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Degenerate Stokes Geometry and Some Geometric

Structure Underlying a Virtual Turning Point

By

Naofumi Honda *

§1. Introduction

The Stokes geometry associated with a higher order linear differential equation is

quite different from that of the second order equation. Ordinary turning points are not

enough to describe the complete Stokes geometry, and a new object should appear in

the geometry, that is a �virtual turning point� ([BNR], [AKT1]).
Although such a point is essential and indispensable for the description of the Stokes

geometry, some difficulties are involved. One of the difficulties is that too many virtual

turning points appear, and hence the Stokes geometry becomes formidably complicated
if we will draw all new Stokes curves, i.e. a Stokes curve emanates from a virtual turning

point (see Fig. 1). Fortunately, almost all portions of a new Stokes curve are apparent,

in the sense that on such portions Stokes phenomena never occur. To distinguish an

apparent portion of a Stokes curve, we draw it by a dotted line instead of a solid one,

or even more drastically, we omit a Stokes curve whose entire portion is a dotted line,
that makes the Stokes geometry understandable with the naked eye (see Fig. 2). Now

the following question naturally arises for the description of the Stokes geometry:

How can we determine solid or dotted line portions of a Stokes curve?

An answer was first given by Aoki‐Kawai‐Takei [AKT]. They introduced an algorithm
to determine solid or dotted line portions of Stokes curves, although it does not cover

whole situations, it is still a useful tool in studying the complete Stokes geometry.
Later the author extended the algorithm to deal with the case where the equation has

a deformation parameter. In view of geometrical deformation, the key feature of the

algorithm is that the Stokes geometry has a continuous deformation property, that is,
each solid (or dotted) line portion of a Stokes curve is also continuously deformed under
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Figure 2. The algorithm has been ap‐
Figure 1. The Stokes geometry of NYL2.

plied to Fig. 1.

the stability condition of the Stokes geometry (see [H2, Definition 6.4] for the stability

condition). For a generic parameter, we can obtain the correct Stokes geometry by

simply applying our algorithm. However some care is needed in applying the algorithm
to the situations where the Stokes geometry has the geometrical degeneration of the

following kind:

Case 1. (geometrical degeneration between turning points) Different turning points

accidentally coincide.

Case 2. (geometrical degeneration between Stokes curves and turning points) A turn‐

ing point hits a Stokes curve.

Case 3. (geometrical degeneration between Stokes curves) An intersection point of

Stokes curves collides with the other one, or Stokes curves become tangent
each other.

It is certainly desirable to make the algorithm applicable to the geometrically de‐

generate situations. The principal aim of this paper is an improvement of the algorithm
so that it may be applicable to Cases 1 and 3 above. See [AKSST] and [H2] for Case 2.

The plan of this paper is as follows: Section 2 gives the basic algorithm that

determines solid or dotted line portions of a Stokes curve for a generic parameter.

In Section 3, we will study Case 3. It was recently investigated by Y. Umeta [U],
and we will review her results. This section is also useful for the reader to understand

how to apply the algorithm to the concrete problems.
In Section 4, the main part of the paper, we will study Case 1. To distinguish
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turning points that accidentally coincide, a Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} underlying a virtual

turning point will be introduced. The manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} would be a fundamental geometric

object in studying not only our problems in this paper but also other ones such as

the �existence and uniqueness� of solid line portions in the Stokes geometry or the

�finiteness� of effective virtual turning points, that is, virtual turning points other than

those contained in a finite number of Riemann sheets of \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} are apparent.

The author is deeply indebted to the members of the Kawai‐Takei Seminar. The

paper is based on discussions in the seminar and their previous works. Especially Prof.

T. Kawai gave me many valuable ideas and suggestions. Without them, the paper would

not have been completed.

§2. Preparations

§2.1. Basic Facts about a Virtual Turning Point

Let T denote a parameter space, which is a complex manifold in this paper. Let

\mathscr{O}(T) be the set of holomorphic functions on T
,

and \mathscr{O}(T)[x] designate the set of poly‐
nomials of the variable x with coefficients in \mathscr{O}(T) . We will consider a linear differential

equation with a deformation parameter t\in T and a large parameter  $\eta$ of the following
form:

(2.1.1)  Pu=(\displaystyle \frac{1}{ $\eta$}\frac{d}{dx}+\frac{1}{p(x)}A(x;t,  $\eta$))u=0.
Here A designates an n\times n matrix of formal power series of $\eta$^{-1} such that:

A(x;t,  $\eta$)=A_{0}(x;t)+A_{1}(x;t)\displaystyle \frac{1}{ $\eta$}+A_{2}(x;t)\frac{1}{$\eta$^{2}}+\cdots, A_{j}\in \mathrm{g}\mathrm{l}(n;\mathscr{O}(T)[x]) ,

and p(x)\in \mathbb{C}[x] is a nonzero polynomial of x . A characteristic polynomial $\Lambda$_{t}( $\lambda$, x)
of  $\lambda$ is by the definition \det( $\lambda$ I-A_{0}(x;t)) ,

and let D(x) denote the discriminant of

$\Lambda$_{t}( $\lambda$, x)=0 . We denote by Z_{t} (resp. Eing) the set of ordinary turning points (resp.
singular points) of the equation, i.e. the zero set of D(x) (resp. p(x) ). Hereafter we

always assume the following conditions:

(LA‐1)  Z_{t}\cap Eing =\emptyset for any  t\in T.

(LA‐2) All roots of D_{t}(x)=0 are simple for any t\in T ; that is, the equation has only

simple turning points that never merge each other when t moves.

On the complex plane \mathbb{C} equipped with appropriate cut lines, let holomorphic
functions $\lambda$_{t,1}(x) , $\lambda$_{t,2}(x) ,

. . .

, $\lambda$_{t,n}(x) of x denote the roots of the algebraic equation

$\Lambda$_{t}( $\lambda$, x)=0 of  $\lambda$.
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Let us recall the definition of a virtual turning point, often abbreviated as a VTP.

For the moment, we fix the parameter t to t_{0}\in T ,
and the suffix t of $\Lambda$_{t} and so on, will

be omitted.

Definition 2.1 ([T1]). A point x_{0}\in \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} is called a virtual turning point of

type (i, j)(i\neq j) if there exist a piecewise smooth closed path C_{x_{0}} in \mathbb{C}\backslash Eing starting
from x_{0} ,

and a continuous function  $\mu$(x) on C_{x_{0}} that satisfy the following conditions.

1. For any x\in C_{x_{0}},  $\mu$(x) is a root of the equation  $\Lambda$( $\mu$, x)=0 ,
and near the starting

(resp. ending) point of C_{x_{0}},  $\mu$(x)=$\lambda$_{i}(x) (resp.  $\mu$(x)=$\lambda$_{j}(x) ) holds.

2. The equality \displaystyle \int_{C_{x_{0}}}\frac{ $\mu$(x)}{p(x)}dx=0 is satisfied.

Note that an ordinary turning point is, from the logical viewpoint, a virtual turning

point in the sense above. However, for the sake of convenience, we exclude ordinary

turning points from the definition of virtual turning points. In what follows, a turning

point means either an ordinary turning point or a virtual turning point. We can define

a Stokes curve that emanates from a virtual turning point in the same way as in the

case of an ordinary turning point. A Stokes curve emanating from a virtual turning

point is often called a new Stokes curve.

We can successively obtain virtual turning points thanks to the following theorem.

Let x_{0} and x_{1} be turning points, and s_{0} (resp. s_{1} ) a Stokes curve emanating from x_{0}

(resp. x_{1} ). We assume that s_{0} intersects with s_{1} at a point x and the types of s_{0} and s_{1}

at x are (i, j) and (j, k) respectively. Note that the index j is common in both types. Let

l denote the integral curve of the real differential 1‐form {\rm Im}(\displaystyle \frac{$\lambda$_{i}(x)-$\lambda$_{k}(x)}{p(x)}dx) passing

through x.

Theorem 2.2 (The Algorithm for Locating VTP�s [AKKSST]). If a point v in

the curve l satisfies the following integral relation

\displaystyle \int_{x}^{x_{0}}\frac{$\lambda$_{i}(x)-$\lambda$_{j}(x)}{p(x)}dx+\int_{x}^{x_{1}}\frac{$\lambda$_{j}(x)-$\lambda$_{k}(x)}{p(x)}dx+\int_{x}^{v}\frac{$\lambda$_{k}(x)-$\lambda$_{i}(x)}{p(x)}dx=0,
then v is a VTP, i.e. a virtual turning point. Here each integration is performed along
the integral curve designated above.

§2.2. The Solid or Dotted Line Condition

We review the algorithm that determines solid or dotted line portions of a Stokes

curve for a generic parameter. Let V be a subset of the set of turning points when

t=t_{0} ,
and let S denote the set of all Stokes curves that emanate from some point of

V. We designate by G(V) the Stokes geometry consisting of S and V.
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We first note the following �separation rule� of Stokes curves that is important in

employing the algorithm. Let v_{0}, v_{1}\in V be turning points, and let s_{0} (resp. s_{1} ) denote

a Stokes curve that emanates from v_{0} (resp. v_{1} ) respectively.

Definition 2.3 (The Separation Rule). If the turning points v_{0} and v_{1} are l0‐

cated at different positions, then we always consider the Stokes curves s_{0} and s_{1} to be

different even if they coincide set‐theoretically.

The rule above means that a Stokes curve s is regarded as a pair \{v, l\} of a turning

point v and an integral curve l which emanates from v . We denote by [\{v, l\}] the

underlying integral curve l of \{v, l\} ,
and we also note that �a point� in the Stokes curve

\{v, l\} implies one in the integral curve l . Let v, v_{0} ,
and v_{1} be three turning points and

s, s_{0} and s_{1} their Stokes curves.

Definition 2.4. We say that s is combined with s_{0} and s_{1} at x if Conditions

1, 2 and 3 below are satisfied:

1. [s], [S] and [S] intersect at x.

2. The types of s_{0}, s_{1} and s at x are (i, j) , (j, k) and (i, k) respectively for mutually
different indices i, j and k.

3. The same integral relation as in Theorem 2.2 holds, that is,

\displaystyle \int_{x}^{v_{0}}\frac{$\lambda$_{i}(x)-$\lambda$_{j}(x)}{p(x)}dx+\int_{x}^{v_{1}}\frac{$\lambda$_{j}(x)-$\lambda$_{k}(x)}{p(x)}dx+\int_{x}^{v}\frac{$\lambda$_{k}(x)-$\lambda$_{i}(x)}{p(x)}dx=0.
Remark. In Section 4, we will modify the definition above to deal with accidental

coincidence of turning points.

Definition 2.5. We say that s is coherent at x with respect to s_{0} and s_{1} if the

following conditions are fulfilled:

1. s is combined with s_{0} and s_{1} at x,

2. s_{0} and s_{1} form an ordered crossing at x
,
that is, either i<j<k or i>j>k holds.

Now we are ready to introduce the algorithm for a generic parameter.

Definition 2.6 (The Solid or Dotted Line Condition). For each Stokes curve

s\in G(V) which emanates from v\in V ,
the state of some portion of s is defined to be

solid or dotted so that the following two conditions are satisfied:

1. The state of the curve s in a neighborhood of v is

(a) solid if v is an ordinary turning point.

(b) dotted if v is a virtual turning point.
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2. The state of s should be converted at a point x in s if and only if there are Stokes

curves s_{0} and s_{1}\in G(V) satisfying Conditions (a) and (b) below:

(a) s is coherent at x with respect to s_{0} and s_{1}.

(b) s_{0} and s_{1} are solid lines near x.

Several examples of the Stokes geometry are given in [H1].

§3. Geometrical degeneration between Stokes curves

In this section, we will study the case where an intersection point of Stokes curves

coincides with the other one or Stokes curves become tangent each other.

Figure 3. Stokes curves become tangent each other.

Let us first consider the following simplified example which has been observed in

the Stokes geometry associated with the equation NYL_{4} of the underlying Lax pair of

the Noumi‐Yamada system (for the Noumi‐Yamada system, see [NY] and [T2]). Let

v_{0}(t) and v_{1}(t) be ordinary turning points that depend holomorphically on a parameter

t
,

and let s_{0}(t) (resp. s_{1}(t) ) denote a Stokes curve emanating from v_{0}(t) (resp. v_{1}(t) ).
The parameter space T is assumed to be \mathbb{C} , and we will move a parameter t on the real

axis. The configuration of the Stokes geometry is as follows (see Fig. 3).

1. If t<0 ,
the Stokes curves s_{0}(t) and s_{1}(t) intersect transversally at two points x_{0}(t)

and x_{1}(t) . Here x_{0}(t) denotes the nearest intersection point from the turning point

v_{0}(t) along s_{0}(t) .

2. If t=0 ,
the intersection points x_{0}(t) and x_{1}(t) merge; that is, the Stokes curves

become tangent at x_{0}(0)=x_{1}(0) with an even order.

