<table>
<thead>
<tr>
<th>Title</th>
<th>Adsorption of fullerene nC[60] on activated sludge: Kinetics, equilibrium and influencing factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yang, Yongkui; Nakada, Norihide; Tanaka, Hiroaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Chemical Engineering Journal (2013), 225: 365-371</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/174229</td>
</tr>
<tr>
<td>Right</td>
<td>© 2013 Elsevier B.V.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。This is not the published version. Please cite only the published version.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
Adsorption of fullerene nC$_{60}$ on activated sludge:

kinetics, equilibrium and influencing factors

Yongkui Yang, Norihide Nakada, Hiroaki Tanaka*

Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan

Email:
ykyang@biwa.eqc.kyoto-u.ac.jp
nakada.norihide.8w@kyoto-u.ac.jp
htanaka@biwa.eqc.kyoto-u.ac.jp

*Corresponding author:
Hiroaki Tanaka
Research Center for Environmental Quality Management, Kyoto University
Tel: +81 77 527 6222
Fax: +81 77 524 9869
Email: htanaka@biwa.eqc.kyoto-u.ac.jp
Abstract

The increasing production and use of fullerene C₆₀ nanomaterials raises concerns about environmental risks and human health. However, the materials’ behavior and fate during wastewater treatment are still unclear. We investigated the adsorption of aqueous nanoscale fullerene (nC₆₀) on activated sludge by analysis of adsorption kinetics and equilibrium. The adsorption process closely followed the pseudo-second-order kinetics model, and the adsorption isotherm was well described by the Freundlich model. The adsorption process depended strongly on the activated sludge concentration and pH, but there was no significant effect by the temperature and low ionic strength. The dissolved organic matter in wastewater could obviously inhibit the adsorption process. At mixed liquor suspended solids concentrations of 1000 and 2000 mg/L after 1 h mixing, nC₆₀ removal by adsorption reached 47% and 74%, respectively. Thus, adsorption could play an important role in the fate of nC₆₀ during conventional biological wastewater treatment. The analysis of factors influencing the adsorption amounts indicated that the nC₆₀ adsorption behavior on activated sludge was affected by the combined forces of the hydrophobic attraction, electrostatic repulsion and steric interaction.

Keywords: Fullerene nC₆₀; Activated sludge; Adsorption; Model; Influencing factors
1. Introduction

Fullerene C$_{60}$ consists of 60 carbon atoms arranged in 20 hexagons and 12 pentagons and forming a hollow sphere about 1 nm in diameter [1]. Being chemically and thermally stable, an excellent electron acceptor, and a radical scavenger, and having special optical properties, it is attracting commercial and scientific interest [2]. Fullerene C$_{60}$ and other carbon-based nanomaterials are the second most nanomaterials used in consumer products available in 2011 [3]. Their growing production and use will inevitably result in the entry of fullerenes into the environment, raising concerns about environmental risks and human health [4–6].

The extremely low solubility (7.96 ng/L) and high hydrophobicity (log K_{ow} 6.67) of C$_{60}$ molecules assumed little chance of transport into aquatic environments and consequent limited risk to humans [7]. However, recent studies showed C$_{60}$ molecules can form stable nanoscale colloidal aggregates (nC$_{60}$) in water with concentrations at mg/L level via solvent exchange and/or sonication treatment [8–11], as well as the environmental extended mixing [12–15]. C$_{60}$ has been detected in the commercial cosmetics ranging from 0.04 to 1.1 µg/g [16] and <0.005% (w/w) [17] which suggesting the potential pathway of C$_{60}$ from consumer products to the wastewater streams. Farré et al. [18] firstly reported the nC$_{60}$ concentration up to ~20 µg/L in the suspended solids of the wastewater effluents. However, very few studies have examined the fate of nC$_{60}$ during wastewater treatment. No biodegradation was found in either aerobic [19] or anaerobic systems [20]. Wang et al. [21] reported a high removal of 83–97% for nC$_{60}$ during the sequencing batch reactor wastewater treatment process. However, the information is very limited on the adsorption kinetic, equilibrium, and the factors influencing the nC$_{60}$ adsorption on activated sludge which is essential to evaluate the fate, and to improve the removal of nC$_{60}$ during the wastewater treatment.
The objective of this study was to investigate the behavior and mechanism of nC$_{60}$ adsorption on activated sludge. We investigated the adsorption kinetics and equilibrium of nC$_{60}$, conducted adsorption modeling to determine the adsorption mechanism, and studied the effects of mixed liquor suspended solids (MLSS), temperature, ionic strength, pH, and wastewater dissolved organic matter (DOM) on nC$_{60}$ adsorption on activated sludge.

