x)\2 ~2
241) L At +E)]:i[—w e +(vm 2" 1) Fu]
dt m—+1 1 0 dt m 0%m Q(Um—’)/t)
IR
dt O at u,, — 3t dt
1

We then use (2.2.a) and (2.2.b) with j = m and Proposition 2.13 (i) with j = m on the
left-hand side of (2.41):

1 d - ~
(2.42) n la[um—i—l + Yt(uy +¢p)]
1
Uy — =07
= —2(uy +28,)v,, + 250, + QU—E%(ulum F Uy + W,y)
1 ~
(U — o )2 - "@2( 1 ~1)
(u,, — 27t)? 2T 7

Since it follows from (2.2.c) that

1

(U — 577_1:?)2 — K’
(243) Uy, + Uy y g + Wy, = Uy, + Colly, — FE(uy +T) + 3w, —50)
1 o
N (T3 R
- — At =

we then conclude that

1 d - -
(244) 7 g T + )]

1 1y

o 517 ~ I e B Dt

o2 e - ]
2+ %) (= 0+ s

1 —1x)\2 ~2

(vm - 577 7) — kK 1 1~

o (um — ;?t)g (vm o ?77 7)
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v (uy + Cp)-

Thus we have confirmed Proposition 2.13 (ii).

In the next subsection we will consider the relation between (Ps,),,, and the degen-

erate Garnier systems, as we did in §1.2 for (P))

derive a system of equations for one unknown functions from the Lax pair (2.34) whose
compatibility condition coincides with (Psy),,. To this purpose, we first transform the

unknown function of (2.34) by

(2.45) »

The background of this transformation will be explained in Remark after Lemma 2.15.

Then the first component ¢, solves

m:*

TAaTsuyA KOIKE

= xR/(%)? with @ = (@1

) |

P2

P, Dy 2
(2.46) S2 T T e =0,
iy 0y
2.47 —— =C— D
(2.47) By 5, T 1P
where
1 4 yx 0 (U+At
2.4 = - —t(A- SR e (S
(2.48) 4 Y d 2 F) U+t ox\ vz
1 1 1 1 oU
= — —tr(d— =k p—— _1—~—
Nz d 2"6)4—77 U+At dx’
1.1
1 1 ]
2.4 = oy det(d— —R) -yl (22— )
249) gy = mppdet(d— 7 -yt (2
11
N o n T 7. e .Q(UJF%)
K N U+At Ox\ Az
1,
1 1 1 oV V=517 ou
= det(A——li)—n 1— — _1%—
~2x2 2 2yr Ox 2yx(U +At) Ox
1
~ V- —n 15
(2.50) c= 2% 27 7
U+~t’ U+t
Lemma 2.15.
(2.51) fr(A — %%) 7
1 1 1 1 ~
(2.52) det(A — 5%) = —ZmeH — Eme’(a:) — E%xmﬂ + zR(x).

Here R is a polynomial in x of degree m — 1.

To study the relation we need to
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Remark.  Note that det(A — %/2) vanishes at = 0. Hence the origin is not a
double pole but a simple pole of ¢, defined by (2.49); This is the reason why we first
transform the unknown function by (2.45).

Proof of Lemma 2.15. The first assertion (2.51) is self-evident. To prove (2.52)
we fist note

(2.53) 4det(A— —; R)
~ |
=R - (V- 377 17)

— (U +7t)[22™ " — (z — 26)U + 2W + Ft(2 + 2uy + 26)) + 2y, 14 ].

Hence we find
1. ~ 1 -
(254) ddet(d— FF)|  =F — (v, — 509’

+ (um - 2§t)[_250um + 2wm + 2?75(”&1 + 50) + 2um—|—l]'

Then the definition of u,, ; given in (2.2.c) entails that the righthand side of (2.54)
vanishes. Hence det(A — %/2) vanishes at © = 0. We next rewrite the righthand side of
(2.53) as follows:

1.
(2.55)  4det(A— 5/@)

— (V422U — (2 — 26,)U? +2UW)

