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Abstract

A class of immigration superprocesses (IMS) with dependent spatial motion is considered.

When the immigration rate converges to a non‐vanishing deterministic one, we can prove that

under a suitable scaling, the rescaled immigration superprocesses converge to a class of IMS

with coalescing spatial motion in the sense of probability distribution on the space of measure‐

valued continuous paths. This scaled limit does not only provide with a new type of limit

theorem but also gives a new class of superprocesses. Other related limits for superprocesses

with dependent spatial motion are summarized.

§1. Introduction

Let us consider, first of all, the super‐Brownian motion (SBM) or Dawson‐Watanabe

superprocess, which is a typical example of measure‐valued branching processes. Roughly

speaking, starting from a family of branching Brownian motions, via renormalization

procedure (or short time high density limit), the super‐Brownian motion can be ob‐

tained, indeed, as a measure‐valued Markov process [19]. Various kinds of superpro‐

cesses have been investigated by many researchers, and in most cases those superpro‐

cesses were obtained as limiting processes of branching particle systems under variety
of settings. Recently a new discovery has attracted us, that is to say, it is nothing but a
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new knowledge that SBM can be obtained as a limit of distinct sorts of particle systems.
In other words, it is possible that under a suitable scaling those rescaled processes may

converge to a super‐Brownian motion. For example, rescaled contact processes converge

to super‐Brownian motion in two or more dimensions [10]. Cox et al. [1] proved that

rescaled voter models converge to super‐Brownian motion. According to [12], a sort

of percolation converges to super‐Brownian motion, as a suitable scaling limit, in high
dimensions. Thus appearance of SBM as a scaling limit proves to be universal in a

sense. Moreover, even in the theory of measure‐valued processes, similar phenomena
can be observed. For instance, a superprocess with dependent spatial motion (SDSM)
is obtained by renormalization procedure from a family of interactive branching particle

systems, whose branching density depends on its particle location. Such an SDSM was

first discussed and constructed by Wang [18]. There is a function c(x) ,
one of those

parameters that play an important role in determining SDSM. When c(x)(\neq 0) is

bounded, then under a suitable scaling SDSMs converge to super‐Brownian motion, see

e.g. [3]. Here again it is recognized that SBM does appear universally as a scaling limit.

While, for the same SDSM the situation has changed drastically when c(x)\equiv 0 . Even

under the same scaling, SDSMs converge this time to a superprocess with coalescing

spatial motion (SCSM). This remarkable occurrence was proved by [4].
In these circumstances the following questions arise naturally: Question 1. �Is

there any other superprocess whose rescaled process may converge to SCSM?� ; Ques‐
tion 2. �Is there any other superprocess whose rescaled process may converge to a

distinct type of process?� As to the first question, what we have in mind is as fol‐

lows. When we consider a more complicated superprocess (compared to SDSM), can

we recover an SCSM as a scaling limit? More precisely, since the superprocess is a

measure‐valued branching Markov process, if we consider the immigration superprocess

where the notion of immigration is taken into account, then it is meaningful to study
whether the rescaled immigration superprocess may converge to an SCSM or not under

a suitable scaling. As for the second question, this problem can be divided into two

categories. The first category is a group of limit theorems where the third known‐type

process may appear as a scaling limit. This case is a simple limit theorem, so in our

work there is no interest in studying a problem of this categary. While, the second

category is a group of limit theorems where a new type of process may appear as a

scaling limit. This case is more than a simple limit theorem. This does not only provide
a new type of limit theorem, but gives also construction of a new type of superprocess.

We are aiming at establishing the latter case. The result in [8] is an answer to the

above first question, where convergence of rescaled immigration superprocess to SCSM

is proved. On the other hand, the limit theorem in [9] is an answer to the above second

question, where we consider a class of superprocesses with immigration and prove that
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the rescaled processes converge to immigration superprocess associated with coalescing

spatial motion, which provides with construction of a new class of superprocesses as

well. The purpose of this paper is to survey series of recently obtained results on limit

theorems for rescaled superprocesses related to SDSM and models with immigration.

§2. Preliminaries

This section is devoted to giving a quick review on basic superprocesses.

§2.1. Characterization of Super‐Brownian Motion

We denote by \langle f,  $\mu$\rangle an integral of a measurable function  f with respect to measure

 $\mu$ . For a bounded Borel function  F on the space M_{F}(\mathrm{R}) of all finite measures on

\mathrm{R},  $\delta$ F( $\mu$)/ $\delta \mu$(x) is the variational derivative of F relative to  $\mu$ in  M_{F}(\mathrm{R}) ,
defined by

\displaystyle \lim_{r\rightarrow 0+}\{F( $\mu$+r\cdot$\delta$_{x})-F( $\mu$)\}/r, (x\in \mathrm{R}) ,
if the limit exists. \mathcal{L}_{0} is the generator of

super‐Brownian motion, given by

(2.1) \displaystyle \mathcal{L}_{0}F( $\mu$)=\int_{R}\frac{1}{2}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}\frac{ $\delta$ F( $\mu$)}{ $\delta \mu$(x)} $\mu$(\mathrm{d}x)+\frac{1}{2}\int_{R} $\sigma$\frac{$\delta$^{2}F( $\mu$)}{ $\delta \mu$(x)^{2}} $\mu$(\mathrm{d}x) .

Here  $\sigma$ is a positive constant. A continuous  M_{F}(\mathrm{R}) ‐valued process X=\{X_{t}\} is a super‐

Brownian motion (SBM) if X=\{X_{t}\} is a solution of the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale

problem. Equivalently, for each  $\varphi$\in C^{2}(\mathrm{R})

(2.2) M_{t}( $\varphi$)=\langle $\varphi$, X_{t}\rangle-\langle $\varphi$, X_{0}\displaystyle \rangle-\int_{0}^{t}\langle\frac{1}{2}$\varphi$'',  X_{s}\rangle ds, (t\geq 0)

is a martingale with quadratic variation process

(2.3) \displaystyle \langle M.( $\varphi$)\rangle_{t}=\int_{0}^{t}\langle $\sigma \varphi$^{2}, X_{s}\rangle \mathrm{d}s.
§2.2. Superprocess with Dependent Spatial Motion

For h\in C^{1}(\mathrm{R}) such that h, h'\in L^{2}(\mathrm{R}) ,
we define  $\rho$(x)=\displaystyle \int_{R}h(y-x)h(y)\mathrm{d}y,

(x\in \mathrm{R}) . We set a(x)=c(x)^{2}+ $\rho$(0) for x\in \mathrm{R} ,
where c \in C(\mathrm{R}) is a Lipschitz function.