2. Materials and methods

2.1 Preparation of fullerene nC$_{60}$ aqueous suspension

nC$_{60}$ suspension was prepared according to the widely used toluene-based solvent exchange method [22–24] with minor modifications. Detailed procedure was described in our previous work [25].

2.2 Sampling and sample preparation

Activated sludge and three wastewater samples (primary effluent, aeration tank liquor and secondary effluent) were collected from a municipal wastewater treatment plant in Japan, which used a conventional biological wastewater treatment process with a hydraulic retention time of ~8 h, a sludge retention time of ~18 d, and an MLSS level of ~2570 mg/L. All the wastewater samples were filtered through a glass fiber filter (1.0 µm pore size; GF/B, Whatman, Germany) and adjusted to pH 7 with dilute NaOH or HCl solution. The activated sludge sample was washed in filtered primary effluent and centrifuged at 2000 ×g for 5 min. The pellet was washed and centrifuged twice more. After the last centrifugation, it was suspended in filtered primary effluent to an MLSS level of 6000 mg/L and stored at 4 °C. The liquid was diluted to the required MLSS level with filtered wastewater samples just before the adsorption experiments started. The activated sludge was not inactivated, because nC$_{60}$ is not biodegradable [19,20,26].
2.3 Adsorption kinetics and isotherm experiments

For the kinetics and isotherm studies, 100-mL Erlenmeyer flasks containing 50 mL primary effluent at 1000 mg/L MLSS were agitated on a rotary shaker (125 rpm) at room temperature (25 °C). For the kinetics study, the initial nC$_{60}$ concentrations were 0.100, 0.300, and 0.500 mg/L. Samples were collected at various time intervals and were centrifuged at 2000 ×g for 5 min, and the supernatant was collected (5 mL) for nC$_{60}$ quantification. For the adsorption isotherm experiments, the initial nC$_{60}$ concentrations were 0.050, 0.100, 0.200, 0.350, and 0.500 mg/L. From the results of the kinetics studies, we chose 12 h as the equilibrium time in the isotherm experiments. After the equilibrium time, the samples were collected and centrifuged as above. The nC$_{60}$ in supernatant was extracted using toluene and then analyzed by a high-performance liquid chromatography (HPLC) system equipped with a UV/visible detector (Shimadzu, Japan), as described in Section 2.5. Reference samples without activated sludge were analyzed, so we could subtract nC$_{60}$ losses such as by adsorption to glassware. Adsorption to activated sludge was calculated from the mass balance of the nC$_{60}$ concentrations between the experimental and reference samples:

\[
q_t = \frac{C_{(ref,t)} - C_{(exp,t)}}{MLSS}
\]

where q_t is the nC$_{60}$ adsorbed on the activated sludge at time t (mg/g), $C_{(ref,t)}$ is the nC$_{60}$ concentration in the aqueous phase in reference samples at time t (mg/L), $C_{(exp,t)}$ is that in experimental samples at time t (mg/L), and MLSS is the mixed liquor suspended solids concentration in the flask (g/L).
2.4 Factors affecting the adsorption of nC_{60} on activated sludge

Batch experiments were conducted to study the effects of MLSS concentration, temperature, ionic strength, pH, and wastewater DOM on the nC_{60} adsorption on activated sludge (Table 1). Three wastewater samples (primary effluent, aeration tank liquor and secondary effluent) were used to study the DOM effect, while only primary effluent was used in all other experiments. Short contact time of 1 h was here determined to ensure approximate 50% of initial nC_{60} left after adsorption in order to increase the sensitivity which helps obtain a better investigation of the adsorption mechanism.

