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Reflecting Ornstein-Uhlenbeck processes
on pinned path spaces

By

Masanori HINO* and Hiroto UCHIDA™*

Abstract

Consider a set of continuous maps from the interval [0, 1] to a domain in R?. Although
the topological boundary of this set in the path space is not smooth in general, by using the
theory of functions of bounded variation (BV functions) on the Wiener space and the theory of
Dirichlet forms, we can discuss the existence of the surface measure and the Skorokhod repre-
sentation of the reflecting Ornstein-Uhlenbeck process associated with the canonical Dirichlet
form on this set.

§1. Introduction

In [7], Hariya obtained an integration by parts formula on a subset of the pinned
path space on R?, which is a partial generalization of the work by Zambotti [12]. To
state it more precisely, let  be a bounded domain in R¢. We assume that the boundary
of Q is sufficiently smooth. Take a,b € €2 and define the path spaces as follows:

Wap = {w € C([0,1] — RY) | w(0) = a, w(l) = b},
Wé?b ={w e C([0,1] — Q) | w(0) = a, w(l) = b},

h(0) = h(1) =0, h is absolutely continuous }

Ho =< heC(0,1] — R .
0 { € o1~ )and f01|h(s)|]§dds<oo

We regard ng as a subset of W, ;. The topological boundary 8W§?b of Wé?b with
respect to the uniform topology is given by

Q

Wy {w € Wap w(s) € 09 for some s € (0, 1)
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where Q and 99 denote the closure and the boundary of Q in R¢, respectively. We
define a subset 0’ Wé?b of 8WQb by

8’WQb ={w € oW, b | there exists a unique s € (0, 1) such that w(s) € 9Q}.

Let fi4,p be the pinned Wiener measure on W, ;. For a smooth cylindrical function F'
on Wy, and h € Hy, Hariya [7] proved the identity

(L1) O () oy (dur) = / F(w) (hy w) ftay(dw) + (BC),
ng,b we

where 0j, is the partial derivative along the direction of h, (h,w) denotes the Wiener
integral fo s)dw(s), and (BC) is the “boundary contribution,” which is expressed as
an integral over 8W£b. The explicit expression of (BC) is provided in [7]. In this study,
we provide only the following remarks on (BC).

(a) The mass of the measure on 8WQb appearing in the integral representation of (BC)
concentrates on 0’ ng.

(b) The integrand in (BC) contains the normal derivatives of the heat kernel density
on ) at 0 with the Dirichlet boundary condition.

The integration by parts formula (1.1) implies that the indicator function 1W§’,b of Wé?b
is a BV function, and we can construct the reflecting Ornstein-Uhlenbeck process on
WQb with the Skorokhod representation (cf. Section 2 below). On the other hand,
property (b) above imposes on the strong regularity of € since we cannot expect the
normal derivatives of the heat kernel density to exist at the boundary if 02 is not very
smooth. If we are only interested in the probabilistic aspect, it is sufficient to prove that
1Wn is a BV function; in other words, even if we do not know the explicit expression of
(BC) only proving the validity of the integration by parts is sufficient. This is expected
to be done under a milder assumption on {2 since such a claim can be proved only by a
series of inequalities and not by equalities. This is the objective of this paper.

In this paper, we introduce the concept of the uniform exterior ball condition for €2,
which allows some singularity at 0€2, and prove that 1Wn is a BV function under such a
condition. Based on this, we can construct the reﬂectmg Ornstem—Uhlenbeck process on
the closure of Wa,b and prove its Skorokhod representation. Further, we prove that the
mass of the measure on 8WQ appearing in the Skorokhod representation concentrates
on 0’ WQb, which is consistent with property (a) above. The proof is based on the
quantitative estimates of Brownian motion on R?, and the method is different from
that used in [7]. We expect that our method is sufficiently flexible to discuss more
general situations.
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This paper is organized as follows. In Section 2, we provide a framework and state
the main theorem. Some key estimates for the Brownian motion on R¢ are proved in
Section 3. These estimates are obtained by reducing them to a few detailed estimates of
a one-dimensional Brownian motion with a constant drift. The main theorem is proved
in Section 4. In the last section, we provide a few remarks.

§2. Framework and the main result

First, we recall the concept of the BV functions on the Wiener space, according to
[5]. Let (E, H, 1) be an abstract Wiener space, that is, E is a separable Banach space,
H is a separable Hilbert space densely and continuously embedded in F, and p is a
Gaussian measure on F that satisfies the condition

/Eexp (V=11(2)) p(dz) = exp (—|U|};/2) , 1€ E*.