Let  $\sigma$\in C(\mathrm{R})^{+} satisfying that there is a positive constant  $\epsilon$ such that \displaystyle \inf_{x} $\sigma$(x)\geq $\epsilon$>0.
The generator \mathcal{L} is defined by

(2.4) \displaystyle \mathcal{L}F( $\mu$)=\frac{1}{2}\int_{R} a \displaystyle \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}\frac{ $\delta$ F( $\mu$)}{ $\delta \mu$(x)} $\mu$(\mathrm{d}x)+\frac{1}{2}\int_{R} $\sigma$\frac{$\delta$^{2}F( $\mu$)}{ $\delta \mu$(x)^{2}} $\mu$(\mathrm{d}x)
+\displaystyle \frac{1}{2}\int\int_{R\times R} $\rho$(x-y)\frac{\mathrm{d}^{2}}{\mathrm{d}x\mathrm{d}y}\frac{$\delta$^{2}F( $\mu$)}{ $\delta \mu$(x) $\delta \mu$(y)} $\mu$(\mathrm{d}x) $\mu$(\mathrm{d}y) , (F\in \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L})) ,
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where Dom() denotes the domain of the generator \mathcal{L} , which is a subset of the space

B(M_{F}(\mathrm{R})) of all measurable functions on M_{F}(\mathrm{R}) . The function  $\rho$ in the above second

line expresses interaction, and the second term in the first line expresses the branch‐

ing mechanism. An  M_{F}(\mathrm{R}) ‐valued diffusion process X=\{X_{t}\} is called a \{a,  $\rho$,  $\sigma$\}-
superprocess with dependent spatial motion (SDSM) if X solves the (, \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}))-
martingale problem. In particular, when a in (2.4) is replaced by  $\rho$(0) , X=\{X_{t}\} is

called a \{ $\rho$(0),  $\rho$,  $\sigma$\} ‐SDSM. Note that the above martingale problem permits a unique
solution \mathrm{P}_{ $\mu$} for initial data  $\mu$ . This diffusion process has peculiar features. Actually

\{ $\rho$(0),  $\rho$,  $\sigma$\}‐SDSM lies in the space \mathrm{M}(\mathrm{R}) of all purely atomic measures on \mathrm{R} for any

initial state  $\mu$\in M_{F}(\mathrm{R}) . The following is the characterization of \{ $\rho$(0),  $\rho$,  $\sigma$\} ‐SDSM in

terms of martingale. For each  $\varphi$\in C^{2}(\mathrm{R})

(2.5) M_{t}( $\varphi$)=\langle $\varphi$, X_{t}\rangle-\langle $\varphi$, X_{0}\displaystyle \rangle-\int_{0}^{t}\langle\frac{ $\rho$(0)}{2}$\varphi$'',  X_{s}\rangle ds, (t\geq 0)

is a continuous martingale and its quadratic variation process is given by

(2.6) \displaystyle \langle M.( $\varphi$)\rangle_{t}=\int_{0}^{t}\langle $\sigma \varphi$^{2}, X_{s}\rangle \mathrm{d}s+\int_{0}^{t}\mathrm{d}s\int_{R}\langle h(z-\cdot)$\varphi$', X_{s}\rangle^{2}\mathrm{d}z.
Here the second term in (2.6) comes from the interaction effect of the model.

§2.3. Superprocess with Coalescing Spatial Motion

An n‐dimensional continuous process \{(y_{1}(t), \ldots, y_{n}(t));t\geq 0\} is called an n‐

system of coalescing Brownian motions (n‐SCBM) with speed  $\rho$(0)>0 if each \{y_{i}(t);t\geq
 0\} is a Brownian motion with speed  $\rho$(0) and, for i\neq j, \{|y_{i}(t)-y_{j}(t)|;t\geq 0\} is a Brow‐

nian motion with speed 2 $\rho$(0) stopped at the origin. The generator \mathcal{L}_{c} is given by

(2.7) \displaystyle \mathcal{L}_{c}F( $\mu$)=\frac{1}{2}\int_{R} $\rho$(0)\frac{d^{2}}{dx^{2}}\frac{ $\delta$ F( $\mu$)}{ $\delta \mu$(x)} $\mu$(\mathrm{d}x)+\frac{1}{2}\int_{R} $\sigma$\frac{$\delta$^{2}F( $\mu$)}{ $\delta \mu$(x)^{2}} $\mu$(\mathrm{d}x)
+\displaystyle \frac{1}{2}\int\int_{ $\Delta$} $\rho$(0)\frac{d^{2}}{dxdy}\frac{$\delta$^{2}F( $\mu$)}{ $\delta \mu$(x) $\delta \mu$(y)} $\mu$(\mathrm{d}x) $\mu$(\mathrm{d}y) ,

where  $\Delta$=\{(x, x);x\in \mathrm{R}\} . The last term of \mathcal{L}_{c}F shows that interactions in the spatial
motion only occur between particles located at the same positions.

In what follows we consider a superprocess with coalescing spatial motion with

purely atomic initial state, namely, having a finite number of atoms, for instance, $\mu$_{0}=

\displaystyle \sum_{i=1}^{n}$\xi$_{i}$\delta$_{a_{i}} just for simplicity. Let \{($\xi$_{1}(t), \ldots, $\xi$_{n}(t));t\geq 0\} be a system of independent
standard Feller branching diffusions with initial state ($\xi$_{1}, \ldots, $\xi$_{n})\in \mathrm{R}_{+}^{n} . Generally, for

ỡ \in C(R) +
we define

(2.8) X_{t}=\displaystyle \sum_{i=1}^{n}$\xi$_{i}^{\tilde{ $\sigma$}}(t)$\delta$_{y_{i}(t)}, t\geq 0 ,
with $\xi$_{i}^{\tilde{ $\sigma$}}(t)=$\xi$_{i}(\displaystyle \int_{0}^{t}\tilde{ $\sigma$}(y_{i}(s))\mathrm{d}s) ,
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which gives a continuous M_{F}(\mathrm{R}) ‐valued process. For a basic standard complete proba‐

bility space ( $\Omega$, \mathcal{F}, \mathrm{P}) ,
let \mathcal{H}_{t} be the  $\sigma$‐algebra generated by the family of \mathrm{P}‐null sets in

\mathcal{F} and the family of random variables \{(y_{1}(s), \ldots, y_{n}(s), $\xi$_{1}^{\tilde{ $\sigma$}}(s), \ldots, $\xi$_{n}^{\tilde{ $\sigma$}}(s));t\geq s\geq 0\}.
We observe that the process \{X_{t};t\geq 0\} defined by (2.8) is a diffusion process relative

to the filtration (\mathcal{H}_{t})_{t\geq 0} with state space M_{a}(\mathrm{R}) . Moreover, we consider martingale
characterization of the process X= {Xt}. Let Dom() be the set of all functions of

the form F_{m,f}() =\langle f, $\mu$^{m}\rangle with  $\mu$\in M_{F}(\mathrm{R}) . We have an easy identity \mathcal{L}_{c}F_{m,f}() =

F_{m,G_{0}^{(m)}f}() +\displaystyle \frac{1}{2}\sum_{i\neq j=1}^{m}F_{m-1,$\Phi$_{ij}f}() ,
where G_{0}^{(m)} is the generator of the m‐system

of coalescing Brownian motions with speed  $\rho$(0) and $\Phi$_{ij} is the operator from \mathrm{C}(\mathrm{R})
to \mathrm{c}(\mathrm{R}) defined by

$\Phi$_{ij}f(x_{1}, . . . , x_{m-1})=\tilde{ $\sigma$}(x_{m-1})f(x_{1}, . . . , x_{m-1 ,\uparrow}^{i-th}, . . . , x_{m-1 ,\uparrow}^{j-th}, . . . , x_{m-2}) .

Then \{X_{t};t\geq 0\} solves the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem, namely, for each  F_{m,f}\in
Dom() ,

(2.9) F_{m,f}(X_{t})-F_{m,f}(X_{0})-\displaystyle \int_{0}^{t}\mathcal{L}_{c}F_{m,f}(X_{s})\mathrm{d}s
is \mathrm{a} () ‐martingale [4].