~ Ry I o - ~
+ R+ IRV — i 232 — URFt(z + 2uq + 26) + 2Umi1]
— Ft22"T — (2 — 260)U + 2W + Ft(x + 2uy + 2¢)) + 2y, 4]

Applying (1.23) to the first line of the right-hand side of (2.55), we obtain
1

(2.56) 4det(A — 5%) o — (2P 4 22 C(2) 4 23t + 4z R(x),
where
(2.57) 4xR(z) = 2R(x) — 23t[(u, + 26,)U + W] — 2u,, (U +~t)

~ L~ ~ 1 o
— V22 (x + 2uy + 26) +RE 4+ TRV — Zn_272.
Since det(A—%/2) vanishes at 2 = 0, R(z) is a polynomial in , as is required (2.52). [

Further we factorize U + 7t as

(2.58) U+7t = H (z — b;(
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and rewrite ¢; and gy using b;(t). Clearly we find

-1 m

R/A-n
(2.59) a@ = / A
J=1

xTr —

From (2.52) and (2.58), we also obtain

=L ey L meeggy 4 Lygme
(2.60) g2 = [47 T + 272" Clz) + 2&”
1
+ L(x) +n ! i ) - 2" i
v o Tty
where
1~ 4, 1oV 1 = V(x)_v(bj)
(2.61) L(z) = ﬁR(x) T s T ;m

is a polynomial in x of order m — 1. Thus we show the following:

Proposition 2.16.  If we define ¢ by (2.45) for the solution E) of (2.34), the
first component p, of @ solves (2.46) and (2.47) with (2.59), (2.60) and (2.50).

By the same argument in [Ko], we also obtain

Theorem 2.17. (1334)m is the compatibility condition of (2.46) and (2.47) with
(2.59), (2.60) and (2.50).

§2.3. Hamiltonians of (P,,),, and the Degenerate Garnier Systems

In this subsection we will determine the Hamiltonian for (Ps,),,. Throughout this
subsection, we set ¢,, = 0. To begin with, let us consider the following change of
variables and constants:

1 1 .
(2.62) r=0z b = @Aj, A = ﬁ(V(bj) -3 3 (1<j<m),
2 m m 1 m —1~
(2.63)  t;=zO"t 4 27 759" b= ﬁ@ e, e 2<k<m),

o
(2.64)  ry= o

Y

where © is a nonzero constants satisfying ©2™1 = 452, Then Eq. (2.46) with (2.59)
and (2.60) assume the following form (2.65) with g =m

d> d
(2.65) P f + 1Py df +1°patp = 0,
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where
Kg— 1N J 1
(2.66) pr=—"2———-n")
z e
=1
291 | o 52 ! i—1 PN Al
(2.67) Py = —[Z 975 + thzg JTe 4 Zhjzg J ] +n ]2 Z(T)\J)

We then consider the monodromy preserving deformation of (2.65) to obtain the degen-
erate Garnier system.

Equation (2.65) has an irregular singular point at z = oo whose Poincaré rank is
g+ 1/2. The origin is a regular singular point. It also has a regular singular point at
z=X; (1 <j <g). We assume that these singular points {)\j}gzl are apparent ones.
The Riemann scheme of (1.31) is of the following form:

(=0 2= 2= Ay z=00(1/2) )
", T T, 1
0 0 _o g Ty 2
g+3/2 g+1/2 1/2 4
T T T, 1
nkg 2 ... 2 _ Mo 0 S 0O --- 0 I
\ g+3/2 g+1/2 1/2 4
Here {T;}7_, are functions of {t;}{_, which are recursively defined by
(2.68) Ty =1, +1JFZT =ty (1<n<g-1).
In parallel with Lemma 1.8 we can show that the condition that A, ---, A/ are apparent

singular points is equivalent to h; = h, for 1 <i < g, where h, is a rational functions in
{Ajs by, t} defined by the following:

g
j=1
N;N*i 4+ N,N*
!
Z o it
j,0=1 J l
J#l
The monodromy data of (2.65) is preserved, where t = (¢, ,,) is considered as

a deformation parameter, if and only if there exist rational functions A;, B; (1<j5<yg)
in z so that (2.65) and

