<table>
<thead>
<tr>
<th>Title</th>
<th>Characterization of certain spaces of C^∞-vectors of irreducible representations of solvable Lie groups (Representation Theory and Analysis on Homogeneous Spaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Inoue, Junko; Ludwig, Jean</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2008), B7: 177-185</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/174279</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Characterization of certain spaces of C^∞-vectors of irreducible representations of solvable Lie groups

Junko Inoue
University Education Center, Tottori University
Jean Ludwig
Department of Mathematics, University of Metz

Abstract

Let π be an irreducible unitary representation of an exponential solvable Lie group G. Realizing π on $L^2(G/H, \chi_l)$ as an induced representation from a unitary character χ_l of a subgroup H of G, we are concerned with certain subspaces of C^∞-vectors. We describe the subspace $S\mathcal{E}$ of vectors with a certain property of rapidly decreasing at infinity as the space of C^∞-vectors of an irreducible unitary representation of an exponential solvable Lie group F containing G. Furthermore, the space $AS\mathcal{E}$ introduced by Ludwig in [8] is expressed by our space $S\mathcal{E}$. Here we shall announce some results in [5], and we shall give brief discussions on fundamental examples.

1 Introduction

Let G be an exponential solvable Lie group with Lie algebra \mathfrak{g}, and π be an irreducible unitary representation of G. By the orbit method, which associates π with a coadjoint orbit, we realize π as an induced representation from a unitary character of a subgroup as follows: There exists a linear form $l \in \mathfrak{g}^*$ and a real polarization \mathfrak{h} at l such that $\pi \simeq \text{ind}^G_H \chi_l$, where $H = \exp \mathfrak{h}$ is the connected and simply connected subgroup corresponding to \mathfrak{h}, and χ_l is the unitary character of H defined by $\chi_l(X) = e^{il(X)} (X \in \mathfrak{h})$.

We give the standard construction of the induced representation $\pi = \pi_{l,H} = \text{ind}^G_H \chi_l$: Let $\mathcal{K}(G/H)$ be the space of continuous functions f on G with compact support modulo H such that $f(gh) = \Delta_{H,G}(h)f(g)$ for all $g \in G, h \in H$, where Δ_G and Δ_H are the

2000 Mathematics Subject Classifications: Primary 22E27; Secondary 22E25, 43A85.
Key Words and Phrases: Exponential solvable Lie group, unitary representation, C^∞-vector.
This paper is in final form and no version of it will be published elsewhere.
Received November 17, 2006.
modular functions of G and H, respectively, and $\Delta_{H,G}(h) = \frac{\Delta_{H}(h)}{\Delta_{G}(h)}$. Then there exists a positive left invariant linear functional

\begin{equation}
(1.1) \quad f \mapsto \mu(f) = \oint_{G/H} f(g) d\mu_{G/H}(g)
\end{equation}

uniquely up to a constant factor (see [3]). Let $C(G/H, \chi_l)$ be the space of continuous functions ϕ on G with compact support modulo H such that

$$
\phi(gh) = \chi_l(h)^{-1} \Delta_{H,G}(h)^{1/2} \phi(g), \quad \forall g \in G, h \in H,
$$

and let $\mathcal{H}_{\pi} = L^2(G/H, \chi_l)$ be the completion of the space $C(G/H, \chi_l)$ with respect to the norm

$$
\|\phi\|_{\pi} := \left(\oint_{G/H} |\phi(g)|^2 d\mu_{G/H}(g) \right)^{1/2}.
$$

Then we define the action of $g \in G$ in \mathcal{H}_{π} by

$$
\pi_{l,H}(g) \phi(x) = \phi(g^{-1} x), \quad \phi \in L^2(G/H, \chi_l), \quad g, x \in G.
$$

Let us briefly recall some well-known facts of the case of nilpotent Lie groups. Suppose G is nilpotent, and taking a supplementary Malcev basis for \mathfrak{h} in \mathfrak{g}, identify G/H with \mathbb{R}^k, where $k = \dim(G/H)$, and realize π on $L^2(\mathbb{R}^k)$. Then by results of Kirillov [6] and Corwin-Greenleaf-Penney [4], the actions of the enveloping algebra $\mathfrak{u}(\mathfrak{g})$ form the algebra of differential operators on \mathbb{R}^k with polynomial coefficients. Thus the space of C^∞-vectors \mathcal{H}_{π}^∞ coincides with the space of Schwartz functions $S(\mathbb{R}^k)$ on \mathbb{R}^k as a Fréchet space.