Here, * denotes the topological dual and we use natural inclusions and an identification
E* C H* = H C E. When M is a separable Hilbert space, LP(E — M) denotes the LP-
space on E with respect to u which consists of M-valued functions. When M = R, we
omit M from the notation. Let C{(R™) be the set of all bounded continuous functions f
on R™ such that all the first-order partial derivatives of f are bounded and continuous.
Define

FCp=3u:E—R
b {u - [ € CHR™) for some m € N

wz) = F11(2), .. dm(2), Ly L € E¥, }

FCHpg-={G: E — E*
(FCy)r { - ul,...,umE}"C’l}forsomemEN

G(z) ="  ui(2)li, by .. b € E*, }

For u € FC}, an H-valued function Vu on E is given by the following identity:
(Vu(z),l)g = gl_r%(u(z +el)—u(z))/e, e E*CH, z€E.
Let V* be a (formal) adjoint operator of V, which is defined by the following relation:
(V*G,u)r2py = (G, Vu)r2(E—m), u€E FCL.

We define the set of BV functions on FE as

[ |p| max{0,log |p|}'/? du < oo and there exists
BV(E) =< p: E—R|C >0 such that |[,(V*G)pdu| < C||Glullz=(r)
for all G € (FC})p-

We shall now revisit several properties of BV functions on F.
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Theorem 2.1 (([5, Theorems 3.7, 3.9])).  Forp € L'(E), the following are equiv-
alent conditions.

(1) p € BV(E).

(2) There exists a sequence {p,} in D! := FC}
verges to p in L'(E) and |Vpg|| L1 (g—m is bounded in n.

IVl g+l
EHE=I B such that py con-

(3) (Integration by parts formula) There exist, a finite Borel measure v and an H -valued
function o on E such that |o|g =1 v-a.e. and

[ Gpdn= [ Gouiv. GeFChe-
E E

Theorem 2.2 (([5, Theorem 4.2])).  Let p € BV(E) and assume p > 0 p-a.e.
Let S be the support of the measure pdu. Define a bilinear form on L*(S,pdu) by

Assume that (€, FC}) is closable on L*(S,pdp). Then, its closure (€,F) is a quasi-
reqular, local, and conservative Dirichlet form on L2(S,pdu), and the following Sko-
rokhod representation holds:

I 1/t
(2.1) Xy=Xo+ B — 5/ X,ds + 5/ 0(Xs)dAgs, t>0, Py-a.e. for q.e. w.
0 0

Here, (X, Py) is a diffusion process on S associated with (£,F), {B:} is an E-valued
Brownian motion starting at 0, { A} is an additive functional in Revuz correspondence
with v, and v and o are provided in Theorem 2.1 (3).

Note that v above is smooth with respect to the (€, F) from [5, Theorem 3.9], which
justifies the consideration of the Revuz correspondence of v. When p is an indicator
function, we term {X;} a reflecting Ornstein-Uhlenbeck process on S. In such a case,
the measure v can be regarded as a surface measure of S.

Theorem 2.3 (([5, Theorem 3.15])).  Under the conditions described in Theo-
rem 2.2, if moreover p is an indicator function of a set U, then the mass of v concen-
trates on the topological boundary of U.

We remark that the original assertion of Theorem 3.15 in [5] provides more detailed
information on the support of v.
For t > 0, z,y € R?, we define

2
. z—y
pel,y) = (2mt) "2 exp (—%) :
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Fix a,b € R?, and let Wap and Hy as defined in Section 1. The pinned Wiener measure
ta,p o0 Wo p, is a Borel probability measure such that for 0 =ty <t <--- <ty =1
and Borel sets A, ..., An of R,

Paplw € Wop | w, —wy, , € Ai, i=1,...,N]|
N+1
= pi(a,b) / ) / H Pti—tioy (Tim1, @) day -+ - dey,
A1><"'><AN i=1

where g = a and 41 = b. Then, (W 0, Ho, po,0) is an abstract Wiener space. When
(a,b) # (0,0), Wy is not a linear space. However, W, ; is isomorphic to Wy ¢ as an
affine space according to the shift map

)\a,b3 Wa,b SW = W — ha,b € Wo’o,

where hop(t) = a+ (b—a)t, t € [0,1], and (Wap, fta,p) is isomorphic to (W o, po,0) as
a measure space according to the map A, . Therefore, by pushing everything forward
to (Wo.0, 1t0.0), we can define the concepts of FC}, V, the BV space BV (W,;) etc.,
on (W, Ho, ftap). Furthermore, Theorems 2.1, 2.2, and 2.3 are valid on this space by
appropriate modification.