3. If t>0 ,
the Stokes curves are disjoint.

Let us introduce a virtual turning point v(t) that is located by Theorem 2.2, and let

s(t) denote a new Stokes curve emanating from v(t) (see Fig. 4). We suppose that when
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t\leq 0 the curve s(t) passes through both x_{0}(t) and x_{1}(t) ,
and at those points s(t) is

coherent with respect to s_{0}(t) and s_{1}(t) . Solid or dotted line portions of s(t) will be

determined in the following way.

\bullet If  t<0 , by Condition 1 of Definition 2.6 the state of s(t) near v(t) must be dotted.

Thus the portion between v(t) and x_{0}(t) is a dotted line. On the other hand, since

Condition 2 of Definition 2.6 is satisfied at both x_{0}(t) and x_{1}(t) ,
the state of the curve

should be converted there. Therefore the portion between x_{0}(t) and x_{1}(t) is a solid

line, and the state of the curve after x_{1}(t) is again dotted.

\bullet If  t=0 ,
in the same way as above, we conclude that the portion between v(t) and

x_{0}(t)=x_{1}(t) is a dotted line, and the state of the curve after x_{1}(t) becomes solid.

\bullet If  t>0 ,
the state of the entire curve is dotted.

Figure 4. Apply the algorithm to Stokes curves.

In view of the continuous deformation property remarked in Section 1, the changes
of the state of s(t) seem a little bit strange since the state of the portion after x_{1}(t)
becomes solid only when t=0 and remains dotted otherwise. Hence we might expect

the portion to be always dotted. In fact, no Stokes phenomena occur on the portion
even if t=0 because the tangency of the curves is even order and exact WKB solutions

of the equation are single valued near the tangent point.
Y. Umeta recently extended the algorithm so that the continuous deformation prop‐

erty still holds for this case. Let us recall her extended algorithm (see [U] for details).
We denote by \mathscr{A} the sheaf of real analytic functions in the underlying Euclidean space

\mathbb{R}^{2} of \mathbb{C} . Let l_{0} (resp. l_{1} ) be a real analytic curve in \mathbb{C} defined by a real analytic function

f_{0} (resp. f) near x
,

and let us assume that l_{0} and l_{1} intersect properly at x.

Definition 3.1. The intersection multiplicity \mathrm{m}\mathrm{u}1_{x}(l_{0}, l_{1}) of l_{0} and l_{1} at x is

defined by

\displaystyle \mathrm{m}\mathrm{u}1_{x}(l_{0}, l_{1})=\dim_{\mathbb{R}}\frac{\mathscr{A}_{x}}{\mathscr{A}_{x}(f_{0},f_{1})}.
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Note that if l_{0} and l_{1} intersect transversally, then we have \mathrm{m}\mathrm{u}1_{x}(l_{0}, l_{1})=1 . The

extended algorithm is as follows:

Definition 3.2 (The Solid or Dotted Line Condition). For each Stokes curve

s\in G(V) which emanates from v\in V ,
the state of some portion of s is defined to be

solid or dotted so that the following two conditions are satisfied:

1. The state of the curve s in a neighborhood of v is

(a) solid if v is an ordinary turning point.

(b) dotted if v is a virtual turning point.

2. The state of s should be converted at a point x in s if and only if the number of

pairs (s_{0}, s_{1})(s_{0}, s_{1}\in G(V)) of Stokes curves that satisfy Condition (a), (b) and (c)
below is an odd integer:

(a) s is coherent with respect to s_{0} and s_{1} at x.

(b) s_{0} and s_{1} are solid lines near x.

(c) \mathrm{m}\mathrm{u}1_{x}(s_{0}, s_{1}) is an odd number.

Generally the behavior of a Stokes curve near a tangent point is not so simple on

the contrary to the example above. She investigated all possible configurations of Stokes

curves and obtained the following theorem. Let v_{0}(t) , v_{1}(t) and v_{2}(t) be turning points
and let s_{i}(t)(i=0,1,2) designate a Stokes curve emanating from v_{i}(t) . We assume

that three Stokes curves intersect at a point x when t=t_{0} . Let C be a sufficiently
small circle with the center x that is independent of t

,
and let us suppose that each

Stokes curve s_{i}(t) intersects with the circle C at only two points x_{i,s}(t) and x_{i,e}(t) ,

where x_{i,s}(t) designates the nearest intersection point from v_{i}(t) along s_{i}(t) .

Theorem 3.3 ([U]). There exists a neighborhood U\subset T of t_{0} that satisfies the

following. If the state of s_{i}(t) near x_{i,s}(t) remains unchanged for any t\in U(i=0,1,2) ,

then the state of s_{i}(t) near x_{i,e}(t) is also unchanged for any t\in U.

Roughly speaking, the theorem above implies that the continuous deformation

property still holds outside C.

§4. Geometric Degeneration Between Turning Points

We will consider the case where different turning points accidentally coincide.

§4.1. An Example of Geometric Degeneration Between Turning Points

The following example was first found and studied by Aoki‐Koike‐Takei ([\mathrm{A}\mathrm{K}\mathrm{o}\mathrm{T}]) .

Let v_{0}(t) , v_{1}(t) and v_{2}(t) be ordinary turning points, and let s_{i}(t)(i=0,1,2) designate
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Figure 5. The example found by Aoki‐Koike‐Takei.

a Stokes curve that emanates from v_{i}(t) . The parameter space of the equation is assume

to be \mathbb{C} , and let us move t along the real axis.

The characteristic feature of the example is summarized as follows (see Fig. 5):

1. The curve S(t) intersects transversally with S(t) at a point x(t) for any t.

2. When t=0 ,
the Stokes curve s_{2}(0) passes through x(0) ,

and at that point s_{2}(0) is

coherent with respect to s_{0}(0) and s_{1}(0) . On the other hand, s_{2}(t) does not pass

through x(t) when t\neq 0.

For the state of some portion of s_{2}(t) Definition 3.2 entails:

\bullet If  t\neq 0 ,
the entire portion of s_{2}(t) is a solid line.

\bullet If  t=0 ,
the portion between v_{2}(0) and x(0) is a solid line, however, the state of the

portion after x(0) becomes dotted.

If we take the continuous deformation property into account, the changes of the state

of s_{2}(t) seem again strange because of the same reason as in Section 3, that is, the

dotted line portion of s_{2}(t) only exists when t=0 . In fact, Aoki, Koike and Takei in

their paper confirmed that Stokes phenomena occur on the entire portion of s_{2}(t) even

if t=0.

Why do we arrive at an erroneous conclusion? When t\neq 0 ,
if we apply Theorem

2.2 to the Stokes curves s_{0}(t) and s_{1}(t) ,
we can find another virtual turning point v(t)

which is located quite close to v_{2}(t) and a new Stokes curve s(t) emanating from v(t)
that passes through x(t) always (see Fig. 6). Note that s(t) is combined with s_{0}(t) and

s_{1}(t) at x(t) for any t . When t tends to 0 ,
the turning points v_{2}(t) and v(t) merge and

the Stokes curves s_{2}(t) and s(t) coincide. Therefore when t=0 ,
the curve which is really

combined with s_{0}(0) and s_{1}(0) at x(0) is considered to be s(0) . Since virtual turning

points are defined in the complex plane \mathbb{C} , we could not distinguish v(0) from v_{2}(0) that

is located at the same geometrical position, and we accidentally regarded s_{2}(0) instead
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Figure 6. Two turning points coincide.

of s(0) as a curve that is combined with s_{0}(0) and s_{1}(0) at x(0) . This is the reason why
the algorithm leads to the incorrect conclusion. By introducing an appropriate Riemann

manifold (instead of the complex plane \mathbb{C} ) we can clarify the geometric situation even

in such a degenerate case. This is what we will do in what follows.

§4.2. The Independent One‐Cycle Condition

From now on, we consider the n\times n equation given in Section 2, and we always
assume Conditions (LA‐1) and (LA‐2). Let \mathbb{P}^{2} be the projective space with a system of

homogeneous coordinates ( $\lambda$, x; $\mu$) ,
and let W_{t}\subset \mathbb{C}^{2} denote the algebraic set

(4.2.1) \{( $\lambda$, x)\in \mathbb{C}^{2};$\Lambda$_{t}( $\lambda$, x)=0\}.

We designate by \hat{W}_{t} the closure of W_{t} in \mathbb{P}^{2}
,

where \mathbb{C}^{2} is identified with \mathbb{P}^{2}\backslash \{ $\mu$=0\}.
Then it follows from the assumptions (LA‐1) and (LA‐2) that W_{t}\subset \mathbb{C}^{2} is a smooth

manifold for any t and depends holomorphically on a parameter t . We will also suppose

the following condition (LA‐3) for the simplicity.

(LA‐3) The manifold W_{t} is connected and \hat{W}_{t} is a topological manifold for any t.

Let $\pi$_{W_{t}}:W_{t}\rightarrow \mathbb{C} designate the natural projection with respect to the variable x . By

the assumption (LA‐3), $\pi$_{W_{t}} has a continuous extension \hat{ $\pi$}_{\overline{W}_{t}}:\hat{W}_{t}\rightarrow \mathbb{P}^{1} . Let \hat{Z}_{t}\subset\hat{W}_{t}
denote the set of ramification points contained in W_{t} with respect to \hat{ $\pi$}_{\overline{W}_{t}} . We also define

a subset \hat{E}_{t,\infty} (resp. \hat{E}_{t,\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} ) of \hat{W}_{t} by \hat{W}_{t}\cap$\pi$_{\hat{W}_{t}}^{-1} () (resp. \hat{W}_{t}\cap\hat{ $\pi$}_{\overline{W}_{t}}^{-1}(E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}) ) respectively,
and set

(4.2.2) \hat{E}_{t}=\hat{E}_{t,\infty}\cup\hat{E}_{t,\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}.
Now we study the first homology group H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) to define the index space

of turning points.
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Lemma 4.1. The group H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) is a fr ee \mathbb{Z} ‐module, and we have

RankZ H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})=1+\# Z_{t}+n(\# E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}-1) .

Here \# Z denotes the number of elements of a set Z.

Proof. It is well known that the group H_{1}(\hat{W}_{t};\mathbb{Z}) is a free \mathbb{Z}‐module, and by the

Riemann‐Hurwitz theorem we obtain

RankZ H_{1}(\hat{W}_{t};\mathbb{Z})=2-n+\# Z_{t}-\#\hat{E}_{t,\infty}.
Since \hat{W}_{t}\backslash \hat{E}_{t} is a non‐compact connected manifold, we have H_{2}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})=0 . It

follows from (LA‐3) that H_{1}(\hat{W}_{t}, \hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})=0 and H_{2}(\hat{W}_{t}, \hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) is a free \mathbb{Z}-

module of rank \#\hat{E}_{t,\infty}+\#\hat{E}_{t,\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} . Thus we get an exact sequence of homology groups:

0\leftarrow H_{1}(\hat{W}_{t};\mathbb{Z})\leftarrow H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})\leftarrow H_{2}(\hat{W}_{t}, \hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})\leftarrow^{$\phi$_{*}}H_{2}(\hat{W}_{t};\mathbb{Z})\leftarrow 0.
Since the morphism $\phi$_{*}:H_{2}(\hat{W}_{t};\mathbb{Z})\rightarrow H_{2}(\hat{W}_{t}, \hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) is isomorphic to the diagonal

embedding i_{\triangle}:\mathbb{Z}\rightarrow \mathbb{Z}^{\#\hat{E}_{t,\infty}+\#\hat{E}_{t,\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}} (i.e. i_{\triangle}(p)=(p,p, \ldots,p) for any p\in \mathbb{Z} ), coker $\phi$_{*}
is a free \mathbb{Z}‐module of rank \#\hat{E}_{t,\infty}+\#\hat{E}_{t,\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}-1 . Therefore we can conclude that

H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) is a free \mathbb{Z}‐module, and

RankZ H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})=(2-n+\# Z_{t}-\#\hat{E}_{t,\infty})+(\#\hat{E}_{t,\infty}+\#\hat{E}_{t,\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}-1)
=1+\# Z_{t}+n(\# E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}-1) .

\square 

We set  $\kappa$=1+\# Z_{t}+n(\# E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}-1) . Let t_{0} be a point in T
,

and \{$\sigma$_{1}, . . . , $\sigma$_{ $\kappa$}\}\mathrm{a}
family of closed paths in \hat{W}_{t_{0}}\backslash \hat{E}_{t_{0}} that generates the group H_{1}(\hat{W}_{t_{0}}\backslash \hat{E}_{t_{0}};\mathbb{Z}) over \mathbb{Z}.

We designate by $\sigma$_{t,i} a closed path in \hat{W}_{t}\backslash \hat{E}_{t} that is a continuous deformation of $\sigma$_{i} for

each t near t_{0}(i=1,2, \ldots,  $\kappa$) . For a given holomorphic 1‐form $\omega$_{t} on \hat{W}_{t}\backslash \hat{E}_{t} which

depends holomorphically on t
,

it is clear that \displaystyle \int_{ $\sigma$} $\omega$_{t} is a holomorphic function of t.

t,i

We say that a 1‐form $\omega$_{t} satisfies the independent 1‐cycle condition at t_{0} if the

germs of holomorphic functions \displaystyle \int_{$\sigma$_{t,1}}$\omega$_{t}, \displaystyle \int_{$\sigma$_{t,2}}$\omega$_{t} ,
. . .

