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Abstract

Instanton-type solutions to the second member of the first Painlevé hierarchy are con-
structed by using multiple-scale analysis. Some leading terms are explicitly given.

§1. Introduction

The purpose of this paper is to construct a family of formal solutions to the second
member of the first Painlevé hierarchy with a large parameter. Formal solutions contain-
ing arbitrary constants to a nonlinear differential equation which has a large parameter
in an appropriate manner necessarily admit exponential terms. Such a family of formal
solutions was first constructed in [1], [2], [3] for the classical Painlevé equations (P;)
(J = L1I,...,IV) with a large parameter and the solutions are called instanton-type
solutions. The main tool of the construction was the multiple-scale analysis. On the
other hand, Takei [11] found another method of the construction which was based on
the Hamiltonian structure of the Painlevé equations. His method is quite universal and
it can be applied to the Painlevé hierarchies since they have Hamiltonian structures.
Although his method is general, actual computation by his method requires careful
analysis. In this paper, we show that the multiple-scale analysis works also for the
second member of the first Painlevé hierarchy to construct formal solutions containing
four free constants. One of the advantages of our method is that the computation can
be implemented easily by using computer algebras such as Mathematica. Instanton-
type solutions play a role in the reduction theory of Painlevé hierarchies near a simple
P-turning point (cf. [7]).
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§2. The First Painlevé Hierarchy with a Large Parameter

The first Painlevé hierarchy was introduced by several mathematicians from various
viewpoints [8], [9], [5], [10]. Here we employ the following expression due to [12] which
contains a large parameter n:

duj
A

(Pl)m d’U- (j:1727"'7m)7
d_tj = 277(uj+1 +uyu; + wj),

where t is the independent variable, u;, v; are the dependent variables with the con-
ventional assumption u,,,; = 0 and w; denotes a polynomial of {u,v;} defined by the

recurrence relation

1 J Jj—1 1 Jj—1
(2.1) w; =5 Zukuj+1_k + Zukwj_k —3 kavj_k + ¢+ 0t
k=1 k=1 k=1

Here c; is a constant and d,,, designates the Kronecker delta. If m =1, (F),, recovers
the classical first Painlevé equation. We are interested in the second member, namely,
the case where m = 2. Eliminating u,, v;, w; (j = 1,2) and taking t + ¢y as a new
variable ¢, we obtain the following fourth order differential equation for u,, hereafter in

this article referred to as (P})s:

d*u d*u du,\2
(P, = (20“1T21 + 10(d—t1) )+t (—40u} — 16 cu, +161),

where ¢ = ¢; is a complex constant.

§3. Zero-Parameter Solutions

Firstly we consider a formal solution of (), which has an expansion in the negative
powers of the large parameter:

(3.1) Up = Uy g+ 77_1U1,1 + 77_2U1,2 e

Putting this expression into (F}), and comparing the coefficients of the like powers in
n, we find that the leading term wu; o should satisfy

(3.2) —40u? g —16cuy o+ 16t =0

and the higher-order terms w, ; (j > 0) can be determined uniquely once u, g is given.
There are three roots of Eq.(3.2) for general ¢ and ¢. Hence we have three formal
solutions of (P;)y which have the form (3.1). We call them the zero-parameter solutions
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of (P})y. These solutions do not have any free parameter and hence they are very special
formal solutions: General formal solution of (P;), should contain four free parameters,
for the equation is of fourth order.

§4. Multiple-Scale Analysis
Let 6, be a root of the cubic equation 4005 + 16¢c6, — 16t = 0 and set
(4:].) ul — 90 + 77_1/2@.

We regard © as a new dependent variable. Then © should satisfy the following differ-
ential equation which is equivalent to (F})s:

d*e d?e
=7 = n? 200y + n* (—12060% — 16¢)©
(4.2) + 07/2(=1200,0% + 206,07 + 10 (65)?) + n*(—400?)

de 4?0 dO\ 2
2 atnd " 3/2 i b 1 /2qmm
+7°(2005— +20050) + 1 (20@%2 +10(dt> ) n 70"

Multiple-scale analysis seeks for a solution to (4.2) of the form

(4.3) O(t) = O(t, 7y, 75) |11

T2=’I’]¢2 9

where ¢; = /l/jdt (j =1,2) with

V2 =100, + 2vVA,
(4.4) { ' 0 (A = —562 — 4c).