We next observe an example of exponential groups which are not nilpotent, where the specific descriptions of C^∞-vectors are different from those of nilpotent groups.

Example 1.1. (ax + b group) Let \mathfrak{g} be a two-dimensional Lie algebra with basis $\{X, Y\}$ whose bracket relation is $[X,Y] = Y$, and let $G = \exp \mathfrak{g}$. Then with the dual basis $\{X^*, Y^*\}$ in \mathfrak{g}^*, the coadjoint orbits of G are described as follows:

$$
\mathcal{O}_+ := \{l \in \mathfrak{g}^*; l(Y) > 0\}, \quad \mathcal{O}_- := \{l \in \mathfrak{g}^*; l(Y) < 0\},
$$

$$
\{\xi X^*\}, \quad \xi \in \mathbb{R}.
$$

Let $l_\varepsilon := \varepsilon Y^* \ (\varepsilon = \pm 1)$ and $\mathfrak{h} := \mathbb{R}Y$, $H := \exp \mathfrak{h}$. Then \mathfrak{h} is a polarization at l_ε and $\pi_{l_\varepsilon} := \ind_H^G \chi_{l_\varepsilon}$ is an irreducible representation of G. We realize π_{l_ε} on $L^2(\mathbb{R})$ identifying \mathbb{R} with G/H by $\mathbb{R} \ni x \mapsto \exp(xX)H$, as follows:

$$
\pi(\exp aX) \phi(x) = \phi(x - a)
$$

$$
\pi(\exp bY) \phi(x) = e^{i\varepsilon b x} \phi(x), \quad \phi \in L^2(\mathbb{R}), \quad a, b \in \mathbb{R}.
$$

Then the actions of \mathfrak{g} are described by

$$
d\pi(X) \phi(x) = -\frac{d\phi}{dx}
$$

$$
d\pi(Y) \phi(x) = i\varepsilon e^{-x} \phi(x).
$$
It shows that if \(\phi \) is a \(C^\infty \) vector, then \(\phi \) decreases rapidly at \(x \to -\infty \), but it does not necessarily decrease so rapidly at \(x \to +\infty \) as at \(x \to -\infty \).

Here we shall announce some results in [5], giving brief discussions on fundamental examples. For an exponential solvable group \(G \) and an irreducible unitary representation \(\pi \) of \(G \), we construct \(\pi \) in \(L^2(G/H, \chi_l) \) by taking \(l \in \mathfrak{g}^* \) and a suitable polarization \(\mathfrak{h} \). Then we shall define a subspace \(\mathcal{S}E(G, n, l, \mathfrak{h}) \) of vectors with some property of rapidly decreasing at infinity and show that it can be identified with the space of \(C^\infty \) vectors of an irreducible representation of an exponential solvable group \(F \) containing \(G \). Next, using our \(\mathcal{S}E \) space, we shall describe the space \(\mathcal{A}S\mathcal{E} \) introduced by Ludwig in [8].

2 The space \(\mathcal{S}E(G, n, l, \mathfrak{h}) \)

In the sequel, let \(G \) be an exponential solvable Lie group with Lie algebra \(\mathfrak{g} \). Let \(n \) be a nilpotent ideal of \(\mathfrak{g} \) such that \([\mathfrak{g}, \mathfrak{g}] \subset n\). For example, we can take the nilradical of \(\mathfrak{g} \) as \(n \), or we can also take \(n = [\mathfrak{g}, \mathfrak{g}] \). Let \(l \in \mathfrak{g}^* \) as above, and let

\[
n' := \{X \in \mathfrak{g}; \ l([X, n]) = \{0\}\}.
\]

Definition 2.1. (See [9].) We say that a polarization \(\mathfrak{h} \) at \(l \) is adapted to \(n \) if it satisfies (1) and (2).

1. The subalgebra \(\mathfrak{h} \cap n \) is a polarization at \(l|_\mathfrak{n} \) in \(n \).
2. \([n', \mathfrak{h} \cap n] \subset \mathfrak{h} \cap n\).