[ 4, oY

2.
(2.70) at, 1oz

+nB;yp (1<j<g)

are completely integrable. We obtain the following;:
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Theorem 2.18.  The monodromy data of (2.65) with (2.66) and (2.67) is pre-
served if and only if {)\j, Ly} satisfies the following completely integrable Hamiltonian

system with time variables t = (ty,--- ,t,):
O\, OH op; OH
2.71 L = £ L=—p—t (1<jk<
(2.71) o, Top, ot~ om, l<jk<g)
with
g —

(2.72) Hy =Y ay, ,(t)h,

p=1

Here {aj,k(t)} s determined by the following recursion relation for each j:

k
(2.73) (29 — 2k — D)a; () + > (20— 2k +1— 1)ty qa,, () =05y ;-
=1
We refer to (2.71) as G(1,9 + 3/2; g).
In the course of the proof of Theorem 2.18, we will find that .4, in (2.70) has the
following form:

g—1
z _
(274) A] = Z o )\k ZNkNg p’kaj,p(t)'
k=1 p=0

By the same argument as in the proof of Theorem 1.10, we obtain the following:

Theorem 2.19.  Let K be a rational function of {\;, p,,t} defined by

(2.75) K :=40'2H,

t,=401/2(420-m¢ t,=20—(m—3+2)7 _ (2<j<m)’

m—1

where H, is the Hamiltonian of G(1,m~+3/2;m) defined by (2.72) with k, = 20~ /2§
and ©*"1 =452, Then {u;,v,} is a solution of (Psy),, if and only if {\;, .} defined
by

(276)  U+At=[[@-0X), Nu;=0"""2V(©N)-n" (1<j<m)

j=1
s a solution of the following Hamiltonian system:

d\, 9K dp, OK .
f=nny—, —t=-nn- (<5<
dt o, dt X,

(2.77) m).
Remark.  As is mentioned in the beginning of this section, (Ps,),, is equivalent

to (P1)m- The Hamiltonian structure of (Py,),, is given by Mazzocco and Mo in
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§2.4. Proof of Theorem 2.18

As in the proof of Theorem 1.9 in §1.3, we prove Theorem 2.18 after eliminating
the first order term of (2.65) by the following change of the unknown functions:

m
(2.78) W = z(ro—1)/2 H(Z _ )‘j)_l/QSO-
j=1
Then ¢ solves the following equation:
d?¢
where
201, N I I et T 5 3
230 Q=S S L
7=1 J=1 j=1 i =1 J
Here we put
g g
= T . =1 = kg — 1 1
O A EIETRINN S IR S8
=1 j=1 "1
Ko—1 1< 1
J k=1"1J k
=

Each Ei/ should be considered as a function of {A;,v;,t;} through the relation (2.82).
Then the monodromy data of (2.65) is preserved if and only if (2.79) is preserved. This
condition is equivalent to the condition that there exist rational functions A,,---, A,
so that (2.79) and the following equations is completely integrable:

2.83 — A2 _ ",
(2.83) o, 9oz 2927

Proposition 2.20.  The following transformation is canonical:
(2.84) N, Hyt) — (M v, K, t).

Proof. 1t follows from (2.82) that

ko — 1 1 < dX —dX

2, dv; = dpp; + 20—y + = Y AT

(2.85) Y 'U’J+2()\j)2 J+2k=1 (A = Ap)?
iz

Hence we obtain

—_
Q
(]
—~
>
|
>
a5
e
|
U
=
<
>
U
>
<

g g
(2:86) Y du;ndh =) dpg Ndd; = —
j=1 j=1 j

<
I
—_
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Thus the proof completes if we show K; = H; for 1 < j < g where (2.82) is assumed.
Since a; o = 0 holds for 1 < j < g — 1, we obtain

g g—1 g—1
-/ —/ —
(2.87) K; = Z jgphp = Z jg—php = Z jg—phy = Hj.
p=1 p=1 p=1

Hence, by using a, o = 1/(2g — 1), we obtain

g—1 g g—1 g
Kg:zagg php+a90 g 12”}) Gg,qg— pp+a90( Zyp):

p=1 p=1 p=1 p=1
This completes the proof. O

Thus Theorem 2.18 follows from the following;:

Theorem 2.21.  The monodromy data of (2.79) with (2.80) is preserved if and
only if {)\j,,uk} satisfies the following completely integrable Hamiltonian system with

time variables t = (t1,--- ,t,):

o, 0K, Ou, 0K,
ot, o, ot o

(2.89) (1<jk<g)

with

(2.90) K, = Zak gl Z

The proof of Theorem 2.21 proceeds in the same manner as that of Theorem 1.11
given in § 1.3. Here we content ourselves with outlining the derivation of the Hamiltonian
system (2.89).