The distribution of the process \{X_{t};t\geq 0\} can be characterized in terms of a

dual process. Now let us consider a non‐negative integer‐valued càdlàg Markov process

\{M_{t};t\geq 0\} with transition intensities \{q_{i,j}\} such that q_{i,i-1}=-q_{i,i}=i(i-1)/2 and

q_{i,j}=0 for all other pairs (i, j) . In other words, this means that the process \{M_{t}\} only
has downward jumps which occur at rate M_{t}(M_{t}-1)/2 . Such a Markov process is well

known as Kingman�s coalescent process [14]. For M_{0}-1\geq k\geq 1, $\tau$_{k} denotes the k‐th

jump time of \{M_{t};t\geq 0\} with $\tau$_{0}=0 and $\tau$_{M_{0}}=\infty . Let \{$\Gamma$_{k}\}(M_{0}-1\geq k\geq 1)
be a sequence of random operators from \mathrm{C}(\mathrm{R}) to C(\mathrm{R}^{m-1}) ,

which are conditionally

independent given \{M_{t};t\geq 0\} , satisfying \mathrm{P}\{$\Gamma$_{k}=$\Phi$_{ij}|M($\tau$_{k}-)=\ell\}=\{\ell(\ell-1)\}^{-1},
\ell\geq i\neq j\geq 1 . Let C^{*} denote the topological union of \{C(\mathrm{R}^{m});m=1 , 2, . . en‐

dowed with pointwise convergence on each C(\mathrm{R}^{m}) . By making use of the transition

semigroup (P_{t}^{(m)})_{t\geq 0} of the m‐system of coalescing Brownian motions, another Markov

process \{Y_{t};t\geq 0\} taking values from C^{*} is defined by Y_{t}=P_{t- $\tau$ k}^{(M_{$\tau$_{k}})}$\Gamma$_{k}P_{ $\tau$- $\tau$}^{(M_{$\tau$_{k-1}})}$\Gamma$_{k-1}
. . . P_{$\tau$_{2}-$\tau$_{1}}^{(M_{$\tau$_{1}})}$\Gamma$_{1}P_{$\tau$_{1}}^{(M_{0})}Y_{0} ,

for $\tau$_{k+1}>t\geq$\tau$_{k}, M_{0}-1\geq k\geq 0 . Clearly, \{(M_{t}, Y_{t});t\geq 0\}
is also a Markov process. We denote by \mathrm{E}_{m,f}^{ $\sigma$} the expectation related to the process

(M_{t}, Y_{t}) given M_{0}=m and Y_{0}=f\in C(\mathrm{R}^{m}) . By (2.9), the process \{X_{t}\} constructed

by (2.8) is a diffusion process. Let Q_{t}($\mu$_{0}, \mathrm{d}\mathrm{v}) denote the distribution of X_{t} on M_{F}(\mathrm{R})
given X_{0}=$\mu$_{0}\in M_{a}(\mathrm{R}) .

Theorem 2.1. If \{X_{t};t\geq 0\} is a continuous M_{F}(\mathrm{R}) ‐valued process such that

\mathrm{E}[\langle 1, X_{t}\rangle^{m}] is locally bounded in t\geq 0 for each m\geq 1 and \{X_{t}\} solves the (, Dom(\mathcal{L}_{c}))-
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martingale problem with X_{0}=$\mu$_{0} ,
then the equality

(2.10) \displaystyle \int_{M_{F}(R)}\langle f, v^{m}\rangle Q_{t}($\mu$_{0}, dv)=\mathrm{E}_{m,f}^{ $\sigma$}[\langle Y_{t}, $\mu$_{0}^{M_{t}}\rangle\exp\{\frac{1}{2}\int_{0}^{t} $\Xi$(M_{s})ds\}]
holds fort\geq 0, m\geq 1 and f\in C(\mathrm{R}^{m}) ,

where we set ---(M_{s})=M_{s}(M_{s}-1) . (cf.
Dawson‐Li‐Zhou [4])

A Markov process on M_{F}(\mathrm{R}) with transition semigroup (Q_{t})_{t\geq 0} given by (2.10) is called

a superprocess with coalescing spatial motion (SCSM) with speed  $\rho$(0) and branching
rate ỡ and with initial state $\mu$_{0}\in M_{a}(\mathrm{R}) . Note that the distribution of the SCSM

can be determined uniquely via this formula (2.10).

§2.4. Immigration Superprocess

Suppose that m\in M_{F}(\mathrm{R}) satisfies \langle 1,  m\rangle>0 and q is a constant. Define

(2.11) \displaystyle \mathcal{I}F( $\mu$)=\mathcal{L}F( $\mu$)+\int_{R}q\frac{ $\delta$ F( $\mu$)}{ $\delta \mu$(x)}m(\mathrm{d}x) ,  $\mu$\in M_{F}(\mathrm{R}) ,

where q is an immigration rate and m is a reference measure related to the immigration.
We put Dom() =\mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}) . The process Y=\{Y_{t};t\geq 0\} is called a \{ $\rho$(0),  $\rho$,  $\sigma$, q, m\}-
immigration superprocess associated with SDSM if Y solves the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale

problem. As a matter of fact, this martingale problem has a unique solution. The

solution \{Y_{t}\} is a diffusion, and this superprocess started with any initial state actually
lives in the space M_{a}(\mathrm{R}) . Moreover, a continuous M_{F}(\mathrm{R}) ‐valued process \{Y_{t};t\geq 0\} is

a solution of the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem [2] if and only if for each  $\varphi$\in C^{2}(\mathrm{R}) ,

(2.12) M_{t}( $\varphi$)=\langle $\varphi$, Y_{t}\rangle-\langle $\varphi$, Y_{0}\rangle-q\langle $\varphi$, m\displaystyle \rangle t-\int_{0}^{t}\langle\frac{ $\rho$(0)}{2}$\varphi$'',  Y_{s}\rangle ds,

is a martingale with quadratic variation process

(2.13) \displaystyle \langle M( $\varphi$)\rangle_{t}=\int_{0}^{t}\langle $\sigma \varphi$^{2}, Y_{s}\rangle \mathrm{d}s+\int_{0}^{t}\mathrm{d}s\int_{R}\langle h(z-\cdot)$\varphi$', Y_{s}\rangle^{2}\mathrm{d}z.
The third term in the right‐hand side of (2.12) expresses an immigration effect.

§3. Rescaled SDSM Convergent to SBM

Let a,  $\rho$ be the same as in §2.2. According to [3], let us consider the SDSM with a

general bounded Borel branching density, where  $\sigma$\in B(\mathrm{R})^{+} . Choose any sequence of

functions \{$\sigma$_{k}\}_{k}\subset C(\mathrm{R})^{+} which extends continuously to the one‐point compactification

\mathrm{R}=\mathrm{R}\cup\{\partial\} and $\sigma$_{k} converges to  $\sigma$ boundedly and pointwise as  k\rightarrow\infty . Suppose that
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\{$\mu$_{k}\}_{k}\subset M_{F}(\mathrm{R}) and $\mu$_{k} converges to  $\mu$\in M_{F}(\mathrm{R}) as  k\rightarrow\infty . For each  k\geq 1,
let \{X_{t}^{(k)};t\geq 0\} be a \{a,  $\rho,\ \sigma$_{k}\} ‐SDSM with initial state $\mu$_{k} . We denote by \mathrm{Q}_{k} the

distribution of \{X_{t}^{(k)};t\geq 0\} on C_{M}(\mathrm{R}_{+})=C([0, \infty), M_{F}(\mathrm{R})) . Note that \{\mathrm{Q}_{k}\}_{k} is

a tight sequence of probability measures on C_{M}(\mathrm{R}_{+}) ,
and also that the distribution

Q_{t}^{(k)}($\mu$_{k}, \cdot) of X_{t}^{(k)} on M_{F}(\mathrm{R}) converges as  k\rightarrow\infty to a probability measure  Q_{t}( $\mu$, \cdot)
on M_{F}(\mathrm{R}) ,

which gives a transition semigroup on M_{F}(\mathrm{R}) . Then it is proved that

the sequence \mathrm{Q}_{k} converges as  k\rightarrow\infty to a probability measure \mathrm{Q}_{ $\mu$} on c_{M}(\mathrm{R}) under

which the coordinate process \{w_{t};t\geq 0\} is a diffusion with transition semigroup (Q_{t})_{t\geq 0}.
Moreover, when we denote by Dom() the union of all functions of the form F( $\mu$)=
f(\langle$\phi$_{1},  $\mu$\rangle, \cdots, \langle$\phi$_{n},  $\mu$\rangle) ,  $\mu$\in M_{F}(\mathrm{R}) ,

for f\in C^{2}(\mathrm{R}) and \{$\phi$_{i}\}\subset C^{2}(\mathrm{R}) and all functions

of the form F_{m,f}() =\langle f, $\mu$^{\otimes m}\rangle with  f\in C^{2}(\mathrm{R}^{m}) ,
then \{w_{t};t\geq 0\} under \mathrm{Q}_{ $\mu$} solves the