2.5 Quantification of nC_{60}

nC_{60} in supernatant was extracted by the liquid-liquid extraction method and measured by the HPLC-UV/visible system as reported [10,24] with a slight modification: specifically, NaCl was added to 5 mL of sample up to 1% by weight for nC_{60} destabilization, followed by 3 mL of toluene as extraction solvent. The mixture was agitated at 200 rpm for 30 min on the rotary shaker. The aqueous and toluene phases were then separated by centrifugation at 1000 \times g for 5 min, and the toluene layer was collected for analysis. C_{60} in the toluene was quantified by the HPLC-UV/visible system (Shimadzu, Japan). C_{60} was separated in a triacontyl (C30) silica-gel column (250 mm×4.6 mm i.d. packed with 5-\mu m particles; Nomura Chemical, Japan) by isocratic elution at a flow rate of 1 mL/min in a mobile phase of acetonitrile and toluene (65:35, v/v) at 30 °C. C_{60} was quantified at 332 nm. The calibration curve was obtained by spiking varying amounts of nC_{60} aqueous suspensions in 5 mL of 1.0-\mu m-filtered wastewater. Preliminary results showed a recovery rate of > 90% with a very high correlation coefficient (R^2 > 0.998).
2.6 Other analysis

The dissolved organic carbon (DOC) concentration in wastewater samples was measured with a TOC analyzer (5000A, Shimadzu, Japan). The size of nC₆₀ and activated sludge were determined using a dynamic light scattering Zetasizer (Nano ZS, Malvern, UK) and laser diffraction size analyzer (SALD-2100, Shimadzu, Japan), respectively. The electrophoretic mobility of nC₆₀ and activated sludge were measured with the Zetasizer and used to calculate the zeta (ζ) potential by the Smoluchowski equation [27]. For the activated sludge, the specific surface area and relative hydrophobicity were measured by the methods of the Rhodamine B adsorption [28-30] and the adherence to hexadecane hydrocarbon [31,32], respectively. The mixed liquor volatile suspended solids (MLVSS) and mixed liquor suspended solids (MLSS) of activated sludge were determined according to the standard method [33].
3. Results and discussion

3.1 Properties of nC_{60b} activated sludge and wastewater samples

The intensity-weighted size distribution (Fig. S1 (a), Supplemental data) of the nC_{60} suspension gave a hydrodynamic diameter of 138 nm with a polydispersity index of 0.095. The ζ potential in Milli-Q water showed the nC_{60} suspension was negatively charged in the range of pH studied and the absolute value decreased with the decrease in pH from 11 to 1 (Fig. S1 (b), Supplemental data). The activated sludge used in this study was characterized to be 139.0 µm in size, −17.0 mV (in primary effluent) in ζ potential, 74.6% in relative hydrophobicity, 11.5 m^2/g MLSS in specific surface area, and 78.5% in MLVSS/MLSS. And three wastewater samples had a DOC concentration of 40.8, 5.3, and 4.1 mg/L for the primary effluent, aeration tank liquor, and secondary effluent, respectively.

3.2 Time profile of nC_{60} adsorption on activated sludge

At a lower initial nC_{60} concentration, the adsorption of nC_{60} on the activated sludge (q_t) reached equilibrium sooner (Fig. 1) because of the relative abundance of adsorption sites available. At all initial concentrations tested, the adsorption reached equilibrium after 12 h, so we used 12 h as the equilibrium time in the following adsorption isotherm experiments.

3.3 Adsorption kinetics

To understand the mechanism of adsorption, we fitted the pseudo-first-order and pseudo-second-order models to the experimental data.