First we can confirm that A(z)A;, where A(z) is defined by (1.37), is a polynomial
of degree g, and it vanishes at the origin. Hence we can assume that A; has the following
form:

g (k) )
(2.91) =+ Z

g (k
with v, = Z "
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This {A,} has the following expansion near z = oo:
g—1

(2.92) A= a0z F+0="9) (2] — o).
k=0

Hence we can determine {5j(.k)} by comparing (2.91) and (2.92). The equations which
correspond to (1.102) and (1.103) are

(k)

O W N~

(2.3) ON g0y, |
-
(k) (k)

ov g By, 3 0 N o
2.94 —t — B R N o B +ﬁ(-)Q().
( ) 3tj I; [()\l — )\k)2 2 (N, — )\k)3] j s

k#l

Then a similar argument of the 5th Step in § 1.3 gives

O\ 0 < — v G, —y
( 95) 8tj FyJ + 8Vl ; aJ,Q—PhP’ 8tj 8)‘l pz a]ag—php

Since v, = a; o = d; ,/(29 — 1), we obtain the Hamiltonian system (2.89).

§3. (P)-Hierarchy and (P},)-Hierarchy

The purpose of this section is to show the equivalence of (P;)-hierarchy (J =
I1-2,1V) used in [KKoNT] and [KoN] and (P;)-hierarchy (J = II,IV) used in [Ko]. We
note that (Pjp)-hierarchy (resp. (Ppy)-hierarchy) in [Ko] is the same as (ﬁll_g)—hierarchy
(resp. (]SIV)—hierarchy) in this article. We also show in § 3.2 that the equivalence extends
to the underlying Lax pairs.

§3.1. (P;)-Hierarchy, (P )-Hierarchy and Their Equivalent Forms

The (Pjj5)-hierarchy and the (P, )-hierarchy are obtained by Gordoa, Joshi and
Pickering in [GJP1] through a certain reduction of the dispersive water wave hierarchy.
To write down the (P 5)-hierarchy and the (Ppy)-hierarchy, we first define {K,,, L, },
polynomials of u = wu(t), v = v(t) and their derivatives, by the following recursion

relation:
1 1 dK,,
( ) Kn—l—l - E(UKn—I—QLn_n dt )7
3.1 n
1 _ dL.
L, = 1 Z(UKn—jKj —L, ;L;+n lKn—jd_tj)a

=0
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for n > 0 with K, = 2 and L, = 0 (this recursion formula (3.1) is obtained in [N1] (cf.
[N2])). First few members of {K,,, L, } are given by

K U K 1 [u?+ 20 d [ —u
3.2 Ll = , 2= = -1 ,
(3:2) <L1> (v) <L2> 2 ( 2uv ) i dt ( v )

K N2 [ ud + 6uw d [—u d? (u
3.3 31 =(= 3un~t— 2 .
(3.3) <L3> (2) <3u2v—|—302> +oun dt ( v ) o dt? (v)

Then the (Pyp,)-hierarchy can be formulated as follows (see [N1] and [N2] for the
fact that (Pjy_,),, defined here is the same with that of [GJP1]):

Definition 3.1 (P} ,-Hierarchy with a Large Parameter).  We set:

4

m
K+ K, o +29t=0,
j=1

(3.4) (Prr2)m m
Ly + Z CjLy,_j11 = 2K,
=1

\
where v (# 0), x and {c;}72, are constants.

