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Abstract

A class of immigration superprocesses (IMS) with dependent spatial motion is considered.
When the immigration rate converges to a non-vanishing deterministic one, we can prove that
under a suitable scaling, the rescaled immigration superprocesses converge to a class of IMS
with coalescing spatial motion in the sense of probability distribution on the space of measure-
valued continuous paths. This scaled limit does not only provide with a new type of limit
theorem but also gives a new class of superprocesses. Other related limits for superprocesses
with dependent spatial motion are summarized.

§1. Introduction

Let us consider, first of all, the super-Brownian motion (SBM) or Dawson-Watanabe
superprocess, which is a typical example of measure-valued branching processes. Roughly
speaking, starting from a family of branching Brownian motions, via renormalization
procedure (or short time high density limit), the super-Brownian motion can be ob-
tained, indeed, as a measure-valued Markov process [19]. Various kinds of superpro-
cesses have been investigated by many researchers, and in most cases those superpro-
cesses were obtained as limiting processes of branching particle systems under variety
of settings. Recently a new discovery has attracted us, that is to say, it is nothing but a
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new knowledge that SBM can be obtained as a limit of distinct sorts of particle systems.
In other words, it is possible that under a suitable scaling those rescaled processes may
converge to a super-Brownian motion. For example, rescaled contact processes converge
to super-Brownian motion in two or more dimensions [10]. Cox et al. [1] proved that
rescaled voter models converge to super-Brownian motion. According to [12], a sort
of percolation converges to super-Brownian motion, as a suitable scaling limit, in high
dimensions. Thus appearance of SBM as a scaling limit proves to be universal in a
sense. Moreover, even in the theory of measure-valued processes, similar phenomena
can be observed. For instance, a superprocess with dependent spatial motion (SDSM)
is obtained by renormalization procedure from a family of interactive branching particle
systems, whose branching density depends on its particle location. Such an SDSM was
first discussed and constructed by Wang [18]. There is a function ¢(x), one of those
parameters that play an important role in determining SDSM. When c¢(x) (# 0) is
bounded, then under a suitable scaling SDSMs converge to super-Brownian motion, see
e.g. [3]. Here again it is recognized that SBM does appear universally as a scaling limit.
While, for the same SDSM the situation has changed drastically when ¢(z) = 0. Even
under the same scaling, SDSMs converge this time to a superprocess with coalescing
spatial motion (SCSM). This remarkable occurrence was proved by [4].

In these circumstances the following questions arise naturally: Question 1. "Is
there any other superprocess whose rescaled process may converge to SCSM?” ; Ques-
tion 2. ”Is there any other superprocess whose rescaled process may converge to a
distinct type of process?” As to the first question, what we have in mind is as fol-
lows. When we consider a more complicated superprocess (compared to SDSM), can
we recover an SCSM as a scaling limit? More precisely, since the superprocess is a
measure-valued branching Markov process, if we consider the immigration superprocess
where the notion of immigration is taken into account, then it is meaningful to study
whether the rescaled immigration superprocess may converge to an SCSM or not under
a suitable scaling. As for the second question, this problem can be divided into two
categories. The first category is a group of limit theorems where the third known-type
process may appear as a scaling limit. This case is a simple limit theorem, so in our
work there is no interest in studying a problem of this categary. While, the second
category is a group of limit theorems where a new type of process may appear as a
scaling limit. This case is more than a simple limit theorem. This does not only provide
a new type of limit theorem, but gives also construction of a new type of superprocess.
We are aiming at establishing the latter case. The result in [8] is an answer to the
above first question, where convergence of rescaled immigration superprocess to SCSM
is proved. On the other hand, the limit theorem in [9] is an answer to the above second
question, where we consider a class of superprocesses with immigration and prove that
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the rescaled processes converge to immigration superprocess associated with coalescing
spatial motion, which provides with construction of a new class of superprocesses as
well. The purpose of this paper is to survey series of recently obtained results on limit
theorems for rescaled superprocesses related to SDSM and models with immigration.

§2. Preliminaries
This section is devoted to giving a quick review on basic superprocesses.