, \displaystyle \int_{$\sigma$_{t, $\kappa$}}$\omega$_{t} at t_{0} are independent over

\mathbb{Z} . Note that this definition does not depend on the choice of \{$\sigma$_{i}\} at t=t_{0}.

Remark. By the theory of the existence of a meromorphic 1‐form and that of

period integrals, a1‐form $\omega$_{t} satisfying the independent 1‐cycle condition always exists.

Now we introduce the following 1‐form  $\omega$ that already appeared in the definition

of a virtual turning point:

(4.2.3)  $\omega$=\displaystyle \frac{ $\lambda$}{ $\mu$ p(\frac{x}{ $\mu$})}d(\frac{x}{ $\mu$}) , (cf.  $\omega$=\displaystyle \frac{$\lambda$_{i}(x)}{p(x)}dx) .
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Definition 4.2. If the 1‐form  $\omega$ defined above satisfies the independent 1‐cycle
condition at  t_{0} ,

we simply say that the equation satisfies the independent 1‐cycle con‐

dition at t_{0},

Example 4.3 (NYL2 of the Underlying Lax Pair of the Noumi‐Yamada System).
The equation has the form:

(4.2.4) \displaystyle \frac{1}{ $\eta$}\frac{du}{dx}=\frac{1}{x}\left(\begin{array}{lll}
e_{0} & v_{1} & 1\\
x & e_{1} & v_{2}\\
v_{0}x & x & e_{2}
\end{array}\right)u
where (e_{0}, e_{1}, e_{2}, v_{0}, v_{1}, v_{2}) is a parameter. Then we have

 $\Lambda$( $\lambda$, x)=$\lambda$^{3}-(e_{0}+e_{1}+e_{2})$\lambda$^{2}+((u_{0}+u_{1}+u_{2})x-(e_{0}e_{1}+e_{1}e_{2}+e_{0}e_{2})) $\lambda$

-(x^{2}-(u_{0}e_{1}+u_{2}e_{0}+u_{1}e_{2}-u_{0}u_{1}u_{2})x+e_{0}e_{1}e_{2}) .

For a generic parameter, the following facts are observed:

\bullet \hat{W} is a complex manifold whose genus is 1.

\bullet \hat{E}_{\infty} consists of only one ramification point of degree 3, and the equation has 4 simple

turning points.

By Lemma 4.1 we have H_{1}(\hat{W}\backslash \^{E}; \mathbb{Z})=\mathbb{Z}^{5} ,
and the equation satisfies the independent

1‐cycle condition for a generic parameter.

§4.3. The Type Diagram and Virtual Turning Points

Definition 2.1 suggests that a virtual turning point might be understood as a point
in \mathbb{C} accompanied by a kind of 1‐cycle in \hat{W} . To describe and calculate such a 1‐cycle

concretely we will introduce some graph associated with the equation which is called

�the type diagram�
The (abstract) directional graph consists of two sets: a finite set whose element is

called a �node� and the set of �edges� where each edge is an ordered pair of nodes.

Definition 4.4. The type diagram associated with the equation is a directional

graph as follows:

1. Each node is an integer 1, 2, . . .

,
n.

2. Each edge is indexed by an ordinary turning point. If the type of v\in Z_{t} is (i, j) ,
then

the edge indexed by v is one of the ordered pair \{i, \{j\}\} or \{j, \{i\}\} . Note that the

choice of \{i, \{j\}\} or \{j, \{i\}\} is arbitrary, and such a choice determines the direction

of the edge.
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Remark. Aoki‐Kawai‐Takei ([AKT2]) also introduced a similar graphical notion

called a bicharacteristic graph, that is, in a sense, \mathrm{a} �dual� notion of the type diagram.

From now on, we denote by the symbol i\rightarrow vj (or j\rightarrow vi ) the edge indexed by an

ordinary turning point v of type (i, j) . Let L_{t,0} (resp. L_{t,1} ) denote the free \mathbb{Z}‐module

generated by the nodes (resp. the edges) of the type diagram. We consider a complex

\dot{L}_{t} as

(4.3.1) \dot{L}_{t} : 0\leftarrow L_{t,0}\leftarrow\partial L_{t,1}\leftarrow 0,
where the morphism \partial is defined by

(4.3.2) \partial(i\rightarrow vj)=\{j\}-\{i\}, i\rightarrow vj\in L_{t,1}.

Lemma 4.5. The homology group H_{1}(\dot{L}_{t}) is a fr ee \mathbb{Z} ‐module of rank 1+\# Z_{t}-n
for any t.

Proof. We remark that by the assumption (LA‐3) the underlying non‐directional

graph of the type diagram is also connected. Thus the conclusion immediately follows

from the following exact sequence:

0\leftarrow \mathbb{Z}\leftarrow L_{t,0}\leftarrow\partial L_{t,1}\leftarrow H_{1}(\dot{L}_{t})\leftarrow 0.
\square 

Remark. Although the type diagram depends on �cuts� of the complex plane \mathbb{C},
we can choose the cuts so that the type diagram does not change for any t . In fact,
it is enough for an ordinary turning point to refrain from crossing a cut, and that is

always possible by deforming each cut continuously because ordinary turning points
never merge by the assumption. Therefore, in what follows, we assume that the type

diagram remains unchanged for any t
,

and the suffix t of \dot{L}_{t} etc. will be omitted.

We often need a basis of H_{1}(\dot{L}) over \mathbb{Z} to calculate the index of a turning point.
If the type diagram can be realized as a plane graph, that is, if it can be drawn in \mathbb{R}^{2}

without any intersection between edges, then we can easily obtain a basis of H_{1}(\dot{L}) in the

following way. Let D be a plane graph that represents the type diagram. Then \mathbb{R}^{2}\backslash D
consists of bounded connected components U_{1} ,

. . .

, U_{l} and an unbounded connected

component U_{\infty}.

Definition 4.6. Let U be a bounded connected component of \mathbb{R}^{2}\backslash D . A walking

path around U is the closed path of D generated by tracing the following walking:

1. We start from a node belonging to the boundary of U.
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2. We proceed on edges so that our left hands alway touch U . Here we ignore the

direction of an edge.
3. Our walking turns around U only once, and we come back to the starting node.

Let D_{i} be the walking path around U_{i}(i=1,2, \ldots, l) .

Figure 7. An example of the type diagram.

Example 4.7. Fig. 7 above is an example of the type diagram that consists of

6 nodes {1, 2, . . .

, 6} and 7 edges indexed by \{v_{1}, v_{2}, . . . , v_{7}\} . The edge indexed by

v_{1} (resp. v2, . . .

, v_{7} ) corresponds to a turning point v_{1} (resp. v2, . . .

, v_{7} ) of type (1, 5)
(resp. (4, 5), \ldots, (5,6 \mathbb{R}^{2}\backslash D consists of two bounded connected components, and the

walking paths D_{1} and D_{2} are given by

D_{1}:4\rightarrow 3v_{3}\rightarrow 4v_{4},

and

D_{2} : 1\rightarrow 5v_{1}\rightarrow 4v_{2}\rightarrow 3v_{4}\rightarrow 4v_{3}\rightarrow 5v_{2}\rightarrow v_{5}1\rightarrow 2v_{6}\rightarrow v_{6}1.

Let [D] denote the image of D_{i} in L_{1}(i=1, \ldots, l) . Apparently each [D] is a

1‐cycle of the complex \dot{L} . Now we have:

Lemma 4.8. ([D_{1}], [D_{2}], \ldots, [D]) is a basis of H_{1}(\dot{L}) .

Proof. Let e_{k}(k=1,2, \ldots, \# Z_{t}) denote an edge of the type diagram. Then each

[D] can be written in the form

[D_{i}]=\displaystyle \sum_{k=1}^{\# Z_{t}}d_{ik}e_{k}, d_{ik}\in \mathbb{Z}.
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We first show that [D1], [D2], . . .

, [D] are independent over \mathbb{Z} . Let us consider the

equation

a_{1}[D_{1}]+a_{2}[D_{2}]+\cdots+a_{l}[D_{l}]=0, a_{i}\in \mathbb{Z},

and let U_{j} be a connected component such that D_{j} and the boundary of U_{\infty} have

a common edge e_{k} for some k . Conditions 2 of Definition 4.6 implies that d_{jk}\neq 0,
otherwise U_{j} is on the both sides of e_{k} . Conditions 3 implies |d_{jk}|<2 because the

walking path D_{j} already turned around U_{j} before the second e_{k} appears in the path.
Thus we get d_{jk}=\pm 1 . Moreover the edge e_{k} never appears in any path D_{i}(i\neq j) since

an edge is shared with at most two connected components. Thus we get a_{j}=0 . By

repeating the similar arguments (the next step is to consider a connected component

whose walking path has a common edge with U_{\infty} or the U_{j} above), we have a_{i}=0 for

any i.

Let M\subset H_{1}(\dot{L}) be the free \mathbb{Z}‐module generated by [D_{i}]' \mathrm{s} . Due to Euler�s theorem

for a plane graph (i.e. the number of nodes — the number of edges + the number of

connected components =2 ) and Lemma 4.5, we have RankZ M= RankZ H_{1}(\dot{L}) . Thus

for any u\in H_{1}(\dot{L}) we can find an integer p\neq 0 such that pu\in M ,
that is,

pu=a_{1}[D_{1}]+a_{2}[D_{2}]+\cdots+a_{l}[D_{l}], a_{i}\in \mathbb{Z}

holds. Employing the same argument as above we conclude that each a_{i} can be divided

by p ,
and thus u\in M. \square 

Note that all type diagrams that we have encountered so far are realized by plane

graphs. However, in what follows, we do not necessarily assume the type diagram a

plane graph.
We will establish an isomorphism of the homology groups H_{1}(\dot{L}) and H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) .

For that purpose, we first prepare an appropriate cut space H_{t} . Let x_{0}\in \mathbb{C} satisfy

x_{0}\not\in Z_{t}\mathrm{U}E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} for any t
,

and for a point p(t)\in Z_{t}\mathrm{U}E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} we set

(4.3.3)  h_{p(t)}=(p(t), \infty)\subset {the half line starting from  x_{0} that passes through p(t) }

(see Fig. 8). We assume (Z_{t}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}})\cap h_{p(t)}=\emptyset for any  t near t_{0}.

Definition 4.9. The cut space H_{t} is \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} equipped with the cut lines \{h_{p(t)}\}
(p(t)\in Z_{t}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}) .

Remark. The detailed form of H_{t} will be given by (4.4.6) in Subsection 4.4.

In what follows, we fix the cut space H_{t} . Note that H_{t} has a cut line emanating
not only from a ramification point in Z_{t} but also from a singular point in E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} ,

and

hence that emanating from E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} is ignored in considering the type diagram.
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\dot{h}_{p_{1}(t)}
h_{p_{3}.(t)} p_{1}^{\bullet}.(t)

\dot{p}_{3}^{\bullet}(t)
x_{0}^{\bullet}p_{2}(t)

H_{t} h_{p_{2}.(t,.)}.
Figure 8. The cut space H_{t}.

H_{t}

Figure 9. The path $\sigma$_{p}.

Let t_{0} be a point in T . For a point p\in Z_{t_{0}}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} we denote by $\sigma$_{p} a closed smooth

path in \mathbb{C}\backslash \{Z_{t_{0}}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}\} that satisfies the conditions below (see Fig. 9 also):

1. The path $\sigma$_{p} starts from x_{0} and ends at the same point, and $\sigma$_{p} crosses the cut that

emanates from p only once and never crosses any other cut. If p is a singular point,
the orientation of the path is taken to be anti‐clockwise around p.

2. The closure of the domain surrounded by the path does not contain either any turning

point or any singular point other than p.

Let \mathbb{Z}_{n} denote the set \{ 1, 2, . . .

, n\} . We also introduce a path $\sigma$_{t} in \hat{W}_{t}\backslash \hat{E}_{t} as follows:

\bullet For an edge  e=i\rightarrow vj of the type diagram,

(4.3.4) \hat{ $\sigma$}_{t,e}= the lift of $\sigma$_{v} by \hat{ $\pi$}_{\overline{W}_{t}} starting from ($\lambda$_{t,i}(x_{0}), x_{0};1) .

\bullet For any (k;p)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}},

(4.3.5) \hat{ $\sigma$}_{t,(k;p)}= the lift of $\sigma$_{p} by \hat{ $\pi$}_{\overline{W}_{t}} starting from ($\lambda$_{t,k}(x_{0}), x_{0};1) .

Since the degree of a ramification point is 2, the following lemma is easy to prove; still

it is a key for the subsequent argument.