Let © be a domain of R?. We do not assume that  is bounded, but assume
Q #R% For z € R? and r > 0, B(z, ) denotes the closed ball in R? with center z and
radius r.

Definition 2.1. We state that ) satisfies the uniform exterior ball condition
if there exists § > 0 such that for every y € 09, there exists z € R? \ Q satisfying
B(z,0) N Q= {y}.

For example, bounded domains with boundaries in the C2-class and convex domains
satisfy the uniform exterior ball conditions. It may be said that this condition allows
outward cusps, but not inward cusps.

We consider ng, 8W£b, and 0’ ng as defined in Section 1. Let Wf?b = ng U
8W§b. The main theorem in this paper is as follows.

Theorem 2.4.  Assume that § satisfies the uniform exterior ball condition. Then,
lm € BV (Way). Further, the bilinear form (', FC}) on LQ(W&), Ha.b ) defined

by

Q
Wiy

1
£0.9) =5 [ (V1Vgm duas S.9€ FC;

Q
Wa

is closable, and its closure (€', F') is a quasi-regular, local, and conservative Dirich-
let form. Moreover, when (X,, P.) denotes the diffusion process on ng associated
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with (€, F"), (Xe, Pu) = Cap(XD, Py )
a,b

tion (2.1) with (E, H, p) = (Wo,0, Ho, pt0,0) and p =1, (—) Furthermore, 8W$b\

Q
a,b Wa,b

o )\;ll)) satisfies the Skorokhod representa-

o W(gb has a null capacity that is associated with (€', F"). In particular, the mass of the
measure v that corresponds to p in Theorem 2.1 (3) concentrates on )\a’b(a’ng).

§3. Some estimates for (pinned) Brownian motion

Subsequently, C; denotes an insignificant positive constant and a domain  in R¢
is assumed to satisfy the uniform exterior ball condition.

We define a Lipschitz function ¢ on R¢ by

q(x) = yeiﬂgdf\g |z — ylra — Inf) |z — YR
For 7 > 0, set Q, = {z € R? | g(z) > 7}. Note that Qy = Q and {q(z) >0} = Q.

Let W = C([0,00) — R%). Let {P,},cra be the probability measures on W such
that the coordinate process {w:}i>0 is a d-dimensional Brownian motion starting at
z under P, for each z € R%. For ¢ > 0, let F;, be a o-field generated by {{ws €
D};s € [0,t], D is a Borel set of R%}. Then, {F,} is a minimal filtration to which {w;}
is adapted on the canonical measurable space (W, .7:"00) For an {ft}—stopping time T,
define Fr = {A € Foo | AN{r <t} € F, for all t > 0}. We denote the integral with
respect to p, by FE,. The shift operator O5: W — W is defined by (Qsw); = wgiy, t > 0.

Lemma 3.1. Letx € Q. Choosey € 9Q and z € RN\ such that q(v) = |v—y|pa
and B(z,0) N Q = {y}, where § is provided in Definition 2.1. Let K = (d —1)/(26) and
Ry = |wt — z|ga for w ={w¢} € W. Then, for each u > 0,

{R: >4 for allt € [0,u]} C {R: < q(x)+d+ Kt+S; for allt € [0,u]}
up to a Px—null set. Here, Sy is a one-dimensional Brownian motion under Px starting

at 0 that is defined by

el -0 (i) (1) (d) (1) (d)
St(w)zz i ——dwy, ws=(wg’, ... w), 2= (2,002 Y.

i=1 5
Proof. Define an {F;}-stopping time o by o = inf{t > 0 | R, = 0}. Note that
Ro = |z — z|ga = q(x) + § Py-a.e. By virtue of Ito’s formula,

t
-1 .
Rt:q(a:)—l—é—l—/ d2R ds+ S, on{t<o} P,ae.
0 S

Therefore, the assertion holds. O
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Proposition 3.1.  There exists Cy > 0 such that for every u > 0 and z € Q,

Pm[ inf q(w) >0} < O (1+u Y?)q(z).
te(0,u]

Proof. We retain the notations in Lemma 3.1, from which
P, [R, > forall t € [0,u]] < P, [q(x) + 0+ Kt+ S, > 6 for all t € [0,u]].