V2 =106, — 2VA,

Note that vy, +v, are the characteristic roots of the leading part of (4.2), that is,
v = %v; solve

(4.5) vt —200,0% + 12002 + 16¢ = 0.
For a function ©(t) of the form (4.3), we have

10 90 90 90

4. a0 _ 20 9
(4.6) a o Mg Ty

where 7, and 7, are restricted respectively to ¢, and n¢, in the right-hand side. If )

0 0 0
solves the equation which is obtained by replacing T in (4.2) by g + 1y pr +77V2¥,
1 2

then O(t) = O(t, 7, 7'2)|:;Z£; is a solution to (4.2). To describe the equation for ©, we

, 0 02

4.7 P, == — 200,07 —= + 12002 + 16
(4.7) 1 V187'14 0V187_12+ o + 16c,
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, 0 , 0 2
(4.8) P, = v, 8_7'24 — 200,v;5 8_7'22 + 12005 + 16¢,
and
s 4 5 5 4 o4
o) P; =4vy Vzm +26V1 V5 W +4v vy m
- 4090%”2% — (12063 + 16¢).

By the definition, P, and P, are factorized as follows:
0? 0?
2(, 2 2

(4.11) Py =12 (ygaa_; . uf) (88—:22 . 1).

Since the equation for O has quite a complicated form, we do not give the full form but
some of higher-order terms with respect to 7:

PO = i 1/?(~1200,6" + 100} (2—3)2 + 20””22_32_2 + 1005 (g-if
+ 201/;(13% + 401/11/2(5%22 + zoyfé%)
+nt (—40(:33 +20(04v, + Houi)g—i + 20(0gv, + 90”5)3_5::
(4.12) + 4090u1%;:21 + 4090%%;1 — 6@4% — 61/3;/5%
— 611 (20 vy + ylyé)% — 6y (20,04 + V{VQ)%S_QQ
— %ij ~ 12y 8t88j12@872 ~ 12n 8t§7i%7’22 - VS%)

+0(n~%?).
We assume that © has an expansion of the form

(4.13) ©=0y+n 20, +n 10 +---.

Putting this into Eq. (4.12) and comparing the coefficients of the like powers of 7, we
find a system of differential equations for ©, /2 (k=0,1,2,...). First three are

(4.14) PO, =0,
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~ ~ O\ 2 90, 00 O\ 2
PO, ,, = — 120,02 + 1002 =2 20v 0270 L1002 (=22
s 1/2 095+ 1004 (G2) + 20, G T 1005 ()
' 520, 920 ~ 920
+ 20020, —2 572 0 1 40v,1,0, or 32 + 20020, 37220
and
(4.16)
~ 3@ 6@1/2 50 6@1/2 861/2 00
PO, = — 2400,0,0 20 o 20v 0 2 -0
1 0900172 + 20vf 72 or, 0r * 128 oT, ey or, 0O,
RE) ~1/2 ~ 82@1/2 2@ pat 62@1/2
2920 2 27
520 %0, ,, . 32@ _
+40u1y2@1/28 1802 + 20020, 3712/ + 201/12@1/28—20 — 4003
8@ 00 920
+ 20004 v, + Govl)a— + 200045 + Oyvy) =2 o, 0 4 400, 5 o 0
T
6260 2 ,6360 2 ,33@0
836 930
— 6vy (2011 + Vlyé)W@S'Q — 6vy (2015 + V%)Fﬁ%
84@0 84@0 84@0 84@0

— 43 — 1203v

R Y Ve giorion, MY Giaront
It follows from Egs. (4.10), (4.11) and the definition of P that

(4.17) Oy = ai" (M)em +ai TV (t)e ™ +alV ()™ +al” TV (t)e
(£10)

is a solution to (4.14), where a;
will be determined later. Put Eq. (4.17) into the right-hand side of Eq. (4.15) and try

93

and aéo’il)(t) are arbitrary functions of ¢. They

to

find a solution to the inhomogeneous differential equation. For every 7, k € Z, we have

PeIT R — p(uy + kuy)ed TR

where we set

p(v) = v* —200,0% + 12002 + 16¢.

