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Monodromy Matrices of a Second Order Fuchsian

Differential Equation with Five Singular Points

By

Takashi Aoki * and Takayuki Iizuka**

Abstract

Monodromy matrices are computed for an explicitly given second order Fuchsian differ‐

ential equation with five singular points by using the exact WKB analysis.

§1. Introduction

The aim of this article is to compute the monodromy matrices of the following
differential equation:

(1.1) (-\displaystyle \frac{d^{2}}{d_{X^{2}}}+$\eta$^{2}Q(x)) $\psi$=0,
where

(1.2) Q(x)=\displaystyle \frac{(x-2i)(x-(1-i))(x+(1+i))(x-(1-3i))(x+(1+3i))(x+4i)}{x^{2}(x-1)^{2}(x+1)^{2}(x+2i)^{2}(x+3i)^{2}}
and  $\eta$ designates a large parameter. Equation (1.1) is a second order Fuchsian differential

equation with five singular points

(1.3)  b_{0}=0, b_{1}=1, b_{2}=-1, b_{3}=-2i, b_{4}=-3i.

Our computation is based on the exact WKB analysis developed by [2], [4] in which

monodromy matrices are computed for a given second order Fuchsian differential equa‐

tion with four regular singular points. The method of computation employed here is
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exactly the same as that given in [2], [4]: Firstly we draw the Stokes curves of (1.1)
which are integral curves of the direction field {\rm Im}\sqrt{Q(x)}dx=0 emanating from the

turning points

(1.4) a_{0}=2i, a_{1}=1-i, a_{2}=-1-i, a_{3}=1-3i, a_{4}=-1-3i, a_{5}=-4i

On the Riemann sphere \mathbb{P}^{1}() ,
the Stokes curves, the turning points and the singular

points form a sphere graph with vertex 2‐coloring which is called the Stokes graph of

Eq. (1.1). Secondly we take the Borel sums of WKB solutions and choose them as a

system of fundamental solutions of Eq. (1.1). For each singular point, we take a closed

oriented path with a fixed base point encircling the singular point. Finally we take the

analytic continuation of the system of fundamental solutions along the path. We use

the connection formula for WKB solutions every time the path crosses the Stokes curves

and multiply all of thus obtained connection matrices. Then we have the monodromy
matrix of the contour with respect to the system.

Graph theoretic classification of Stokes graphs of second order Fuchsian differential

equations with five regular singular points is given in [1], [3]. There are 25 different

types of Stokes graphs for such differential equations and they are classified in terms

of the order sequences of dual graphs. Equation (1.1) is an example given in [1] whose

Stokes graph is characterized by the order sequence (4,4,4,3,3) which is called the index

of the graph in [1].

§2. Stokes Curves and the WKB Solutions

The Stokes graph of Eq. (1.1) can be obtained by using numerical computation and

it has the configuration as in Fig. 2.1 (cf. [1, Fig. A.1, (\mathrm{i})] ):

tJ_{\mathrm{f}\rfloor}

Fig. 2.1
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Here triangles and small circles designate turning points and regular singular points,

respectively. We fix a point x_{0} outside the graph and take the WKB solutions

(2.1) $\psi$_{\pm}=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{x_{0}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)
as a system of fundamental solutions at x_{0} . Here S_{\mathrm{o}\mathrm{d}\mathrm{d}}=\displaystyle \sum_{n=0}^{\infty}$\eta$^{1-2n}S_{2n-1} denotes the

odd part of the formal solution S=\displaystyle \sum$\eta$^{-k}S_{k} of the Riccati equation

(2.2) \displaystyle \frac{dS}{dx}+S^{2}=$\eta$^{2}Q(x)
associated with Eq. (1.1). Let C_{k}(k=0,1,2,3,4) be closed paths going around b_{k} with

the base point x_{0} as shown in Fig. 2.2. k :

Fig. 2.2.0

Fig. 2.2.2

Fig. 2.2.1

Fig. 2.2.3



120 TAKASHI Aoki and TAKAYUKI Iizuka

Fig. 2.2.4

We will compute the monodromy matrices of C_{k}(k=0,1,2,3,4) with respect

to the Borel sums of the WKB solutions (2.1). We place the cuts as shown by wavy

curves in Fig. 2.3 and fix the branch of the leading term S_{-1}=\sqrt{Q(x)} of S so that