§2.1. Characterization of Super-Brownian Motion

We denote by (f, 1) an integral of a measurable function f with respect to measure
p. For a bounded Borel function F' on the space Mp(R) of all finite measures on
R, 0F(p)/ou(x) is the variational derivative of F' relative to p in Mp(R), defined by
lim, Lo+ {F(pu+7-0;) — F(p)}/r, (x € R), if the limit exists. Ly is the generator of
super-Brownian motion, given by

2 2
(2.1) LoF(p) = / ; dde ‘21; ((;‘)) u(dx)+% /R gilﬁ’;ﬁ p(dz).

Here o is a positive constant. A continuous Mg (R)-valued process X = {X,} is a super-
Brownian motion (SBM) if X = {X,} is a solution of the (Ly, Dom(Ly))-martingale
problem. Equivalently, for each ¢ € C?*(R)

22 Ml =lex)— (X0 [ (Fex e @20

is a martingale with quadratic variation process

(2.3) (M.(¢)) = / (0%, X.)ds.

§2.2. Superprocess with Dependent Spatial Motion

For h € C'(R) such that h,h' € L*(R), we define p(z) = [, h(y —z) h(y)dy,
(x € R). Weset a(x) = c(x)?+p(0) for z € R, where ¢(-) € C(R ) is a Lipschitz function.
Let 0 € C(R)" satisfying that there is a positive constant € such that inf, o(z) > € > 0.
The generator L is defined by

2 2
(2.4) LF(u) = % /R a%iﬁ (5) ,u(da:)+% /R g‘;jgg ()

d2 2
//RxR dxdy 5;:5( };;sz) p(dz)p(dy),  (F € Dom(L)),
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where Dom(L£) denotes the domain of the generator £, which is a subset of the space
B(Mp(R)) of all measurable functions on Mp(R). The function p in the above second
line expresses interaction, and the second term in the first line expresses the branch-
ing mechanism. An Mp(R)-valued diffusion process X = {X;} is called a {a,p,o}-
superprocess with dependent spatial motion (SDSM) if X solves the (£,Dom(L))-
martingale problem. In particular, when a in (2.4) is replaced by p(0), X = {X;} is
called a {p(0), p,c}-SDSM. Note that the above martingale problem permits a unique
solution P, for initial data p. This diffusion process has peculiar features. Actually
{p(0), p, 0}-SDSM lies in the space M,(R) of all purely atomic measures on R for any
initial state p € Mp(R). The following is the characterization of {p(0), p,c}-SDSM in
terms of martingale. For each ¢ € C?(R)

25 M) = (e X) - (oxo) - [ (Bt xa)as (20)

is a continuous martingale and its quadratic variation process is given by

t
0

(2.6) <M.(90)>t:/ <ag02,Xs>ds—|—/0tds/R<h(z—~)g0/,Xs)2dz.

Here the second term in (2.6) comes from the interaction effect of the model.

§2.3. Superprocess with Coalescing Spatial Motion

An n-dimensional continuous process {(yi(t),...,yn(t));t > 0} is called an n-
system of coalescing Brownian motions (n-SCBM) with speed p(0) > 0 if each {y;(t);t >
0} is a Brownian motion with speed p(0) and, for ¢ # 7, {|y;(¢t) —y;(t)|;t > 0} is a Brow-
nian motion with speed 2p(0) stopped at the origin. The generator L. is given by

(27) £P ) = 5 [ 05 Ban) + 5 [ o uta

2 (52F( )
/ / drdy 55(2)3(s )u(dw)u(dy),

where A = {(x,z); 2 € R}. The last term of L.F' shows that interactions in the spatial
motion only occur between particles located at the same positions.

In what follows we consider a superprocess with coalescing spatial motion with
purely atomic initial state, namely, having a finite number of atoms, for instance, pug =
o1 &dg, just for simplicity. Let {(&1(f),....&n(t));t > 0} be a system of independent
standard Feller branching diffusions with initial state (£1,...,&,) € R.. Generally, for
g € C(R)" we define