Hence p(jv, + kvy) never vanishes for general ¢ if (5, k) # (£1,0), (0,£1). Thus we can

take a solution to (4.15) of the form
3 2,0 - —2,0) 4\ —27 0,2 - 0,—2 _or
0,/ = C”g/z)(t)e2 ! +a§/2 )(t)e 14 ai(l/2)(t)62 2 +a§/2 )(t)e e

(4'18) + Cl(l/ 1)( ) Tt agl/’Q_l)(t)eTl_Tz + ag/; 1)( ) —T1+T7

1,1 S 0,0
—I—aE/2 )(t)e 1 2—|—a§/2)(t).
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The coefficients agj/’g ) (t) are uniquely determined and they can be written in terms of

aéj ’k)(t). For example, we have

10(40, — v3)al” (1)’
(4.19) al29() = —
vi(dvi —v3)

1/2
Since we have, by the definition of v;,

46, — 2 = —2(36, + VA),
and

A — 2 =10(36, + VA).

Equation (4.19) is reduced to
(4.20) a0 =20 L

We put thus obtained (:31 /2 and (4.17) into the right-hand side of (4.16), which will be

a sum of exponential terms e/ *72 (|| + |k| < 3) with coefficients being functions of
t expressed in terms of aéj ’k), agj/’; ), v, 0y and A. The conditions for the absence of
secular behavior (cf. [4]) are that the coefficients of e*™ and e*™2 vanish. After some

computations, we can write down the conditions as follows:

(170) / /
(4.21) dag "7 _ _i(ﬁ+@

1,0 1,0 -1,0 1,0) (0,1) (0,—1
=5 (T a0 al Pal Y~ fa0)af ol

w1 (VB

4.22 = —1,0) (1,0), _(—1,0)\2
( ) i 2 \7, JA ) + fit)ag " (ag )

b 0a 0@V alp ),

da(O,l) 1 /v ( /A)/ o1 o1 01 Lol (1o (o1
(123) =5 = =5 (245 2 ol = Ol e~ fu(0)al e Vel
a0V 1 /v (VAYN o _
(424) = > (G2 + =2 )al ™+ f0al a7

(00 Vel 00D
Here f;(t) (j = 1,2,3,4) are given by

1002 + 70,V/A — 5A

3,2
4 Z-AVIAN

(4.25) £1(t) = 40

Y
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(4.26) fo(t) = 160 ifz;:/ﬁ

(4.27) f5(t) = —40 1005 _Vgig‘/i —58
(4.28) f4(t) = —160 1‘192;:/5

The following relation holds between f, and fy:

(4.29) fovy + favs = 0.

Let us solve the system of differential equations (4.21)—(4.24). Multiplying Egs. (4.21)

(=1.9) and a(l 9 and adding them up, we have a simple

differential equation for the product a(l 0) 6 L0,

and (4.22) respectively by a

d - A
(4.30) L (a0 4 1,0)) (Vl i (VA )a(l 0),,(=1,0).

dt( 0 0 _ ? )

This can be integrated easily and we have

1) o = 0y, VE)

where (] is a constant. Similarly, it follows from Eqs. (4.23) and (4.24) that
(1) VP — Gy, E)

where Cjy is a constant. Going back to Egs. (4.21)—(4.24), we obtain first-order linear

homogeneous differential equations for a(l 0) é L, 0)’ aéo’l), aé_l’o):
da(l,O) 1 /0 (\/Z)/ C f (t) C f (t)
4.33 0O 4l (24 4+ 2h 2/2(0) Y (L0) _ g
(4.33) dt {2(V1 \/Z) VA VQ\/Z}O
(4.34) da‘()_l ! + {i(’/_i + (\/Z)/> CCLA@E)  Cafs(t) }a(—l,o) _0
dt 2 \y, VA Vl\/z VQ\/Z 0 )
da(O,l) 1/ (\/Z)/ C, f (t) C, f (t) o
4.35 0 4l (=24 Lo z2fs\) ils a(’)_o,
(4.35) dt {2(u2 \/Z) /A Vl\/Z}O
(07_1) / /
(4.36) dag + {i(ﬁ n (VA) ) Gof5(t)  Cifa(t) }a(()o,—m _0
dt 2 \1y VA vV A VA
Therefore we have
(4.37) o™ = o, (1, VA) V2001673,

(4.38) aé_l’o) = 51(”1\/Z)_1/291_10191_202:
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(4.39) a(()o’l) = 052(V2\/Z)_1/2(92011(92022,
(4.40) aéo’_l) = By(r,VA) ™ 1/2‘921 1922