Remark 2.2. (1) Suppose that a polarization \(\mathfrak{h} \) at \(l \) is adapted to \(n \). Then there exists a polarization \(\mathfrak{h}_0 \subset n' \) at \(l|_{\mathfrak{n}'} \) such that \(\mathfrak{h} = \mathfrak{h}_0 + (\mathfrak{h} \cap n) \) and \(\mathfrak{h}_0 = \mathfrak{h} \cap n' \).

Furthermore, it satisfies the Pukanszky condition

\[
\text{Ad}^*(H)l = \mathfrak{h}^\perp + l,
\]

where \(\mathfrak{h}^\perp := \{f \in \mathfrak{g}^*; f(\mathfrak{h}) = \{0\}\} \), and thus we obtain a realization of the irreducible representation corresponding to the orbit \(\text{Ad}^*(G)l \) by \(\text{ind}_{\mathfrak{h}}^\mathfrak{g} \chi_l \).

(2) For any \(l \) and \(n \), there exists a polarization \(\mathfrak{h} \) at \(l \) adapted to \(n \). For example, a Vergne polarization associated with a refinement of the sequence of ideals \(\{0\} \subset n \subset \mathfrak{g} \) satisfies the condition (1) and (2) of Definition 2.1 above.

Starting from \(n \), \(l \) and a polarization \(\mathfrak{h} \) at \(l \) adapted to \(n \), we realize the irreducible representation \(\pi = \pi_{l,H} = \text{ind}_{\mathfrak{h}}^\mathfrak{g} \chi_l \) in \(L^2(\mathbb{R}^n) \) \((n = \dim(G/H))\) as follows.

Let \(\{T_1, \cdots, T_m, R_1, \cdots, R_v\} \) be a coexponential basis for \(\mathfrak{h} \) in \(\mathfrak{g} \) such that

\[
G = \exp \mathbb{R}T_1 \cdots \exp \mathbb{R}T_m \cdot NH,
\]

\[
NH = \exp \mathbb{R}R_1 \cdots \exp \mathbb{R}R_v \cdot H,
\]
and identify
\[\mathbb{R}^m \times \mathbb{R}^v \cong (G/NH) \times (NH/H) \cong G/H \]
by
\[\mathbb{R}^m \times \mathbb{R}^v \ni (t, r) = (t_1, \ldots, t_m, r_1, \ldots, r_v) \mapsto E(t, r) := \exp t_1 T_1 \cdots \exp t_m T_m \exp r_1 R_1 \cdots \exp r_v R_v \quad \text{(modulo } H). \]

Then the left invariant functional (1.1) is described by
\[\mu(f) = \int_{\mathbb{R}^{m+v}} f(E(t, r))dt\,dr, \quad f \in \mathcal{K}(G/H) \]
(see [7]), and we have \(L^2(G/H, \chi_l) \cong L^2(\mathbb{R}^{m+v}) \).

Denoting by \(\mathcal{D}_{t,r} \) the algebra of differential operators on \(\mathbb{R}^{m+v} \) with polynomial coefficients, we define the space \(\mathcal{S}(G, n, l, h) \) as follows:

Definition 2.3. Let \(\mathcal{S}(G, n, l, h) \) be the space of vectors \(\phi \in \mathcal{H}_{\pi_l, H} = L^2(G/H, \chi_l) \) such that

1. \(\phi \) is a \(C^\infty \) function.
2. \[\|\phi\|^2_{a,D} := \int_{\mathbb{R}^{m+v}} e^{\|t\|} |D(\phi \circ E)(t, r)|^2 dt\,dr < \infty, \quad \forall a \in \mathbb{R}^+, \forall D \in \mathcal{D}_{t,r}, \]
 where \(\|t\| \) denotes a norm on \(\mathbb{R}^m \).

Let us remark that the space \(\mathcal{S}(G, n, l, h) \) is independent of the choice of coexponential basis.