28 Xe=GWh0 120 wih g0 =& ( [ stuas),
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which gives a continuous Mp(R)-valued process. For a basic standard complete proba-
bility space (Q2, F,P), let H; be the o-algebra generated by the family of P-null sets in
F and the family of random variables {(y1(s), ..., yn(s), £(s),...,£2(s)); t > s > 0}.
We observe that the process {X;;¢ > 0} defined by (2.8) is a diffusion process relative
to the filtration (H)¢>o with state space M,(R). Moreover, we consider martingale
characterization of the process X = {X;}. Let Dom(L.) be the set of all functions of
the form F, ¢(p) = (f, ™) with p € Mp(R). We have an easy identity L.Fp, 5(p) =
Fm’G[()mf(u) +1 Z?;jzl Fr1,8,;r(1t), where G(()m) is the generator of the m-system
of coalescing Brownian motions with speed p(0) and ®;; is the operator from C(R™)
to C(R™ 1) defined by
- i—th j—th
(I)ijf(xl7 oo 7$m—1) - O(xm—l)f(xl7 ey Tm—1,5- - 7agm—17 oo 7$m—2)-
T T

Then {X;;t > 0} solves the (L., Dom(L,))-martingale problem, namely, for each F},, ; €
Dom(L.),

(2.9) Fo (X)) = Fon.p(Xo) — /0 LoFo (X,)ds

is a (H;)-martingale [4].

The distribution of the process {X;;t > 0} can be characterized in terms of a
dual process. Now let us consider a non-negative integer-valued cadlag Markov process
{My;t > 0} with transition intensities {g; ;} such that ¢; ;1 = —¢;; = (¢ —1)/2 and
¢i,; = 0 for all other pairs (¢, j). In other words, this means that the process {M;} only
has downward jumps which occur at rate M (M; —1)/2. Such a Markov process is well
known as Kingman’s coalescent process [14]. For My — 1 > k > 1, 1, denotes the k-th
jump time of {My;t > 0} with 79 = 0 and 737, = co. Let {T'x} (Mo —1 >k > 1)
be a sequence of random operators from C(R™) to C(R™ '), which are conditionally
independent given {My;t > 0}, satisfying P{Ty = &;;|M(r,—) = ¢} = {£(¢ — 1)},
¢ >1i# j>1. Let C* denote the topological union of {C(R™);m = 1,2,...}, en-
dowed with pointwise convergence on each C(R™). By making use of the transition
semigroup (Pt(m))tzo of the m-system of coalescing Brownian motions, another Markov

process {Y:;t > 0} taking values from C* is defined by Y; = Pt(i\{;’“)Fk PT(S{ Tﬁk__ll)Fk_l
PT(ZA{TTll)I‘lPT(IMO)%, for 7p41 >t > 1, My — 1 > k > 0. Clearly, {(M,Y:);t > 0}
is also a Markov process. We denote by E7 s the expectation related to the process
(My,Y:) given My = m and Yy = f € C(R™). By (2.9), the process {X;} constructed
by (2.8) is a diffusion process. Let Q:(uo,dr) denote the distribution of X; on Mpr(R)

given Xo = puop € My(R).

Theorem 2.1.  If {X;;t > 0} is a continuous Mp(R)-valued process such that
E[(1, X;)™] is locally bounded int > 0 for each m > 1 and { X} solves the (L., Dom(L.))-
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martingale problem with Xo = po, then the equality

(2.10) /MF(R)(f, V"™ Q¢ (o, dv) = Eg%f [<Y},uéwt) exp {% /Ot E(Ms)ds}]

holds for t > 0, m > 1 and f € C(R™), where we set Z(My) = My(Ms —1). (cf.
Dawson-Li-Zhou [4])

A Markov process on Mp(R) with transition semigroup (Q):>0 given by (2.10) is called
a superprocess with coalescing spatial motion (SCSM) with speed p(0) and branching
rate (-) and with initial state ug € M,(R). Note that the distribution of the SCSM
can be determined uniquely via this formula (2.10).

§2.4. Immigration Superprocess

Suppose that m € Mp(R) satisfies (1,m) > 0 and ¢ is a constant. Define

an (1)

op(x)
where ¢ is an immigration rate and m is a reference measure related to the immigration.
We put Dom(Z) = Dom(L). The process Y = {Y;;t > 0} is called a {p(0), p, 0, q,m}-
immigration superprocess associated with SDSM if Y solves the (Z, Dom(Z))-martingale

(2.11) TP() = CFG0) + [ aFBm(da), e Mr(R),

problem. As a matter of fact, this martingale problem has a unique solution. The
solution {Y;} is a diffusion, and this superprocess started with any initial state actually
lives in the space M,(R). Moreover, a continuous Mp(R)-valued process {Y;;t > 0} is
a solution of the (Z, Dom(Z))-martingale problem [2] if and only if for each ¢ € C%(R),

t
0
212 Mo = (o)~ (Yol — alemr— [ (o v as
0
is a martingale with quadratic variation process
t t
(2.13) (M(p)) = / (0p?,Ys)ds -l-/ dS/ (h(z — )¢, Ys)?dz.
0 0 R

The third term in the right-hand side of (2.12) expresses an immigration effect.

