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Reflection Positive Random Fields and Dirichlet
Spaces
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Abstract

Focusing upon the notions of reflecting positive random fields, Dirichlet spaces and dis-
tribution valued symmetric Markov processes, a concise guide to understand the Nelson’s
Euclidean strategy of constructing quantum field theory is given.

§1. Introduction

The purpose of this note is to give a guide to understand how the reflection positive
random fields and the Dirichlete spaces play the key role in the context of Nelson’s
Euclidean strategy of constructive quantum field theory (cf. e.g., [Si]).

In [AY] we have already introduced a general discussion on the reflection positive
random fields indexed by S(R?), d = 1 + (d — 1) € N, where 1 corresponds to the
dimension of time and d—1 corresponds to the dimension of the space, and d € N denotes
the space time dimension. In the same paper such random fields have been constructed
by convoluting the Wiener functional and some pseudo differential operators (cf. also
the Remark in the present note).

The present note is a continuation of [AY], but here we focus not upon the space
time random fields, discussed in [AY], but upon the S’(R¢~1)-valued symmetric Markov
processes by which the d-dimensional space time random fields are generated. Namely,
we discuss how the reflection positive random fields indexed by S(R?) can be identified
with some particular S’(R?~1)-valued symmetric Markov processes (cf., e.g., [Si]).
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In other words, the objective of the present note is to give a guide of clear under-
standing of Nelson’s framework of Euclidean field theory through the arguments of the
theory of symmetric Markov processes.

For this purpose, we use a model constructed by generalizing Nelson’s Fuclidean
free field or the sharp time free field. By this model the essence of Nelson’s Euclidean
strategy can be clearly exposed.

The key words on the present discussion are the following:

(Key word 1) S’ (R4~ — R)-valued symmetric Markov processes;

(Key word 2) Hypercontractive semi-groups (by which the above S'(R9~1 — R)-
valued processes are defined);

(Key word 3) Dirichlet forms satisfying a logarithmic Sobolev inequality (the
generator of hypercontractive semi-groups correspond to such forms (cf. [G])).

Nevertheless, the models introduced here are the examples by which the key ideas
of Nelson’s Euclidean strategy are explained, except the well known free field and P(®),
field models, they temselves are completly newly developed and the corresponding dis-

cussions include new results.

§2. Identification of Euclidean quantum fields on R? with S'(R?~! — R)
valued Markov processes

Throughout this note, we denote by d € N, where N is the set of natural numbers,
the space-time dimension, and we understand that d — 1 is the space dimension and 1
is the dimension of time. Correspondingly, we use the notations

x = (1,7) € R x R,

Let S(RY) (resp. S(R%™1)) be the Schwartz space of rapidly decreasing test func-
tions on the d dimensional Euclidean space R? (resp. d— 1 dimensional Euclidean space
R?I~1), equipped with the usual topology by which it is a Fréchet nuclear space. Let
S’ (RY) (resp. &'(R?~1)) be the topological dual space of S(R?) (resp. S(R4~1)).

The probability measures on S’(R¢ — R) which are invariant with respect to the
Euclidean transformations are called as Euclidean random fields (in this note we
also consider the probability measures on &’'(R? — R) that are not necessarily invariant
with respect to the Euclidean transformations on R% but invariant with respect to the
Euclidean transformations of the space variables, i.e. the transformations on R4~!,
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and in the sequel we call such fields as partial Euclidean random fields). The
Fuclidean random fields which admit an analytic continuation to relativistic quantum
fields (Wightman fields) are called as Euclidean quantum (random) fields. Here
the analytic continuation, very roughly speaking, means analytic continuation of the
time variable ¢ € R of Euclidean fields to v/—1t, and Wightaman fields are the fields
that are invariant with respect to the transformations keeping the Lorentz scalar product
unchanged (i.e. the restricted Poincaré invariance).

In this section we review how the Euclidean quantum random fields on R¢, the
probability measures on S’(R? — R), and partial Euclidean random fields, are identified
with the probability measures on the space C' (R — S'(RI1 — R)) which are generated
by some &’(R4~! — R) valued Markov processes (cf. Key word 1 in this section).