Let 7 > ¢(z) and define np = inf{t > 0 | Kt + S, < —r}. The law of n under P, is given
by

Pyn € dt] = 1(g.00)(1)

2t

r 2
e (—(*—K’f)) dt + (1 — exp(—2K7))5u0 (dt),

where J is a delta measure at co. (See, e.g., [2, p. 295].) Then, we have

P, Lif%f]Q(wt)EO] < P,[R, > 6 for all t € [0,u]] < Py[n > u]
c|0,u

Kt)
exp( T+ )dt-l—l—exp —2Kr)

S/ dt+2K7°—\/ —+2K7°
u

Letting r — ¢(x), we obtain the desired inequality. O

r
1/ t3

For r > 0, define an {ft}—stopping time 7, by 7 = inf{t > 0 | w; € Q,}. Let ]53’;
be the law of 7, under P,.

Lemma 3.2.  P7([0,t]) is differentiable int on (0,00) and there exists a constant
Ca > 0 such that CE@P;([O,t]) < Cot™1. The constant Cy is taken independently of =, r
and t.

Proof. It is sufficient to consider the case that « € §2,.. Let pj(-,-) be the transition
density of the Brownian motion of €, killed at 0S2,.. Then,

P:Z:([O’t]) :px[Tr St] :1—/Q pZ(a:,z)dz

=1- // ps(z, )i (y, 2) dy dz
QX0

for 0 < s < t. From [10, Theorem 6.17], p;_,(y, 2) is differentiable in ¢ on (s, c0) for a.e.
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(y, z) and the following estimate holds:

d - 0
Y br < r Y or
S < [ e gt )

C _ ]2
< Oy // Pl (2, y) (¢t — )"V Lexp <—M> dy dz
Q- XQ

t—s
< Cs(t— 8)_1/ pl(z,y)dy < Cs(t —5)7 1,

r

dy dz

where C3, C4 and C5 are taken independently of x, r, s and t. By letting s = t/2, we
complete the proof.

O

Proposition 3.2.  There exists Cg > 0 such that for allu > 0, r > 0, and x € €2,

P, {0 < i[r(l)f ]q(wt) < r} < Cg(14u=?)r.
te|0,u

Proof. First, let x € Q\ Q,. From Proposition 3.1 and the fact that 0 < ¢(z) < r,

P, [0 < dnf a(w) < r} < Ci(14u ?)g(x) < Cr(1+u ).
t€|0,u

Next, let z € Q,.. Then,

Pac |:0 < inf Q(wt) < 7{| = P:c |:7-1" < u, 0< inf q(wt):|
t€[0,u] telrr,ul

— Px {Tr <u, 0L inf Q((enw)t)}

te[0,u—T.]

m lQ‘ku <u—7, <27y, 0<  inf q((@nw)t)]
te[0,u—Tr]

VAN

> P
k=1
me lQ‘ku <u—71, <27F 1y, 0<  inf q((GTrw)t)] :
k=1

T te[0,2 k)

Here, we used P,[r, = u] = 0 in the third line, which follows from Lemma 3.2. From
the strong Markov property and Proposition 3.1,
f]

P, [Z_ku <u—7, <27y, 0<  inf q((Brw))

te[0,2—Fu]

A

= 1{2_ku<u—r7~§2_k+1u} ’ Pw‘rr 0< tE[OH21f;ku] q(wt):|

< Cilggrucy—ra-rriay - (L4 (27%0) 72
< Cil{g-bucu—r,<a-triuy - (1+ ((u—73)/2)7/)r.



REFLECTING ORNSTEIN-UHLENBECK PROCESSES 119

Therefore,

P.l0< inf <
o< o0 =]

< ClrE'x[l + ((u— TT)/Q)_I/Q; Tr < u

< Cyr /Ou <1+ (“;S>_m> P (ds)

U N —1/2
< Crr(1+ (u/4) ) Pylr < u/2] + olr/ (1 + (“ 5 3) ) Cos 1 ds
u/2

u N -1/2
§C’1r(1+(u/4)_1/2)+m/ <1+ (u2 8> ) ds
u/2

u /

< Cg(14u=?)r.
Here, we used Lemma 3.2 in the third line. This completes the proof. O

Let Pa,b be a probability measure on W such that {w;};e(o,1) is a pinned Brownian
motion under Pa,b with wg = a and w; = b. The following lemma is proved by the
definition of Pa,b and the monotone class theorem.