§3. Rescaled SDSM Convergent to SBM

Let a, p be the same as in §2.2. According to [3], let us consider the SDSM with a
general bounded Borel branching density, where ¢ € B(R)". Choose any sequence of
functions {0 }r € C(R)" which extends continuously to the one-point compactification
R =RU {0} and oy, converges to o boundedly and pointwise as k — oo. Suppose that
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{pr}r € Mp(R) and py converges to 4 € Mp(R) as k — oo. For each £ > 1,
let {Xt(k); t > 0} be a {a,p,ox}-SDSM with initial state ui. We denote by Q; the
distribution of {Xt(k); t >0} on Cyy(R4) = C([0,00), Mp(R)). Note that {Qy}x is
a tight sequence of probability measures on Cj(R, ), and also that the distribution

gk)(uk, -) of Xt(k) on Mpr(R) converges as k — oo to a probability measure Q(u, )
on Mp(R), which gives a transition semigroup on Mpr(R). Then it is proved that
the sequence Qj converges as k — 00 to a probability measure Q,, on Chr(R4) under
which the coordinate process {wy;t > 0} is a diffusion with transition semigroup (Q¢)>o-
Moreover, when we denote by Dom(L£) the union of all functions of the form F(u) =
FUdr, 1), -y (s ), € Mp(R), for f € C*(R") and {¢;} C C?*(R) and all functions
of the form F,,, y(p) = (f, p®™) with f € C*(R™), then {w;;t > 0} under Q,, solves the
(L,Dom(L), u)-martingale problem. This guarantees the existence of a {a, p, o }-SDSM
with a general bounded measurable branching density function o € B(R). Furthermore
we assume that (2, X;, Q,,) is a realization of the {a, p,0}-SDSM with |e(z)| > € > 0
for all z € R. Then there exists a A X A x Q,,-measurable function &;(w, ) such that
Q{vw € @ Xi(w,dz) << A(dz), Aae. t > 0} = 1, indicating that X;(w,dx) is
absolutely continuous with respect to the Lebesgue measure A(dz) with density & (w, x)
for A-a.e. t > 0 with Q,,-probability one.

For any 6 > 0, we define the operator Ky on Mp(R) by Kou(B) = pu({0x; = €
B}), and put X! = 0 2KyXy2, and hg(z) = h(fx) for a function h € B(R). Then
for {a,p,c}-SDSM X = {X;; t > 0}, the rescaled process {X/; t > 0} becomes a
{CL@, Po O’g}—SDSM.

Theorem 3.1.  Assume that a(x) — ag, o(x) — o9 and p(x) — 0 as |x| — oco.
Then the conditional distribution of {X¢; t > 0} given X§ = u € Mp(R) converges
as 0 — oo to that of a super-Brownian motion with underlying generator agA/2 and
uniform branching density og. (cf. [3])

The proof is simple. Starting from the statement that

(3.1) F(X{") - F(X§") - / t LiF(X®)ds, (t>0)
0

is a martingale for each k > 0, with F'(u) = f({¢, ), f, ¢ € C*(R) and
(32) LLF () = 5.1/, 1) a5, 8", 1) + 5 16,1 00,67 1)
w300 [ [ pale =@ @@ty

a direct computation leads to the fact that
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(33) ) - P - | LoF(XO)ds, (¢ 0),
0

is a martingalea where EOF(IJ’) = %a'Of/(<¢7 /’L>)<¢H7:u> +%O-0f,/(<¢7 ,LL>) <¢2,,LL> This
clearly implies that the limit process {Xt(o);t > 0} is a solution of the martingale

problem of the super-Brownian motion.