In order to simplify the notations, in the sequel, by the symbol D we denote both
d and d — 1. In each discussion we exactly explain the dimension (space-time or space)
of the field on which we are working.

Now, suppose that on a complete probability space (2, F,P) we are given an
isonormal Gaussian process WP = {WP(h),h € L?2(RP; \P)}, where AP denotes the
Lebesgue measure on RP (cf., e.g., [AY]). Precisely, WP is a centered Gaussian family
of random variables such that

@1 EWPmWe)] = [ Mg\ @, hoge AR,

We write

WP(h) = / Wy)WP(dy), weQ
RD

with W2 (.) a Gaussian generalized random variable (in the general notation of Hida
calculus for the Gaussian white noise W2 (dy) would be written as WP (y)dy).

Since, we are considering a massive scalar field, we suppose that we are given a
real mass parameter m > 0. Let Ay and resp. Ay_1 be the d, resp. d — 1, dimensional

Laplace operator, and define the pseudo differential operators L_ 1 and H_ 1 as follows:
(2.2) Loy =(-Ag+m?) 2.
(2.3) H_ 1 =(-A¢1+ m?)7%,

By the same symbols as L_ 1 and H_ 1, We also denote the integral kernels of the
corresponding pseudo differential operators, i.e., the Fourier inverse transforms of the
corresponding symbols of the pseudo differential operators.

By making use of stochastic integral expressions, we define two important random
fields ¢, the Nelson’s Euclidean free field, and ¢q, the sharp time free field, as
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follows:

For d > 2,

(24) ox0)= [ Loy,
(2.5) $o() = 1 (7 - )W H(da).

Rd—1 4

These definitions of ¢ and resp. ¢g seems formal, but they are rigorously defined as
S'(R%) and resp. S’(R9~1) valued random variables through a limiting procedure (cf.
[AY]), more precisely it has been shown that

2 2
(2.6) P(on(:) € B;’b) =1, for a,bsuch that min(1, Fa) + 7 1, b>d
Y 2 /
(2.7) P(¢o € Bg_’ﬁ) =1, for d/,b such that min(1, dfl) + 1> L,V >d-1

Here for each a, b, D > 0, the Hilbert space B;’b, which is a linear subspace of S’(RP),
is defined by

(28) By = {(x]* + Di(-Ap + ) fe L*(RPAP)),
where x € RP and ) denotes the Lebesgue measure on R, the scalar product of Bg’b is
given by
<ulv>= [ {-ap+0H(L+ ixP) tue))
RD
(2.9) x {(—AD F1E(1+ |x|2)—%v(x))} dx, u,ve B

The following definition of < ¢n, f > and < ¢g, ¢ > gives a good explanation of (2.4)
and (2.5). We denote

(2.10) < én, f >E/

[ (1) Wi, fesE! ~R)

(2.11) < o, >= / (H_%go) (@)W L(dD), e SR S R).
Rd—1

Any probabilistic treatment of Euclidean quantum field theory starts from Nel-
son’s Euclidean free field ¢y.

¢n satisfies all the requirements under which it admits an analytic continuation to
a quantum field that satisfies the Wightman axioms (cf.,e.g., [Si], [AY] and references
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therein). In particular, ¢y satisfies the following two important properties:

N-1) ¢n is Markovian with respect to time in the sense that
El<én, f1 > < ON, i > | Fleoo,0]] = E[< On, f1 > - < &N, [ > | Fol,
forany k€N, f;€S®R?—R), j=1,---,k such that
supp(f;] C {(t, &)t >0, e R"'}, j=1,---k,
F(~o0,0] = the o field generated by the random variables < ¢, g > such that
supplg] C {(t, )|t <0, ¥ € R},
Fo = the o field generated by the random variables < ¢n, ¢ X d50y(-) >, where

¢ are functions having only the space variable 7, i.e., p(F) such that ¢ € S(RY! — R)
and 0oy () is the Dirac point measure at time ¢ = 0, namely