3.3.1 Pseudo-first-order model

The linear pseudo-first-order model is given as [34]:

\[\ln (q_e - q_t) = \ln q_e - k_1 t \]

where \(q_t \) (mg/g) and \(q_e \) (mg/g) are the amounts of nC_{60} adsorbed on activated sludge at time \(t \) (h) and at equilibrium, respectively; and \(k_1 \) (1/h) is the rate constant of pseudo-first-order
adsorption. The \(q_e \) and \(k_1 \) can be determined from the slope and intercept by plotting \(\ln(q_e - q_t) \) versus \(t \).

3.3.2 Pseudo-second-order model

The linear pseudo-second-order model is given as [35]:

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t
\]

(3)

where \(k_2 \) (g/(mg·h)) is the rate constant of pseudo-second-order adsorption. The \(q_e \) and \(k_2 \) can be determined from the slope and intercept by plotting \(t/q \) versus \(t \).

3.3.3 Model results

The adsorption kinetics at different initial concentrations were fitted to Eqs.(2) and (3) (Fig. 2). The data fitted the second-order model much better than the first-order model. The model’s correlation coefficient was > 0.99 and the calculated \((q_{e\text{(cal)}}) \) values were very close to the observed \((q_{e\text{(obs)}}) \) values (Table 2). Both facts indicate that the adsorption of nC60 on activated sludge was well fit by the second-order model, indicating that nC60 adsorption on activated sludge was affected by chemical process [36,37]. The interaction between the :OH on nC60 surface [38] and the functional groups on activated sludge might contribute to this chemical adsorption by forming hydrogen bond, which are intermediate in strength between van der Waals bond and covalent bond [39]. In addition, the rate constant \((k_2) \) of the second-order model decreased with increasing initial nC60 concentration, showing the adsorption rate increased at higher nC60 concentration.

3.4 Adsorption isotherm

There are several adsorption isotherms for fitting the adsorption process based on different adsorption mechanisms. Among these, the Langmuir and Freundlich models are widely used for modeling the adsorption on activated sludge such as estrogens [40,41], dyes [42,43], and heavy metals [44]. Therefore, both isotherms were applied in this work.
3.4.1 Langmuir model

The Langmuir model assumes that the adsorption occurs on specific homogeneous sites of the adsorbent surface in a monolayer [45]. The linear form is given as:

\[
\frac{C_e}{q_e} = \frac{1}{k_L q_m} + \frac{1}{q_m} C_e
\]

(4)

where \(q_m \) (mg/g) is the maximum adsorption capacity of nC\textsubscript{60} on activated sludge, \(C_e \) (mg/L) is the nC\textsubscript{60} concentration in the aqueous phase at equilibrium, and \(k_L \) is the Langmuir constant (L/mg). The values of \(k_L \) and \(q_m \) can be determined from the intercept and slope by plotting \(C_e/q_e \) versus \(C_e \) (Fig. 3a).

The essential feature of the Langmuir isotherm can be expressed by the equilibrium parameter \(R_L \), which indicates the favorability of the adsorption process. The values of \(R_L \) indicate the adsorption to be irreversible \((R_L = 0) \), favorable \((0 < R_L < 1) \), linear \((R_L = 1) \) or unfavorable \((R_L > 1) \) [46,47]:

\[
R_L = \frac{1}{1 + k_L C_0}
\]

(5)

where \(C_0 \) is the initial nC\textsubscript{60} concentration in the aqueous phase (mg/L).

3.4.2 Freundlich model

The Freundlich model expresses the adsorption process on a heterogeneous surface with different binding energies [48]. The linear form is given as:

\[
\ln q_e = \ln k_F + \frac{1}{n} \ln C_e
\]

(6)

where \(k_F \) and \(n \) are Freundlich constants. And they can be determined from the intercept and slope by plotting \(\ln q_e \) versus \(\ln C_e \) (Fig. 3b).

3.4.3 Model results

The equilibrium parameter \(R_L \) was < 1, indicating that the adsorption process was favorable (Table 3). In addition, the value of \(n \) in the Freundlich model lay between 1 and 10, indicating the favorable adsorption of nC\textsubscript{60} on activated sludge [49]. The correlation
coefficients showed that the Freundlich model better described the experimental data, implying that it is more suitable for modeling nC₆₀ adsorption on activated sludge (Fig. 3b). This result indicated the nC₆₀ adsorption occurred at multi-layer and on the heterogeneous surface of activated sludge [50-52].