\sqrt{Q(x)}\sim-1/x^{2} holds as  x\rightarrow+\infty . We set

 c_{k}={\rm Res}_{x=b_{k}}\sqrt{Q(x)} ,
and v_{k}^{\pm}=\exp[i $\pi$(1\pm 2{\rm Res}_{x=b_{k}}S_{\mathrm{o}\mathrm{d}\mathrm{d}})]

for k=0 , 1, 2, 3, 4. Note that v_{k}^{\pm}=\exp i $\pi$(1\pm\sqrt{4c_{k}^{2}$\eta$^{2}+1}) hold and \displaystyle \frac{1\pm\sqrt{4c_{k}^{2}$\eta$^{2}+1}}{2}
are the characteristic exponents of (1.1) at b_{k} (cf. [2], [4]). We have

(2.3) {\rm Re} c_{0}<0, {\rm Re} c_{1}>0, {\rm Re} c_{2}<0, {\rm Re} c_{3}>0, {\rm Re} c_{4}>0.

Fig. 2.3
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In Fig. 2.3, we give the plus or the minus sign on each singular point b_{k} according to

the signature of‐Re c_{k} which will determine the dominance relation of WKB solutions

at b_{k} (cf. Section 3.1).
Let $\gamma$_{j} be an oriented curve starting from x_{0} and terminating at a_{j} shown by a

dotted curve in Fig. 2.4.

Fig 2.4

Let U_{j}(j=0,1, \ldots, 8) denote the connected components of the complement of the

Stokes graph in \mathbb{P}^{1}() as shown in Fig. 2.4.

To describe the monodromy matrices of C_{k}(k=0,1, \ldots, 4) ,
we define e_{j}, u_{j} and

u_{jj}, (j, j'=0,1, \ldots 5) by

(2.4) e_{j}=\displaystyle \exp(\int_{$\gamma$_{j}}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx) ,

(2.5) u_{j}=e_{j}^{2}=\displaystyle \exp(2\int_{$\gamma$_{j}}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx) ,

(2.6) u_{jj'}=u_{j}^{-1}u_{j'}
and set

(2.7) E_{j}=\left(\begin{array}{ll}
e_{j} & 0\\
0 & e_{j}^{-1}
\end{array}\right),
(2.8) D_{k}=\left(\begin{array}{ll}
v_{k}^{+} & 0_{-}\\
0 & v_{k}
\end{array}\right),
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(2.9) U_{jj'}=\left(\begin{array}{ll}
u_{jj'} & 0\\
0 & u_{jj}^{-1}
\end{array}\right),
(2.10) V\pm=\left(\begin{array}{ll}
1 & 0\\
\pm i & 0
\end{array}\right), V^{\pm}=\left(\begin{array}{l}
1\pm i\\
01
\end{array}\right)
Let $\varphi$_{j},\pm denote the WKB solutions normalized at  a_{j} :

(2.11) $\varphi$_{j},\displaystyle \pm=\frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{a_{j}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx) .

§3. Computation of Monodromy Matrices

§3.1. The monodromy Matrix of C_{0}

We use the same notation as in the preceding sections. Let t_{l}(l=0,1,2,3,4)
denote the l‐th crossing point of C_{0} and Stokes curves as shown in Fig. 3.1.

Fig. 3.1

Namely, C_{0} crosses the Stokes curves in order t_{0}\rightarrow t_{1}\rightarrow t_{2}\rightarrow t_{3}\rightarrow t_{4} and passes

through the Stokes regions U_{l}(l=1, \ldots, 8) in order U_{0}\rightarrow U_{1}\rightarrow U_{2}\rightarrow U_{3}\rightarrow U_{1}\rightarrow U_{0}.
We compute the connection matrix at t_{l} for each l.