SUPP[SO X 5{0}()] - {(t7£)|t =0,7 € Rd_l}'
N-2) ¢n is an Euclidean invariant field, precisely, for each Euclidean group (ro-

tation, translation, reflection) GG, the probability distributions of two random variables

<ON, J1> - <on, k> and < on,Gf1 > <onN,Gfr >
are identical with each other for any f; € F(R¢ = R), j=1,---,k, k€N,

Remark 1. For ¢y, the random variable < ¢x, ¢ X d;03(-) > is well defined
(cf. [AY]), precisely for any ¢y € R and the Dirac point measure dy,3(-) at time ¢ = g

< ON 9 X Opao} () >€ Nzt LAY P).

Let 8 be the time reflection operator:

(ef)(ta f) = f(_t7f)7

then by N-1), for any k€N, f; € SRY—R), j=1,---,k such thatsupp[f;] C
{(t,)[t>0,Z € R4 1}, j=1,--- k, we see that

C1B(< ¢n, fr > <on, o >) (< O, 0f1 > - < On, 0 f) >)]
= B|B[< on.f1 >+ < on. fi > | Fieoa] < on.0f1 > - < b, 0fs >]

— B[ Bl< ox, f1 >+ < on fi > | Fol < on,0f1 >+ < 6,0y >]
— B[B[E[< éx.f1 > -+ < éw. fu > | Fo] <on.0f1 >+ < on.0fi > | Fol]

:E:E[< ON, f1 > < ON, fx > | Fo]l Bl< on,0f1 > -+ < on, Ofr > |-7:0]]-
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But, by N-2) the Euclidean invariance of ¢, in particular by the symmetric property,
we also see that

E[{< On, fr > <on, e >— < on,0f1t > < on,Ofk >}

X < on, @ X dr0y(1) > | =0, for any ¢ € S(R¥"! — R).
This means that

El<én,[1 > <on, fx > | Fol = E[< N, 0f1 > -+ < ¢n, 0f1 > | Fo]
(2.13) P —a.s.,

hence, the right hand side of (2.12) can be rewritten as

E[(E[< ON, f1 > < ON, fr > |]:0]>2] > 0.

Consequently, we see that ¢ satifies the following :

(2.14) El(< ¢n, fr > < on, i >) (< dn, 0f1 > -+ < dn, 0f >)] >0

The property (2.14) is refered as the reflection positivity, and Nelson’s Euclidean
free field ¢n is a reflection positive random field. But from the above discussion
(cf. (2.12) and (2.13)) we see that the property of reflection positivity is a property of
symmetric Markov processes.

Remark 2. By N-1) and (2.13), {¢n (%, ) }ter can be understood as a sym-
metric ”Markov process”, moreover by the Euclidean invariance N-2) ¢n(x), x € R? it
is a Markov field (cf., e.g., [Si], [AY] and references therein).

O

In the above Remak 2, for {¢n (%, ) }er we use the heuristic terminology ”Markov
process”. In order to certify that {¢n(t,)}er is really a symmetric Markov process
with the time parameter t € R, we have to give an answer for the following questions:

(Question 1) Are there a probability measure p on &’'(R?~! — R) and a Markov
semigroup 713, t > 0 such that

Ty : LY(p) — Li(w), q€ll,00], t >0 T;, t > 0 is positivity preserving;
Tl La—re <1, Vg e [l,00], t>0, ie.,T;isa contraction semigroup;

for any ¢1, ps € S(Rd_1 — R), and any t1, t2 >0
/ T, ((th < P2 >3/,3)(') <01 >8',8) (¢) u(do)
S/ (RI—1-R)

(2.15) = E[< on, 01 X 04,1 (0) >< ON, 02 X 64y 44,3 (1) >] ?
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Here
< 0,0 >5 . 5=< O, P >5/(Ri-1R),S(RI-1SR);

is the dualization of §'(R?~! — R) and S(R¢~! — R).
In other words, can we characterize the (symmetric) Markovian semi-group 7}, and
the initial distribution p by which {¢n (¢, ) }ier is generated?