In [5], we obtained the following result. There exists an exponential solvable Lie group \(F \) containing \(G \), and an irreducible representation \(\pi_0 \) of \(F \) such that \(\pi_0|_G \cong \pi \) and the space \(\mathcal{S}(G, n, l, h) \) is naturally identified with the space of \(C^\infty \) vectors of \(\pi_0 \). More specifically, we can construct an exponential solvable Lie algebra \(\mathfrak{f} \) which has the properties (i), (ii) and (iii):

1. \(\mathfrak{f} \) is described as \(\mathfrak{f} = \mathfrak{g} \ltimes \mathfrak{a} \), where \(\mathfrak{a} \) is an abelian ideal of \(\mathfrak{f} \) satisfying
 \[[\mathfrak{a}, n + h] = \{0\}. \]
2. \(\dim \mathfrak{a} = 2 \dim(g/(n+h)) = 2m \), and there exist a coexponential basis \(\{X_1, \ldots, X_m\} \) for \(n + h \) in \(\mathfrak{g} \) and a basis \(\{A_1, \ldots, A_m, B_1, \ldots, B_m\} \) of \(\mathfrak{a} \) such that
 \[[X_j, A_k] = \delta_{jk} A_k, \quad [X_j, B_k] = -\delta_{jk} B_k, \quad 1 \leq j, k \leq m. \]
(iii) For all extension $l_1 \in f^*$ of $l \in g^*$, we have that
\[\dim(f(l_1)) = \dim(g(l)) + \dim(\mathfrak{a}), \]
where $f(l_1) := \{X \in f; l_1([X, f]) = \{0\}\}$, $g(l) := \{X \in g; l([X, g]) = \{0\}\}$. Thus the subalgebra $\mathfrak{p} := \mathfrak{h} + \mathfrak{a}$ is a polarization at l_1 adapted to the nilpotent ideal $n + \mathfrak{a}$ of f.

Let $F = \exp f$, $P = \exp \mathfrak{p}$, and χ_{l_1} be the unitary character of F defined by $\chi_{l_1}(\exp X) = e^{il_1(X)}$ for $X \in \mathfrak{p}$. Then by (iii) above, the induced representation $\pi_{l_1, P} := \text{ind}_P^G \chi_{l_1}$ is irreducible and $\pi_{l_1, P}|_G \simeq \pi$. In fact, the intertwining operator
\[\mathcal{R}_{l_1} : \mathcal{H}_{\pi_{l_1, P}} \rightarrow \mathcal{H}_{\pi_{l_1}, H} = L^2(G/H, \chi_l) \]
is defined by
\[\mathcal{R}_{l_1} \psi = \psi|_G, \quad \psi \in L^2(F/P, \chi_{l_1}), \]
and the inverse $S_{l_1} := \mathcal{R}_{l_1}^{-1}$ is
\[S_{l_1} \phi(g \exp Y) := e^{-il_1(Y)} \phi(g), \quad \phi \in L^2(G/H, \chi_l), \quad g \in G, \ Y \in \mathfrak{a}. \]
It can be seen easily that
\[S_{l_1}(\mathcal{E}(G, n, l, \mathfrak{h})) \subset \mathcal{H}_{\pi_{l_1}, P}^\infty. \]

Now we define another family of seminorms $\{\| \cdot \|_{l_0, U}\}$ on $\mathcal{E}(G, n, l, \mathfrak{h})$:
\[\|\phi\|_{l_1, U} := \|d\pi_{l_1, P}(U)S_{l_1} \phi\|_{\pi_{l_1, P}}, \quad U \in \mathfrak{u}(f). \]

Theorem 2.4. ([5]) Let G, n, l, \mathfrak{h} be as above. Then there exists an exponential solvable Lie algebra f having the property (i), (ii), (iii) above and satisfying the following:

(iv) There exists an extension $l_0 \in f^*$ of l such that the family of seminorms $\{\| \cdot \|_{l_0, U}, U \in \mathfrak{u}(f)\}$ is equivalent to the family of seminorms $\{\| \cdot \|_{a, D}, a \in \mathbb{R}_+, D \in \mathfrak{D}_{x}\}$; and thus we have
\[\mathcal{E}(G, n, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}_{\pi_{l_0}, P}). \]