Remark.  Without loss of generality, we can choose ¢; = 0 by the translation
of u, fix v to an arbitrary nonzero number by the scalings of u, v and t. We also

note that (Pjy,),, defined here can be obtained from that in [KKoNT] by the following
replacement of constants:

1 1 .
(3.5) 7= 59 l€—>§(5, Cj = Cmji1 (J=1,2,---,m),

where {7, k,c;} are constants used here, and {g,d,c,, ;,1} are those in [KKoNT].

To write down the (P}, )-hierarchy obtained in [GJP1], it is convenient to introduce
the following symbols {K,,, £, } for given constants {c;}:

K K K K
3.6 n | _ n n—1 . 0
for n =1,2,---. By using these symbols {K,,, L, }, (Pi.5),, is expressed as

with ¢y = 1 and ¢, ; = 0. Using these symbols, we can present the (P )-hierarchy
with a large parameter as follows:
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Definition 3.2 ((Prv)-Hierarchy with a Large Parameter).  We set:

_1d§—tm = 2L, +uk,, + 2vtu — 460, — 2~ 1y,
K, + 29t) = - = (K + 29t)2 + (L, —260,)% — 46,2,

where 1, 61, 05 and {c;}7]; are constants (we set co = 1 for convenience).

Remark.  This time, we can choose ¢, = 0 by the translation of ¢, and fix 7 to

an arbitrary nonzero number by the scalings of u, v and ¢ without loss of generality.

We now introduce the (P, )-hierarchy and the (ﬁlv)—hierarchy, which seem to be
amenable to explicit computations. (see [KT] for example).

Definition 3.3 ((1311_2 )-Hierarchy with a Large Parameter).  We set:
( _1 du]‘ )
U —2uyu; + vy +uj] + 20w (G=1,2,---,m),
(3.9) (1311-2) : _1dv; ,
n 1%:2[U1Uj+vj+l+wj]—20jvl (]:1,2, ,m),
[ Umt1 =V Uy = K

Here {u;,v,;}7L, are unknown functions, v (# 0), £ and {c;}7"; are constants, and

{w,} are polynomials of {u;,v;} recursively defined by

n—1
(3.10) wn:Zun "‘Zun JH1Y; T o Zvn —5Yj ch —jWy-
j=1

Definition 3.4 ((ﬁw)—Hierarchy with a Large Parameter).  We set:

1 dyy '
(3.11) (Py) T T —20uyu; + v +uj ] +2cu; (G=1,2,---,m),
: ) - L, |

(T 2lvju; + v, +w] —2¢v, (=12, ,m)

with
1 _
(3.12) U1 = —(ytuy + 0, + ?77 17)’
— 0 2 _ 0 2

(313) vm+l — _wm o ’Yt’Ul . (’Um 1) H

Here {u;,v,;}}, are unknown functions, v (# 0), 6, 05 and {c;}JL, are constants, and
{w,,} are polynomials of {u;,v;} recursively defined by (3.10).
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The principal aim of this subsection is to show that (Pj,),, and (Py),, are re-
spectively equivalent to (Ppyq)m and (Ppy),,; to be more explicit we prove the following:

Theorem 3.5.  If {u,v} is a solution of (Py.y),,, then {u;,v;} defined by
1 1 .

is a solution of (Py5).,. Conversely, if {u;,v;} is a solution of (Pyg)ms then
(3.15) u=—2u;, v=2uv
gives a solution of (Piy.o),-

Theorem 3.6.  If {u,v} is a solution of (Pry),, then {u;,v;} defined by (3.14)
is a solution of (Pry),,. Conversely, if {u;,v;} is a solution of (Pry)y,, then {u,v}

defined by (3.15) gives a solution of (P ),,-

Note that (3.15) is coincident with (3.14) with j = 1. As the logical structure of
the proof of Theorem 3.5 and that of Theorem 3.6 are the same, here we give a proof
of Theorem 3.6. To prove Theorem 3.6 we need the following:

Proposition 3.7.  Let {K,,,L,} be polynomials of u, v and their derivatives
defined in (3.6) with co = 1. Then we have