O

Question 1 corresponds to the consideration of Key word 1, S’'(R¢! — R)-
valued symmetric Markov processes. The answer for Question 1 is affirmative. To
state the exact answer, we prepare some notions.

Let 19 be the probability measure on S’(R?~! — R) which is the probability law of
the sharp time free field ¢g on (2, F, P) (cf. (2.7)), and pun be the probability measure
on 8&'(RY — R) which is the probability law of the Nelson’s Euclidean free field on R?
(cf. (2.6)).

We denote

and

D do(pr) -+ Polon)
B / vy Hoxr (@) Hoypr @)W d&) - W (d) € Nz L (o)
Rk(d—1

(2.16) for ¢,0; € SR - R), j=1,---,k kEN,

where (2.16) is the k-th multiple stochastic integral with respect to the isonormal Gaus-
sian process W91 on R4~1.

Since, : ¢o(¥1) - do(pn) : is nothing more than an element of the n-th Wiener
chaos of L?(pp), it also admits an expression by means of the Hermite polynomial
of po(¢;), j=1,---,k (cf, e.g., [AY] and references therein).

Remark 3. From view point of the notational rigour, ¢g and ¢y are the dis-
tribution valued random variables on the probability space (2, F, P), hence the notation
such as

L o(01) -+ Golspn) € (1) L ko)

g>1

is incorrect. However in the above and in the sequel, since there is no ambiguity,
for the simplicity of the notations we use the notations ¢g and ¢y (with an obvious
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interpretation) to indicate the measurable functions X and resp. Y on the measure
spaces (S'(R47Y), ug, B(S'(R471))) and resp. (S'(R?), un, B(S'(R?))) such that

P({w: dow) € A}) = po({0 : X(¢) € 4}), AeBES®R™),
P({w: onw e a}) =un({o: Y(9) € A4}), A€ BES ®RY),

respectively, where B(S) denotes the Borel o-field of the topological space S.

Let

N[

(2.17) Hy = (=Ag_1 +m?)2,
and define the operator dI'(H) on L?(uo) such that (for the notations cf. Remark 3.)

dU(H 1) (: ¢o(p1) -~ ¢o(on) ) =: Go(Hyp1)do(p2) - - dolepn) : 4+
(2.18) -+t do(p1) -+ Polpn—1)Po(Hpk) :

The following Proposition 2.1 is the answer for Question 1 (cf., e.g., [Si]), and
gives an explanation how the Key word 1, 2 and 3, S'(R%! — R)-valued symmetric
Markov processes, hypercontractive semigroup and Dirichlet form with logarith-

mic Sobolev inequality, appear in the discussion of the Euclidean quantum random
field:

Proposition 2.1. i)  The operator dI'(H) on L? (o) with the natural domain
is an essentially self adjoint non negative operator, and it is a generator of a Markovian
semigroup (i.e. satisfying the properties of positivity preserving and Li(uo) contraction
(¢ € [0,00]) given in Question 1), moreover this Markovian semigroup is hypercon-
tractive (c¢f. [G]), presisely, for any 1 < q < p there exists Cp 4, tp.q > 0 and any
t > tp.q the following holds:

(2.19) ITX (o) < X Nzaguey,  where T, =e 1%,

i) By the probability measure py on S'(R™1 — R) and the Markovian semigroup
{Tt}>0, (2-15) in Question 1 is satisfied, namely the corresponging symmetric Markov
process generates the Nelson’s Euclidean free field ¢y .

iti) ~ The operator dI'(Hy) on L?(ug) corresponds to a pre-Dirichlet form as follows
(hence, the discussion of the logarithmic Sobolev inequality is possible):  For
bounded smooth ~ F,G € CL(R" - R), n €N, and {lj};en, a sequence of an
O.N.B. of L2(R4=1; A\4=1)  denote