Lemma 4.10. Let e=i\rightarrow vj be an edge of the type diagram. The end point of
the path \hat{ $\sigma$}_{t,e} is ($\lambda$_{t,j}(x_{0}), x_{0};1) ,

and the liftt \hat{ $\sigma$}_{t,e} does not depend on the choice of $\sigma$_{v} up

to a homotopic equivalence in \hat{W}_{t}\backslash \hat{E}_{t}.
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Remark. The lemma above implies, in particular, that $\sigma$_{v} with a different orien‐

tation (clockwise or anti‐clockwise) gives the same lift $\sigma$_{t,e} up to a homotopic equivalence
in \hat{W}_{t}\backslash \hat{E}_{t}.

Let C_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) designate the set of 1‐singular chains of \hat{W}_{t}\backslash \hat{E}_{t} . We define a

morphism

(4.3.6) $\Phi$_{t}:L_{1}\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}\rightarrow C_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})

of \mathbb{Z}‐modules by

$\Phi$_{t}(e)=\hat{ $\sigma$}_{t,e} ,
for e=i\rightarrow vj\in L_{1},

(4.3.7)
$\Phi$_{t}((k;p))=$\sigma$_{t,(k;p)} ,

for (k;p)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}.
Then the morphism $\Phi$_{t} induces a morphism

(4.3.8) $\Psi$_{t}:H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}\rightarrow H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z})

which is independent of the choice of paths. For any closed path  $\sigma$ in \hat{W}_{t}\backslash \hat{E}_{t} which does

not contain a point in \hat{Z}_{t}, \hat{ $\pi$}_{\overline{W}_{t}*}() can be homotopically deformed in \mathbb{C}\backslash (Z_{t}\mathrm{U}E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}})
to a path that is a combination of \pm$\sigma$_{p}' \mathrm{s}(p\in Z_{t}\mathrm{U}E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}) . Therefore the map $\Psi$_{t} is

surjective, as the lifts of $\sigma$_{v} and -$\sigma$_{v}(v\in Z_{t}) by \hat{ $\pi$}_{\overline{W}_{t}} give homotopically equivalent

paths in \hat{W}_{t}\backslash \hat{E}_{t} by Lemma 4.10. Moreover by Lemmata 4.1 and 4.5 we have

RankZ H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}= RankZ H_{1}(\hat{W}_{t}\backslash \^{E}_{t};\mathbb{Z})=1+\# Z_{t}+n(\# E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}-1) .

Hence the map $\Psi$_{t} is injective, and we have obtained the following proposition.

Proposition 4.11. The morphism $\Psi$_{t} defined above gives an isomorphism of
\mathbb{Z} ‐modules H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}} and H_{1}(\hat{W}_{t}\backslash \hat{E}_{t};\mathbb{Z}) .

Let \mathbb{Z}_{n,<}^{2} (resp. \mathbb{Z}_{n,\neq}^{2} ) denote the set \{(i, j)\in \mathbb{Z}_{n}^{2};i<j\} (resp. \{(i, j)\in \mathbb{Z}_{n}^{2};i\neq j\} ).
For any (i, j)\in \mathbb{Z}_{n,\neq}^{2} ,

we define a subset L_{1}(i, j) of the set L_{1} by

(4.3.9) L_{1}(i, j)=\{ $\sigma$\in L_{1};\partial $\sigma$=\{j\}-\{i\}\},

that is, L_{1}(i, j) is the set of paths form the node i to the node j of the type diagram.
Let \{$\alpha$_{ij}\}_{(i,j)\in \mathbb{Z}_{n,\neq}^{2}} be a family of paths in the type diagram with $\alpha$_{ij}\in L_{1}(i, j) .

Definition 4.12. We say that \{$\alpha$_{ij}\}_{(i,j)\in \mathbb{Z}_{n,\neq}^{2}} satisfies the 1‐cocycle condition in

the type diagram if Conditions 1 and 2 below hold:

1. (anti‐symmetric) For any (i, j)\in \mathbb{Z}_{n,\neq}^{2}, a_{ij}\in L_{1}(i, j) and

(4.3.10) $\alpha$_{ij}=-$\alpha$_{ji}.
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2. (1‐cocycle condition) For mutually different indices i, j, k\in \mathbb{Z}_{n}

(4.3.11) $\alpha$_{ij}+$\alpha$_{jk}+$\alpha$_{ki}=0.

We fix a family \{$\alpha$_{ij}\} that satisfies the 1‐cocycle condition in the type diagram.
Note that such a family \{$\alpha$_{ij}\} always exists. If paths $\alpha$_{12}, $\alpha$_{23} ,

. . .

, $\alpha$_{n-1,n}($\alpha$_{i,i+1}\in
 L_{1}(i, i+1)) are given, then for (i, j) \in \mathbb{Z}_{n,<}^{2} we can determine $\alpha$_{ij} and $\alpha$_{ji} uniquely by

(4.3.12) $\alpha$_{ij}=$\alpha$_{i,i+1}+$\alpha$_{i+1,i+2}+\cdots+$\alpha$_{j-1,j} and $\alpha$_{ji}=-$\alpha$_{ij}.

Let v be a virtual turning point of type (i, j) at t=t_{0} . It then follows from the

definition that we can find a closed smooth curve C_{v} and a continuous function  $\mu$(x) on

C_{v} that satisfy the conditions of Definition 2.1. Noticing C_{v}=(-l)+(l+C_{v}-l)+l
where l is a path from x_{0} to v in H_{t_{0}} ,

we have

(4.3.13) \displaystyle \int_{x_{0}}^{v}\frac{$\lambda$_{t_{0},j}(x)-$\lambda$_{t_{0},i}(x)}{p(x)}dx+\int_{C_{x_{0}}}\overline{ $\mu$}(x)dx=0.
Here the path of the first integration is taken in H_{t_{0}}, C_{x_{0}} is the closed path l+C_{v}-l,
and(x) is a continuous extension of  $\mu$(x) so that  $\Lambda$(\overline{ $\mu$}(x), x)=0 still holds for x\in C_{x_{0}}.
We may suppose that C_{x_{0}} is written by a continuous function c(s):[0, 1]\rightarrow \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}
with c(0)=c(1)=x_{0} ,

and let \hat{C}_{x_{0}} be the path in \hat{W}_{t_{0}}\backslash \hat{E}_{t_{0}} defined by (\overline{ $\mu$}(c(s)), c(s);1)
(0\leq s\leq 1) . Then (4.3.13) becomes

(4.3.14) \displaystyle \int_{x_{0}}^{v}\frac{$\lambda$_{t_{0},j}(x)-$\lambda$_{t_{0},i}(x)}{p(x)}dx+\int_{\hat{C}_{x_{0}}} $\omega$=0
where the 1‐form  $\omega$ is given by (4.2.3). Since \hat{ $\sigma$}=\hat{C}_{x_{0}}+$\Phi$_{t_{0}}($\alpha$_{ji}) is a closed path in

\hat{W}_{t_{0}}\backslash \hat{E}_{t_{0}}, \hat{ $\sigma$} defines the 1‐cycle [\hat{ $\sigma$}]\in H_{1}(\hat{W}_{t_{0}}\backslash \hat{E}_{t_{0}};\mathbb{Z}) ,
and we obtain

(4.3.15) \displaystyle \int_{x_{0}}^{v}\frac{$\lambda$_{t_{0},j}(x)-$\lambda$_{t_{0},i}(x)}{p(x)}dx+\int_{$\Phi$_{t_{0}}($\alpha$_{ij})} $\omega$+\int_{[\hat{ $\sigma$}]} $\omega$=0.
We will introduce a morphism I_{t}:L_{1}\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}\rightarrow \mathbb{C} of \mathbb{Z} modules to link the second

and the third terms of (4.3.15) to the type diagram.

Definition 4.13. The morphism I_{t}:L_{1}\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}\rightarrow \mathbb{C} is defined in the fol‐

lowing way:

1. For any edge k\rightarrow wl\in L_{1} with w\in Z_{t} being of type (k, l) ,
we set

(4.3.16) I_{t}(k\displaystyle \rightarrow wl)=\int_{x_{0}}^{w}\frac{$\lambda$_{t,k}(x)-$\lambda$_{t,l}(x)}{p(x)}dx.
Here the path of integration is the segment from x_{0} to w in H_{t}.
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2. For (k;q)\in \mathbb{Z}_{n}\times Eing� we set

(4.3.17)  I_{t}((k;q))=2 $\pi$\displaystyle \sqrt{-1}{\rm Res}_{q}(\frac{$\lambda$_{t,k}(x)}{p(x)})
where \mathrm{R}\mathrm{e}\mathrm{s}(\mathrm{f}) designate the residue of a holomorphic function f at x.

Modifying the path of integration (see Fig. 9 also), we can easily show the lemma

below.

Lemma 4.14. For any edge e=k\rightarrow wl\in L_{1} ( resp. (k;q)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}) ,
one has

(4.3.18) \displaystyle \int_{\hat{ $\sigma$}_{t,\mathrm{e}}} $\omega$=I_{t}(k\rightarrow wl) , ( resp. \displaystyle \int_{\hat{ $\sigma$}_{t,(k;q)}} $\omega$=I_{t}((k;q)))
where \hat{ $\sigma$}_{t,e} (resp. \hat{ $\sigma$}_{t,(k;q)} ) is given by (4.3.4) (resp. (4.3.5)).

We fix a basis of H_{1}(\dot{L}) and denote it by

(4.3.19) (g_{1}, g2, . . . , g_{ $\kappa$}) , g_{k}\in H_{1}(\dot{L}) ,

and what follows, H_{1}(\dot{L}) is identified with \mathbb{Z}^{ $\kappa$} by this basis. Then by Proposition 4.11

and Lemma 4.14 we find an index

\{$\alpha$_{k}\}_{k=1}^{ $\kappa$}\oplus\{$\beta$_{k,p}\}_{(k;p)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}\in H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}, $\alpha$_{k}, $\beta$_{k,p}\in \mathbb{Z},
so that we have

(4.3.20) \displaystyle \int_{[\hat{ $\sigma$}]} $\omega$=I_{t_{0}}(\{$\alpha$_{k}\}\oplus\{$\beta$_{k,p}\})=\sum_{k=1}^{ $\kappa$}$\alpha$_{k}I_{t_{0}}(g_{k})+\sum_{(k;p)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}$\beta$_{k,p}I_{t_{0}}((k;p)) .

Let F_{t,i,j}(x) denote the function

(4.3.21) F_{t,i,j}(x)=\displaystyle \int_{x_{0}}^{x}\frac{$\lambda$_{t,j}(x)-$\lambda$_{t,i}(x)}{p(x)}dx
where the path of integration is taken in H_{t} . Note that F_{t,i,j}(x) is always regarded as

\mathrm{a} (single valued) holomorphic function in the cut space H_{t} . Then noticing (4.3.15) and

(4.3.20), we obtain finally the following proposition:

Proposition 4.15. For any turning point v of type (i, j)\in \mathbb{Z}_{n,\neq}^{2}at t=t_{0} ,
there

exists an index  $\alpha$\oplus $\beta$\in H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}} such that v is a root of the equation

(4.3.22) F_{t_{0},i,j}(x)+I_{t_{0}}($\alpha$_{ij})+I_{t_{0}}( $\alpha$\oplus $\beta$)=0.

Conversely for any index  $\alpha$\oplus $\beta$\in H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}} each root of (4.3.22) determines a

turning point.
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We define a holomorphic function f_{t,i,j, $\alpha$\oplus $\beta$} in H_{t} with a holomorphic parameter t

by

(4.3.23) f_{t,i,j, $\alpha$\oplus $\beta$}(x)=F_{t,i,j}(x)+I_{t}($\alpha$_{ij})+I_{t}( $\alpha$\oplus $\beta$)

for any (i, j,  $\alpha$\oplus $\beta$)\in \mathbb{Z}_{n,\neq}^{2}\times(H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}) .

§4.4. The Riemann Manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}

Let v be a turning point that is a root of f_{t_{0},i,j},  $\alpha$\oplus $\beta$=0 . A Stokes curve emanating
from v is, in our formulation, a smooth locus of the analytic set defined by the equation

(4.4.1) {\rm Im} f_{t_{0},i,j, $\alpha$\oplus $\beta$}(x)=0

that emanates from v . Hence we often need an analytic continuation of f_{t_{0},i,j, $\alpha$\oplus $\beta$} when

the Stokes curve crosses a cut of H_{t_{0}} . The following vectors r_{k\rightarrow l}w and r_{(k;p)} play an

important role to describe an analytic continuation of f_{t,i,j, $\alpha$\oplus $\beta$}.

Definition 4.16. We set the vectors r_{k\rightarrow l}w and r_{(k;p)} as follows:

1. For any edge k\rightarrow wl with w\in Z_{t} being of type (k, l) ,

(4.4.2) r_{k\rightarrow l}w\in \mathbb{Z}^{ $\kappa$}=[k\rightarrow wl+$\alpha$_{lk}]\in H_{1}(\dot{L}) .