1
2

dK
(UICn - 77_1 - + 2£n) + 20n—|—17

o
n+1 dt

(3.16) 1 ) dL;
§=0

ey dt
Proof. By the definition of IC,,, |, we find

n+1 n
Z 1 Z _LdK,,_

Then it follows from (3.1) and K, = 2 that

1 K
(3.18) K1 = 7 Wk, +2£, — T =) + 26,44

dt

This shows the first relation of (3.16). To prove the second relation, we first use (3.6)
to obtain

dL;

(3.19) ; {vK,_;K; — L, _;L; + n—licn_jg
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g 1 dL;_,
= chcl{'UKn_j kK Y Ln—j—ijj—l + n K’I’L—j—k dt }

Then by changing the order of summations and using the second equation of (3.1), we
obtain

dc;

(320 Z{'U’Cn j’C Ln ]E +"’7_1’Cn —J dt

7=0
n n—kn—k—lI dL .

Z Z Ckcl{UKn—j—k—lKj =Ly g K n_lKn—j—k—ld_tj}
k=0 1=0 j=0

n n—k
=4y

cxey Ly, — k—I+1
k=0 =0

Hence the right-hand side of the second relation of (3.16) becomes

n n—~k
Z il 141 ch j+1L; _ch[’n k41 ch j+1Ly = oLy
k=0 =0 j=0 k=0 j=0

This completes the proof. O

Proof of Theorem 3.6. By the first equation of (3.16), we find

dKC;
(3.21) nt—L =uk, +2L, — 2K, | +4c;
dt J J j+1 j+1

We next introduce {W;} by

L,
(3.22) T — o= oK+ 2L, + AW,

Clearly these Wi, W,, ..., W,, are polynomials of u, v and their derivatives. Then by
substituting (3.22) into the second equation of (3.16), we find that {W,} satisfy

n

- 1
(3.23) QWn = — Z IC?’L—jo - E Z(Kn_3+1 2 n ]+1 L + Z Ln J ]

J=1

for n = 1,2,.... Hence (3.16) is rewritten as the combination of (3.21), (3.22) and
(3.23). We also note that we can show from (3.23) and (3.14) that w; = W; holds for
7 =1,2,--- ,m by induction.

Next by using (3.21) we can eliminate diC,,/dt in the left-hand side of the first
equation of (3.8). Hence the first equation of (3.8) is rewritten as

(3.24) K1 = —vtu+ 26, + 071y
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Furthermore (3.22) entails

ac
(3.25) n YK, + 29t) = + oKy + 29t)% — (L, — 20,)? + 460,>
ac
= (K, + 27t){77_1d—tm +o(K,, +29t)} — (£, — 201)? + 46,>
= (K, +29) (2L, + AW, + 29t0) — (L,, — 260,)? + 46,°.
Hence the second equation of (3.16) is rewritten as

(Em B 291)2 B 4922
2(K,, + 2vt)

(3.26) Lir =—2W,, —~ytv+

Thus (Ppy),, is equivalent to (3.24) and (3.26).

It is now clear that (P,),, is equivalent to (?Iv)m by (3.14) and w; = W,. Here
(3.21) and (3.22) correspond to (3.11) with (3.10), and (3.24) and (3.26) correspond to
(3.12) and (3.13). O

§3.2. Lax Pairs of (P;5),,, (Pv),, and Their Equivalent Hierarchies

In this subsection we show that the Lax pairs of (Pyy,),, and (Pyy),, given in [Kol,
where the labeling (Pyy),, and (Pry),, is used, can be obtained from those given by
[GJP2] (see also [N1]) through the relation (3.14).

Since the arguments are not different for (ﬁH_Q)m and (]31\,)

~

the Lax pair of (Ppy),,. To begin with, let us recall the following result:

m» we mainly discuss

Theorem 3.8 ([GJP2]).  The compatibility condition of the following equations
(3.27) is equivalent to (3.8):

40—
199 _ o9 _
(3.27) ven - =AY, 0T o =By,
where
_1dk -1
A 1[— 2z —u)(K+29t) —n E—Qn 0l 2(IC + 24t)
-1 L
4 —277_1ccll—t — 20(KC + 27t) 2z — u)(K + 2vt) + 77_1% — 271y
N 1 I 0
5o (—x—l—u/Q 1 ) |
v r—u/2
Here IC and L are defined by
(3.28) K=Y am7K; L= a"7L,
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and
L dK,, 1
L =n T —u(K,, +29t) = 2L,, +40, + 2" ',
dl
Iy=n"1 (K, + 29t)— 2 + o(Ky + 2vt)%p — (L, — 20,)° + 46,°.