F(¢O) :F(< ¢07l1 >y, < ¢07ln >)7 G(¢0) = G(< ¢07l1 >y, < ¢07ln >)7
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= ZE[{hml(F(< do+elj,ly >, , < ¢o+e€lj,ln, >)— F(¢o))}

e—0 €

x {lim 1(G(< Go +elj,ly >, < o+ elj,ln >) — G(¢0))}]

e—0 €

2308 F) ()]

j=1

(for the notations cf. Remark 3.). O

Remark 4. Regardless of [; being not an element of the Cameron-Martin
space of the abstract Wiener space (ug, S'(R9~! — R)), the formula F(< ¢o +€l;,1; >
oo, < ¢o +e€lj,l, >) in (2.20) is a measurable function (i.e., a random variable), since

F(< ¢o+elj,ly >, , < do + elj, 1y, >)
:F(< oo, 11 >+€<lj,l1 >, 0, < @,y >+€<lj,ln >).

O

Without any precise definition of the terminologies concerning the Wightman
fields, however, we give the following inportant result (cf., e.g., [Si], [AY] and references
therein).

Proposition 2.2.  The field opertator ®;(¢), t € R, p € S(R¥ — C) on the
complexified L?(po) defined by

itdD(H 1) —itdD(H1)
2 2
)

(2.21) Di(p) =e Po(p)e

is the field operator of (Wightman) quantum free field on RY, and e_itdF(H%) s the time

translation operator on it (for the notations cf. Remark 3.).

O

Since, we have seen that an Euclidean quantum random field, the Nelson’s Eu-
clidean field, can be constructed both by the direct method by means of the stochastic
integral of the integral kernel of the operator (—Ay —|—m2)_% with respect to W and, as
well, by the S'(R?~! — R) valued symmetric Markov process, we may ask an another
natural question, Question 2, below:

(Question 2) Nelson’s Euclidean free field on R? constructed from &’(R¢~1) val-

ued symmetric Markov process in the discussion of Question 1 is the field that has no
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interaction term, then is it possible to define a (partial) Euclidean field with an inter-
action term as a probability law of the trajectories of some S'(R%~1) valued symmetric
Markov process?

Precisely, can we construct a (partial) Euclidean quantum random field having an
interaction term from some sharp time random field on R% ! and some Markovian
semigroup?

O

In case when d = 2 the answer for Question 2 is also affirmative, which we give in
the following Proposition 2.3. The results are the well known P(¢)2 models and related
models (cf., e.g., [Si]). The strategy of constructing (partial) Euclidean quantum random
field from the probability laws of the trajectories of some Markov processes (giving the
initial distributions) are refered as stochastic quantization (cf. references in [AY]),
for which the the Dirichlet space arguments are crucial (cf. (2.20)).

Only for the next three propositions, we suppose that d = 2. Foreachp e N, T > 0
and r € N we define the random variables v*?(r) and V?P(r,T), which are potential
terms on the sharp time free field and Nelson’s Euclidean free field respectively, as
follows:

v?P(r) =<: ¢5

E/ {/ HH (z — x d:c}Wl(dxk)

(2.22) - / P (2)dr € () L4(uo),

g>1

T
VQP(T,T):/ < (), Ay > dt

E/_i/@m{/_ HL L((t, @) (tk,azk))dx} W2(d(tg, z1)) dt

T [es)
(2.23) E/_T/_ Ar(@): ¢ (t2)dudt € () L9 ),

g=>1

where for r € N, A, € C°(R — R_) is a given function such that 0 < A, (z) <1 (z €
R), A, =1 (Jz| <7r), A, =0 (Jz| >r+ 1) (for the notations cf. Remark 3.).

We have the following important estimates (cf. eg., [Si]).

Proposition 2.3. Let dl"(H%) be the positive self adjoint operator on L?(jo)
defined in Proposition 2.1. For each p € N there exists some S(R) norm ||| - ||| and the
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multiplicative operator |v?P(r)| is dominated by dT'(H 1)+ 1 as follows
(2.24) [0*P(r)] < (dD(Hy) + DA, VreN.

For eachp € N, A > 0 and r € N the operator dI‘(H%)—i-)\va(r) on L?(uo) is essentially
self adjoint on the natural domain and bounded below:

There exists a smallest eigenvalue o = agp » x > —00 and the corresponding eigenfunc-
tion p = papr of dU(Hy1) + v?(r) such that

1
2

(2.25) (dT(Hyi) +v*P(r))p=a- p,

N

(2.26) p(¢) >0, poae ¢S (R); dU(H1) +v*(r) > a.