Example 2.5. ($ax + b$ group) Let $g = \mathbb{R}X + \mathbb{R}Y$ and $\mathfrak{h} = \mathbb{R}Y$ be as in Example 1.1, and let $l := Y^*$ and $n = \mathbb{R}Y$, which is the nilradical of g. Then the polarization \mathfrak{h} is obviously adapted to n. We construct π_l in $L^2(\mathbb{R})$ as in Example 1.1. Then a square integrable smooth function ϕ belongs to $\mathcal{E}(G, n, l, \mathfrak{h})$ if and only if
\[\int_{\mathbb{R}} e^{a|x|}|D\phi(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \ \forall D \in \mathfrak{D}_x, \]
where \mathfrak{D}_x is the algebra of differential operators on \mathbb{R} with polynomial coefficients. Applying Theorem 2.4 above, we have
\[f = g \ltimes \mathfrak{a}, \quad \mathfrak{a} = \mathbb{R}A + \mathbb{R}B \]
\[[X, A] = A, \quad [X, B] = -B, \quad [Y, A] = [Y, B] = 0. \]
Let \(l_0 \in \mathfrak{f}^* \) be an extension of \(l \) such that \(l_0(B) \neq 0 \). Then we have

\[
(2.2) \quad \mathcal{SE}(G, n, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}_{\pi_{l_0}, P}).
\]

In fact, realizing \(\pi_{l_0, P} = \text{ind}_{F}^{E} \chi \iota_{0} \) in \(L^2(F/P, \chi_{l_0}) = S_{l_0}(L^2(G/P, \chi_{l})) \cong L^2(\mathbb{R}) \), we have that \(\mathfrak{f} \) acts by

\[
(2.3) \quad d\pi_{l_0, P}(X)\phi(x) = -\frac{d\phi}{dx},
(2.4) \quad d\pi_{l_0, P}(Y)\phi(x) = i e^{-x}\phi(x),
(2.5) \quad d\pi_{l_0, P}(A)\phi(x) = i l_0(A) e^{-x}\phi(x),
(2.6) \quad d\pi_{l_0, P}(B)\phi(x) = i l_0(B) e^{x}\phi(x).
\]

Thus we can directly verify the equality (2.2).

Remark 2.6. In Example 2.5, replacing \(F \) with a subgroup \(F' \) of \(F \), we can also identify the space \(\mathcal{SE}(G, n, l, \mathfrak{h}) \) with the space of \(C^\infty \) vectors of an extension of \(\pi_l \). Let \(\mathfrak{a'} := \mathbb{R}B, \mathfrak{f'} := \mathfrak{g} \ltimes \mathfrak{a'}, \mathfrak{p'} := \mathfrak{h} + \mathfrak{a'}, \mathfrak{F'} := \text{exp} \mathfrak{f'} \) and \(\mathfrak{P'} := \text{exp} \mathfrak{p'} \). Then \(\mathfrak{p'} \) is a polarization at any extension \(l'_1 \in \mathfrak{f'}^* \) of \(l \) and \(\pi_{l'_1, P'|_{G}} \cong \pi_l \), where \(\pi_{l'_1, P'} = \text{ind}_{F'}^{E} \chi_{l'_1} \). We denote the intertwining operator by \(\mathcal{R}_{l_0} : L^2(F'/P', \chi_{l'_1}) \to L^2(G/H, \chi_{l}) \) as above. Suppose that an extension \(l''_0 \in \mathfrak{f''}^* \) of \(l \) satisfies \(l''_0(B) \neq 0 \). Then we also obtain that

\[
(2.7) \quad \mathcal{SE}(G, n, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}_{\pi_{l''_0}, P'}).
\]

In fact, letting \(l_0 \in \mathfrak{f}^* \) be any extension of \(l''_0 \), we have \(\pi_{l_0, P}|_{\mathfrak{f'}^*} \cong \pi_{l''_0, P'} \), and using the descriptions (2.3), (2.4) and (2.6), we obtain the equality (2.7).