§4. Rescaled SDSM Convergent to SCSM

In this section we consider a special case where ¢(x) = 0 in the coefficient a(x) which
is defined in Section 3. In addition, we assume that ¢ € C(R)" and inf, o(z) > ¢ for
some constant € > 0. We adopt here the domain Dom(L.) = Dom(£) which is described
in the previous section. For 6 > 0, let {Xt(e); t >0} be a {p(0), p, 0 }-SDSM with initial
state X(()e) = 19 € Mp(R), and define X! = H_QKgXégi. We assume that o(x) — og
and p(z) — 0 as |z| — oo, and pp = 0 2Keu'® — p as  — co. Clearly {X?:t >0} is
a {p(0), pg, 09 }-SDSM with initial state ug € Mp(R), and {X?; t > 0,0 > 1} is tight
in C([0,00), Mp(R)). According to [4], suppose that there is a standard probability
space (2, F,P) on which we have a time-space white noise W(ds,dy) on [0,00) x R
based on the Lebesgue measure and a Poisson random measure Ny(dz,dw) on R x W)
with intensity pg(dz)Qp(dw), where Wy = {w € W = C([0,0), RT); w(0) = w(t) =0
for t > 1o(w)} with 79(w) = inf{s > 0; w(s) = 0} for w € W, and @} denotes the
excursion law of the standard Feller branching diffusion {£(¢)}. Moreover, we assume
that {W(ds,dy)} and {Ng(dx,dw)} are independent, and the atoms of Ny(dx,dw) are
supposed to be enumerated into a sequence supp(Ng) = {(a;,w;); i = 1,2,...} such
that 7o(w;iy1) < 7o(w;) and 7o(w;) — 0 as i — oo, P-a.s. Let {2%(a;,t); t > 0} be the
unique strong solution of

(4.1) z(t)=a +/O /Rh(y —x(s))W(ds,dy), t>0,

with a; replacing a and v0hy replacing h. Suggested by [2], when we define the process
{Y?; t > 0} with initial state Y¢ = ug by

00 ¢

(4.2) YY) = Zwi (/ ag(x‘g(ai,s))ds) 00(ast), >0,
i=1 0

then {Y?;¢ > 0} has the same distribution on Cp(R;) as {X?;t > 0}.

Theorem 4.1.  The distribution of {X{;t > 0} on Car(R.) converges as ) — oo
to that of a {p(0), 00, u}-SCSM with constant branching rate. (cf. Dawson-Li-Zhou [4])
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In order to prove the theorem, we need the following key lemma. This shows that
the coalescing Brownian flow arises in some sense as the scaling limit of the interacting
Brownian flow driven by the time-space white noise.

Lemma 4.1.  Suppose that p(x) — 0 as |x| — oco. For each 6 > 1, let {(z(¢),

[%

9.(t)); t > 0} be an m-system of interacting Brownian flows with parameter pg and
0

initial state (af,...,a%), determined by the stochastic equation (4.1) driven by the time-

co, T

space white noise. If a — a; as @ — oo, then the law of {(xf(t), ..., 2%, (t)); t >0} on
C([0,00),R™) converges to that of the m-system of coalescing Brownian motions with
speed p(0) starting from (a1, ..., am).

Let {7y} denote a family of Poisson random variables with parameter (1, Q3")/(1, 1g)
such that ny — n, P-a.s. as § — oo, where @), denotes the restriction of Qi to W, =
{w € Wy; 1o(w) > r} and 7 is a Poisson random variable with parameter (1, Q5")/(1, ).
Then we observe that the process

Mo t
(4.3) A Zgi (/0 ag(g;e(af,s))ds> (5x9(a§)’t), t>r
i=1

has the same distribution on C([r,00), Mp(R)) as {Y,?;¢t > r}. By virtue of Lemma 4.1
it is easy to see that {Z¢; t > r} converges in distribution to

n
(4.4) X =) &(oot)dy,n, t>T
=1

By the theory of Markov processes and the discussion on the Feller property, we can con-
clude via the excursion representation (4.2) that {X;;t > r} has the same distribution
on C([r,00), Mp(R)) as the {p(0), 00, u}-SCSM. In other words, the above arguments
show that the distribution of {X?; ¢t > r} on C([r,o0), Mr(R)) converges as f — oo
to that of the SCSM. The tightness of {X?} in Cpy = C(]0,00), Mp(R)) yields to the
fact that the distribution of {X?} on Cy; converges to that of the SCSM. While, since
all the distributions are supported on Cys(R), the desired result follows at once.

