RIMS Kokyiroku Bessatsu
B8 (2008), 171~216

Drinfeld second realization of the
quantum affine superalgebras of D((2, 1: z)
via the Weyl groupoid

Istvan Heckenberger, Fabian Spill,
Alessandro Torrielli and Hiroyuki Yamane

Abstract

We obtain Drinfeld second realization of the quantum affine superalge-
bras associated with the affine Lie superalgebra D()(2,1;z). Our results
are analogous to those obtained by Beck for the quantum affine algebras.
Beck’s analysis uses heavily the (extended) affine Weyl groups of the affine
Lie algebras. In our approach the structures are based on a Weyl groupoid.
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1 Introduction

In this paper we study the quantum deformation of the affine Lie superalgebra,
DW(2,1;z), where z € C\ {0,-1}. In Definition 4.2, for any ¢ € C such
that ¢(¢" — 1)(¢™ — 1)(¢"=*+V) — 1) # 0 for all n € N, we define the quantized
enveloping algebras of D®(2,1;z) by the defining relations (cf. [Y] !) in terms
of the Chevalley-Serre generators. In Theorem 4.7 we attach to any simple (even
and odd) reflection (cf. [DP,S]) a Lusztig type isomorphism between two such
algebras. These isomorphisms satisfy Coxeter type relations, see Theorem 4.8. In
Definition 6.1 we give Drinfeld second realization of quantum D®(2,1;z). Our
main result is Theorem 6.6, see also Theorems 6.8 and 6.10, where we show that
the two realizations are isomorphic as algebras. See [D] for the original Drinfeld
second recalization of the quantum affine algebras. The argument in this paper
was inspired by Beck’s work [Bec] and we utilize the Weyl groupoid instead of the
Weyl group. Khoroshkin and Tolstoy [KT]| obtained results concerning quantum
affine superalgebras relevant to this paper.

Our work was motivated by recent results in Hopf algebra theory and in
theoretical physics, in particular the AdS/CFT correspondence. We sketch those
aspects of these developments which are relevant for our work.

They were originally given in [Y, Remark 7.1.1] (or Prop.6.3.1(vii),(viii) in g-alg/9603015).
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The Lie superalgebra D(2,1;x) has a very interesting relation to A(1,1) =
psl(2|2), which is the only classical basic Lie superalgebra allowing for a non-
trivial universal central extension [IK] with three central elements (see Sec-
tion 2 for D(2,1;z) and A(1,1)). One can obtain this centrally extended algebra.
ps(2|2)®C3 by a contraction from D(2, 1; z) in the limit z — —1. The Lie super-
algebra psi(2|2) and its central extensions have recently become important in the
context of the AdS/CFT correspondence [M,W,GKP] (for comprehensive reviews,
the reader is referred to [AGMOO,DF]). This conjecture relates the maximal su-
persymmetric Yang-Mills theory in four dimensions to string theory formulated
on AdSs x Ss. On the gauge theory side of this correspondence one can think of
a certain class of operators as integrable spin chains, and apply the Bethe ansatz
technique to calculate their energy spectrum [MZ, BS]. The symmetry algebra
of the gauge theory, which is the superconformal algebra psu(2,2|4), is reduced
to u(1)® (psu(2|2) x psu(2|2))®u(1) upon choosing an appropriate vacuum for
the spin chain. Excitations transform under u(1)® (psu(2(2) x psu(22))®u(l),
and the S-matrix which intertwines two modules is physically interpreted as
the scattering matrix of those excitations (detailed descriptions are contained in
[Beil]). Interestingly, the S-matrix is already fixed, up to a scalar prefactor,
by vanishing of its commutators with the generators of the centrally extended
(psu(2]2) x psu(2(2))®C? algebra [Bei2, Bei3], when one twists the universal en-
veloping algebra with an additional braiding element [J,GH,PST]. The complete
symmetry algebra has been recently related to a twisted Yangian [Bei4]. The
spectral parameter of the Yangian, the eigenvalues of the central charges and the
braiding are all linked on the fundamental evaluation representation.

Due to its close relation to psl(2]2) it is very promising to study the affine Lie
superalgebra DW(2,1;z) (see Section 2 for DW(2,1;z)). Since one can obtain
Yangians from quantum affine algebras one can consider physical models with
quantum D®(2,1;z) symmetry as deformations of models with Yangian ps{(2|2)
symmetry. In this paper we do the first steps by deriving Drinfeld’s second real-
ization of quantum DM (2,1;z), which we need for further investigations of finite
dimensional representations and studies of the universal R-matrix. Our key tool
is the Weyl groupoid of (quantum) D®(2,1;x). The notion of the Weyl groupoids
was initiated and has intensively been studied by the first author [H] in order to
classify Nichols algebras of diagonal type with a finite set of Poincaré-Birkhoff-
Witt generators. The interest in Nichols algebras arose with a fundamental. paper
of Andruskiewitsch and Schneider [AS1] where they developed a method to clas-
sify pointed Hopf algebras. The results of many papers culminated in a fairly
general classification result [AS2] on finite dimensional pointed Hopf algebras
with abelian coradical over the complex numbers. In the heart of the theory the
Weyl groupoid seems to play one of the fundamental roles. Guided by this obser-
vation the first and fourth authors started to investigate the Weyl groupoids in
more detail, and obtained a Matsumoto-type theorem [HY] for them. The fourth
author [Y] essentially used the Weyl groupoids to get Serre-type defining rela-
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tions of the quantum affine superalgebras and the Drinfeld second realization of
the quantum A®(m, n) (see Remark 2.1 for the notation A®(m,n)). The fourth
author [Y] utilized the quantum deformation of the universal central extension
of [AW(1,1), A®(1,1)] to get a new R-matrix.