3.5 Factors affecting the adsorption behavior of nC₆₀ on activated sludge

3.5.1 Effect of MLSS concentration

The nC₆₀ concentration in the aqueous phase decreased as the MLSS increased from 50 to 4000 mg/L (Fig. 4a). The decrease in concentration can be partially attributed to the increased surface area and availability of more adsorption sites, as also seen in the adsorption of dye on activated sludge [53]. At MLSS concentrations of 1000 and 2000 mg/L, which are common in conventional activated sludge treatment, the reduction of nC₆₀ in the aqueous phase were 47% and 74%, respectively, indicating that adsorption on activated sludge played an important role in the removal of nC₆₀ during activated sludge process. The strong correlation between the adsorption amounts and sludge concentrations (Fig. 4a), and proved hydrophobic surface of nC₆₀ [54] indicated the attractive hydrophobic interaction affected the nC₆₀ adsorption on activated sludge.

3.5.2 Effect of Temperature

The nC₆₀ adsorption slightly increased from 46 to 60% with increasing temperature from 15 to 35 °C (Fig. 4b). However the increase was not significant according to the Analysis of Variance ($p > 0.05$) which indicated there was no obvious effect of temperature on the nC₆₀ adsorption.

3.5.3 Effect of ionic strength

At an added ionic strength of ≤ 10 mM—in the range of common surface waters, domestic wastewater, and groundwaters—there was no significant effect on nC₆₀ adsorption
(Fig. 5a). However, adsorption was decreased at 50 and 500 mM, levels of some industrial wastewaters or wastewater mixed with seawater. This result is opposite to the hypothesis that an increase in ionic strength would decrease the surface charge of activated sludge and nC$_{60}$ and thus increase the adsorption on activated sludge. A higher ionic strength indeed decreased the negative charge of activated sludge (Fig. 6a), along with that of nC$_{60}$ as reported in our previous work [55]. However, the increasing ionic strength also increased the concentration of dissolved organic carbon (DOC) in the supernatant (Fig. 6a). This result indicated that the nC$_{60}$ could remain stable in solution and was prevented from adsorbing to activated sludge by coexisting DOM even with very low electrostatic repulsion at high ionic strength. And the effect of DOM on nC$_{60}$ adsorption is discussed in detail in Section 3.5.5.

3.5.4 Effect of pH

nC$_{60}$ adsorption on activated sludge was highly dependent on pH, increasing as the pH decreased (Fig. 5b). pH could affect both the adsorbate and the adsorbent through its effects on surface charge, protonation, and speciation [56,57]. The ζ potential of activated sludge in primary effluent was negative within the pH range studied, and the absolute values decreased as the pH decreased (Fig. 6b). Previous studies showed the change in ζ potential of nC$_{60}$ in primary effluent as a function of pH was consistent with the activated sludge [55]. At lower pH, proton neutralization could decrease the surface charge of nC$_{60}$ and activated sludge, decreasing electrostatic repulsion and consequently increasing nC$_{60}$ adsorption on activated sludge. The results here indicated the role of electrostatic effect in the nC$_{60}$ adsorption on activated sludge. Similar behavior was also observed on the adsorption of negative-charged perfluorooctane sulfonate [58] and anionic dye [57] on activated sludge. In addition, at pH 11, the DOC concentration obviously increased (Fig. 6b) which might enhance the stability of nC$_{60}$ in water (discussed in Section 3.5.5). Therefore, both a stronger electrostatic repulsion force and an increasing stabilizing effect resulted in the lowest adsorption at pH 11.
3.5.5 Effect of wastewater DOM