Here we identify H_{1}(\dot{L}) with \mathbb{Z}^{ $\kappa$} by the basis (4.3.19). Note that r_{k\rightarrow l}w=-r_{l\rightarrow k}w
holds.

2. For (k;p)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}},

(4.4.3) r_{(k;p)}=(0, \ldots, 0,1,0, \ldots, 0)\in \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}
where the element indexed by (k;p) is 1.

Let c:[0, 1]\rightarrow \mathbb{C} be a continuous curve in \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}.

Proposition 4.17. Let p\in Z_{t}\mathrm{U}E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} and assume that the curve c crosses the

cut h_{p} only once and never crosses any other cut. Then an analytic continuation of

f_{t,i,j},  $\alpha$\oplus $\beta$ along  c has the same form f_{t},  $\xi$
. Here the index  $\xi$\in \mathbb{Z}_{n,\neq}^{2}\times(H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g})}}

is given as follows:

1. Suppose that p is an ordinary turning point v\in Z_{t}.

(a) If the type of v is (i, j) ,
then  $\xi$=(j, i,  $\alpha$-2r_{i\rightarrow j}v\oplus $\beta$) .

(b) If that is (j, k) (resp. (i, k) ) for k\not\in\{i, j\} ,
then  $\xi$=(i, k,  $\alpha$+r_{j^{v}\rightarrow k}\oplus $\beta$) (resp.  $\xi$=

(k, j,  $\alpha$-r_{i\rightarrow k}v\oplus $\beta$)) respectively.
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2. Suppose that  p\in Eing is a singular point.

(a) If the curve  c crosses the cut h_{p} anti‐clockwise, then  $\xi$=(i, j,  $\alpha$\oplus $\beta$+r_{(j;p)}-r_{(i;p)}) ;

(b) otherwise  $\xi$=(i, j,  $\alpha$\oplus $\beta$+r_{(i;p)}-r_{(j;p)}) .

Proof. We designate by \mathrm{A}(\mathrm{f}) an analytic continuation of f along c.

1. (a) By a modification of the integration path, \mathrm{A}_{c}(F_{t,i,j}) is given by

\displaystyle \int_{x_{0}}^{x}\frac{$\lambda$_{t,i}(x)-$\lambda$_{t,j}(x)}{p(x)}dx+I_{t}(j\rightarrow vi)-I_{t}(i\rightarrow vj)=F_{t,j,i}(x)-2I_{t}(i\rightarrow vj) .

Thus we have:

\mathrm{A}_{c}(f_{t,i,j, $\alpha$\oplus $\beta$})=F_{t,j,i}(x)-2I_{t}(i\rightarrow vj)+I_{t}($\alpha$_{ij})+I_{t}( $\alpha$\oplus $\beta$)
=F_{t,j,i}(x)+I_{t}($\alpha$_{ji})-2(I_{t}(i\rightarrow vj)+I_{t}($\alpha$_{ji}))+I_{t}( $\alpha$\oplus $\beta$)

=F_{t,j,i}(x)+I_{t}($\alpha$_{ji})+I_{t}( $\alpha$-2r_{i^{v}\rightarrow j}\oplus $\beta$)

=f_{t,j,i, $\alpha$-2r_{i\rightarrow j}\oplus $\beta$}v.
1. (b) If the type of v is (j, k) ,

then we have

\mathrm{A}_{c}(f_{t,i,j, $\alpha$\oplus $\beta$})=F_{t,i,k}(x)+I_{t}(j\rightarrow vk)+I_{t}($\alpha$_{ij})+I_{t}( $\alpha$\oplus $\beta$)
=F_{t,i,k}(x)+I_{t}(j\rightarrow vk)+I_{t}($\alpha$_{ik}+$\alpha$_{kj})+I_{t}( $\alpha$\oplus $\beta$)

=F_{t,i,k}(x)+I_{t}($\alpha$_{ik})+I_{t}( $\alpha$+r_{j^{v}\rightarrow k}\oplus $\beta$)

=f_{t,i,k, $\alpha$+r_{j\rightarrow k}\oplus $\beta$}v �

and if v is of type (k, i) ,
then

\mathrm{A}_{c}(f_{t,i,j, $\alpha$\oplus $\beta$})=\mathrm{A}_{c}(-f_{t,j,i,- $\alpha$\oplus- $\beta$})=-f_{t,j,k,- $\alpha$+r_{i\rightarrow k}\oplus- $\beta$}v=f_{t,k,j, $\alpha$-r_{i\rightarrow k}\oplus $\beta$}v.
2. The proof is similar. \square 

We denote by  $\Xi$ the index space

(4.4.4) \mathbb{Z}_{n,\neq}^{2}\times(H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}) ,

and set

(4.4.5) X_{t}=\displaystyle \mathbb{C}\backslash (\bigcup_{p(t)\in Z_{t}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}h_{p(t)}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}) .

Let us now consider the cut space H_{t} to be the set

(4.4.6) H_{t}=X_{t}\displaystyle \sqcup(\bigcup_{p(t)\in Z_{t}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}h_{p(t)}^{R})\sqcup(\bigcup_{p(t)\in Z_{t}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}h_{p(t)}^{L}) ,
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where h_{p(t)}^{R} and h_{p(t)}^{L} are copies of the open half line h_{p(t)} that is defined by (4.3.3). We

make H_{t} a topological space so that h_{p(t)}^{R} (resp. h_{p(t)}^{L} ) becomes the right (resp. left) side

boundary of X_{t} on h_{p(t)} . Let $\pi$_{H_{t}}:H_{t}\rightarrow \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} denote the canonical projection. For

any point x\in H_{t} ,
let x^{*} denote the opposite point in $\pi$_{H_{t}}^{-1}$\pi$_{H_{t}}(x) ,

that is, if x\in h_{p(t)}^{R},
then x^{*} is the point in h_{p(t)}^{L} with $\pi$_{H_{t}}(x^{*})=$\pi$_{H_{t}}(x) . Note that p^{*}=p for any p\in Z_{t}.
Let H_{t, $\xi$} designate a copy of H_{t} for  $\xi$=(i, j,  $\alpha$\oplus $\beta$)\in $\Xi$ . We set

(4.4.7)  H_{t},  $\Xi$=\sqcup $\xi$\in H_{t, $\xi$}.
and let $\pi$_{H_{t, $\Xi$}} : H_{t, $\Xi$}\rightarrow H_{t} designate the canonical projection. Taking Proposition 4.17

into account, we will construct a Riemann manifold \mathcal{R}_{t} over \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} by gluing H_{t, $\xi$}' \mathrm{s}.
We first define a map \mathcal{J}_{t}:H_{t, $\Xi$}\rightarrow H_{t, $\Xi$} as follows.

Definition 4.18. The map \mathcal{J}_{t} is defined by the following way.

1. The map is the identity on the fiber $\pi$_{H_{t}}^{-1_{\underline{=}}},(x) for any x\in X_{t}\backslash Z_{t}.
2. If x\in h_{p}^{R}\cup h_{p}^{L}\cup\{p\} with p\in Z_{t} being of type (i, j) ,

then the map is defined on the

fiber $\pi$_{H_{t}}^{-1_{\underline{=}}},(x) as:

\bullet \mathcal{J}_{t}(x, i, j,  $\alpha$\oplus $\beta$)=(x^{*}, j, i,  $\alpha$-2r_{i\rightarrow j}v\oplus $\beta$) and

\mathcal{J}_{t}(x, j, i,  $\alpha$\oplus $\beta$)=(x^{*}, i, j,  $\alpha$-2r_{j^{v}\rightarrow i}\oplus $\beta$) for any  $\alpha$\oplus $\beta$,

\bullet \mathcal{J}_{t}(x, k, j,  $\alpha$\oplus $\beta$)=(x^{*}, k, i,  $\alpha$+r_{j^{v}\rightarrow i}\oplus $\beta$) and

\mathcal{J}_{t}(x, k, i,  $\alpha$\oplus $\beta$)=(x^{*}, k, j,  $\alpha$+r_{i\rightarrow j}v\oplus $\beta$) for any  $\alpha$\oplus $\beta$ and  k\not\in\{i, j\},
\bullet \mathcal{J}_{t}(x, i, k,  $\alpha$\oplus $\beta$)=(x^{*}, j, k,  $\alpha$-r_{i\rightarrow j}v\oplus $\beta$) and

\mathcal{J}_{t}(x, j, k,  $\alpha$\oplus $\beta$)=(x^{*}, i, k,  $\alpha$-r_{j^{v}\rightarrow i}\oplus $\beta$) for each  $\alpha$\oplus $\beta$ and  k\not\in\{i, j\},
\bullet \mathcal{J}_{t}(\overline{x})=\overline{x} for any other point \tilde{x}\in$\pi$_{H_{t $\Xi$}}^{-1},(x) .

3. If x^{R}\in h_{p}^{R} with p\in E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} ,
then for any k, l and  $\alpha$\oplus $\beta$

\mathcal{J}_{t}(x^{R}, k, l,  $\alpha$\oplus $\beta$)=((x^{R})^{*}, k, l,  $\alpha$\oplus $\beta$+r_{(j;p)}-r_{(i;p)}) ,

and if x^{L}\in h_{p}^{L} with p\in E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} ,
then for any k, l and  $\alpha$\oplus $\beta$

\mathcal{J}_{t}(x^{L}, k, l,  $\alpha$\oplus $\beta$)=((x^{L})^{*}, k, l,  $\alpha$\oplus $\beta$-r_{(j;p)}+r_{(i;p)}) .

Since \mathcal{J}_{t} is an involution map in H_{t, $\Xi$} (i.e. \mathcal{J}_{t}\circ \mathcal{J}_{t}=\mathrm{I}\mathrm{d}_{H_{t, $\Xi$}} ), we can define an

equivalence relation \mathcal{J}_{t}\sim in the following way:

(4.4.8) \mathrm{X}^{\mathcal{J}_{t}}\sim\overline{y} if \overline{x}=\mathcal{J}_{t}(y $\gamma$ or \overline{x}=\overline{y}.

Then \mathcal{R}_{t} and a function f_{t, $\Xi$} in \mathcal{R}_{t} are introduced as:
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Definition 4.19. The Riemann manifold \mathcal{R}_{t} over \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} is the set of equiv‐

alence classes  H_{t, $\Xi$}/\mathcal{J}_{t}\sim ,
and the single valued function  f_{t, $\Xi$} in \mathcal{R}_{t} is determined by the

family of holomorphic functions \{f_{t,i,j, $\alpha$\oplus $\beta$}\}_{(i,j, $\alpha$\oplus $\beta$)\in $\Xi$}.
Let $\pi$_{R_{t}}:\mathcal{R}_{t}\rightarrow \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} (resp. $\rho$_{H_{t, $\Xi$}}:H_{t, $\Xi$}\rightarrow \mathcal{R}_{t} ) denote the canonical projection

(resp. surjection). We can readily confirm the following properties of \mathcal{R}_{t}.

\bullet The set \mathcal{R}_{t} can be regarded as a smooth complex manifold that depends holomorphi‐

cally on a parameter t
,

and f_{t, $\Xi$} is a single valued holomorphic function in \mathcal{R}_{t}.

\bullet If  x\in Z_{t} is an ordinary turning point of type (i, j) ,
then we have (x, i, j,  $\alpha$\oplus $\beta$)\mathcal{J}_{t}\sim

(x, j, i,  $\alpha$-2r_{i\rightarrow j}x\oplus $\beta$) ,
and they give the same point \overline{x} in \mathcal{R}_{t} . Therefore \mathcal{R}_{t} is locally

a double covering space with respect to the map $\pi$_{R_{t}} near \overline{x}
,

and \overline{x} is a ramification

point of degree 2. In the same way, for any point \overline{x}=$\rho$_{H_{t, $\Xi$}}(x, k, l,  $\alpha$\oplus $\beta$) with

\{k, l\}\cap\{i, j\}\neq\emptyset and  x\in Z_{t}, \mathcal{R}_{t} has the same topological structure near X.

\bullet If  x\in Eing is a singular point, then locally \mathcal{R}_{t} is a finite disjoint union of {\rm Log} type

covering spaces over V\backslash \{x\} for a small neighborhood V\subset \mathbb{C} of x.

Let us define another involution map \mathcal{I}_{t}:H_{t, $\Xi$}\rightarrow H_{t, $\Xi$} by

(4.4.9) \mathcal{I}_{t}(x, i, j,  $\alpha$\oplus $\beta$)=(x, j, i, - $\alpha$\oplus- $\beta$) .

Then it follows from the commutativity of \mathcal{I}_{t} and \mathcal{J}_{t} ,
i.e.