Lemma 3.3. Forte[0,1), A€ F., and a Borel set D of RY,

: : _(y,b
P.y[An{w € D}] < P,JAN{w; € D}] - sup pi-e(y,b)
veD pi(a,b)

Lemma 3.4. Let 7 be an {f}}-stoppz'ng time and A € F.. Let D be an open set
of R%. Then,

Popl{r<1}nAn{w. e D} <P {r<1}NnANn{w, € D}|- sup pi(y,b)
t€(0,1], yep P1(a;b)

Here, D is a closure of D in R¢.

Proof. Consider a sequence of {F;}-stopping times {7, } such that each 7, takes
only finite values of {t%k)} ken, and 7, | 7. Here, A, is an index set consisting of finite
elements. Then,

{r<1}nAn{w, € D} Climinf({r,, <1} NAN{w,, € D})

C limsup({r, < 1} N ANn{w,, € D})

n—oo

c{r<1}nAn{w, € D}.
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For t € [0,1), {7, =t} N AN{w,, € D} € F;. Therefore, from Lemma 3.3,

bl {Tn < 13N AN {w,, € D}
= > Pulin=tP}nAn{e, €D}

kEA,, 1) <1
< Y Pl{m=tP}InAn{w,, € D} sup Py (,0)
Tn =ty . . Pl—ty N
- k ‘ yeD P1 (CL, b)
ket <1
: b
< Z Pa[{Tn = tgzk)} NAN {an c D}] . sup pt(y, )
() t€(0,1],yeD P1 (a,b)
k€A, ty <1

- pe(y,0)
=P,{m <1} NAN{w, € D}]- sup .
[{ } { }] t€(0,1],yeD P1 (a, b)

By letting n — oo, we complete the proof from Fatou’s lemma. O

Denote the Borel o-field on [0, 00) by B([0,00)).

Lemma 3.5.  Let 7 be an {F,}-stopping time such that 7 <1 and T C [0, 00)x W
an element in B([0,00)) ® Fuo. Assume that

{r<13n{((1-7)/2,0,w) €T} € Fiyr)/a-
Then, for a Borel set D of R?,

Pa,b[{r <1}n{w, e D}N{((1 —=7)/2,0,w) € T}]

<sup B, | sup 1Ip(s,w)-s 2| exp(la — b|2./2).
z€D 5€(0,1/2]

Proof. Let ¢ € (0,1). Then,
Puslir <1} N {w, € DY N {(1 - 7)/2,6,0) € T}

= iﬁa,b[{cwrl <1-7<Fyn{w, € DIN{((1 -7)/2,0,w) €T}.
k=0

Since c**! < 1 — 7 < cF implies that 7 < 1 — &t and (1 +7)/2 < 1 — /2, by

combining the assumption, the set in Pa’b[- -+ ] belongs to fl_ck+1 /2. From Lemma 3.3
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and the strong Markov property, the above equation is dominated by

P <1— 7<) n{w, € DY {((1—7)/2,60:w) € T}]
k=0

P (a, b)—l(ﬂ_ck—i—l)—d/2
< Ea[1{T<1}ﬁ{wTED}ﬁ{((l—T)/Q,GTw)Gl"} A(m(1=7)e) ] pi(a, )"

>

(VAN
8

1{T<1}ﬁ{w~,—ED} sup (1F(87 eTw) ’ (QWSC)_d/2> b1 (CL, b)_l
s€(0,1/2]

B, 1{T<l}m{wTeD}EwT[ sup 1r(s,w) - (2msc) 2 ] pia,)”!
s€(0,1/2]

< sup B,
xeD

sup Ip(s,w) - s~ 2| - c % exp(ja — blga/2).
5€(0,1/2]

By letting ¢ — 1, we reach the conclusion. O

Proposition 3.3.  There exists C7 > 0 such that for every r > 0,

(3.1) o [w €Wy

0 < inf 1)) < < Cor.
< it qlul) <] < Cn

Proof. Let a = min{q(a), q(b)}/2. It is sufficient to prove that there exists C7 > 0
such that (3.1) holds for all € (0,«/3). Choose r € (0,/3) and let V = B(b, ) and
V' = B(b,«/2). Then,

Hab {w €EWup| 0< inf gq(w(t)) < r]

te[0,1]

< Pa’b[Tr <landw; € Q\V forall t € [r, (1, +1)/2]]

N

+Pab

I

7. <1, wy € V for some t € |7, (7. +1)/2],
and w; € Q for all t € [, (1, +1)/2]

= Il + IQ.