Here a4, ay, (3, By are constants and here we set

(4.41) 0, = exp(— Vl{}Zdt) = exp(—40 / 1063 + :19321_ 58 )

(4.42) 0,y = exp(— VQ{;Zdt) - exp( 160 / 502 + AA dt))

(4.43) 0y = exp(— Vl‘szdt) = exp(lGO/ 5312]/—2’_ Aalt> =055,

(4.44) Oy = exp(— Vz’iizdt) = exp(4 / 1062 — ZIQVOQJA_ 5A d)

Since the products a(()l’o) 8_1’0) and a(o’l) (O’_l) satisfy respectively Egs. (4.31) and

(4.32), we find that a5, = Cy, ay0y = C, Should hold. Thus we have

(4.45) alt? = oy (i VA)TV2g01 P00
(4.46) aST0) = B, (1, VA) 20,20
(4.47) a((JO = 2(’/2‘/Z) 1/292041151932262’
(4.48) al" Y = By, VA) 2G5,

Hence we have obtained the leading terms of © which agree with results given in [12]
without computations.

Theorem 4.1.  Let O, , (t) denote the restriction of ék/Q(t,Tl,TQ) to 7, = ng,
and 9 = Noy (k=0,1,2,...). Under the notation given above, we have

0711035 1 4+ 810,710, e o)

1
Oy = W(Oﬁ 11

(4.49)
(0051710557 €1%2 + 30,710,720,

1
T (VQ\/Z)l/Q

In other words, we obtain first two terms of a formal solution u, to (Py)y:

1 _ —
uy = Oy 4+ (@, 003716522 191 1 B0, 2 e
1=0% " {(ylﬂ)l/z( L e :
(4.50) . s P
b (bS5 e ente g, g 2P emnsa) L (Y,
(VQVA)l/Q( 2 Pa )} (77 )

(4.k)
1/2

explicitly there, we obtain the subleading terms of ©. Coefficients of n~le/mP1+knes

By using (4.19) and similar equations for other a which have not been given
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(l7] + |k] = 2) of © (or uy) are given as follows:

@172 3\/— 11
2720 _ 2/3? 1—12a15191—22a2ﬁ2
1/2 - 3\/_ ’

0,2) 202 p2er 92a2B2

ayjg° = ViVA 21

2
(2 0) _ 207 920‘151 efgzﬁz’

(0 -2) _ 252 9_20‘1510_2a2ﬁ2

Ay~ = v NN

(1 1) _ 4051052 oy By azﬁz CV1ﬁ1 azﬁz

1/2 - (1/11/2)3/2A911 9 9 9 s

1,-1 dayfp By pota By p—ai1 By — a3
a;([/g ):__( ;3/22A0111 1202 g 2l

GLD oAb s —au, gy gl

= a0
(—1,-1) _ 48105 Big- 00z g g0
a1/2 (V1V2)3/2A011 1 19 2 29 1 10 2 2

a(0,0)2400z1ﬁ1(\/_—90)_4Oa2ﬁ2(\/_+00)'
1/2 1/11/2\/— 1/11/2\/_

Remark. In Eq. (4.50), exponential terms should be considered to be bounded
(i.e. the phases are pure imaginary) if u; is regarded as an asymptotic solution as n — oc.

We treat, however, Eq.(4.50) as leading terms of a formal object which has formal

1/2 with coefficients including exponential terms e?%1, 1%z

den®i

power series expansion in 7~

as “transcendental” elements satisfying the differential relations =ny; %,
Higher-order terms E) k)2 (k > 1) can be constructed in a similar way as the case of
the classical Painlevé equations with a large parameter ([1], [2], [3], [6]). For example,
the coefficient a(] k) of enid1+kds) in @)1 can be determined uniquely except for (j, k) =
(:I:l 0), (0,+£1) and a(il’o), (O’il) are obtained by the non-secularity condition for
@2 The coefficients of exponentlals of @3 /o are determined uniquely and they can be

(£1,0) (0,%1)
) 1

written down in terms of known quantities and of a; . The non-secularity

condition for (:32 turns out to be a system of first-order linear inhomogeneous differential

equations for agil’o), ago’il) and the inhomogeneous terms are known. This system can
be solved easily. Hence we have ©; and ©, /2 These procedures can be carried out

successively.
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