nC\textsubscript{60} adsorption on activated sludge increased by \(~18\%\) in secondary effluent compared to that in primary effluent (Fig. 5c), as the DOC concentration in sludge mixture decreased from 40.1 to 11.3 mg/L (Fig. 6c). This indicated the wastewater DOM could greatly inhibit the nC\textsubscript{60} adsorption on activated sludge. Although no difference was observed in absolute \(\zeta\) potential of nC\textsubscript{60} in three wastewater samples (Fig. S1 (c), Supplemental data), that of activated sludge was much higher in primary effluent (Fig. 6c). This might result in the decrease in nC\textsubscript{60} adsorption on activated sludge in primary effluent by increasing the electrostatic repulsion between nC\textsubscript{60} and activated sludge. In addition, our previous study found the wastewater DOM could greatly inhibit the nC\textsubscript{60} aggregation in water via the steric stabilization [55]. Kiser et al. [59] recently reported the cellular matter (proteins and other soluble organics) of activated sludge greatly reduced the removal of the nanoparticles (nC\textsubscript{60}, Ag, Au, and polystyrene) from the aqueous solutions. Therefore, these results here showed the DOM in wastewater could inhibit the nC\textsubscript{60} adsorption on activated sludge by both the electrostatic and steric effect.
4. Conclusions

This study examined the adsorption of nC\textsubscript{60} on activated sludge by adsorption kinetics, and equilibrium. Adsorption reached equilibrium after 12 h at an MLSS level of 1000 mg/L at 25 °C. The process was well fit by the pseudo-second-order kinetic model and the Freundlich isotherm model.

pH greatly affected the adsorption process, decreasing the adsorption of nC\textsubscript{60} from 86% at pH 3 to 26% at pH 11. At an ionic strength of 0 to 10 mM, there was no significant effect on nC\textsubscript{60} adsorption. Adsorption was obviously inhibited by coexisting dissolved organic matter in wastewater through electrostatic and steric stabilization effect. At MLSS levels of 1000 and 2000 mg/L, similar to the conditions in conventional activated sludge treatment, the adsorption reached 47% and 74%, demonstrating high removal efficiency. The analysis of factors influencing the adsorption amounts indicated that the nC\textsubscript{60} adsorption behavior on activated sludge was affected by the combined forces of the hydrophobic attraction, electrostatic repulsion and steric interaction.

Acknowledgements

This research was partly supported by Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS) and by the CREST project of the Japan Science and Technology (JST) organization.
References

[16] T.M. Benn, P. Westerhoff, P. Herckes, Detection of fullerenes (C$_{60}$ and C$_{70}$) in commercial cosmetics, Environ. Pollut. 159 (2011) 1334–1342.

List of Table captions

Table 1 – Experimental conditions for the studies of influencing factors.
Table 2 – Calculated parameters of adsorption kinetics models.
Table 3 – Calculated parameters of adsorption isotherm models.
List of Figure captions

Fig. 1 – Time profile of nC₆₀ adsorption on activated sludge.

Fig. 2 – Adsorption kinetics of nC₆₀ on activated sludge by (a) pseudo-first-order model and (b) pseudo-second-order model.

Fig. 3 – (a) Langmuir and (b) Freundlich adsorption isotherms of nC₆₀ on activated sludge.

Fig. 4 – nC₆₀ adsorption on activated sludge as a function of (a) MLSS and (b) temperature.

Fig. 5 – nC₆₀ adsorption on activated sludge as a function of (a) ionic strength, (b) pH, and (c) wastewater DOM.

Fig. 6 – ζ potential of activated sludge in wastewater and concentration of dissolved organic carbon (DOC) in supernatant in sludge mixture (without nC₆₀) as a function of (a) ionic strength, (b) pH, and (c) wastewater DOM.
List of Figure caption in Supplementary data

Fig. S1 – (a) Intensity-weighted size distribution of nC$_{60}$ in Milli-Q water (pH=5.6, T=25 °C).
(b) ζ potential of nC$_{60}$ in Milli-Q water as a function of pH (T=25 °C).
(c) ζ potential of nC$_{60}$ in three wastewater samples (pH=7, T=25 °C).