(4.4.10) \mathcal{I}_{t}\circ \mathcal{J}_{t}=\mathcal{J}_{t}\circ \mathcal{I}_{t},

that the map \mathcal{I}_{t} induces an involution map \mathcal{I}_{R_{t}}:\mathcal{R}_{t}\rightarrow \mathcal{R}_{t} . Since the definitions of

turning points and Stokes curves are symmetric with respect to the change of indices,
that is, the equations

{\rm Im} f_{t,i,j, $\alpha$\oplus $\beta$}(x)=0 and {\rm Im} f_{t,j,i,- $\alpha$\oplus- $\beta$}(x)=0

define the same Stokes curve, every point \overline{x}\in \mathcal{R}_{t} is required to be identified with

\mathcal{I}_{R_{t}}(\mathrm{X})\in \mathcal{R}_{t} . Hence we will introduce the following Riemann manifold:

Definition 4.20. The Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is defined as

(4.4.11) \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}=\mathcal{R}_{t}/\sim

where \mathrm{X}\sim\overline{y} if \mathcal{I}_{R_{t}}(\overline{x})=\overline{y} or \overline{x}=\overline{y}.

We designate by $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}}:\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}\rightarrow \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} (resp. $\rho$_{H_{t}} : H_{t, $\Xi$}\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} ) the

canonical projection (resp. surjection). Note that the equivalence class of \mathrm{X}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is

given by the set of (possibly duplicated) points in H_{t, $\Xi$}

(4.4.12) \{\overline{y}, \mathcal{I}_{t}(y $\gamma$, \mathcal{J}_{t}(y $\gamma$, (\mathcal{I}_{t}\circ \mathcal{J}_{t})(y $\gamma$\}
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for some point \overline{y}\in H_{t, $\Xi$} with $\rho$_{H_{t, $\Xi$}}(y $\gamma$=\overline{x} because of the commutativity (4.4.10). Now

we can define the most basic objects, i.e. a turning point and a Stokes curve, in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}
using f_{t, $\Xi$}.

Definition 4.21. A turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is a point in the zero set of f_{t, $\Xi$},
and a Stokes curve in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} emanating from a turning point \mathrm{V}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is a smooth

locus of the zero set of {\rm Im} f_{t, $\Xi$} that emanates from V.

These notions are well‐defined on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} because f_{t, $\Xi$}(_{R_{t}}(X) ) =-f_{t, $\Xi$}(X) holds for

any \overline{x}\in \mathcal{R}_{t} . Let \overline{Z}_{t}\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} be the image of the set of ramification points in \mathcal{R}_{t} by
the canonical surjection, i.e.

(4.4.13) \overline{Z}_{t}=$\rho$_{H_{t, $\Xi$}}(\{(x, i, j,  $\alpha$\oplus $\beta$)\in H_{t, $\Xi$};x\in Z_{t}, (\mathrm{t}\mathrm{h}\mathrm{e} type \mathrm{o}\mathrm{f} x\}\cap\{i, j\})\neq\emptyset\}) .

We investigate the local structure of \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} near a point in \overline{Z}_{t} . If v(t)\in Z_{t} is of type

(i, j) , \mathcal{R}_{t} is locally a double covering space near \overline{x}=$\rho$_{H_{t, $\Xi$}}(v(t), i, j,  $\alpha$\oplus $\beta$) with respect

to $\pi$_{R_{t}} ,
as we explained before. Let us denote by S_{0} (resp. S_{1} ) a local double covering

space near \overline{x} (resp. \mathcal{I}_{R_{t}}(X) ). If (i, j,  $\alpha$\oplus $\beta$)\neq(i, j, r_{i^{v(t)}\rightarrow j}\oplus 0) ,
then since \overline{x} and \mathcal{I}_{R_{t}}(\mathrm{X})

are different points in \mathcal{R}_{t} ,
to identify S_{0} with S_{1} by the map \mathcal{I}_{R_{t}} meansjust to forget S_{0}

or S_{1} . Hence \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} near \overline{x} is still a double covering space with respect to $\pi$_{R_{t}} ,
and \overline{x}

is a ramification point of degree 2. On the other hand, if \overline{x}=$\rho$_{H_{t, $\Xi$}}(v(t), i, j, r_{i^{v(t)}\rightarrow j}\oplus 0) ,

then X and \mathcal{I}_{R_{t}}(X) are the same point in \mathcal{R}_{t} ,
and \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} near Xis locally isomorphic to

\mathbb{C} by $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}} . Therefore, in view of topological structures, the point (v(t), i, j, r_{i^{v(t)}\rightarrow j}\oplus 0)
should have some specific feature. In fact, it corresponds to an ordinary turning point
in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} because of the equalities

\displaystyle \int_{v(t)}^{x}\frac{$\lambda$_{t,j}-$\lambda$_{t,i}}{p(x)}dx=(\int_{v(t)}^{x}\frac{$\lambda$_{t,j}-$\lambda$_{t,i}}{p(x)}dx+I_{t}(j\rightarrow v(t)i))+I_{t}(i\rightarrow j)v(t)
(4.4.14) =F_{t,i,j}(x)+I_{t}($\alpha$_{ij})+I_{t}(i\rightarrow j+$\alpha$_{ji})v(t)

=f_{t,i,j,r_{i\rightarrow j}\oplus 0}v(x)
(see also Corollary 4.29 below). Therefore \overline{x} is called an ordinary turning point in

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} . Summing up, we have:

Lemma 4.22. For any point \overline{x}\in\overline{Z}_{t} except for an ordinary turning point in

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} , the Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} over \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} is a double covering space in a

neighborhood of \overline{x}
,

and is ramified at \overline{x} with respect to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}} . On the contrary \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}
is not ramified at an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}.

Now we confirm that several important notions for the Stokes geometry (an ordered

crossing, the type of a Stokes curve, etc.) are well‐defined on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}.
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Definition 4.23. Let \mathrm{X}_{1}, \overline{x}_{2} and \mathrm{X}_{3} be points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}\backslash \overline{Z}_{t}.
1. A pair \mathrm{X}_{1} and \mathrm{X}_{2} is said to have a hinged index if it satisfies

\mathrm{X}_{1}=$\rho$_{H_{t}} (x, i, j, $\alpha$_{1}\oplus$\beta$_{1}) and \overline{x}_{2}=$\rho$_{H_{t, $\Xi$}}(x, j, k, $\alpha$_{2}\oplus$\beta$_{2})
for mutually different indices i, j, k\in \mathbb{Z}_{n} and some point x\in H_{t} . Such a pair of points

(x, i, j, $\alpha$_{1}\oplus$\beta$_{1}) and (x, j, k, $\alpha$_{2}\oplus$\beta$_{2}) in H_{t, $\Xi$} is called an ordered representative
of the hinged index pair.

2. We say that \overline{x}_{1}, \overline{x}_{2} and \overline{x}_{3} form a circuit index triplet if there exist mutually
different indices i, j, k\in \mathbb{Z}_{n} and a point x\in H_{t} satisfying

\mathrm{X}_{1}=$\rho$_{H_{t, $\Xi$}}(x, i, j, $\alpha$_{1}\oplus$\beta$_{1}) , \overline{x}_{2}=$\rho$_{H_{t, $\Xi$}}(x, j, k, $\alpha$_{2}\oplus$\beta$_{2}) , \overline{x}_{3}=$\rho$_{H_{t}} (x, k, i, $\alpha$_{3}\oplus$\beta$_{3}) .

An ordered representative of the triplet is also defined in the same way as above.

These notions are symmetric with respect to a permutation. For example, if \mathrm{X}_{1}, \overline{x}_{2}
and \overline{x}_{3} form a circuit index triple, then \overline{x}_{2}, \overline{x}_{1} and \overline{x}_{3} do also, and if \{\overline{y}_{1}, \overline{y}_{2}, \overline{y}_{3}\} is an

ordered representative of the former triplet, then that of the latter is given by

(4.4.15) \mathcal{I}_{t}(\{\overline{y}_{2},\overline{y}_{1},\overline{y}_{3}\})(=\{\mathcal{I}_{t}(\overline{y}_{2}),\mathcal{I}_{t}(\overline{y}_{1}),\mathcal{I}_{t}(\overline{y}_{3})\}) .

We also note that an ordered representative is not necessarily unique. If \mathcal{Y}=

\{\overline{y}_{1}, \overline{y}_{2}, \overline{y}_{3}\} is an ordered representative of a circuit index triplet, then by taking (4.4.12)
and $\rho$_{H_{t}, $\Xi$}(\overline{y}_{l})\not\in\overline{Z}_{t}(l=1,2,3) into account, possible ordered representatives of the

circuit index triplet are given by

(4.4.16) \mathcal{Y} and \mathcal{J}_{t}(\mathcal{Y})(=\{\mathcal{J}_{t}(\overline{y}_{1}), \mathcal{J}_{t}(\overline{y}_{2}), \mathcal{J}_{t}(\overline{y}_{3})\}) .

Let M be a subset of H_{t, $\Xi$}^{3} that is stable by an action of \mathcal{I}_{t} and \mathcal{J}_{t} ,
and that

contains every point (\overline{x}_{1},\overline{x}_{2},\overline{x}_{3})\in H_{t, $\Xi$}^{3} for \mathrm{X}_{1}=(x, i, j, $\alpha$_{1}\oplus$\beta$_{1}) , \overline{x}_{2}=(x, j, k, $\alpha$_{2}\oplus$\beta$_{2})
and \overline{x}_{3}=(x, k, i, $\alpha$_{3}\oplus$\beta$_{3}) with mutually different indices i, j and k . Let Q(\overline{x}_{1},\overline{x}_{2},\overline{x}_{3})
be a symmetric property on M (i.e. Q(\overline{x}_{1},\overline{x}_{2},\overline{x}_{3})\Leftrightarrow Q(\overline{x}_{l_{1}},\overline{x}_{l_{2}},\overline{x}_{l_{3}}) for a permutation

\{l_{1}, l_{2}, l_{3}\} of {1, 2, 3 The following lemma follows from (4.4.15) and (4.4.16).

Lemma 4.24. If the property Q is stable under an action of \mathcal{I}_{t} and \mathcal{J}_{t} , that is,

if for (\overline{x}_{1},\overline{x}_{2},\overline{x}_{3})\in M

(4.4.17) Q(\overline{x}_{1},\overline{x}_{2},\overline{x}_{3})\Leftrightarrow Q(\mathcal{I}_{t}(\mathrm{X}_{1}),\mathcal{I}_{t}(\overline{x}_{2}),\mathcal{I}_{t}(\overline{x}_{3}))\Leftrightarrow Q(\mathcal{J}_{t}(\mathrm{X}_{1}), \mathcal{J}_{t}(\overline{x}_{2}), \mathcal{J}_{t}(\overline{x}_{3}))

hold, then Q induces a symmetric property defined on the set of circuit index triplets.

Remark. We can obtain the same lemma for a symmetric property Q(\overline{x}_{1},\overline{x}_{2}) of

two variables.
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The most important symmetric property which is well‐defined on the set of hinged
index pairs is that of an �ordered crossing�

Definition 4.25. Let \mathrm{X}_{1} and \overline{x}_{2} be points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}\backslash \overline{Z}_{t} . We say that \mathrm{X}_{1} and \overline{x}_{2}
are located at an ordered crossing position if Conditions 1 and 2 below are satisfied:

1. \overline{x}_{1} and \overline{x}_{2} form a hinged index pair.
2. For an ordered representative \overline{y}_{1} and \overline{y}_{2} of the pair,

{\rm Re} f_{t, $\Xi$}($\rho$_{H_{t, $\Xi$}}(y)) and {\rm Re} f_{t, $\Xi$}($\rho$_{H_{t,\underline{=}}}(y))
are not zero and have the same signature.

Another important and related notion �combined� on the set of circuit index triplets
will be later introduced (cf. Theorem 4.31 and Definition 4.32).

The type of a Stokes curve is another important notion. Let us construct the space

of type \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} in the same way as \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} . We prepare copies \{H_{t,i,j}\}_{(i,j)\in \mathbb{Z}_{n,\neq}^{2}} of H_{t},
and set

(4.4.18) H_{t,\mathbb{Z}_{n,\neq}^{2}}=(i,j)\in \mathbb{Z}_{n,\neq}^{2}\sqcup H_{t,i,j}.
Let \mathcal{J}_{H_{t,\mathrm{z}_{n,\neq}^{2}}}:H_{t,\mathbb{Z}_{n,\neq}^{2}}\rightarrow H_{t,\mathbb{Z}_{n,\neq}^{2}} designate the pushout of \mathcal{J}_{t} ,

i.e.

(4.4.19) \mathcal{J}_{H_{t,\mathrm{z}_{n,\neq}^{2}}}(x, i, j)=p(\mathcal{J}_{t}(x, i, j, 0\oplus 0))
with p(x, i, j,  $\alpha$\oplus $\beta$)=(x, i, j) ,

and we set

(4.4.20) \mathcal{T}_{t}=H_{t,\mathbb{Z}_{n,\neq}^{2}}/\sim
where the equivalence relation is given by \mathcal{J}_{H_{t,\mathrm{Z}_{n,\neq}^{2}}} . Note that \mathcal{T}_{t} is nothing but a

Riemann surface associated with analytic continuations of \{$\lambda$_{t,j}-$\lambda$_{t,i}\}_{(i,j)\in \mathbb{Z}_{n,\neq}^{2}}.
Definition 4.26. The space of type \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is the set of equivalence classes \mathcal{T}_{t}/\sim

with the equivalence relation being (x, i, j)\sim(x, j, i) or (x, i, j)\sim(x, i, j . For a point

\mathrm{X}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} ,
the image of Xby the canonical projection $\pi$_{t,R,\mathcal{T}}:\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}\rightarrow \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is called

the type of \overline{x}.