Example 2.7. (Heisenberg group) Taking \(n = [\mathfrak{g}, \mathfrak{g}] \) instead of the nilradical, we observe an example of nilpotent groups. Let \(\mathfrak{g} = \mathbb{R}\text{span}\{X, Y, Z\} \) be the 3-dimensional Lie algebra whose non-trivial bracket relation is \([X, Y] = Z\). Let \(\mathfrak{n} = [\mathfrak{g}, \mathfrak{g}] = \mathbb{R}Z, \mathfrak{l} = Z^* \) and \(\mathfrak{h} = \mathbb{R}Y + \mathbb{R}Z \). Then \(\mathfrak{h} \) is a polarization adapted to \(\mathfrak{n} \). We realize the representation \(\pi_{l, H} \) in \(L^2(\mathbb{R}) \) by the coexponential basis \(\{X\} \) for \(\mathfrak{h} \) in \(\mathfrak{g} \). Then we have

\[
(2.8) \quad d\pi_{l, H}(X)\phi(x) = -\frac{d\phi}{dx}, \quad d\pi_{l, H}(Y)\phi(x) = -ix\phi(x), \quad d\pi_{l, H}(Z) = i.
\]

We have that a smooth function \(\phi(x) \in L^2(\mathbb{R}) \) belongs to \(\mathcal{SE}(G, n, l, \mathfrak{h}) \) if and only if

\[
\int_{\mathbb{R}} e^{a|x|}|D\phi(x)|^2dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad \forall D \in \mathcal{D}_x.
\]

Applying Theorem 2.4, we have

\[
\mathfrak{f} = \mathfrak{g} \ltimes \mathfrak{a}, \quad \mathfrak{a} = \mathbb{R}A + \mathbb{R}B,
\]

\[
[X, A] = A, \quad [X, B] = -B, \quad [Y, A] = [Y, B] = [Z, A] = [Z, B] = 0.
\]
Let \(l_0 \in \mathfrak{f}^* \) be an extension of \(l \) such that \(l_0(A) \neq 0 \) and \(l_0(B) \neq 0 \). Then we have
\[
\mathcal{S}\mathcal{E}(G, n, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}_\mathfrak{p})^\infty.
\]
In fact, we have
\[
\begin{align*}
\pi_{l_0, P}(A) \phi(x) &= il_0(A)e^{-x} \phi(x), \\
\pi_{l_0, P}(B) \phi(x) &= il_0(B)e^x \phi(x).
\end{align*}
\]
By the actions (2.8), (2.9) and (2.10), we can obtain the conclusion.

3 The space \(\mathcal{A}\mathcal{S}\mathcal{E} \) and the space \(\mathcal{S}\mathcal{E}^\infty \)

Let \(G, n, l, \mathfrak{h} \) be as above. As we mentioned in Remark 2.2, we have that \(\mathfrak{h} = (\mathfrak{h} \cap n^l) + (\mathfrak{h} \cap n) \), so we have \(\mathfrak{h} \subset n + n^l \). We choose a coexponential basis \(\{ T_1, \ldots, T_\nu, S_1, \ldots, S_u \} \) for \(\mathfrak{h} + n \) in \(g \) along with the sequence \(g \supset n + n^l \supset n + \mathfrak{h} \), where \(\nu + u = m \), so that
\[
G = \exp \mathbb{R}T_1 \cdots \exp \mathbb{R}T_\nu \cdot N^l N \quad N^l N = \exp \mathbb{R}S_1 \cdots \exp \mathbb{R}S_u \cdot NH.
\]
(Here we write \(N^l := \exp n^l \).) In the sequel, we identify
\[
\mathbb{R}^\nu \times \mathbb{R}^u \times \mathbb{R}^v \cong (G/N^l N) \times (N^l N/NH) \times (NH/H) \cong G/H
\]
by
\[
\mathbb{R}^\nu \times \mathbb{R}^u \times \mathbb{R}^v \ni (t, s, r) = (t_1, \ldots, t_\nu, s_1, \ldots, s_u, r_1, \ldots, r_v) \quad \mapsto E(t, s, r) = E(t)E(s)E(r) \text{ (modulo } H),
\]
where
\[
E(t) = \exp t_1 T_1 \cdots \exp t_\nu T_\nu, \quad E(s) = \exp s_1 S_1 \cdots \exp s_u S_u, \quad E(r) = \exp r_1 R_1 \cdots \exp r_v R_v, \quad (t, s, r) \in \mathbb{R}^\nu \times \mathbb{R}^u \times \mathbb{R}^v.
\]
For \(\phi \in \mathcal{S}\mathcal{E}(G, n, l, \mathfrak{h}) \), let \(\hat{\phi}_s(t, s, r) \) be the partial Fourier transform of \(\phi \) in \(s \):
\[
\hat{\phi}_s(t, s, r) := \int_{\mathbb{R}^u} \phi(E(t, x, r))e^{i(x,s)}dx,
\]
where \((x, s) \) is the standard inner product of \(\mathbb{R}^u \). Denoting by \(\mathcal{D}_{t,s,r} \) the algebra of differential operators on \(\mathbb{R}^\nu \times \mathbb{R}^u \times \mathbb{R}^v \) with polynomial coefficients, we define the space \(\mathcal{A}\mathcal{S}\mathcal{E}(G, n, l, \mathfrak{h}) \) introduced in [8], where this space has been denoted by \(\mathcal{E}S \).