(, Dom  $\mu$ )‐martingale problem. This guarantees the existence of a \{a,  $\rho$,  $\sigma$\} ‐SDSM

with a general bounded measurable branching density function  $\sigma$\in B(\mathrm{R}) . Furthermore

we assume that (, X_{t}, \mathrm{Q}_{ $\mu$}) is a realization of the \{a,  $\rho$,  $\sigma$\} ‐SDSM with |c(x)|\geq $\epsilon$>0
for all  x\in R. Then there exists a  $\lambda$\times $\lambda$\times \mathrm{Q}_{ $\mu$} ‐measurable function $\xi$_{t}( $\omega$, x) such that

\mathrm{Q}_{ $\mu$}\{ $\omega$\in $\Omega$;X_{t}( $\omega$, \mathrm{d}x) << $\lambda$(\mathrm{d}x),  $\lambda$-\mathrm{a}.\mathrm{e}. t>0\}=1 , indicating that X_{t} (  $\omega$
, dx) is

absolutely continuous with respect to the Lebesgue measure  $\lambda$(\mathrm{d}x) with density $\xi$_{t}( $\omega$, x)
for  $\lambda$-\mathrm{a}.\mathrm{e}. t>0 with \mathrm{Q}_{ $\mu$} ‐probability one.

For any  $\theta$>0 ,
we define the operator K_{ $\theta$} on M_{F}(\mathrm{R}) by  K_{ $\theta$} $\mu$(B)= $\mu$(\{ $\theta$ x;x\in

 B\}) ,
and put X_{t}^{ $\theta$}=$\theta$^{-2}K_{ $\theta$}X_{$\theta$^{2}t} and h_{ $\theta$}(x)=h( $\theta$ x) for a function h\in B(\mathrm{R}) . Then

for \{a,  $\rho$,  $\sigma$\} ‐SDSM X=\{X_{t};t\geq 0\} ,
the rescaled process \{X_{t}^{ $\theta$};t\geq 0\} becomes a

\{a_{ $\theta$}, $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}\} ‐SDSM.

Theorem 3.1. Assume that a(x)\rightarrow a_{0},  $\sigma$(x)\rightarrow$\sigma$_{0} and  $\rho$(x)\rightarrow 0 as |x|\rightarrow\infty.
Then the conditional distribution of \{X_{t}^{ $\theta$};t\geq 0\} given X_{0}^{ $\theta$}= $\mu$\in M_{F}(\mathrm{R}) converges

as  $\theta$\rightarrow\infty to that of a super‐Brownian motion with underlying generator  a_{0} $\Delta$/2 and

uniform branching density $\sigma$_{0} . (cf. [3])

The proof is simple. Starting from the statement that

(3.1) F(X_{t}^{(k)})-F(X_{0}^{(k)})-\displaystyle \int_{0}^{t}\mathcal{L}_{k}F(X_{s}^{(k)})\mathrm{d}s, (t\geq 0)
is a martingale for each k\geq 0 ,

with F( $\mu$)=f(\langle $\phi$,  $\mu$\rangle) , f,  $\phi$\in C^{2}(\mathrm{R}) and

(3.2) \displaystyle \mathcal{L}_{k}F( $\mu$)=\frac{1}{2}f'(\langle $\phi$,  $\mu$\rangle)\langle a_{$\theta$_{k}} $\phi  \mu$\rangle+\frac{1}{2}f''(\langle $\phi$,  $\mu$\rangle)\langle$\sigma$_{$\theta$_{k}}$\phi$^{2},  $\mu$\rangle

+\displaystyle \frac{1}{2}f''(\langle $\phi$,  $\mu$\rangle)\int\int_{R^{2}}$\rho$_{$\theta$_{k}}(x-y)$\phi$'(x)$\phi$'(y) $\mu$(\mathrm{d}x) $\mu$(\mathrm{d}y) ,

a direct computation leads to the fact that
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(3.3) F(X_{t}^{(0)})-F(X_{0}^{(0)})-\displaystyle \int_{0}^{t}\mathcal{L}_{0}F(X_{s}^{(0)})\mathrm{d}s, (t\geq 0) ,

is a martingale, where \mathcal{L}_{0}F() =\displaystyle \frac{1}{2}a_{0}f'(\langle $\phi$,  $\mu$\rangle)\langle$\phi$'',  $\mu$\displaystyle \rangle+\frac{1}{2}$\sigma$_{0}f''(\langle $\phi$,  $\mu$\rangle)\langle$\phi$^{2},  $\mu$\rangle . This

clearly implies that the limit process \{X_{t}^{(0)};t\geq 0\} is a solution of the martingale

problem of the super‐Brownian motion.

§4. Rescaled SDSM Convergent to SCSM

In this section we consider a special case where c(x)\equiv 0 in the coefficient a(x) which

is defined in Section 3. In addition, we assume that  $\sigma$\in C(\mathrm{R})^{+} and \displaystyle \inf_{x} $\sigma$(x)\geq $\epsilon$ for

some constant  $\epsilon$>0 . We adopt here the domain Dom ()=\mathrm{D}\mathrm{o}\mathrm{m}() which is described

in the previous section. For  $\theta$>0 ,
let \{X_{t}^{( $\theta$)};t\geq 0\} be a \{ $\rho$(0),  $\rho$,  $\sigma$\}‐SDSM with initial

state X_{0}^{( $\theta$)}=$\mu$^{( $\theta$)}\in M_{F}(\mathrm{R}) ,
and define X_{t}^{ $\theta$}=$\theta$^{-2}K_{ $\theta$}X_{$\theta$^{2}t}^{( $\theta$)} . We assume that  $\sigma$(x)\rightarrow$\sigma$_{0}

and  $\rho$(x)\rightarrow 0 as |x|\rightarrow\infty ,
and  $\mu$_{ $\theta$}=$\theta$^{-2}K_{ $\theta$}$\mu$^{( $\theta$)}\rightarrow $\mu$ as  $\theta$\rightarrow\infty . Clearly \{X_{t}^{ $\theta$};t\geq 0\} is

\mathrm{a}\{ $\rho$(0), $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}\} ‐SDSM with initial state $\mu$_{ $\theta$}\in M_{F}(\mathrm{R}) ,
and \{X_{t}^{ $\theta$};t\geq 0,  $\theta$\geq 1\} is tight

in C([0, \infty), M_{F}(\mathrm{R})) . According to [4], suppose that there is a standard probability

space ( $\Omega$, \mathcal{F}, \mathrm{P}) on which we have a time‐space white noise W (ds, dy) on [0, \infty ) \times \mathrm{R}

based on the Lebesgue measure and a Poisson random measure N_{ $\theta$} (dx
, dw) on \mathrm{R}\times W_{0}

with intensity $\mu$_{ $\theta$}(\mathrm{d}x)Q_{k}(\mathrm{d}\mathrm{w}) ,
where W_{0}=\{w\in W=C([0, \infty), \mathrm{R}^{+});w(0)=w(t)=0

for t\geq$\tau$_{0}(w)\} with $\tau$_{0}(w)= infs >0;w(s)=0} for w\in W ,
and Q_{k} denotes the

excursion law of the standard Feller branching diffusion \{ $\xi$(t)\} . Moreover, we assume

that {W (ds, dy)} and \{N_{ $\theta$}(dx, \mathrm{d}\mathrm{w})\} are independent, and the atoms of N_{ $\theta$} (dx
, dw) are

supposed to be enumerated into a sequence supp ( N_{ $\theta$})=\{(a_{i}, w_{i});i=1, 2, . . .\} such

that $\tau$_{0}(w_{i+1})<$\tau$_{0}(w) and $\tau$_{0}(w_{i})\rightarrow 0 as  i\rightarrow\infty
,