For I;, Lemma 3.4 with 7 = min{(7, + 1)/2, 1} implies

I =Poplry <1, w, € Q\V for all t € [1,,7], and w, € R?\ V']
: Q b
< Pr <1, w, € Q\V forall t €[r,7]- sup Pi(y,b)

t€(0,1], yerd\ v P1(a;b)

Now,

b 2)2
sup pt(y7 ) <m (CL, b)—l sup (27Tt)_d/2 exp (_ (05/ ) ) < Oy
1€(0,1), yerd\v P1(a,b) te(0,1] 2t
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and
Pulry <1, w € Q\V for all t € [r,,7]]
<Pl <1, (6,w) € Qforall t € [0, (1 —7,.)/2]]
S Zpa[Q_k <1-—- Tr S 2—/~€—|-17 (GTTW)t c ﬁ for all ¢ c [O, 2—k—1”'
k=1
Since

P2F <1 -7 <27F (0, w) eQforalltel0,27F71)| £ ]
=1lp-rc1 7. <2-k+1) -R,TT [we € Qforallte [0, 2—k—1”

< ljpkci—r<orty - Cr(1 + 2(k+1)/2)r

< lpo-kc1ogo<o-kt1y - C1(1+2(1 - TT)—I/Q)T

from the strong Markov property and Proposition 3.1,

I, < CSClrEa[l{Tr<l} (1421 — 7))
1

< CsChr(1 4+ 2V3) Pl < 1/2) + cgclr/ (1421 — 5)"/2) . Cos—Lds

1/2
S 09T7

by virtue of Lemma 3.2.
We will estimate a value for I5. From Lemma 3.5 with 7 = min{7.,1}, D = 9,
and

= {(s,w) €[0,00) x W

w € V for some ¢ € [0, s] and
wy € Q for all t € [0, 5 7

we obtain

I, < Cjo sup E,

sup 1p(s,w) - s_d/2] .

2€dQ, s€(0,1/2]

By letting f(w) = supse(o,1/2 Ir(s,w) - s~%2 we have

(3.2) I, < Cqp sup E’w[f] = Cio sup / Px[f > u] du.
e, €0, JO

Let x € 09,, and define y, z, K, Ry, and S; as in Lemma 3.1. We have |z — z|ga =
d+7 € (0,0 +a) and |b— z|ga > 0 + q(b) > § + 2a. Define the stopping times with
respect to the canonical augmentation of {F;} by {Py},cre as follows:
p=inf{t >0 | R, ¢ [0,0 + )},
p=inf{t>0|r+d+Kt+S;¢[5,0+a)}
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Since wy € V implies Ry > |b — z|gpa —a > 0 + a,

Py(f >

< P,[(s,w) €T for some s < u
< Pp<u?"and R, =6+ q

<Pl <u ¥ andr+35+Kp +Sy =5+a] (from Lemma 3.1)
< Fylexp(1 —u¥%); r+ Kp' + 5, = o]

— MK (e=)giny Wm) /sinh (a\/W) . (cf. [2, p. 309))
Since (11/4)6“/2 < sinhv < we? for v > 0, the above term is dominated by
KDy 22T K2 exp (1207 T+ K2
(0/ V22T I exp (avV2TT + K7 )2)
= 4o~ tetHE @) oxp ((r —«a/2) \/W)

< da~ el Ko exp(—v2aut/?/6).

—2/d]

Substituting this estimate into (3.2), we obtain Iy < C7;r. This completes the proof. [

§4. Proof of Theorem 2.4

In this section, we prove Theorem 2.4. We retain the notations in the previous
sections. We will utilize the following theorem.

Theorem 4.1 (([3])).  Let F be a measurable function on Wy, and Ho-Lipschitz;
in other words, there exists C' > 0 such that

|F(w+h) — F(w)| < Clhlgy, w € Wayp, he H.

Then, if fW , F?dp,p < oo, F belongs to D2, Here, DV2 is a first order L?-Sobolev
space on Wy that is defined as the completion of FC} with respect to the norm (||V -
12w o o) 1 W22 o)) Moreover, [VE@)laty < C prap-aec.

From Proposition 3.3, for any r > 0,

Hab [ch?b \ Wifb} = [lab Leh[%fl] g(w(s)) =0| < Crr.

Therefore, jiqp |W \ W | = 0. By combining this with the remark in [4, p. 230],
’ a,b a,b

the bilinear form (€', FC}) is closable on L?(W$!

a,b?

ftablza), and the closure (€, F)
a,b
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is a quasi-regular, local, and conservative Dirichlet form. In particular, we obtain the
diffusion process (X{, P.) on W—Qb associated with (&', F").