Table 1

Experimental conditions for the studies of influencing factors.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Wastewater</th>
<th>nC$_{60}$ (mg/L)</th>
<th>Temperature (°C)</th>
<th>MLSS (mg/L)</th>
<th>pH</th>
<th>Added ionic strength (mM NaCl)</th>
<th>Contact time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLSS</td>
<td>PE</td>
<td>0.200</td>
<td>25</td>
<td>50–4000</td>
<td>7</td>
<td>not adjusted</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>PE</td>
<td>0.200</td>
<td>15–35</td>
<td>1000</td>
<td>7</td>
<td>not adjusted</td>
<td></td>
</tr>
<tr>
<td>Ionic strength</td>
<td>PE</td>
<td>0.200</td>
<td>25</td>
<td>1000</td>
<td>7</td>
<td>0–500</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>PE</td>
<td>0.200</td>
<td>25</td>
<td>1000</td>
<td>3–11</td>
<td>not adjusted</td>
<td></td>
</tr>
</tbody>
</table>

Wastewater DOM

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Wastewater</th>
<th>nC$_{60}$ (mg/L)</th>
<th>Temperature (°C)</th>
<th>MLSS (mg/L)</th>
<th>pH</th>
<th>Added ionic strength (mM NaCl)</th>
<th>Contact time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE, AT, SE</td>
<td>0.200</td>
<td>25</td>
<td>1000</td>
<td>7</td>
<td>not adjusted</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

PE: primary effluent; AT: aeration tank liquor; SE: secondary effluent
Table 2

Calculated parameters of adsorption kinetics models.

<table>
<thead>
<tr>
<th>Concentration (mg/L)</th>
<th>(q_{e\text{obs}}) (mg/g)</th>
<th>Pseudo-first-order model</th>
<th>Pseudo-second-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(k_1) (1/h)</td>
<td>(q_{e\text{cal}}) (mg/g)</td>
</tr>
<tr>
<td>0.100</td>
<td>0.074</td>
<td>0.225</td>
<td>0.030</td>
</tr>
<tr>
<td>0.300</td>
<td>0.230</td>
<td>0.299</td>
<td>0.104</td>
</tr>
<tr>
<td>0.500</td>
<td>0.380</td>
<td>0.286</td>
<td>0.233</td>
</tr>
</tbody>
</table>
Table 3

Calculated parameters of adsorption isotherm models.

<table>
<thead>
<tr>
<th></th>
<th>Langmuir model</th>
<th>Freundlich model</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_L</td>
<td>3.147 (L/mg)</td>
<td>k_F</td>
</tr>
<tr>
<td>q_m</td>
<td>1.949 (mg/g)</td>
<td>n</td>
</tr>
<tr>
<td>R_L</td>
<td>0.389</td>
<td>R^2</td>
</tr>
<tr>
<td>R^2</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.221</td>
<td>1.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.999</td>
</tr>
</tbody>
</table>
Fig. 1 – Time profile of nC$_{60}$ adsorption on activated sludge.
Fig. 2 – Adsorption kinetics of nC$_{60}$ on activated sludge by (a) pseudo-first-order model and (b) pseudo-second-order model.
Fig. 3 – (a) Langmuir and (b) Freundlich adsorption isotherms of nC₆₀ on activated sludge.
Fig. 4 – nC₆₀ adsorption on activated sludge as a function of (a) MLSS and (b) temperature.
C₀: the initial nC₆₀ concentration in aqueous phase; C: the nC₆₀ concentration in aqueous phase after 1-h mixture.
Fig. 5– nC₆₀ adsorption on activated sludge as a function of (a) ionic strength, (b) pH, and (c) wastewater DOM. C_0: the initial nC₆₀ concentration in aqueous phase; C: the nC₆₀ concentration in aqueous phase after 1-h mixture.
Fig. 6 – ζ potential of activated sludge in wastewater and concentration of dissolved organic carbon (DOC) in supernatant in sludge mixture (without nC₆₀) as a function of (a) ionic strength, (b) pH, and (c) wastewater DOM.