P‐a.s. Let \{x^{ $\theta$}(a_{i}, t);t\geq 0\} be the

unique strong solution of

(4.1) x(t)=a+\displaystyle \int_{0}^{t}\int_{R}h(y-x(s))W(\mathrm{d}s, \mathrm{d}y) , t\geq 0,
with a_{i} replacing a and \sqrt{ $\theta$}h_{ $\theta$} replacing h . Suggested by [2], when we define the process

\{Y_{t}^{ $\theta$};t\geq 0\} with initial state Y_{0}^{ $\theta$}=$\mu$_{ $\theta$} by

(4.2) Y_{t}^{ $\theta$}=\displaystyle \sum_{i=1}^{\infty}w_{i}(\int_{0}^{t}$\sigma$_{ $\theta$}(x^{ $\theta$}(a_{i}, s))\mathrm{d}s)$\delta$_{x^{ $\theta$}(a_{i},t)}, t>0,
then \{Y_{t}^{ $\theta$};t\geq 0\} has the same distribution on c_{M}(\mathrm{R}) as \{X_{t}^{ $\theta$};t\geq 0\}.

Theorem 4.1. The distribution of \{X_{t}^{ $\theta$};t\geq 0\} on c_{M}(\mathrm{R}) converges as  $\theta$\rightarrow\infty

to that of a \{ $\rho$(0), $\sigma$_{0},  $\mu$\} ‐SCSM with constant branching rate. (cf. Dawson‐Li‐Zhou [4])
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In order to prove the theorem, we need the following key lemma. This shows that

the coalescing Brownian flow arises in some sense as the scaling limit of the interacting
Brownian flow driven by the time‐space white noise.

Lemma 4.1. Suppose that  $\rho$(x)\rightarrow 0 as |x|\rightarrow\infty . For each  $\theta$\geq 1 ,
let \{(x_{1}^{ $\theta$}(t) ,

. .

., x_{m}^{ $\theta$}(t));t\geq 0\} be an m ‐system of interacting Brownian flows with parameter $\rho$_{ $\theta$} and

initial state (a_{1}^{ $\theta$}, \ldots, a_{m}^{ $\theta$}) ,
determined by the stochastic equation (4 \cdot 1) driven by the time‐

space white noise. If  a_{i}^{ $\theta$}\rightarrow a_{i} as  $\theta$\rightarrow\infty
,

then the law of \{(x_{1}^{ $\theta$}(t), \ldots, x_{m}^{ $\theta$}(t));t\geq 0\} on

C([0, \infty), \mathrm{R}^{m}) converges to that of the m ‐system of coalescing Brownian motions with

speed  $\rho$(0) starting fr om (al, . . .

, a_{m} ).

Let \{$\eta$_{ $\theta$}\} denote a family of Poisson random variables with parameter \langle 1,  Q_{k}^{ $\epsilon$ r}\rangle/\langle 1, $\mu$_{ $\theta$}\rangle
such that  $\eta$_{ $\theta$}\rightarrow $\eta$ ,

P‐a.s. as  $\theta$\rightarrow\infty
,

where  Q_{k}^{r} denotes the restriction of Q_{k} to W_{r}=

\{w\in W_{0};$\tau$_{0}(w)>r\} and  $\eta$ is a Poisson random variable with parameter \langle 1,  Q_{k}^{ $\epsilon$ r}\rangle/\langle 1,  $\mu$\rangle.
Then we observe that the process

(4.3) Z_{t}^{ $\theta$}=\displaystyle \sum_{i=1}^{$\eta$_{ $\theta$}}$\xi$_{i}(\int_{0}^{t}$\sigma$_{ $\theta$}(x^{ $\theta$}(a_{i}^{ $\theta$}, s))\mathrm{d}s)$\delta$_{x^{ $\theta$}(a_{i}^{ $\theta$},t)}, t\geq r
has the same distribution on C([r, \infty), M_{F}(\mathrm{R})) as \{Y_{t}^{ $\theta$};t\geq r\} . By virtue of Lemma 4.1

it is easy to see that \{Z_{t}^{ $\theta$};t\geq r\} converges in distribution to

(4.4) X_{t}=\displaystyle \sum_{i=1}^{ $\eta$}$\xi$_{i}($\sigma$_{0}t)$\delta$_{y(a_{i},t)}, t\geq r.
By the theory of Markov processes and the discussion on the Feller property, we can con‐

clude via the excursion representation (4.2) that \{X_{t};t\geq r\} has the same distribution

on C([r, \infty), M_{F}(\mathrm{R})) as the \{ $\rho$(0), $\sigma$_{0},  $\mu$\} ‐SCSM. In other words, the above arguments
show that the distribution of \{X_{t}^{ $\theta$};t\geq r\} on C([r, \infty), M_{F}(\mathrm{R})) converges as  $\theta$\rightarrow\infty

to that of the SCSM. The tightness of \{X_{t}^{ $\theta$}\} in \hat{C}_{M}=C([0, \infty), M_{F}(\mathrm{R})) yields to the

fact that the distribution of \{X_{t}^{ $\theta$}\} on \hat{C}_{M} converges to that of the SCSM. While, since

all the distributions are supported on C_{M}(\mathrm{R}_{+}) ,
the desired result follows at once.

§5. Immigration Superprocess Convergent to SCSM

In this section we shall show a limit theorem for rescaled immigration superpro‐

cesses convergent to SCSM, which is the answer to the Question 1 described in Section 1.

Let Y=\{Y_{t};t\geq 0\} be a \{ $\rho$(0),  $\rho$,  $\sigma$, q, m\}‐immigration superprocess, and this Y solves

the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem. Let  $\theta$\geq 1 . When we define Y_{t}^{ $\theta$} :=$\theta$^{-2}K_{ $\theta$}Y_{$\theta$^{2}t},
then the rescaled \{Y_{t}^{ $\theta$};t\geq 0\} has generator
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(5.1) \displaystyle \mathcal{I}_{ $\theta$}F(v)=\frac{1}{2} $\rho$(0)f'(\langle $\phi$, v\rangle)\langle$\phi$'', v\rangle+\frac{1}{2}$\sigma$_{ $\theta$}f''(\langle $\phi$, v\rangle)\langle$\phi$^{2}, v\rangle