§5. Immigration Superprocess Convergent to SCSM

In this section we shall show a limit theorem for rescaled immigration superpro-
cesses convergent to SCSM, which is the answer to the Question 1 described in Section 1.
Let Y = {Y;;t > 0} be a {p(0), p, 0, ¢, m}-immigration superprocess, and this Y solves
the (Z, Dom(Z))-martingale problem. Let > 1. When we define Y := 07 2K,Ype,,
then the rescaled {Y,?;¢ > 0} has generator
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(5.1 TyF(v) = 5p(0) (6, 0)(6" ) + 500" ((6,9)) (6. )

+a0- P00 0m) + 58 (00) [ [ poe =) @) widov(ay

for F(v) = f((¢,v)) € Dom(Zy) = Dom(Z), where {og}g is a sequence of positive
numbers and {gg }¢ is a sequence of real numbers. Clearly the rescaled processes {Y?;t >
0} live in the family of {p(0), pg, 09, g, m}-IMSs. Moreover, for each 6 > 1, {Y,?;t > 0}
solves the (Zyp, Dom(Zy))-martingale problem and this martingale problem is well-posed.
Let Dy denote the set {(s,a,u,w); s > 0, a € R, q(a) > v > 0, w € Wy}, and
set Ny@) = N | Dg(z). Moreover, Nq(x)(ds,da,dw) denotes a Poisson measure on
[0,00) x R x Wy with intensity dsq(a)m(da)@Qx(dw). In accordance with the notation
used in Section 4, clearly {p(0), pg, 09, g9, m}-IMS enjoys an atomic representation. In
fact,

00 t
VAR nge (t)040(0,a9,4) T+ / / / W(t — 8)030(s,a0,1)Ngy (ds, da, dw)
i—1 ’ 0 JRJIWy

is a {p(0), pg, 09 }-SDSM with deterministic immigration rate gg accompanied by the
reference measure m, and for each ¢ € C*(R),

62 M) = (020~ (e 28— antemye = 20 [, 2

is a continuous martingale relative to the filtration (Qt)tzo with quadratic variation
process

(5.3) (M () = / (00 Z%)ds + 6 / ds /R (ho(z — ' 2%,

where £7°(t) = &;(ogt) for each i € N and G, is the o-algebra generated by all P-null
sets and the families of random variables {W ([0, s] x B)}, {&:(s)}, and {N,,(J x A)}.
Suppose that p(x) — 0 (as |z| — oo); for a sequence {op}e>1 C RT, 05 — (I)og € RT
(as @ — o00); for a sequence {gp}g>1 C R", g9 —0 (as @ — o0); for the initial state pg
= Y02, 6i(0)8,0 € M,(R) with a sequence {al}y C R (for each i € N), there exists a
sequence {b;} c R, po — po = > 50y &i(0)0s, € My(R) (as § — oo0). Now we are in a
position to state the main theorem on rescaled limits in [8].

Theorem 5.1.  (Scaling Limit Theorem) For {p(0), p, o, q, m}-immigra- tion su-
perprocess Y = {Yy;t > 0}, put Y := 072KyYys, for 0 > 1. Then the conditional
distribution of {p(0), pg, o9, g9, m}-immigration superprocess Y? = {Y?;t > 0} given
YY = pg converges as 6 — oo to that of {p(0), 00 }-SCSM with initial state pug.



LiMIT THEOREMS FOR RESCALED IMMIGRATION SUPERPROCESSES 65

It is interesting to note that the processes {Y,?;t > 0}, 6 > 1, are M, (R)-valued diffusion
processes, and also that the limiting process (SCSM) X = {X;¢ > 0} with speed p(0),
constant branching rate o and initial state pg is an M, (R)-valued diffusion process as

well.