S

Foreachpe N, A>0,reNandT >0
(2.27) eV e () L),

g1

(All notations follow the rule given by Remark 3.)

Because v?P(r) is defined through H_1 (cf. (2.22)), (2.24) holds for dI'(Hy) with
H —tdF(H%) (Cf
(2.19)) and (2.24). (2.27) is also a consequence of the Nelson’s hypercontractive bound
on LY (un), ¢ > 1.

L. (2.26) can be shown by a crucialy use of the hypercontractivity of e

Proposition 2.4.  Let agp r \ and paprx > 0 be the eigenvalue and eigenfunction
in Prop.2.3 respectively, and suppose that pay r x 15 normalized in order that

E [(p2pra(1))?] = 1.

Let vop, . x be the probability measure on S'(R) such that

V2p7'r'7>\ = (pQP,T,A)Qu()?

and define a mapping U : L*(uo) — L?*(vapra) as follows:

X
UX = , X € L*(uo).
P2p,r,\

Then the operator Ty, t > 0, on L (vopr2), ¢ > 0, defined by

2.28 TtEUex —t(dT(HL) + M?P(r) — agy ) tUL, >0,
(2.28) p{ —t(dT(Hy) + X (1) = azyp2) JU,
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is Markovian contraction semigroup. By taking vop . x the initial distribution, T|t|, teR,
generates a partial Euclidean random field on S'(R?) the probability law of which is
identical to
2
dpiy2 = lim e WV dpy
VER(roe) T o BN e AV (N’

(2.29)

more precisely (cf. (2.15) in Question 1), for any ¢1, p2 € S(R — R), and any t1, to >
0

/ Ty, ((Tt2 < -, 2 >3',3)(') <1 >S’,S> (@) vap,ra(do)
S/ (R—R)

(2.30) = EMverreo) [< ¢, o1 X Ogy,1 (1) >< @, 02 X Oy, 44,1 (1) >,

where EMV2rre)[ - | denots the expectation taken with respect to the measure py2p(r o) -
(All notations follow the rule given by Remark 3.)

Remark. 5 Nelson’s Euclidean free field ¢ possesses an important property
known from the Ising model, namely the “ferromagnetic property” which leads to “fer-
romagnetic inequalities”, e.g., for the evaluation of py (o) given by (2.29), which is a
perturbation of uy, the probability law of ¢, one has the GKS inequality (Griffith,
Kelly and Sherman) and the FKG inequality (Fortuin, Kastelyn and Ginibre), cf., eg.
[Si]. Using these inequalities one obtain, e.g.,

KV (00,00) = rll{go KV (r,00) -

The random field on S&’(R?) characterized by the probability measure KV (00,00) 18 known
as the Euclidean P(¢) quantum field with the space time dimension d = 2, and is
denoted by P(¢)a, cf. [GRS].

§3. Generalization of Proposition 2.4 to higher dimensions

In this section we propose a mathematical extension of Proposition 2.4, and give a
generalized model of P(¢)2 to the higher space time dimensions. Here the basic tool of
constructing the random field is ”S’(R~! — R) valued symmetric Markov processes”
(cf. (2.28)).

Let d € N (d > 2) be a given space time dimension, and ¢y and ¢ be the
corresponding sharp time free field and Nelson’s Euclidean free field defined by (2.5)
and (2.4) respectively, and pg and py be the probability laws of ¢g and ¢ respectively.
For real v satisfying