+q_{ $\theta$}\displaystyle \cdot f'(\langle $\phi$, v\rangle)\langle $\phi$, m\rangle+\frac{1}{2}f''(\langle $\phi$, v\rangle)\int\int_{R^{2}}$\rho$_{ $\theta$}(x-y)$\phi$'(x)$\phi$'(y)v(\mathrm{d}x)v(\mathrm{d}y)
for  F(v)=f(\langle $\phi$, v\rangle)\in Dom() = Dom() ,

where \{$\sigma$_{ $\theta$}\}_{ $\theta$} is a sequence of positive
numbers and \{q_{ $\theta$}\}_{ $\theta$} is a sequence of real numbers. Clearly the rescaled processes \{Y_{t}^{ $\theta$};t\geq
 0\}_{ $\theta$} live in the family of \{ $\rho$(0), $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}, q_{ $\theta$}, m\} ‐IMSs. Moreover, for each  $\theta$\geq 1, \{Y_{t}^{ $\theta$};t\geq 0\}
solves the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem and this martingale problem is well‐posed.
Let D_{q(x)} denote the set \{(s, a, u, w);s\geq 0, a\in \mathrm{R}, q(a)\geq u\geq 0, w\in W_{0}\} ,

and

set N_{q(x)} :=N D_{q(x)} . Moreover, Ñ(ds, da, dw) denotes a Poisson measure on

[0, \infty)\times \mathrm{R}\times W_{0} with intensity \mathrm{d}sq(a)m(\mathrm{d}a)Q_{k}(\mathrm{d}\mathrm{w}) . In accordance with the notation

used in Section 4, clearly \{ $\rho$(0), $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}, q_{ $\theta$}, m\} ‐IMS enjoys an atomic representation. In

fact,

Z_{t}^{ $\theta$} :=\displaystyle \sum_{i=1}^{\infty}$\xi$_{i}^{$\sigma$_{ $\theta$}}(t)$\delta$_{x^{ $\theta$}(0,a_{i}^{ $\theta$},t)}+\int_{0}^{t}\int_{R}\int_{W_{0}}w(t-s)$\delta$_{x^{ $\theta$}(s,a^{ $\theta$},t)}\tilde{N}_{q_{ $\theta$}} (ds
, da, dw)

is a \{ $\rho$(0), $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}\} ‐SDSM with deterministic immigration rate q_{ $\theta$} accompanied by the

reference measure m
,

and for each  $\varphi$\in C^{2}(\mathrm{R}) ,

(5.2) M_{t}^{ $\theta$}( $\varphi$)=\displaystyle \langle $\varphi$, Z_{t}^{ $\theta$}\rangle-\langle $\varphi$, Z_{0}^{ $\theta$}\rangle-q_{ $\theta$}\langle $\varphi$, m\rangle t-\frac{ $\rho$(0)}{2}\int_{0}^{t}\langle$\varphi$'', Z_{s}^{ $\theta$}\rangle \mathrm{d}s,
is a continuous martingale relative to the filtration (\hat{\mathcal{G}}_{t})_{t\geq 0} with quadratic variation

process

(5.3) \displaystyle \langle M^{ $\theta$}( $\varphi$)\rangle_{t}=\int_{0}^{t}\langle$\sigma$_{ $\theta$}$\varphi$^{2}, Z_{s}^{ $\theta$}\rangle \mathrm{d}s+ $\theta$\int_{0}^{t}\mathrm{d}s\int_{R}\langle h_{ $\theta$}(z-\cdot)$\varphi$', Z_{s}^{ $\theta$}\rangle^{2}\mathrm{d}z,
where $\xi$_{i}^{$\sigma$_{ $\theta$}}(t)=$\xi$_{i}($\sigma$_{ $\theta$}t) for each i\in \mathrm{N} and \hat{\mathcal{G}}_{t} is the  $\sigma$‐algebra generated by all \mathrm{P} ‐null

sets and the families of random variables \{W([0, s]\times B \{$\xi$_{i}(s)\} ,
and {Ñ(J \times A

Suppose that  $\rho$(x)\rightarrow 0 (as |x|\rightarrow\infty ); for a sequence \{$\sigma$_{ $\theta$}\}_{ $\theta$\geq 1}\subset \mathrm{R}^{+}, $\sigma$_{ $\theta$}\rightarrow(\exists)$\sigma$_{0}\in \mathrm{R}^{+}
(as  $\theta$\rightarrow\infty ); for a sequence \{q_{ $\theta$}\}_{ $\theta$\geq 1}\subset \mathrm{R}^{+}, q_{ $\theta$}\rightarrow 0 (as  $\theta$\rightarrow\infty ); for the initial state $\mu$_{ $\theta$}

=\displaystyle \sum_{i=1}^{\infty}$\xi$_{i}(0)$\delta$_{a_{i}^{ $\theta$}}\in \mathrm{M}(\mathrm{R}) with a sequence \{a_{i}^{ $\theta$}\}_{ $\theta$}\subset \mathrm{R} (for each i\in \mathrm{N} ), there exists a

sequence \{b_{i}\}\subset \mathrm{R}, $\mu$_{ $\theta$}\displaystyle \rightarrow$\mu$_{0}=\sum_{i=1}^{\infty}$\xi$_{i}(0)$\delta$_{b_{i}}\in \mathrm{M}(\mathrm{R}) (as  $\theta$\rightarrow\infty ). Now we are in a

position to state the main theorem on rescaled limits in [8].

Theorem 5.1. (Scaling Limit Theorem) For \{ $\rho$(0) ,  $\rho$,  $\sigma$, q , m‐immigra‐ tion su‐

perprocess Y=\{Y_{t};t\geq 0\} , put Y_{t}^{ $\theta$} :=$\theta$^{-2}K_{ $\theta$}Y_{$\theta$^{2}t} for  $\theta$\geq 1 . Then the conditional

distribution of \{ $\rho$(0), $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}, q_{ $\theta$}, m\} ‐immigration superprocess Y^{ $\theta$}=\{Y_{t}^{ $\theta$};t\geq 0\} given

Y_{0}^{ $\theta$}=$\mu$_{ $\theta$} converges as  $\theta$\rightarrow\infty to that of \{ $\rho$(0), $\sigma$_{0}\} ‐SCSM with initial state $\mu$_{0}.
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It is interesting to note that the processes \{Y_{t}^{ $\theta$};t\geq 0\},  $\theta$\geq 1 ,
are \mathrm{M}(\mathrm{R}) ‐valued diffusion

processes, and also that the limiting process (SCSM) X=\{X_{t};t\geq 0\} with speed  $\rho$(0) ,

constant branching rate $\sigma$_{0} and initial state $\mu$_{0} is an \mathrm{M}(\mathrm{R}) ‐valued diffusion process as

well.

Proof. By [16], \{\langle 1, Y_{t}^{ $\theta$}\rangle;t\geq 0\} is a diffusion process with generator \displaystyle \frac{1}{2}$\sigma$_{ $\theta$}x(d^{2}/dx^{2})
+\langle 1, m\rangle(d/dx) . So U_{t}=\langle 1,  Y_{t}^{ $\theta$}\rangle satisfies a stochastic differentail equation \mathrm{d}U_{t}=\sqrt{$\sigma$_{ $\theta$}U_{t}}\mathrm{d}B_{t}
+\langle 1, m\rangle \mathrm{d}t ,

and Doob�s martingale inequality yields to \displaystyle \inf_{ $\theta$}\mathrm{P}\{ $\eta$\geq\sup_{T\geq t}\langle 1, Y_{t}^{ $\theta$}\rangle\}\geq
 1-C(m,  $\mu$,  $\theta$)/ $\eta$ . By this estimate and the discussion on relative compactness, we can

deduce from the compact containment condition [11] that the family \{Y_{t}^{ $\theta$}\} is tight in

C_{M}(\mathrm{R}_{+}) . Then we can extract a convergent subsequence of distributions of \{Y_{t}^{ $\theta$}\}.
Choose any sequence \{$\theta$_{k}\}_{k}\subset\{ $\theta$\geq 1\} such that the distributions of \{Y_{t}^{$\theta$_{k}};t\geq 0\}_{k}
converge as  k\rightarrow\infty to some probability measure \mathrm{Q}_{$\mu$_{0}} on the continuous path space.