Let $\varphi$_{j}^{l},\pm and $\psi$_{\pm}^{l} be the Borel sums of $\varphi$_{j},\pm and $\psi$_{\pm} in the Stokes region U_{l} re‐

spectively. To determine $\psi$_{\pm}^{l} ,
we have to specify the path of integration in the WKB
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solutions, which is taken along C_{0} . The path C_{0} passes the Stokes regions U_{0} and U_{1}
twice. We denote by \overline{ $\psi$}_{\pm}^{l} the Borel sums of $\psi$_{\pm} in U_{l} for the second pass (l=0,1) . The

Borel sums $\varphi$_{j}^{l},\pm are considered in a neighborhood of  a_{j}.
Since C_{0} crosses a Stokes curve emanating from a_{0} at x=t_{0} clockwise with respect

to the center a_{0} . Since {\rm Re} c_{1}>0 ,
we have {\rm Re}\displaystyle \int_{a_{0}}^{x}\sqrt{Q(t)}dt<0 on the curve and $\varphi$_{-} is,

by definition, dominant there. Hence the connection matrix between ($\varphi$_{0,+}^{0}, $\varphi$_{0}^{0} and

($\varphi$_{0,+}^{1}, $\varphi$_{0}^{1} is given as follows ([5]):

(3.1) ($\varphi$_{0,+}^{0}, $\varphi$_{0,-}^{0})=($\varphi$_{0,+}^{1}, $\varphi$_{0,-}^{1})V^{-}

Two pairs of WKB solutions ($\varphi$_{0,+}, $\varphi$_{0} and ($\psi$_{+}, $\psi$_{-}) are related by

(3.2) ($\psi$_{+}, $\psi$_{-})=($\varphi$_{0,+}, $\varphi$_{0,-})E_{0}

near x=t_{0} and hence we have

(3.3) ($\psi$_{+}^{l}, $\psi$_{-}^{l})=($\varphi$_{0,+}^{l}, $\varphi$_{0,-}^{l})E_{0}
for l=0 ,

1. Here, in Eq. (3.3), we take the Borel sum of E_{0} ,
which is expressed by the

same letter. For such constant matrices as E_{j}, U_{jj} , ,
we employ the same convention.

Namely, the Borel sums of E_{j} and U_{jj} , are respectively denoted by the same letters.

Note that they do not depend on the choice of the Stokes region. Combining (3.1) with

(3.3), we obtain

(3.4) ($\psi$_{+}^{0}, $\psi$_{-}^{0})=($\psi$_{+}^{1}, $\psi$_{-}^{1})E_{0}^{-1}V^{-}E_{0}.

Thus we have the connection matrix T_{0}^{(0)}=E_{0}^{-1}V^{-}E_{0} for the Borel sums of ($\psi$_{+}, $\psi$_{-})
at x=t_{0} . In asimilar way, we obtain the connection matrix T_{1}^{(0)}=E_{0}^{-1}V_{-}E_{0} at

x=t_{1} . We note that {\rm Re} c_{0}<0 and that {\rm Re}\displaystyle \int_{a_{0}}^{x}\sqrt{Q(t)}dt>0 holds on the Stokes curve

connecting a_{0} with b_{0} and hence $\varphi$_{+} is dominant there.

Next we compute the connection matrix at x=t_{2} . Let us consider a closed oriented

curve consisting of the portion of C_{0} from x_{0} through t_{2} ,
the portion of the Stokes curve

from t_{2} through a_{2} ,
and $\gamma$_{2}^{-1} . It encircles b_{0}, b_{1} ,

and the cut connecting a_{2} with a_{1}

counterclockwise. Therefore we have the relation

(3.5) ($\psi$_{+}, $\psi$_{-})=($\varphi$_{2,+}, $\varphi$_{2,-})E_{2}D_{0}D_{1}U_{21}

near x=t_{2} and hence we obtain

(3.6) ($\psi$_{+}^{l}, $\psi$_{-}^{l})=($\varphi$_{2,+}^{l}, $\varphi$_{2,-}^{l})E_{2}D_{0}D_{1}U_{21},

for l=2
, 3.
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On the Stokes curve connecting a_{2} with b_{0}, $\varphi$_{+} is dominant and C_{0} crosses the curve

clockwise with respect to a_{2} . Thus we have the connection matrix between ($\varphi$_{2,+}^{2}, $\varphi$_{2}^{2}
and ($\varphi$_{2,+}^{3}, $\varphi$_{2,-}^{3}) :

(3.7) ($\varphi$_{2,+}^{2}, $\varphi$_{2,-}^{2})=($\varphi$_{2,+}^{3}, $\varphi$_{2,-}^{3})V_{-}.