Remark. Let \overline{x}_{1}, \overline{x}_{2} be points in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}}^{-1}(x) . Then we often say that \overline{x}_{1} and \overline{x}_{2}
have the same type if they give the same point in \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} ,

and we also say that \overline{x}_{1}
and \mathrm{X}_{2} have a common index if there exist mutually different indices i, j, k satisfying

$\pi$_{t,R,\mathcal{T}}(\overline{x}_{1})=(x, i, j) and $\pi$_{t,R,\mathcal{T}}(\overline{x}_{2})=(x, j, k) .
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Let \mathrm{V}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} be a turning point at t=t_{0} . Since f_{t, $\Xi$}(x) is a holomorphic function

of t
,

when t moves near t_{0} ,
the equation

(4.4.21) f_{t, $\Xi$}(x)=0

has a root V(t) near t_{0} with \mathrm{V}(t_{0})=\overline{v} where V(t): T\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} is \mathrm{a} (possibly multivalued)
holomorphic map in a neighborhood of t_{0} . The map V(t) of t is called a holomorphic

germ of a turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} at t_{0}.

Lemma 4.27. We have the following.

(i) If \mathrm{V}(t_{0})\not\in\overline{Z}_{t_{0}} ,
then V(t) is a single valued holomorphic map near t_{0}.

(ii) If \overline{v}(t) and an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} have the same type (resp. a

common index), then the number of branches of \mathrm{V}(t) is at most 3 (resp. 2).

Proof. We first remark that

(4.4.22) \displaystyle \frac{\partial}{\partial x}f_{t,i,j, $\alpha$\oplus $\beta$}(x)=$\lambda$_{t,j}(x)-$\lambda$_{t,i}(x) .

Hence (i) is clear. For (ii), by putting the Puiseux expansions of $\lambda$_{t,i}(x) and $\lambda$_{t,j}(x) into

F_{t,i,j}(x) ,
we can easily obtain the result. \square 

We denote by B(\overline{v})(t)\subset \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} the set of values evaluated at t of all branches of

$\pi$_{t,R,\mathcal{T}}(\overline{v}(t)) ,
that is,

(4.4.23) B(\overline{v})(t)= \cup $\pi$_{t,R,\mathcal{T}}(\mathrm{W}(t)) .

\overline{w}\in {branches of \overline{v} near t }

Let \overline{v}_{0}(t) and \overline{v}_{1}(t) be holomorphic germs of turning points at t_{0} . We say that \overline{v}_{0}(t)
and \overline{v}_{1}(t) give different germs in the type space at t_{0} if there exists a neighborhood
U of t_{0} such that the set \{t\in U;\mathcal{B}(\overline{v}_{0})(t)\cap \mathcal{B}(\overline{v}_{1})(t)=\emptyset\} is an open dense subset of U.

Theorem 4.28. Assume that the equation satisfies the independent 1‐cycle con‐

dition at t_{0} . If \overline{v}_{0}(t) and \overline{v}_{1}(t) are different points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} ,
then \overline{v}_{0}(t) and \overline{v}_{1}(t)

give different germs in the type space at t_{0}.

Proof. We consider the case where the type of \overline{v}_{0}(t_{0}) is the same as that of \overline{v}_{1}(t_{0})
and there exist an ordinary turning point \overline{v}(t) of type (v(t), i, j)\in \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} satisfying
either Cases 1 or 2 at t=t_{0} below:

Case 1. The type of \overline{v}(t_{0}) coincides with that of \overline{v}_{0} (t0).
Case 2. The type of \mathrm{v}(\mathrm{t}) has a common index with that of \overline{v}_{0} (t0).
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Other cases are trivial or proved in the same way. Let S_{t,k}(k=0,1) designate
a local covering space near \overline{v}_{k}(t) with respect to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}} . We may suppose that S_{t,k}
consists of sheets H_{t,$\xi$_{k}^{+}} and H_{t,$\xi$_{k}^{-}} for indices $\xi$_{k}^{+},  $\xi$_{k}^{-}\in $\Xi$ where

1.  $\xi$_{k}^{+}=(i, j, $\alpha$_{k}\oplus$\beta$_{k}) and $\xi$_{k}^{-}=(i, j, -$\alpha$_{k}+2r_{i\rightarrow j}v\oplus-$\beta$_{k}) if we consider Case 1. Note

that $\xi$_{k}^{-}=$\xi$_{k}^{+} is allowed.

2. $\xi$_{k}^{+}=(i, q, $\alpha$_{k}\oplus$\beta$_{k}) and $\xi$_{k}^{-}=(q, j, -$\alpha$_{k}+r_{i\rightarrow j}v\oplus-$\beta$_{k})(q\not\in\{i, j\}) if we consider

Case 2.

We remark that we have

(4.4.24) $\rho$_{H_{t, $\Xi$}}(v(t), $\xi$_{k}^{+})=$\rho$_{H_{t, $\Xi$}}(v(t), $\xi$_{k}^{-})\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} and f_{t}, $\xi$_{k}^{+}(v(t))=-f_{t}, $\xi$_{k}^{-}(v(t))

(k=0,1) ,
and for any w\in B(\overline{v}_{k})(t) the equality either

(4.4.25) f_{t}, $\xi$_{k}^{+($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}(w))=0} or f_{t}, $\xi$_{k}^{-($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}(w))=0}
holds by the definition of a holomorphic germ (k=0,1) .

Let us now assume that the conclusion of the theorem were false. Then we should

find an open set V in a sufficiently small neighborhood of t_{0} that satisfies

 B(\overline{v}_{0})(t)\cap B(\overline{v}_{1})(t)\neq\emptyset

for  t\in V . Set

V_{0}=\{t\in V;$\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}(\mathcal{B}(\overline{v}_{0})(t)\cap \mathcal{B}(\overline{v}_{1})(t))\cap\{v(t)\}\neq\emptyset\}

and

V_{1}=\{t\in V;$\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}(B(\overline{v}_{0})(t)\cap B(\overline{v}_{1})(t))\backslash \{v(t)\}\neq\emptyset\},
then we have V=V_{0}\cup V_{1}.

First consider the case where V_{0} has an interior point t_{1} . Then noticing (4.4.24)
and (4.4.25), the equalities

(4.4.26) f_{t}, $\xi$_{0}^{+(v(t))=f}t, $\xi$_{1}^{+(v(t))=0}

are satisfied near t_{1} for Cases 1 and 2. Hence we get I_{t}($\alpha$_{0}\oplus$\beta$_{0})=I_{t}($\alpha$_{1}\oplus$\beta$_{1}) in a

neighborhood of t_{1} . It follows from the independent 1‐cycle condition and Proposition
4.11 that for a basis \{g_{1}, . . . , g_{ $\kappa$}\} of H_{1}(\dot{L}) and (k;p)\in \mathbb{Z}_{n}\times Eing the holomorphic
functions of  t

I_{t}(g_{1}) , l_{t}(g_{2}) ,
. . .

, I_{t}(g_{ $\kappa$}) , \{I_{t}((k;p))\}_{(k;p)\in \mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}
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are also independent over \mathbb{Z}
,

thus we have $\alpha$_{0}=$\alpha$_{1} and $\beta$_{0}=$\beta$_{1} ,
in particular, \overline{v}_{0}(t_{0})=

\overline{v}_{1}(t_{0}) .

Now suppose that the set V_{1}\backslash V_{0} has an interior point t_{1} . Since any point in

$\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}(B(\overline{v}_{0})(t)\cap B(\overline{v}_{1})(t)) does not belong to Z_{t} near t_{1} , by Lemma 4.27 we find a

single valued holomorphic map  $\phi$(t):T\rightarrow \mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t} near t_{1} which is a common branch of

both $\pi$_{t,R,\mathcal{T}}(\overline{v}_{0}(t)) and $\pi$_{t,R,\mathcal{T}}(\overline{v}_{1}(t)) . By (4.4.25),  $\phi$(t) satisfies the following equalities
near t_{1} :

1. Either

f_{t,$\xi$_{0}^{\pm}}($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}( $\phi$(t)))=f_{t,$\xi$_{1}^{\pm}}($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}( $\phi$(t)))=0
or

f_{t,$\xi$_{0}^{\pm}}($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}( $\phi$(t)))=f_{t,$\xi$_{1}^{\mp}}($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}( $\phi$(t)))=0
for Case 1.

2. f_{t,$\xi$_{0}^{\pm}}($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}( $\phi$(t)))=f_{t,$\xi$_{1}}\pm($\pi$_{\mathcal{T}_{\mathrm{s}\mathrm{y}\mathrm{m},t}}( $\phi$(t)))=0 for Case 2.

By employing the same argument as above, we find that either $\xi$_{0}^{\pm}=$\xi$_{1}^{\pm} or $\xi$_{0}^{\mp}=$\xi$_{1}^{\pm} for

Case 1, and that $\xi$_{0}^{\pm}=$\xi$_{1}^{\pm} for Case 2. In either case, by (4.4.24) we have \overline{v}_{0}(t_{0})=\overline{v}_{1} (t0),
which is a contradiction. The proof is complete. \square 

Let v(t)\in Z_{t} be of type (i, j) ,
and \overline{v}_{1}(t) a holomorphic germ of a turning point in

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} at t_{0}.

Corollary 4.29. Assume that the equation in question satisfies the independent

1‐cycle condition at t_{0} . If (v(t), i, j)\in \mathcal{B}(\overline{v}_{1})(t) holds near t_{0} ,
then \overline{v}_{1}(t) is an ordinary

turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} , in particular, \overline{v}_{1}(t) is a single valued holomorphic map.

For Stokes curves in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} ,
we have the following result:

Lemma 4.30. Let \overline{v} be a turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} ,
and let us assume \overline{v}\in\overline{Z}_{t_{0}}.

Then the number of Stokes curves that emanate from \overline{v} is as follows:

(i) Suppose that \overline{v} and an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} have the same type. If
\overline{v} itself is an ordinary turning point, then we have 3 Stokes curves, otherwise we

have 6 Stokes curves.

(ii) If \overline{v} and an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} have a common index, then we have

4 Stokes curves.

Proof. If \overline{v} is an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} ,
then a neighborhood of \overline{v} is

locally isomorphic to \mathbb{C} by $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}}} ,
thus the configuration of Stokes curves emanating

from \overline{v} is the same as that in \mathbb{C} locally.
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For other cases, \overline{v} is a ramification point of degree 2. Therefore there exist two

copies H_{t,$\xi$_{1}} and H_{t,$\xi$_{2}} of H_{t} that give sheets of \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} near V. If we consider (i) (resp.
(ii)) of the lemma, then in each copy we have 3 (resp. 2) Stokes curves that emanate

from $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}}(\overline{v}) . Hence we obtain the results. \square 

Figure 10. 6 Stokes curves emanating from branches when t\neq t_{0}

At the first glance, the fact that 6 Stokes curves emanate from a turning point
seems curious. However the following example explains why 6 Stokes curves emanate.

In the base space, that is \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}} ,
if a virtual turning point v(t) coincides with an

ordinary turning point at t=t_{0} ,
then when t moves, by Lemma 4.27 v(t) splits into

3 virtual turning points v_{0}(t) , v_{1}(t) ,
and v_{2}(t) as branches of a holomorphic germ of

a turning point. The configuration of Stokes curves that emanate from these virtual

turning points becomes like Fig. 10. In the figure, we find 6 Stokes curves that emanate

from the branches of v(t) ,
and these curves converge to 3 Stokes curves that emanate

from the ordinary turning point in the base space. However since the convergence of

each curve occurs in a different Riemann sheet of \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} due to Corollary 4.29, we still

have 6 Stokes curves in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} when t=t_{0}.

Let \overline{v}_{i}(t)(i=0,1,2) be a single valued holomorphic germ of a turning point in

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} at t_{0} ,
and let \overline{s}_{i}(t) be a Stokes curve in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t} emanating from \overline{v}_{i}(t) such that

\overline{s}_{i}(t) is continuously deformed near \mathrm{V}_{i}(\mathrm{t}) when t moves. We denote by v_{i}(t) (resp. s_{i}(t) )
(i=0,1,2) the image of \overline{v}_{i}(t) (resp. \overline{s}_{i}(t) ) by the projection $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t}}:\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t}\rightarrow \mathbb{C}\backslash E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}
respectively. We suppose the following situations when t=t_{0} :

\bullet The Stokes curves  s_{0}(t_{0}) , S(t) and s(t) intersect transversally at a point  y\in

\mathbb{C}\backslash (Z_{t_{0}}\cup E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}) .