Proof. By [16], {(1,Y);t > 0} is a diffusion process with generator o9z (d*/dz?)
+(1,m)(d/dx). So Uy = (1,Y?) satisfies a stochastic differentail equation dU; = \/ogU,d By
+ (1,m)dt, and Doob’s martingale inequality yields to infy P{n > sup;~,(1,Y/)} >
1 —C(m,u,0)/n. By this estimate and the discussion on relative compa,ct_ness, we can
deduce from the compact containment condition [11] that the family {Y}?} is tight in
Cy(Ry). Then we can extract a convergent subsequence of distributions of {Y,}.
Choose any sequence {0z} C {0 > 1} such that the distributions of {Y;?*;¢ > 0}
converge as k — oo to some probability measure Q,,, on the continuous path space.
We shall show that the above limit measure Q,, is a solution of the (L., Dom(L.))-
martingale problem of the target process SCSM. Indeed, the distribution of the SCSM
is uniquely determined by the transition semigroup Q(uo,dv) via the duality method
(Theorem 2.1). Therefore the distribution of {Y;;¢ > 0} itself actually converges to
Q,, as 0 — oco. Roughly speaking, this completes the proof. Our main concern here
is to show that the generator Zy, converges as k — oo to L, under the setting de-
scribed in Theorem 5.1. Note that for F(u) = f({¢,u)) with f,¢ € C?*(R), L F(u)
= 1p(0) F/((6,m)) ("1} + 200 7 ((6,1m) (6P 1) + 37(6,1m)) [ L p(0)0(2) (1)
p(dz)p(dy). By Skorokhod’s representation, F(Y;(k)) — F(Y;(O)) a.s. (as k — 00) uni-
formly in ¢ on compact sets for any F' € Dom(Zy). Similarly, F (Yo(k)) — F (YO(O)) a.s.
(as k — o0), and fg Ty, F(Y{)ds converges to fg L.F(Y{?)ds. If that is the case, we
can step forward and in fact we are able to show that for F' € Dom(L.),

t
(5.4) F, - Py - / LF(YOds, t>0
0

is a martingale. Clearly it turns out to be that this {Y;(O);t > 0} becomes a solu-
tion of the (L., Dom(L.))-martingale problem for the SCSM. Under the purely atomic
initial state pg € M, (R), the distribution of SCSM is unique in the sense of duality
formalism. By virtue of the above discussion on the rescaled limit, the (Zy, Dom(Zy))-
martingale problem induces the (L., Dom(L.))-martingale problem, which is nothing
but the {p(0), 0p}-SCSM martingale problem with the initial state YO(O) = po. Further-
more, this also indicates that the limiting process Yt(o) = 220 E7°(t) Oyy(0,:,0) IS &
{p(0),00}-SCSM. In other words, the limit Q,, of distributions of {Y,?} is a solution of
the martingale problem of the {p(0),0¢}-SCSM. Thus we attain that the distribution
of (Zg, Dom(Zy))-IMS with Y = g converges as § — oo to that of the (L., Dom(L..))-
SCSM with Y[)(O) = po. We finally realize that {p(0), 0o }-SCSM naturally arises in the
rescaled limits of {p(0), p, o, ¢, m}-IMS under the above setting with the scaling Y;?. O
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§6. Immigration Superprocess Convergent to a New Superprocess

The purpose of this section is to show the answer to the Question 2 described in
Section 1 (cf. [9]). Let Y = {Y;;t > 0} be a {p(0), p, 0, ¢, m}-immigration superprocess
in the sense of §2.4 with the purely atomic initial state Yy = pu = >0, §(0)d,, €
M,(R) for {a;}; C R. Here p is a C?-function defined in the begining of §2, o is a
positive constant, ¢ € R and m is a finite Borel measure on R. This Y solves the
(Z,D(Z))-martingale problem, and this martingale problem is well-posed. Let Yt(e) be
an immigration superprocess with parameters {p(0), p, 06, qg, K1/6m} and initial state
YO(Q) = 0?K; jgpu. According to the scaling argument in [8], we put Yf = 072K, Ye(f t)
with 8 > 1 for any t > 0.

Theorem 6.1.  The rescaled processes {Y,;t > 0}4 lie in the family of {p(0), pg, o9,
q9, m}-IMS with initial state Y = u. Moreover, the (Ty, Dom(Zg))-martingale problem
for {Y?} has a unique solution.

Theorem 6.2.  For each 0 > 1 we have the atomic representation:

(6.1) Zg" 59+///W w(t — $)8,0 Ng(ds, da, dw), t>0

where we put £2(t) = & (oat), x¢ = 29(0,a,t), 2% = 2%(s,a?,t) and Ny = N, .