Combining this with (3.6), we find

(3.8) ($\psi$_{+}^{2}, $\psi$_{-}^{2})=($\psi$_{+}^{3}, $\psi$_{-}^{3})(E_{2}D_{0}D_{1}U_{21})^{-1}V_{-}(E_{2}D_{0}D_{1}U_{21}) .

Thus we obtain the connection matrix T_{2}^{(0)}=(E_{2}D_{0}D_{1}U_{21})^{-1}V_{-}(E_{2}D_{0}D_{1}U_{21}) at t_{2}.
In a similar manner, we have

(3.9) ($\psi$_{+}^{3}, $\psi$_{-}^{3})=($\psi$_{+}^{4}, $\psi$_{-}^{4})T_{3}^{(0)}
with T_{3}^{(0)}=()V_{-}(E_{1}D_{0}D_{1}) and

(3.10) ($\psi$_{+}^{4}, $\psi$_{-}^{4})=(\overline{ $\psi$}_{+}^{0},\overline{ $\psi$}_{-}^{0})T_{4}^{(0)}
with T_{4}^{(0)}=(E_{0}D_{0})^{-1}V^{+}(E_{0}D_{0}) . The Borel sum (\overline{ $\psi$}_{+}^{0},\overline{ $\psi$}^{\underline{0}}) of (termwise) continuation

of the WKB solution ($\psi$_{+}, $\psi$_{-}) along C_{0} gains the local monodromy at b_{0} :

(3.11) (\tilde{ $\psi$}_{+}^{0},\tilde{ $\psi$}_{-}^{0})=($\psi$_{+}^{0}, $\psi$_{-}^{0})D_{0}.
Hence we have the relation

(3.12) ($\psi$_{+}^{0}, $\psi$_{-}^{0})_{C_{0}}=($\psi$_{+}^{0}, $\psi$_{-}^{0})D_{0}T_{4}^{(0)}T_{3}^{(0)}T_{2}^{(0)}T_{1}^{(0)}T_{0}^{(0)},
where ($\psi$_{+}^{0}, $\psi$_{-}^{0})_{C_{0}} designates the analytic continuation of ($\psi$_{+}^{0}, $\psi$^{\underline{0}}) along C_{0} . Therefore

the monodromy matrix M_{0} of C_{0} is given by

(3.13) M_{0}=D_{0}T_{4}^{(0)}T_{3}^{(0)}T_{2}^{(0)}T_{1}^{(0)}T_{0}^{(0)},
or explicitly,

(3.14) \left(\begin{array}{lll}
v_{0}^{+}+v_{0}^{-} & +\frac{(u_{2}u_{21}^{2}+u_{1})v_{0}^{+}v_{1}^{+}}{u_{0}v_{1}^{-}} & -\frac{i(u_{2}u_{21}^{2}+u_{1})v_{1}^{+}v_{0}^{+}}{u_{0}^{2}v_{1}^{-}}-\frac{iv_{0}^{+}}{u_{0}}\\
-iu_{0}v_{0}^{-} & -\frac{i(u_{2}u_{21}^{2}+u_{1})v_{0}^{+}v_{1}^{+}}{v_{1}^{-}} & -\frac{(u_{2}u_{21}^{2}+u_{1})v_{0}^{+}v_{1}^{+}}{u_{0}v_{1}^{-}}
\end{array}\right) .

§3.2. The Monodromy Matrix of C_{k} for k\geq 1

In a similar manner, we can compute the monodromy matrix M_{k} of the closed

curve C_{k} for k\geq 1 with respect to the Borel sums of the WKB solutions (2.1). We omit

the details and only give the results:

(3.15) M_{1}=D_{1}T_{3}^{(1)}T_{2}^{(1)}T_{1}^{(1)}T_{0}^{(1)}
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with

(3.16) T_{0}^{(1)}=E_{0}^{-1}V^{-}E_{0},
(3.17) T_{1}^{(1)}=(E_{1}D_{1})^{-1}V^{-}(E_{1}D_{1}) ,

(3.18) T_{2}^{(1)}=(E_{3}D_{1})^{-1}V^{-}(E_{3}D_{1}) ,

(3.19) T_{3}^{(1)}=(E_{5}D_{1})^{-1}V^{-}(E_{5}D_{1}) .