Next, we prove that 1WQ € BV(Wyp). Define F(w) = inf,cjo17q(w(t)) for w €
Wap. For n € N, we deﬁne fn(s) = min{max{0,ns},1} for s € R and p,(w) =
fn (F(w)) for w € W, . Then, since WQb = {F(w) > 0}, we obtain lim,,_, p, = e,
pap-a.e. and in LY (Wop, piap). Therefore, from Theorem 2.1, it is sufficient to prove
sup,, [V onll Lt (W, ,—Houie ) < 00 We note that g(x) is a Lipschitz function on R? with
Lipschitz constant 1; thus, we obtain the following estimate for w € W, and h € Hy

[Flw k)~ F(w)| = | inf a(w(®) +h(®) ~ inf a(w(t)

< sup |q(w(t) + h(t) — q(w(t))]

te[0,1]
< sup [h(t)] < [hlm,.
te[0,1]

Thus, F is Hy-Lipschitz continuous. From Theorem 4.1, we deduce that F' € D2 and
\VE |\, <1 pgp-a.e.
Now, we use the chain rule of Hy-derivative to obtain

IV pall 2 (Was Ho ) < 110 <1/} VE Lo 1y s

1
< npigp [0< inf gw(t)) < —
< nas [0 inf ao() < -

According to Proposition 3.3, sup,, [|VonllL1(w, ,—Hopa.) < 00
By virtue of Theorem 2.2, the process X; := A\, p(X]) satisfies the Skorokhod
equation (2.1).
Next, we will prove Cap (8WQb \ 0 W(?b) = 0, where Cap denotes the capacity
associated with (&', F’). When w € 8WQb \ o'W b, there exist at least two points
€ (0,1) such that w(t) € 9. Therefore,

(4.1) W\ W

C U {w € Wa,b

0<s1<s2<1
51,82€Q

inf q(w(t)) =0, inf qlw(t)) = O} .

tE[O,Sl] t€[$1,$2]

For a, 6 € R and s1, s2 € (0,1) with s1 < s2, we define

AS1,82’(CY,ﬁ) - {w € Wfl»b

inf gq(w(t)) =a, inf q(w(t)) = ﬁ} .

te[O,sl] tE[S]_,Sg]

The right-hand side of (4.1) is rewritten as Uy, <5, <1 5. A (0,0)- For a subset

so€Q 781,82,

G of R?, we denote U(a,ﬁ)eG Ag so,(a,8) DY Asy 50,6



REFLECTING ORNSTEIN-UHLENBECK PROCESSES 125

Fix s1,s92 € (0,1) with s1 < s3. We define a map f: Wy — R? by

flw) = ( inf g(w(®), _inf qw(®).

t€[0,s1] tE€[s1,52]

We denote an open ball in R? with its center at 0 and radius r by B(r). By the continuity
of f, Ag, s,,B(r) 18 an open neighborhood of Ay, 4, (0,0) in Wap-
Take € > 0 and A € (0,1). We choose a smooth function g on [0, 00) such that

1 for t € [0, \e),
3log(t/e)
£ — 1t 5/9. \4/9
g(t) Tog A or t € (A°7e, \*7¢),
0 for t € (g,00),

and 3(tlog\)™! < ¢/(t) < 0 for all t € (0,00). We define a function ¢: R? — R by
((x,y) = /2?2 +y? and set ¢ = go (. Since vo f is a bounded Hy-Lipschitz continuous
to F’ in particular — by virtue of Theorem 4.1. Moreover,

function, it belongs to ID!»2
tof=1on A, s, B(re)- Denoting the gradient operator on R? by Vg2, we have

o fuo =5 |_IV0o )y duas
1 ,b
=5 | TP @), (T (@D, ()
we,
< Cra [ (Vo )(£(0)) s sl
=C Ve U2 d «\Ma,b|pa
b /{(w,y)eRzlazzO,yZO} Ve i U (s W“”’))
=: Ig.

Here, fi(ta,blgm) denotes the image measure of fiqplm— by f. In the second line,
a,b a,b

(-,-)r2 denotes a pairing between the elements in Hy ® R? and in R? and has values
in Hy. The inequality from the second line to the third follows from the fact that f is

Hy-Lipschitz continuous. Now,
Ve o[22 = (00/02)% + (91 0y)?