Definition 3.1. (See [8].) Let \(\mathcal{A}\mathcal{S}\mathcal{E}(G, n, l, \mathfrak{h}) \) be the space of functions \(\phi \in L^2(G/H, \chi_l) \) such that
\(1\) \(\phi \in SE(G, n, l, h)\),

\(2\)

\[\|\hat{\phi}_s(t, s, r)\|^2_{a, b, D} := \int_{\mathbb{R}^{v+u+v}} e^{a||t||} e^{b||s||}|D\hat{\phi}_s(t, s, r)|^2 dt ds dr < \infty, \forall (a, b) \in \mathbb{R}_+^2, \forall D \in \mathcal{D}_{t,s,r}. \]

Remark 3.2. The space \(\mathcal{ASE}\) is independent of the choice of coexponential bases. We write the letter \(A\) in front to indicate that the functions \(\phi \in \mathcal{ASE}(G, n, l, h)\) are analytic in the direction \(s\). It has been shown in [8] and [1] that for \(\phi\) and \(\psi\) in \(\mathcal{ASE}(G, n, l, h)\) there exists a function \(f \in L^1(G)\), more precisely in the subalgebra \(ES(G)\) (see [8]) such that

\[\pi_{l,H} f(\xi) = \langle \xi, \psi \rangle \phi, \quad \xi \in \mathcal{H}_{\pi_{l,H}}. \]

Let \(\mathcal{P}(h)\) be the set of polarizations \(h\) at \(l\) adapted to \(n\) and satisfying \(h \cap n = h \cap n\). For \(h \in \mathcal{P}(h)\), we have \(\text{ind}_H^G \chi_l \simeq \text{ind}_{\tilde{H}}^{\hat{H}} \chi_l\), where \(\tilde{H} = \exp h\). We denote the intertwining operator by \(I_{h,\overline{h}} : L^2(G/\tilde{H}, \chi_l) \rightarrow L^2(G/H, \chi_l)\) (see [2].)

Definition 3.3. We define

\[SE^{\infty}(G, n, l, h) := \bigcap_{\tilde{h} \in \mathcal{P}(h)} I_{h,\overline{h}}(SE(G, n, l, \tilde{h})). \]

Then we have the following result:

Theorem 3.4. ([5])

\[SE^{\infty}(G, n, l, h) = \mathcal{ASE}(G, n, l, h). \]

Example 3.5. Let \(g = \mathbb{R}\)-Span\(\{X, Y, Z\}\), \(n, l, h\) be as in Example 2.7. Concerning Theorem 3.4, we have \(n' = g\) and a smooth function \(\phi \in L^2(\mathbb{R})\) belongs to \(\mathcal{ASE}(G, n, l, h)\) if and only if

\(3.11\)

\[\int_{\mathbb{R}} e^{a|x|}|D\phi(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad D \in \mathcal{D}_x, \]

\(3.12\)

\[\int_{\mathbb{R}} e^{a|x|}|D\hat{\phi}(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad D \in \mathcal{D}_x, \]

where

\[\hat{\phi}(x) = \int_{\mathbb{R}} e^{ias} \phi(s) ds. \]

Since \(n = \mathbb{R}Z\) is the center of \(g\), any polarization \(h\) at \(l\) belongs to \(\mathcal{P}(h)\). Thus by Theorem 3.4, we have that the intersection of \(I_{h,\overline{h}}(SE(G, n, l, \tilde{h}))\) for all polarizations \(h\) at \(l\) consists of analytic functions \(\phi\) satisfying (3.11) and (3.12).
Characterization of Certain Spaces of C^∞-Vectors of Irreducible Representations of Solvable Lie Groups

References