(3.20) M_{2}=D_{2}T_{7}^{(2)}T_{6}^{(2)}T_{5}^{(2)}T_{4}^{(2)}T_{3}^{(2)}T_{2}^{(2)}T_{1}^{(2)}T_{0}^{(2)}

with

(3.21) T_{0}^{(2)}=E_{0}^{-1}V^{-}E_{0},
(3.22) T_{1}^{(2)}=E_{0}^{-1}V_{-}E_{0},
(3.23) T_{2}^{(2)}=E_{0}^{-1}V^{-}E_{0},
(3.24) T_{3}^{(2)}=(E_{5}D_{0}D_{1}D_{2}D_{3}D_{4}U_{12}U_{34})^{-1}V^{-}(E_{5}D_{0}D_{1}D_{2}D_{3}D_{4}U_{12}U_{34}) ,

(3.25) T_{4}^{(2)}=(E_{4}D_{0}D_{1}D_{2}D_{3}U_{21})^{-1}V^{-}(E_{4}D_{0}D_{1}D_{2}D_{3}U_{21}) ,

(3.26) T_{5}^{(2)}=(E_{2}D_{0}D_{1}D_{2}U_{21})^{-1}V^{-}(E_{2}D_{0}D_{1}D_{2}U_{21}) ,

(3.27) T_{6}^{(2)}=(E_{0}D_{2})^{-1}V_{+}(E_{0}D_{2}) ,

(3.28) T_{6}^{(2)}=(E_{0}D_{2})^{-1}V^{+}(E_{0}D2) .

(3.29) M_{3}=D_{3}T_{7}^{(3)}T_{6}^{(3)}T_{5}^{(3)}T_{4}^{(3)}T_{3}^{(3)}T_{2}^{(3)}T_{1}^{(3)}T_{0}^{(3)}

with

(3.30) T_{0}^{(3)}=E_{5}^{-1}V^{+}E_{5},
(3.31) T_{1}^{(3)}=E_{3}^{-1}V^{+}E_{3},
(3.32) T_{2}^{(3)}=E_{1}^{-1}V_{-}E_{1},
(3.33) T_{3}^{(3)}=E_{2}^{-1}V_{-}E_{2},
(3.34) T_{4}^{(3)}=(E_{4}D_{3})^{-1}V_{-}(E_{4}D_{3}) ,

(3.35) T_{5}^{(3)}=(E_{3}D_{3})^{-1}V_{-}(E_{3}D_{3}) ,

(3.36) T_{6}^{(3)}=(E_{3}D_{3})^{-1}V^{-}(E_{3}D_{3}) ,

(3.37) T_{7}^{(3)}=(E_{5}D_{3})^{-1}V^{-}(E_{5}D_{3}) .
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(3.38) M_{4}=D_{4}T_{4}^{(4)}T_{3}^{(4)}T_{2}^{(4)}T_{1}^{(4)}T_{0}^{(4)}

with

(3.39) T_{0}^{(4)}=E_{5}^{-1}V^{+}E_{5},
(3.40) T_{1}^{(4)}=E_{3}^{-1}V_{-}E_{3},
(3.41) T_{2}^{(4)}=(E_{4}U_{43})^{-1}V_{-}(E_{4}U_{43}) ,

(3.42) T_{3}^{(4)}=(E_{5}D_{4})^{-1}V_{-}(E_{5}D_{4}) ,

(3.43) T_{4}^{(4)}=(E_{5}D_{4})^{-1}V^{-}(E_{5}D_{4}) .