We shall show that the above limit measure \mathrm{Q}_{$\mu$_{0}} is a solution of the (, \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}_{c}))-
martingale problem of the target process SCSM. Indeed, the distribution of the SCSM

is uniquely determined by the transition semigroup Q ( $\mu$_{0} , dv) via the duality method

(Theorem 2.1). Therefore the distribution of \{Y_{t}^{ $\theta$};t\geq 0\} itself actually converges to

\mathrm{Q}_{$\mu$_{0}} as  $\theta$\rightarrow\infty . Roughly speaking, this completes the proof. Our main concern here

is to show that the generator \mathcal{I}_{$\theta$_{k}} converges as  k\rightarrow\infty to \mathcal{L}_{c} under the setting de‐

scribed in Theorem 5.1. Note that for F( $\mu$)=f(\langle $\phi$,  $\mu$\rangle) with f,  $\phi$\in C^{2}(\mathrm{R}) , \mathcal{L}_{c}F( $\mu$)
=\displaystyle \frac{1}{2} $\rho$(0)f'(\langle $\phi$,  $\mu$\rangle)\langle$\phi$'',  $\mu$\displaystyle \rangle+\frac{1}{2}$\sigma$_{0}f''(\langle $\phi$,  $\mu$\rangle)\langle$\phi$^{2},  $\mu$\displaystyle \rangle+\frac{1}{2}f''(\langle $\phi$,  $\mu$\rangle)\int\int_{ $\Delta$} $\rho$(0)$\phi$'(x)$\phi$'(y)
 $\mu$(\mathrm{d}x) $\mu$(\mathrm{d}y) . By Skorokhod�s representation, F(Y_{t}^{(k)})\rightarrow F(Y_{t}^{(0)}) a.s. (as  k\rightarrow\infty ) uni‐

formly in  t on compact sets for any  F\in Dom Similarly,  F(Y_{0}^{(k)})\rightarrow F(Y_{0}^{(0)}) a.s.

(as  k\rightarrow\infty ), and \displaystyle \int_{0}^{t}\mathcal{I}_{$\theta$_{k}}F(Y_{s}^{(k)})\mathrm{d}s converges to \displaystyle \int_{0}^{t}\mathcal{L}_{c}F(Y_{s}^{(0)})\mathrm{d}s . If that is the case, we

can step forward and in fact we are able to show that for F\in \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}_{c}) ,

(5.4) F(Y_{t}^{(0)})-F(Y_{0}^{(0)})-\displaystyle \int_{0}^{t}\mathcal{L}_{c}F(Y_{s}^{(0)})\mathrm{d}s, t\geq 0
is a martingale. Clearly it turns out to be that this \{Y_{t}^{(0)};t\geq 0\} becomes a solu‐

tion of the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem for the SCSM. Under the purely atomic

initial state $\mu$_{0}\in M_{a}(\mathrm{R}) ,
the distribution of SCSM is unique in the sense of duality

formalism. By virtue of the above discussion on the rescaled limit, the (, \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{I}_{ $\theta$}))-
martingale problem induces the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem, which is nothing
but the \{ $\rho$(0), $\sigma$_{0}\} ‐SCSM martingale problem with the initial state Y_{0}^{(0)}=$\mu$_{0} . Further‐

more, this also indicates that the limiting process Y_{t}^{(0)}=\displaystyle \sum_{i=1}^{\infty}$\xi$_{i}^{$\sigma$_{0}}(t)$\delta$_{y_{i}(0,b_{i},t)} is a

\{ $\rho$(0), $\sigma$_{0}\} ‐SCSM. In other words, the limit \mathrm{Q}_{ $\mu$ 0} of distributions of \{Y_{t}^{ $\theta$}\} is a solution of

the martingale problem of the \{ $\rho$(0), $\sigma$_{0}\}‐SCSM. Thus we attain that the distribution

of (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐IMS with Y_{0}^{ $\theta$}=$\mu$_{ $\theta$} converges as  $\theta$\rightarrow\infty to that of the (, \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}_{c}))-
SCSM with Y_{0}^{(0)}=$\mu$_{0} . We finally realize that \{ $\rho$(0), $\sigma$_{0}\} ‐SCSM naturally arises in the

rescaled limits of \{ $\rho$(0),  $\rho$,  $\sigma$, q, m\}‐IMS under the above setting with the scaling Y_{t}^{ $\theta$}. \square 
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§6. Immigration Superprocess Convergent to a New Superprocess

The purpose of this section is to show the answer to the Question 2 described in

Section 1 (cf. [9]). Let Y=\{Y_{t};t\geq 0\} be a \{ $\rho$(0),  $\rho$,  $\sigma$, q, m\}‐immigration superprocess

in the sense of §2.4 with the purely atomic initial state  Y_{0}= $\mu$=\displaystyle \sum_{i=1}^{\infty}$\xi$_{i}(0)$\delta$_{a_{i}}\in
\mathrm{M}(\mathrm{R}) for \{a_{i}\}_{i}\subset R. Here  $\rho$ is a  C^{2} ‐function defined in the begining of §2,  $\sigma$ is a

positive constant,  q\in \mathrm{R} and m is a finite Borel measure on R. This Y solves the

(\mathcal{I}, \mathcal{D}()) ‐martingale problem, and this martingale problem is well‐posed. Let Y_{t}^{( $\theta$)} be

an immigration superprocess with parameters \{ $\rho$(0),  $\rho,\ \sigma$_{ $\theta$}, q_{ $\theta$}, K_{1/ $\theta$}m\} and initial state

 Y_{0}^{( $\theta$)}=$\theta$^{2}K_{1/ $\theta$} $\mu$ . According to the scaling argument in [8], we put  Y_{t}^{ $\theta$} :=$\theta$^{-2}K_{ $\theta$}Y_{$\theta$^{2}t}^{( $\theta$)}
with  $\theta$\geq 1 for any t>0.

Theorem 6.1. The rescaled processes \{Y_{t}^{ $\theta$};t\geq 0\}_{ $\theta$} lie in the family of \{ $\rho$(0) , $\rho$_{ $\theta$}, $\sigma$_{ $\theta$},

q_{ $\theta$}, m\} ‐IMS with initial state  Y_{0}^{ $\theta$}= $\mu$ . Moreover, the (, Dom ‐martingale problem

for \{Y_{t}^{ $\theta$}\} has a unique solution.

Theorem 6.2. For each  $\theta$\geq 1 we have the atomic representation:

(6.1) Y_{t}^{ $\theta$}=\displaystyle \sum_{i=1}^{\infty}$\xi$_{i}^{ $\theta$}(t)$\delta$_{x_{i}^{ $\theta$}}+\int_{0}^{t}\int_{R}\int_{W_{0}}w(t-s)$\delta$_{x_{*}^{ $\theta$}}N_{ $\theta$}(ds, da, dw) , t\geq 0
where we put $\xi$_{i}^{ $\theta$}(t)=$\xi$_{i}($\sigma$_{ $\theta$}t) , x_{i}^{ $\theta$}=x^{ $\theta$}(0, a_{i}^{ $\theta$}, t) , x_{*}^{ $\theta$}=x^{ $\theta$}(s, a^{ $\theta$}, t) and N_{ $\theta$}=\tilde{N}_{q_{ $\theta$}}.