(3.1) V=,



REFLECTION POSITIVE RANDOM FIELDS AND DIRICHLET SPACES 27

let
(3.2) H ., =(-Ag_1+m?*)7
Forre N, A, 41 € C§° (R=! — R, ) is a given function such that
0<Apg1(@) <L (FeRY™), Ag1=1(F<r), Arg1=0 (7 >r+1),
for p € N define

fUClel(T) =< (H—’y+%¢0)2p :7A'r,d—1 >

2p
/ / Ara (@) [ H - (F — @) di s W1 (aiy)
(RA—1)2p Rd—1

/]Rd—1 Ar’d_l(f) : (H—'y+i¢0)2p : (f) dr € m Lq(N0)7

(3.3)

and for T" > 0,

T
VI (7, T) = / < (H_ oy ) (1), Ara s > dt

/ /Rd)2p {/Rdl ra-1( HH—%L (@ — ) L_1((t, %) — (tk,xk))d*}

XWd tk,xk)) dt

(3.4)= / / Ara—a( (H_7+;¢N)2p :(t, @) dEdt € m Li(pup).
Rd—1 4
q=1
(All notations follow the rule given by Remark 3.)

Under the assumption (3.1), we have (3.3) which corresponds to (2.22) in P(¢)2
theory. Since, for d > 2 by (3.1) and (3.2), the pseudo differential operator H_.,, by
which vi’i ,(7) is defined, satisfies v > i, similar to (2.24), we have the following estimate
(3.5) for vfllil(r) by dF(H%) on L?(1) with the space dimension d— 1. Also, by making

T and (3.5), similar to (2.26), we have the
following (3.7). (3.8) also can be shown through a similar discussion for (2.27), but all

use of the hypercontractivity of e

the results in this section (Theorems 3.1 and 3.2) are new developments.

Theorem 3.1.  Let dI'(Hy) be the positive self adjoint operator on L?(po) de-
fined in Proposition 2.1. Suppose that (3.1) is satisfied. For each p € N there exists
some S(R¥=1) norm ||| - ||| depending on v and the multiplicative operator |v(2fil(r)| is
dominated by dI‘(H%) + 1 as follows

(3.5) [0 ()] < (@d0(Hy) + DI Araalll,  ¥reN.
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For each p € N, A > 0 and r € N the operator dI'(H) + )\v?fil(r) on L?(pg) is essen-
tially self adjoint on the natural domain and bounded below:
There exists a smallest eigenvalue o = ag—1,2p.rx > —00 and the corresponding eigen-

function p = pg—1,2p,r such that

(3.6) (dT(Hy) + v (r)p = - p,
(3.7) p(¢) >0, poae. ¢eS(R); dl"(H%) + vfl’il(r) > a.
For eachpe N, A>0,reNandT >0
(3.8) e AV e () L ().
q=>1

(All notations follow the rule given by Remark 3.)

Theorem 3.2.  Let ag—1,2prx and pg—1.2p.rx > 0 be the eigenvalue and eigen-
function in Theorem 3.1 respectively, and suppose that pg—i,2pr.x s normalized in order
that

E#e [pd—l,Qp,r,A('))2] =1

Let vq_1,2p.rx be the probability measure on S’'(R) such that

_ 2
Vd—1,2p,r, X = (pd—1,2p,r,)\) Ho,

and define a mapping Ug—1 : L*(po) — L*(Va—1,2p.r.x) as follows:

X
UprX = —2> X el
Pd—1,2p,r, A

Then the operator T2, t >0, on L (vapr2), ¢ > 0, defined by

3.9) T l=uU,, exp{—t(dI‘(H%) + A2 (r) — ad_l,gp,r,k)}U;jl, t>0,

is a Markovian contraction semigroup. By taking vq—i.2p,x the initial distribution,
Tﬁf'_l, t € R, generates a partial Euclidean random field on S'(RY) the probability law
of which is identical to

e—AVde (r,T) dNN

(3.10) Wi o) = U G T ()]

More precisely (cf. (2.15) in Question 1), for any o1, o2 € S(R¥™Y — R), and any
l1,t220

/ thf_l ((Tt(i_l <, 2 >8’,S>(') <01 >8’,S> (@) Va—1,2p,r 1 (d®)
S'(Ré—1R)

My, 2p
(3.11) = Evat oo [< ¢, 01 X 6443 (+) >< b, 02 X g4 4451 (1) >,
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where B Vi’ o) [ - ] denotes the expectation taken with respect to the measure 122 (7,00
(All notations follow the rule given by Remark 3.)
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