In this paper we use the following notation. Let Z and N denote the sets of in-
tegers and positive integers, respectively, and let R and C denote the fields of real
and complex numbers, respectively. The symbol 6;;, or §;;, denotes Kronecker’s
0, that is, 6;; = 1 if ¢ = j, and d;; = 0 otherwise.

2 The simple Lie superalgebra D(2,1;z) and the
affine Lie superalgebra DY (2,1; ) (x # 0, —1)

As for the terminology concerning affine Lie superalgebras, we refer to [K], or to
(K], [vdL].

Let v = 0(0) ® v(1) be a Z/2Z-graded C-linear space. If i € {0,1} and j € Z
such that j — ¢ € 2Z then let v(j) = v(7). If X € v(0) (resp. X € v(1)) then we
write

(2.1) deg(X) =0 (resp. deg(X) =1)

and we say that X is an even (resp. odd) element. If X € v(0) U v(1), then we
say that X is a homogeneous element and that deg(X) is the parity (or degree)
of X. If ro C v is a subspace and tv = (o N v(0)) ® (w N (1)) (resp. w0 C v(0),
resp. to C v(1)), then we say that w is a graded (resp. even, resp. odd) subspace.

Let a = a(0) @ a(l) be a Z/2Z-graded C-linear space equipped with a bilinear
map [, ] : ax a — asuch that [a(z), a(j)] C a(i+7) (¢, j € Z); we recall from the
above paragraph that

(2.2) a(i) = {X € a|deg(X) =1}.

We say that a = (a, [, ]) is a (C-) Lie superalgebra if for all homogeneous elements
X, Y, Z of a the following equations hold.

[V, X] = — (—1)%eX)eMx V], (skew-symmetry)
(X, 1Y, Z]] =[[X,Y], Z] + (—1)%eX) e[y, X, Z]].  (Jacobi identity)

Let a be a Lie superalgebra. We say that a bilinear form (-,-):axa— Cis
a supersymmetric invariant form on a if for all homogeneous elements X, Y, Z
of a one has

(Y, X) = (~1)%e®9eM(X,Y) and (X,[Y, 2]) = ([X,Y], Z).

A graded subspace i of a is called an ideal if one has [X, Y] € i for all homogeneous
elements X of a and all homogeneous elements Y of i.
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Let I be a finite set. Let A = (Ay;);jeax be an |I| x |I] matrix with coefficients
in C. Suppose that we are given an |I| x |I| diagonal matrix D = (3;5D;); jer with
D; € C\ {0} satisfying the condition that D~'A is a symmetric matrix, that is,
{D~'A) = D'A. Let I° be a subset of I. Let g’ = g'(A,1°!?) be the C-Lie
superalgebra generated by the (homogeneous) elements Hj;, E;, F; (i € I) with

deg(H;) =0 (i €1),
deg(E;) =deg(F;) =0  (j € I\I°%),
deg(E;) =deg(F;) =1 (j € I°%).

and defined by the relations
[H:, By =0, [HiE;) =AyE;, [HiF]=~AyF;, [E,F;]=6H (ijel).

Let §' = §/(A,1°%), i, and 7i_ be the Lie subsuperalgebras generated by the sets
{HJi € I}, {Eili € I} and {Fili € T}, respectively. Then {H;|¢ € I} is a C-basis
of h' and hence one has dim§’ = |I|. Further, one obtains the decomposition
¥ =7, ®h ®1_ as a C-vector space. The Lie superalgebras n; and n_ are free
Lie superalgebras generated by the sets {E;|i € I} and {F;|i € I}, respectively.
Let t,. (resp. t_) be the largest ideal of g which is contained in n, (resp. n_).
Let g = g'(A,1°%9) be the quotient Lie superalgebra g'/(ry ®t-). Let H, E;, F;,
§ = §(A,1°4), n,, and n_ be the images of H;, E;, F;, b’ = §'(A,1°%), 7, and
#_, respectively, under the canonical projection §' — g'. Then g’ =n, @ h dn_.
Further, there exists a (unique) Lie superalgebra g = g(A,1°%) = g(A, D, 1, Iodd)
with the following properties.

(i) g includes g’ as a Lie subsuperalgebra.