Proof. See Propositions 4 and 5 in §3.3 of [8] respectively. \square 

We assume:  $\rho$(x)\rightarrow 0 (as |x|\rightarrow\infty ); for \{$\sigma$_{ $\theta$}\}_{ $\theta$}\subset \mathrm{R}^{+}, $\sigma$_{ $\theta$}\rightarrow(\exists)$\sigma$_{0}\in \mathrm{R}^{+} (as  $\theta$\rightarrow\infty );
for \{q_{ $\theta$}\}_{ $\theta$}\subset \mathrm{R}^{+}, q_{ $\theta$}\rightarrow(\exists)q_{0}\in \mathrm{R}^{+} (as  $\theta$\rightarrow\infty ); for the initial state, $\mu$_{ $\theta$}=\displaystyle \sum_{i=1}^{\infty}$\xi$_{i}(0)$\delta$_{a_{i}^{ $\theta$}}
\displaystyle \rightarrow$\mu$_{0}=\sum_{i=1}^{\infty}$\xi$_{i}(0)$\delta$_{b_{i}}\in \mathrm{M}(\mathrm{R}) (as  $\theta$\rightarrow\infty ). Let  N_{q}^{*} ( \mathrm{d}s

, dw) be a Poisson random

measure on [0, \infty ) \times W_{0} with intensity \langle 1,  m\rangle \mathrm{d}sQ_{k}(\mathrm{d}\mathrm{w}) ,
which is obtained by the image

of Ñ(ds, da, dw) under the mapping : (s, a, w)\rightarrow(s, w) . Notice that N_{q}^{*} is independent
of Feller branching diffusions \{$\xi$_{i}(t);t\geq 0\}i\in \mathrm{N} . Paying attention to the expression

(6.2) \displaystyle \langle 1, Y_{t}^{ $\theta$}\rangle=\sum_{i=1}^{\infty}$\xi$_{i}^{ $\theta$}(t)+\int_{0}^{t}\int_{W_{0}}w(t-s)N_{q_{ $\theta$}}^{*}(\mathrm{d}s, \mathrm{d}w) , t\geq 0,
we may resort to the similar argument in the proof of Theorem 5.1 to obtain

Theorem 6.3. The fa mily \{Y_{t}^{ $\theta$};t\geq 0\}_{ $\theta$} is tight in the space C_{M}(\mathrm{R}_{+}) .

Definition 6.1. The generator \mathcal{A} is given by \displaystyle \mathcal{A}F( $\mu$)=\mathcal{L}_{c}F( $\mu$)+\int_{R}q\frac{ $\delta$ F( $\mu$)}{ $\delta \mu$(x)}
m(\mathrm{d}x) for  F\in Dom where \mathcal{L}_{c} is given by (2.7), the branching rate  $\sigma$ is a positive
constant and  q is a deterministic immigration rate. A continuous M_{F}(\mathrm{R}) ‐valued pro‐

cess \{X_{t};t\geq 0\} is said to be \{ $\rho$(0),  $\sigma$, q, m\}‐immigration superprocess associated with

coalescing spatial motion, if \{X_{t};t\geq 0\} solves the (, \mathrm{D}\mathrm{o}\mathrm{m}()) ‐martingale problem.
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Theorem 6.4. (Scaling Limit Theorem) For \{ $\rho$(0),  $\rho,\ \sigma$_{ $\theta$}, q_{ $\theta$}, K_{1/ $\theta$}m\} ‐immigration

superprocess Y^{( $\theta$)}=\{Y_{t}^{( $\theta$)};t\geq 0\} , put Y_{t}^{ $\theta$}=$\theta$^{-2}K_{ $\theta$}Y_{$\theta$^{2}t}^{( $\theta$)}.
(a) There exists a proper version \hat{Y}_{t}^{ $\theta$} of Y_{t}^{ $\theta$} converges a.s. as  $\theta$\rightarrow\infty to a process  X_{t}

having the purely atomic representation

(6.3) \displaystyle \sum_{i=1}^{\infty}$\xi$_{i}($\sigma$_{0}t)$\delta$_{y_{i}(0,b_{i},t)}+\int_{0}^{t}\int_{R}\int_{W_{0}}w(t-s)$\delta$_{y(s,b,t)}\tilde{N}_{q_{0}} (ds, db, dw)
for each t\geq 0 ,

where \{y_{i}(0, b_{i}, t)\} is a coalescing Brownian motion started at point b_{i}

for each i\in \mathrm{N} , and y(s, b, t) denotes Harris� stochastic flow [13] of coalescing Brownian

motion with y(s, b, s)=b.
(b) The conditional distribution of \{ $\rho$(0), $\rho$_{ $\theta$}, $\sigma$_{ $\theta$}, q_{ $\theta$}, m\} ‐IMS \{Y_{t}^{ $\theta$};t\geq 0\} given Y_{0}^{ $\theta$}=$\mu$_{ $\theta$}
converges as  $\theta$\rightarrow\infty to that of \{ $\rho$(0), $\sigma$_{0}, q_{0}, m\} ‐immigration superprocess associated with

coalescing spatial motion X=\{X_{t};t\geq 0\} with $\mu$_{0}.

(c) The generator of the limiting process X=\{X_{t}\} is given by

(6.4) \displaystyle \mathcal{I}_{\infty}F(v)=\frac{1}{2}\int_{R} $\rho$(0)\frac{d^{2}}{dx^{2}}\frac{ $\delta$ F(v)}{ $\delta$ v(x)}v(dx)+\frac{1}{2}\int_{R}$\sigma$_{0}\frac{$\delta$^{2}F(v)}{ $\delta$ v(x)^{2}}v(dx)

+\displaystyle \int_{R}q_{0}\frac{ $\delta$ F(v)}{ $\delta$ v(x)}m(dx)+\frac{1}{2}\int\int_{ $\Delta$} $\rho$(0)\frac{d^{2}}{dxdy}\frac{$\delta$^{2}F(v)}{ $\delta$ v(x) $\delta$ v(y)}v(dx)v(dy) .

Proof. Since Theorem 6.4 is a generalization of Theorem 5.1 obtained in §5, the

proof goes almost similarly on a technical basis except the notational complexity and

its bulk computation. See the proof of Theorem 5.1 for its sketch and philosophy. For

further details, see Sections 4 and 5 in [9]. \square 

§7. Other Scaling Limits for Immigration Superprocesses

Recently Li and Xiong [15] has proved two interesting scaling limit theorems for

the local time of IMS associated with SDSM, related to restricted coalescing Brownian

flows. Let \mathrm{C}(\mathrm{R}) denote the set of continuous functions  $\phi$ on \mathrm{R} satisfying C $\phi$_{p}\geq
| $\phi$| with $\phi$_{p}(x)=(1+x^{2})^{-p/2}, p\geq 0, x\in \mathrm{R} ,

and \mathrm{M}(\mathrm{R}) the space of tempered Borel

measures  $\mu$ on \mathrm{R} such that \langle $\phi$,  $\mu$\rangle<\infty for every  $\phi$\in C_{p}(\mathrm{R}) . Let q ) be a bounded

Borel function on M(R)R satisfying the local Lipschitz condition, and let \{x(r, a, t)\}
be an interacting Brownian flow defined by (4.1). In addition, let \{Y_{t};t\geq 0\} be the

solution of

(7.1) Y_{t}=\displaystyle \int_{0}^{t}\int_{R}\int_{0}^{q(Y_{\mathrm{s}},a)}\int_{W_{0}}w(t-s)$\delta$_{x(s,a,t)}N (ds, da, du, dw).
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Theorem 7.1. Suppose that q(v, a)\rightarrow q_{\infty} as |a|\rightarrow\infty for all  $\mu$\in M_{p}(\mathrm{R}) . For

any k\geq 1 , define Y_{t}^{k}(dx)=k^{-2}Y_{k^{2}t}(kdx) . Then \{k^{-1}Y_{t}^{k};t\geq 0\} converges as  k\rightarrow\infty

to \{q_{\infty}t $\lambda$;t\geq 0\} in probability on C([0, \infty), M_{p}(\mathrm{R})) ,
where  $\lambda$ denotes the Lebesgue

measure on R.

The above theorem implies the following scaling limit for the local time of the IMS

associated with SDSM. Namely, when we set  z_{k}(t, \cdot)=k^{-5}z ( k(\cdot) , kt) for the local

time z ) of {Yt}, then Z(t) converges weakly to t^{2}/2 in probability as k\rightarrow\infty. \mathrm{A}

similar type of limit theorem for immigration superprocesses with restricted coalescing
Brownian flows replacing x(r, a, t) is proved as well.
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