= (¢ o ¢ y))’ gy T (9 0 ) 7
= (9" o Clw,y)’

x? + y?
By considering § = (¢ © f)«(#a,blym), We obtain
a,b
€

I3 = 012/ g (r)*¢&(dr) < 9012/>\ (log \) " 2r—2&(dr) =: 14.
0

1S54
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From Lemma 3.3, the Markov property of (w, ]593) and Proposition 3.2,

2(r) == &([0,7]) = (fe(ptap qu))(C—l([O,?‘]))

Ha,b [w < Wyb

El

inf t))? inf )2 < 2]
tel[g’sl]q(w( ) +te[lsri,52]Q(w( )" <r

0< inf g(w)<r 0< inf q<w(t))§r]
t€[0,s1] t€[s1,s2]

:| . pl—32 (b7 b)
p1 (a’7 b)
= C'131:7& |:1{0§inft€[o’81] q(wt)gr}Pwsl |:0 < inf Q(wt) < T:|:|

te [0,82—81]

IN

we W,

1

Ha,b

IN

Pa[og inf qlw) <7 0< inf qlw)<r
tG[O,S]_] tE[S]_,Sg]

< Cu(l+ (52— 51) )Py l‘) <, dnf jalw) < ]
€10,s1

S 015(1 + (82 — 81)_1/2)(1 + 81_1/2)7’2 = 016T2~

Thus, we obtain

£ _ 1 _
I, =9C» /}\E(log)\) 2r_2 d=(r)

L[[EM], [f 220
= 9C2(log ) { 3 ])\g—l—//\e 3 dr
< C17(log \) 2 1—|—/ ldr)

Ae T

= C’17(10g )\)_2(1 - log )\)
Therefore,

Ca"p(A81,82,(0,0)) < Ca'p(A31,32,B(>\€))
Sg/(bofvbof)'i_“Lof“ig(w_ﬁbm )
a, b’y

a,

<&'(tofiiof)+E()
< C17(log A)"2(1 —log A\) 4 C1ge.

By letting € — 0 and A — 0, we obtain Cap(A, s,,0,0)) = 0. Therefore,

Cap(OW,, \ OWS,) < > Cap(As, s,,(0.0)) = 0

0<s1<82<1,81,82€Q

The last claim follows from the above result and Theorem 2.3, and the fact that v is a

smooth measure. This completes the proof of Theorem 2.4.
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§5. Concluding remarks

(1) In a similar and simpler way, we can prove the counterpart of Theorem 2.4 that
concerns the one-sided pinned path space on ; this theorem was proved in [11].
More precisely, we define the path spaces as follows:

Wa = {w € C([0,1] = R?) | w(0) = a},
W = {w e C([0,1] — Q) | w(0) = a},

h(0) =0, h is abslutely continuous }

H=<{heC(0,1] — R? .
{ (10,1] = RY) and f01|h(s)|]%£d ds < o0

8W§={weW@

w(t) € Q for every t € [0,1] and
w(s) € 9N for some s € (0, 1] ’

ﬁwﬁ:{weawy

there exists a unique s € (0, 1]
such that w(s) € 99 ’

W =wSuows,

Let pq be the probability measure on W, that is the law of the d-dimensional
Brownian motion starting at a. Then, we can prove the claim that is modified by
replacing W p, ng, tabs, Wo0, to,0, Ho, and Ay p in Theorem 2.4 by W, W(?,
ta, Wo, o, H, and Ay: W, 3 w — w — a € Wy, respectively. Also, from [9,
Theorem 4.4, BV (Wo) N,~; LY(Wo, o) C D*P if p > 1 and ap < 1, where D*?
is a Sobolev space on W, with differentiability index a and integrability index p
according to the Malliavin calculus. Therefore, we obtain the following theorem,

which is a generalization of a part of the results of [1].

Theorem 5.1.  Assume that 0 € Q and Q satisfies the uniform exterior ball
condition. Then, ug(OW§) = 0 and lye € BV(Wo). Moreover, for any real
numbers a and p such that p > 1 and ap < 1, the function 1W§7 belongs to D*P,

(2) Precisely speaking, the diffusion process associated with (£’, ') should be called
the modified reflecting Ornstein-Uhlenbeck process as in [4, 5], since F’ is defined
as the completion of FC} and may be strictly smaller than the “canonical” first
order L2-Sobolev space H 1(I/Vé?b). When F’ is equal to H 1(I/V(?’b) remains an open
problem; a partial answer is provided in [8].
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