Note that I; = I, = 0 is nothing but (Ppy),,-

Theorem 3.9 ([Ko]). The compatibility condition of the following equations
(3.29) are equivalent to (3.11):
09 09
~— ~—

2 20 g 0% g
(3.29) v 5 v, 5 ¥,
where
(3.30) i —[a™ T +V + 2C(x) + yat — 6] U+C(z)+t

' B —2[zV + W v, 4 +7tvy] 2™+ V +2C(z) + yat — 0,

—2v; T H+u

(3.31) §:<_(x+“1) ! )

(3.32) U(z)=a2"— Zujwm_j, Vix) = Zvj$m_j,
j=1 j=1

m m

(3.33) W(zx)= ijajm_j, C(z) = chxm_j.

Our aim is to recover (3.29) from (3.27). First, we note that

(3.34) n_l% = —(2z —w)K — 2K, 1 + 2L + 4(z™ M + 20(z)),
(3.35) n—l% = 0K +20L + 2L, , | +4W

follow from (3.21) and (3.22), where C(z) is defined by (3.33), and

(3.36) W= am™ W,

J=1

Next, by using the same argument to derive (3.24) and (3.26), we obtain

(3.37) I = —2K,, .1 — 2ytu + 40, + 21~ 'y,

(3.38) Iy = (K, +29) (2L, 1 + AW, + 27t0) — (L, — 20,)% + 40,
Hence

14k —1
(3.39) 4A1, =Lz —u)(K+29t) —n " — =2n v+ 1,

dt
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K
= —(2z —u)(K +29t) —n ' = + (=2K,, ., — 27tu +46,).

dt
Then it follows from (3.34) that
(3.40) 4A11 = —2L — 4(z™ ! 4 2C(x)) — dyatu + 46,.
We also obtain
(3.41)
dL I
— 1= 2
245, =0 = V(K + 29t) + K+ 29t
_,dc (L,, —20,)% — 46,°
- _ 17~ 2 2 4 2 _ m 1 2
U v(K + vt)-l—{ L1 +4W,, + 29ty K+ }
(Lo — 261)° — 46,°
=—2zL—4 4 — :
L — 4NV +4W,, K+ o0
Hence by the replacement
(3.42) K—2U(x)+2C(x), L—2V(x), W— W(x),

and (¢1,192) — (¥1,%2/4), we find the matrix A from A.
In a similar manner we obtain the Lax pair of (Py),, from the following Lax pair
for (Pyp),, given in [GJP2] (see also [N1], [N2]):

a9 8
A4 128 _ Ay -12Y _ gy
(3.43) M5 v, 5 v,
d
1 —(2x—u)l€—n_1—’C 2K
4=7 L “ dK
_op—127 _ —1%
2n o 20 2z —u)K+n I
2 \2(L,,41 —2rK) K1 +27t)°
g [~*t u/2 1
B v r—u/2)"
In fact, it follows from (3.34) and (3.35) that
1 [ —22™ — L —22C(x) — 27t K
3.44 A=— .
(349 2 —77_1% — oK +2L,, 1 —4r  22™T 4 L+ 220 (x) + 29t

Then the replacement (3.42) entails following Lax pair of (Py),,, (cf. [Ko]):

L0 a0 <
(3.45) Wl = Ay, 9 = B,
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— (= 4V 4+ 2C () + 1 U+ C(x)
(340 4 ( =22V +W+kl 2™+ V +aC(x) +7t>

(3.47) §:<_(‘”+“1) ! )

—2v; T H+u

Appendix A. First Two Members of the FP-Hierarchy and the
P;,-Hierarchy

(Py)1, (P)g and (Psy)q, (Psy)y are given as follows:

2

1
(Pl)l 77 dt2 + 3u + cG1u + 2’7t + 502 = O
d*u d?u du
—4
) vt 00 e G +5(5) |
1
+ 100" + 3eyu” + cyu + 2yt + ¢ = 0.
. _2d2 1 du -1 LPRY 2
(P3g)y 2(u+ 29t + 301) e — (! a + 207 1y)? + du(u + 29t + 501) = —k?,
d?y dy 1
= 20—2 — (p1 3 2 2 . .
Y g _(77 dt) Ayt Aty — kT with y = ut 29t 4 e
5 d?u 1
(Ps4)2 2(n~? e + 3u? +clu+27t+3c2)
d*u d2u dun 2
— + (6uby + cb s 6( > }
x{n dt4+(U1+cl) dt2+ o
d*u du
S -1 —1,\2
o d?u 1 9 2
+ 4ufn d2—|—3u +01U+27t+—02} .

Appendix B. Large Parameter by Scalings

The Painlevé hierarchies with a large parameter n and their Lax pairs with the large
parameter we deal with in this article are found through the scaling of unknown func-
tions, independent variables and parameters of the corresponding Painlevé hierarchies
and their Lax pairs. For example, if we change the unknown functions, the independent
variable and parameters in (F),, with n =1 by

u = nzauT7 t = nl—atT7 Cj — 772_7046; (1 S ,] S m + 1)7 v = 77(2171—1—3)04—171'7
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where « is arbitrary, then u' etc. satisfy (P}),, with the large parameter 1. We can also
obtain (L;),, with a large parameter from that with n = 1 by changing

— 1 0 e
_<0 na>¢.

x ="l

(4

In what follows we symbolically designate the procedure above as follows:

(Pl)m :

Using this symbolic expression, we list up the concrete form of the scaling we used:

u—n*u, t—ntT% z—n*z, 4 — 77(2m+3)0‘_1, c; — 772jo‘cj.

(]Sl)m : U; — 772jauj7 v; — n(2j+1)avj7 t—n' o, x — >,
? N n(2m+3)a—1§, 5j N nQ(j+1)a@.
(P34)m u— 772au7 l— 771_&757 r— 772(1‘177
? N n(2m+1)a—1§, N 77(21714—1)047{7 c; — anaC]"
(?34)m Uj — n2jaujv Uy — 77(2j+1)avj7 t— nl_o‘t, L — 772a37,
? N n(2m+l)a—1§’ PN 77(2m—|—1)o¢7{, 5j N n2(j—|—l)orcvj‘
(PII)m u — n“u, v = 772%, t— nl_o‘t, Tr— 772a377
y = pmFDazly e pmEag c; — njo‘cj.
(ﬁll)m : uj - njauj7 vj - ﬂ(jJrl)an; t— Ul_at, Tr— 772ax7
v — ety e e o,
(w; — n(j+2)awj)‘
(Pryv)m u— nu, v — 1, t—n'T P,
v — n(m""l)o‘_l'y, (9j — n(m—kl)a@j, c; — njacj.
(]Slv)m : U; — njo‘uj, v; — ?7(‘7+1)°‘vj, t— nl_o‘t, r — 772a$7
v — n(m""l)o‘_l'y, 0, — n(m—kl)a@j, c; — njacj
(w; — n(j+2)awj)'

The following are the scalings of variables and constants to introduce a large parameter
for the degenerate Garnier systems. We note that the degree of the scalings is assigned
through the relations between the degenerate Garnier systems and the corresponding
Painlevé hierarchy.

5
Glg+5:9): Ay — /ot

2g+1)/(2g+3
5 (29+1)/(29 ),uj,

Ky — M
t; — 772(g_j+2)/(29+3)tj7 h; — r,72(g+j+1)/(29+3)hj7

PN 772/(294—3)2.
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[GJP1]
[CGIP2]
[GP]
[GPP]
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[IKSY]

[IMU]

[KKoNT]

(KT

[Kwm]

[Ki]

[KoN]

[KoNT]
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3 _
GLg+35i9): Ay — /BTN, py — 297 D/CoD,
t; — 772(9_j+1)/(29+1)tj, h; — n2(g+j)/(29+1)hj,
Ko — Nkg, z — 772/(2g+2)2~
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