Explicit forms:

M_{1}= (_{0}^{v_{1}^{+}} -\displaystyle \frac{i(u_{1}u_{3}+u_{5}u_{3}+u_{1}u_{5})v_{1}^{-}}{u_{1}u_{3}u_{5}}-v_{1}^{-}\frac{iv_{1}^{+}}{u_{0}}) ,

M_{2}= (_{-\frac{i_{l$\nu$_{0}l$\nu$_{1}l$\nu$_{2}l$\nu$_{3}l$\nu$_{4}u_{0}^{2}}^{-----}}{u_{5}u_{21}u_{34}l$\nu$_{0}l$\nu$_{1}22++_{l$\nu$_{3}}+_{l$\nu$_{4}^{+}}}-\frac{i_{l$\nu$_{2}^{-}(u_{0}u_{4}l$\nu$_{0}^{+-}}u_{2}u_{4}l$\nu$_{013020^{l$\nu$_{1}l$\nu$_{3}+l$\nu$_{1}l$\nu$_{3}^{+})u_{0}}}^{+_{l $\nu$}+_{l$\nu$^{+}u_{21}^{2}+uul$\nu$^{+--}}}}{u_{2}u_{4}u_{21^{l $\nu$}0}^{2+_{l$\nu$_{1}}+_{l$\nu$_{3}^{+}}}}}v_{2}^{-} v_{2}^{+}0) ,

M_{3}=(^{-\frac{(u_{1}+u_{2})(u_{3}+u_{5})$\nu$_{3}^{-}+(u_{3}^{2}+u_{4}u_{3}+u_{4}u_{5})_{l}$\nu$_{3}^{+}}{u_{3}u_{5}}}-i(u_{1}+u_{2})v_{3}^{-}-i(u_{3}+u_{4})v_{3}^{+}
-\displaystyle \frac{i(u_{3}+u_{5})(u_{1}u_{3}+u_{2}u_{3}+u_{5}u_{3}+u_{1}u_{5}+u_{2}u_{5})_{l}$\nu$_{3}^{-}+i(u_{3}+u_{5})(u_{3}^{2}+u_{4}u_{3}+u_{4}u_{5})_{l}$\nu$_{3}^{+}}{u_{3}^{2}u_{5}^{2}}\frac{(u_{1}u_{3}+u_{2}u_{3}+u_{5}u_{3}+u_{1}u_{5}+u_{2}u_{5})_{l}$\nu$_{3}^{-}+(u_{3}+u_{4})(u_{3}+u_{5})$\nu$_{3}^{+}}{u_{3}u_{5}}) ,

M_{4}=(_{-\frac{i(u_{3}u_{34}^{2}+u_{4})v_{4}^{-}}{u_{34}^{2}}-iu_{5}v_{4}^{+}}-\displaystyle \frac{(u_{3}u_{34}^{2}+u_{4})v_{4}^{-}}{u_{5}u_{34}^{2}} \displaystyle \frac{(u_{3}u_{34}^{2}+u_{5}u_{34}^{2}+u_{4})v_{4}^{-}}{u_{5}u_{34}^{2}}+v_{4}^{+}-\frac{i(u_{3}u_{34}^{2}+u_{5}u_{34}^{2}+u_{4})v_{4}^{-}}{u_{5}^{2}u_{34}^{2}}) .

Remark. The product C_{2}C_{0}C_{1}C_{3}C_{4} is equal to the unit element in the funda‐

mental group $\pi$_{1}(\mathbb{P}^{1}(\mathbb{C})\backslash \{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}\}, x_{0}) . The product of M_{j} �s in the reverse order

becomes

M_{4}M_{3}M_{1}M_{0}M_{2}

=\left(\begin{array}{ll}
-u_{0}u_{1}^{-1}u_{2}u_{3}u_{4}^{-1}u_{5}^{-1}v_{0}^{-}v_{1}^{-}v_{2}^{-}v_{3}^{-}v_{4}^{-} & 0\\
0 & -u_{0}^{-1}u_{1}u_{2}^{-1}u_{3}^{-1}u_{4}u_{5}v_{0}^{+}v_{1}^{+}v_{2}^{+}v_{3}^{+}v_{4}^{+}
\end{array}\right)
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and we can confirm that this is equal to the identity matrix by using the relations

v_{k}^{+}v_{k}^{-}=1 and u_{21}u_{34}u_{05}v_{0}^{+}v_{1}^{+}v_{2}^{+}v_{3}^{+}v_{4}^{+}=-1.
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