Proof. See Propositions 4 and 5 in §3.3 of [8] respectively. O

We assume: p(x) — 0 (as || — 00); for {og}y C R, 09 — (3)op € RT (as § — 00);
for {gots C RY, g9 — (I)qo € R" (as § — 00); for the initial state, g = > o; &(0)d,0
— o = Y2y &i(0)d, € Ma(R) (as § — c0). Let N;(ds,dw) be a Poisson random
measure on [0,00) x Wy with intensity (1, m)dsQ(dw), which is obtained by the image
of Nq(ds, da, dw) under the mapping : (s,a,w) — (s,w). Notice that N; is independent
of Feller branching diffusions {;(¢);t > 0} ¢ € N. Paying attention to the expression

(6.2) (1,v)) = 259 //W (t—s)N; (ds,dw), t >0,

we may resort to the 81m11ar argument in the proof of Theorem 5.1 to obtain
Theorem 6.3.  The family {Y,;t > 0}q is tight in the space Cpr(Ry).

Definition 6.1. The generator A is given by AF(u) = L.F(u) + qu %1;((5))
m(dz) for F € Dom(A), where L. is given by (2.7), the branching rate o is a positive
constant and ¢ is a deterministic immigration rate. A continuous Mp(R)-valued pro-
cess {Xy;t > 0} is said to be {p(0), o, ¢, m}-immigration superprocess associated with

coalescing spatial motion, if {Xy;t > 0} solves the (A, Dom(.A))-martingale problem.
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Theorem 6.4.  (Scaling Limit Theorem) For {p(0), p, 04, qo, K1/9m}-immigration
superprocess Y () = {Y;(G);t > 0}, put Y = 672K Y0(20t)
(a) There exists a proper version Y of Y converges a.s. as  — oo to a process X,

having the purely atomic representation

(6.3) Zgz oot)d ¥i(0,b;,t) +/ //W (t—s) y(sbt)Nqo(ds db, dw)

for each t > 0, where {y;(0,b;,t)} is a coalescing Brownian motion started at point b;
for each i € N, and y(s,b,t) denotes Harris’ stochastic flow [13] of coalescing Brownian
motion with y(s,b,s) =b.

(b) The conditional distribution of {p(0), pg,c9,qe, m}-IMS {Y2;t > 0} given Y = g
converges as 8 — oo to that of {p(0), 09, qo, m}-immigration superprocess associated with
coalescing spatial motion X = {Xy;t > 0} with uo.

(¢) The generator of the limiting process X = {X,} is given by

(6.4) T P() = /R p(0)-L2EW) gy L /R UO(ZV}(;()V ) (o)

5F(V ?  PF(v)
+/R(J0 5V(x // dxdy ov(x)év(y) v(de)v(dy).

Proof. Since Theorem 6.4 is a generalization of Theorem 5.1 obtained in §5, the

proof goes almost similarly on a technical basis except the notational complexity and
its bulk computation. See the proof of Theorem 5.1 for its sketch and philosophy. For
further details, see Sections 4 and 5 in [9]. O

§ 7. Other Scaling Limits for Immigration Superprocesses

Recently Li and Xiong [15] has proved two interesting scaling limit theorems for
the local time of IMS associated with SDSM, related to restricted coalescing Brownian
flows. Let C,(R) denote the set of continuous functions ¢ on R satisfying C - ¢, >
|¢| with ¢,(z) = (14 22)7P/2, p >0, € R, and M,(R) the space of tempered Borel
measures p on R such that (¢, ) < oo for every ¢ € C,(R). Let ¢(-,-) be a bounded
Borel function on M, (R) x R satisfying the local Lipschitz condition, and let {z(r,a,t)}
be an interacting Brownian flow defined by (4.1). In addition, let {Y;;¢ > 0} be the
solution of

t (I(Y«Sva)
(7.1) Y, = / / / / w(t — 5)0g(s,a,) N (ds, da, du, dw).
0o JrRJo Wo
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Theorem 7.1.  Suppose that q(v,a) — ¢oo as |a| — oo for all p € M,(R). For
any k > 1, define YF(dx) = k=2Yj2(kdx). Then {k=1Y}*; t > 0} converges as k — oo
to {gootA; t > 0} in probability on C(]0,00), My(R)), where A\ denotes the Lebesgue
measure on R.

The above theorem implies the following scaling limit for the local time of the IMS
associated with SDSM. Namely, when we set zx(t,-) = k~°z(k(-),k*t) for the local
time z(-,-) of {Y;}, then zx(t) converges weakly to t?/2 in probability as k — oo. A
similar type of limit theorem for immigration superprocesses with restricted coalescing
Brownian flows replacing x(r, a,t) is proved as well.
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