\bullet We can find a point \overline{y}_{l}\in\overline{s}_{l}(t) over y(l=0,1,2) such that \overline{y}_{0}, \overline{y}_{1} and \overline{y}_{2} form a

circuit index triplet. Let (y, i, j, $\alpha$_{0}\oplus$\beta$_{0}) , (y, j, k, $\alpha$_{1}\oplus$\beta$_{1}) and (y, k, i, $\alpha$_{2}\oplus$\beta$_{2}) denote

an ordered representative of the triplet.
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Under these situations at t=t_{0} we have:

Theorem 4.31. If the equation satisfies the independent 1‐cycle condition at t_{0},
then the following conditions (i) and (ii) are equivalent.

(i) For any t near t_{0} ,
the Stokes curves s_{0}(t) , s_{1}(t) and s_{2}(t) mutually intersect at

some point y(t)\in \mathbb{C} where y(t) is a continuous function of t with y(t_{0})=y ,
and

they are combined at y(t) .

(ii) The following relation of indices holds:

(4.4.27) $\alpha$_{0}\oplus$\beta$_{0}+$\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2}=0.

Proof. By the definitions of a Stokes curve and a turning point we have for any

(x, t) near (y, t_{0})

\displaystyle \int_{v_{0}(t)}^{x}\frac{$\lambda$_{t,j}-$\lambda$_{t,i}}{p(x)}dx=f_{t,i,j,$\alpha$_{0}\oplus$\beta$_{0}}(x) , \int_{v_{1}(t)}^{x}\frac{$\lambda$_{t,k}-$\lambda$_{t,j}}{p(x)}dx=f_{t,j,k,$\alpha$_{1}\oplus$\beta$_{1}}(x) ,

(4.4.28)

\displaystyle \int_{v_{2}(t)}^{x}\frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx=f_{t,k,i,$\alpha$_{2}\oplus$\beta$_{2}}(x) .

Here the path of each integration is composed of the projection of a portion of \overline{s}_{l}(t)
from \overline{v}_{l}(t) to a point near \overline{y}_{l} and a path in H_{t} to reach x(l=0,1,2) . It follows from

the form of F_{t,i,j} given by (4.3.21) that we have

(4.4.29) F_{t,i,j}(x)+F_{t,j,k}(x)+F_{t,k,i}(x)=0.

Thus we obtain:

\displaystyle \int_{v_{0}(t)}^{x}\frac{$\lambda$_{t,j}-$\lambda$_{t,i}}{p(x)}dx+\int_{v_{1}(t)}^{x}\frac{$\lambda$_{t,k}-$\lambda$_{t,j}}{p(x)}dx+\int_{v_{2}(t)}^{x}\frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx
=f_{t,i,j,$\alpha$_{0}\oplus$\beta$_{0}}(x)+f_{t,j,k,$\alpha$_{1}\oplus$\beta$_{1}}(x)+f_{t,k,i,$\alpha$_{2}\oplus$\beta$_{2}}(x)

(4.4.30)
=F_{t,i,j}(x)+F_{t,j,k}(x)+F_{t,k,i}(x)

+I_{t}($\alpha$_{ij}+$\alpha$_{jk}+$\alpha$_{ki})+I_{t}($\alpha$_{0}\oplus$\beta$_{0}+$\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2})
=I_{t}($\alpha$_{0}\oplus$\beta$_{0}+$\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2}) .

We first prove that (ii) implies (i). Thanks to (4.4.30) and the assumption we have

(4.4.31) \displaystyle \int_{v_{0}(t)}^{x}\frac{$\lambda$_{t,j}-$\lambda$_{t,i}}{p(x)}dx+\int_{v_{1}(t)}^{x}\frac{$\lambda$_{t,k}-$\lambda$_{t,j}}{p(x)}dx+\int_{v_{2}(t)}^{x}\frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx=0.
Let us show that Stokes curves s_{0}(t) , s_{1}(t) and s_{2}(t) mutually intersect at some points
for any t near t_{0} . Since s(t) and S(t) intersect transversally at t=t_{0} , they always



46 Naofumi Honda

intersect at y(t) where y(t) is a continuous function of t with y(t_{0})=y . Let l be a

line passing through y(t) that intersects transversally with s(t) at y(t_{0}) ,
and set

l(t)=l+(y(t)-y(t_{0})) . Then l(t) and s_{2}(t) also intersect at w(t) near t_{0} where

w(t) is a continuous function of t with w(t_{0})=y(t_{0}) . Let us consider a smooth curve

 $\tau$:[0, 1]\rightarrow T with  $\tau$(0)=t_{0} ,
and set  $\Theta$=\{ $\theta$\in[0, 1]; y( $\tau$( $\theta$))=w( $\tau$( $\theta$))\} . Note that  $\Theta$

is a non‐empty closed set. Now we will assume  $\theta$_{0}=\displaystyle \sup\{ $\theta$\in[0, 1]; [0,  $\theta$]\subset $\Theta$\}<1 . By
the definition of a Stokes curve, we obtain

{\rm Im}\displaystyle \int_{v_{0}(t)}^{y(t)}\frac{$\lambda$_{t,j}-$\lambda$_{t,i}}{p(x)}dx={\rm Im}\int_{v_{1}(t)}^{y(t)}\frac{$\lambda$_{t,k}-$\lambda$_{t,j}}{p(x)}dx={\rm Im}\int_{v_{2}(t)}^{w(t)}\frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx=0.
Therefore taking (4.4.31) into account we get

{\rm Im}\displaystyle \int_{w(t)}^{y(t)}\frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx=0
where the integration is performed along l(t) . This implies that both

{\rm Im}(\displaystyle \frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx|_{l( $\tau$($\theta$_{0}))}) and {\rm Im}(\displaystyle \frac{$\lambda$_{t,i}-$\lambda$_{t,k}}{p(x)}dx|_{s_{2}( $\tau$($\theta$_{0}))})
are zero at y( $\tau$($\theta$_{0})) ,

and that is impossible because l( $\tau$($\theta$_{0})) and s_{2}( $\tau$($\theta$_{0})) are transver‐

sally intersecting at y( $\tau$($\theta$_{0})) . Hence $\theta$_{0}=1 ,
and (i) follows from (ii).

For the converse, by (4.4.30) we get I_{t}($\alpha$_{0}\oplus$\beta$_{0}+$\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2})=0 for any t

near t_{0} ,
and this implies $\alpha$_{0}\oplus$\beta$_{0}+$\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2}=0 because of the independent

1‐cycle condition. \square 

Remark. Employing the formula (4.4.27) of the theorem above, we can calculate

the index of a virtual turning point that is located by Theorem 2.2. Note that (4.4.27)
is well defined on the set of circuit index triplets. To see this, it suffices to confirm

(4.4.17) of Lemma 4.24, and in this case we can show a stronger assertion that the map

on the set of circuit index triplets with its value H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}} in the form

(4.4.32) $\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2}+$\alpha$_{3}\oplus$\beta$_{3}\in H_{1}(\dot{L})\oplus \mathbb{Z}^{\mathbb{Z}_{n}\times E_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}}

is well defined up to sign. For example, suppose that x\in H_{t} is in a cut line which

emanates from v\in Z_{t} of type (i, j) ,
then for an ordered representative of some circuit

index triplet \overline{x}_{1}=(x, i, j, $\alpha$_{1}\oplus$\beta$_{1}) , \overline{x}_{2}=(x, j, k, $\alpha$_{2}\oplus$\beta$_{2}) and \overline{x}_{3}=(x, k, i, $\alpha$_{3}\oplus$\beta$_{3}) ,

another representative of the circuit index triplet is given by

\mathcal{J}_{t}(\overline{x}_{1})=(x^{*}, j, i, $\alpha$_{1}-2r_{i\rightarrow j}v\oplus$\beta$_{1}) , \mathcal{J}_{t}(\mathrm{X}_{2})=(x^{*}, i, k, $\alpha$_{2}-r_{j^{v}\rightarrow i}\oplus$\beta$_{2}) and

\mathcal{J}_{t}(\overline{x}_{3})=(x^{*}, k, j, $\alpha$_{3}+r_{i\rightarrow j}v\oplus$\beta$_{3}) ,
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and hence we have

($\alpha$_{1}-2r_{i\rightarrow j}v\oplus$\beta$_{1})+($\alpha$_{2}-r_{j\rightarrow i}v\oplus$\beta$_{2})+($\alpha$_{3}+r_{i\rightarrow j}v\oplus$\beta$_{3})=$\alpha$_{1}\oplus$\beta$_{1}+$\alpha$_{2}\oplus$\beta$_{2}+$\alpha$_{3}\oplus$\beta$_{3}.

§4.5. The Algorithm at a Limiting Point

By taking into account Theorems 4.28 and 4.31, it is almost clear how to extend

the algorithm to determine solid or dotted line portions of a Stokes curve when t=t_{0}.

The algorithm for a generic parameter was already introduced in Subsection 2.2 with

Definition 3.2 instead of Definition 2.6. The algorithm will be modified with respect to

the following points (A) and (B) in the context of Subsection 2.2.

(A) The base space of the algorithm is now \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} ,
that is, both turning points and

Stokes curves are considered to be those defined in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}}.
(B) For the notion of ((combined�, Definition 2.4 is replaced with Definition 4.32 below.

Let \overline{s}_{0}, \overline{s}_{1} and \overline{s} be Stokes curves in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} and \overline{x} a point in the curve [\urcorner s.

Definition 4.32. We say that \overline{s} is combined with \overline{s}_{0} and \overline{s}_{1} at \overline{x} if the following
conditions are satisfied:

1. There exist points \overline{x}_{0}\in[\overline{s}_{0}] and \overline{x}_{1}\in[\overline{s}_{1}] so that \overline{x}, \overline{x}_{0} and \overline{x}_{1} form a circuit index

triplet.
2. For an ordered representative (x, i, j,  $\alpha$\oplus $\beta$) , (x, j, k, $\alpha$_{0}\oplus$\beta$_{0}) and (x, k, i, $\alpha$_{1}\oplus$\beta$_{1}) of

the triplet, the relation below holds:

(4.5.1)  $\alpha$\oplus $\beta$+$\alpha$_{0}\oplus$\beta$_{0}+$\alpha$_{1}\oplus$\beta$_{1}=0.

Remark. In practice, we need not to know the concrete shape of \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} . What

we really need is the finite data \{r_{i\rightarrow j}v\}_{v\in Z_{t}} (Definition 4.16) and \mathrm{a}^{((}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{e}
�

to obtain the

index of a Stokes curve in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} . The former can be calculated by the type diagram
and the latter was already given in Proposition 4.17 or Definition 4.18.

Example 4.33. Let us come back to the example in Subsection 4.1. Hereafter

we set t=t_{0}=0 ,
and x (resp. v_{0}, s_{0} , etc.) stands for x(0) (resp. v_{0}(0), s_{0}(0) , etc.). The

type diagram of the example can be realized by a plane graph that has only 1 bounded

connected component (see Fig. 11). Therefore we obtain RankZ H_{1}(\dot{L})=1 ,
ant its basis

is given by the walking path

D_{1}:1\rightarrow 2v_{0}\rightarrow 3v_{1}\rightarrow v_{2}1.

We define $\alpha$_{ij} by

$\alpha$_{12}=1\rightarrow 2v_{0}, $\alpha$_{23}=2\rightarrow 3v_{1}, $\alpha$_{13}=$\alpha$_{12}+$\alpha$_{23}.
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Figure 11. The type diagram of the ex‐

Figure 12. The example in [\mathrm{A}\mathrm{K}\mathrm{o}\mathrm{T}].
ample.

Then noticing 3\rightarrow v_{2}1+$\alpha$_{13}= [D1], we have

r_{1^{v_{0}}\rightarrow 2}=0, r_{2^{v_{1}}\rightarrow 3}=0, r_{3^{v_{2}}\rightarrow 1}=1,

and since v_{0}, v_{1} and v_{2} are ordinary turning points, the index of v_{0} (resp. v_{1} and v_{2} ) in

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} is ( 1, 2, 0)\in \mathbb{Z}_{3,\neq}^{2}\times H_{1}(\dot{L}) (resp. ( 2, 3, 0) and (3, 1, 1 For example, the index

of s_{0} is the same as that of v_{0} since \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}} is not ramified at an ordinary turning point
with respect to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}}} ,

and it remains ( 1, 2, 0) because s_{0} does not cross any cut. It

is now clear that the relation (4.5.1) is not satisfied at x(0+0+1\neq 0) ,
therefore s_{2}

is not combined with s_{0} and s_{1} at x in the sense of Definition 4.32, and the state of s_{2}

remains unchanged at x . Moreover Theorem 4.31 entails that the index of the virtual

turning point v which was located by Theorem 2.2 is (3, 1, 0) hence we can distinguish
v from v_{2} in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m},t_{0}}.
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