(i) There exists an even subspace §" = h"(A, I°dd) of g such that g=§" D ¢/,
dim " = |I| — rankA, and [b”,b”] = [y, b = {0}.

(iii) Let h = h(A,I°%) == b ® ", so g = n. ® h ®n_ as a C-vector space.
Then for each i € I there exists o; € bh* such that [H,E;] = a;(H)E;
and [H,F;] = —o;(H)F; for all H € h. Further, o; (¢ € I) are linearly
independent elements of h*.

For § € b*, let gy = g(A,I°%)5 := {X € g|[H, X] = S(H)X for all H € b}
Let ® = ®(A,1°%) := {# € h*\ {0}|dimgp # 0}. The set @ is called the root
system of g and the elements of ® are called roots. For o € ® the space g, is called
the root space of a. Note that one obtains the decomposition g =5 @ (Pocefa)
as a C-vector space.

Note that g’ = [g, g].
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It is well-known that there exists a (unique) nondegenerate supersymmetric
invariant form (--) on g such that

(H;|H) = D;jo;(H) forallicl, Hebh,
(Hi[Hz) =0 for all Hy,Hj € b”,
(Ei”Fj) = (Silei for all l,j el

Assume that g is a finite dimensional simple Lie superalgebra. It is well-known
that g =g’ (i.e,, h =), and dimg, = 1 for all o € ®. The (non-twisted) affine
Lie superalgebra § = §(A,1°%) is the Z/2Z-graded vector space

g C[t, t™'] @ CH; @ CHy,

such that deg(X ® t™) = deg(X) for all homogeneous X € g and m € Z and
deg(H;) = deg(Hp,) = 0 (that is, §(0) = g(0) ® C[¢,¢™!] & CH; & CH,, and
§(1) = (1) ® C[t,t71]), together with the super-bracket

[X ®tm+a1H3 +blHA0,Y®tn+d2H3 + bZHAo]
=[X,Y] @ ™" + Mpmino(X|Y)H; + binY @ t" — bymX @ t™

for all m,n € Z, ay,az,b1,bs € C and homogeneous elements X, Y of g. Note
that [§, 8] = g ® C[t,¢™!] & CH;.

The affine Lie superalgebra g is identified with an infinite dimensional con-
tragredient Lie superalgebra g(A,1°9) = g(A, D, 1°%¢) in the following way.
Let 6 be the (unique) highest element of ®(A, ]I°dd) that is, 8 € ®(A,I°d4)
and 0 + o; ¢ ®(A,1°) for all i € I. Let Ey € g(A,I°%), \ {0} and E_4 €
9(A,1°%)_4 \ {0}. Then E.y are homogeneous elements of g(A,I°d). Further,
one has deg(Eg) = deg(E_g), [E_9,Eq] € H(A,1°), and (E_ gl]Ee) # 0. Let

= [E_¢,Eg]. Then g(A,[°4) = g(A, D, ]I°dd) is the contragredient Lie su-
peralgebra, defined with A, D, I, and Iodd below

(1) ]I is a set given by adding an element o to I, that is, I = T U {0} and
T = 7/ + 1.

(if) 1° is the subset of I defined as follows. If deg(Eq) = 0, then let [o4¢ := o4,
If deg(Eg) = 1, then let fodd := Iedd U {o}.

(iii) D = (&iji)i.jeﬁ is the |i| x |i| diagonal matrix defined by D; = I; (i € I)
and D, = (E_g|Ey).
(iv) A= (A”)”ei is the [T x |11| matrix defined by A;; = Ay, A,; = D7 (H|H,),

A'w D—l(Hz] %), and Ao = D YWY |HY) for i, j € I. (Note that t(D“lA)
A)
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O & O

Figure 1: (Standard) Dynkin diagram of D(2,1;z) (z # 0, 1)

More precisely, there exists an isomorphism ¢ : a(A, fedd)y — g such that
P(H) =H; ® L, p(E:) =E; @1, p(F:) =Fi @1 (i € 1), p(Ho) = H, ® 1 + Do Hj,
o) = E.o®1, o(F,) = Eowt~L, and (5"(A,109)) = C(Hpo ~ 5(X|X)Hs+X)
for some X € b/(A,I°%).

_ Let 6, 4, and Ag be the elements of B(A, fodd)* defined by 8(¢1(H;) =
8™ (Hao)) = 0, (7 (Hy)) = Ao(™ (Ha,)) = 0, 6™ (Hao)) = Aol (Hy))
=1, §(p" ' (H ® 1)) = §(H), and é(¢*(H®1)) = Ao(p Y(H ® 1)) = 0 for all
H € h(A,1°%). Then one has o, = 6 — 6 and, moreover, (¢~*(H;)|H) = ()
and (=1 (Hp,)|H) = Ao(H) for all H € h(A, To4%).

Now we define the Lie superalgebra D(2,1; z) and the affine Lie superalgebra
DM(2,1;z). Let T={1,2,3} ¢ N and I’ = {2}. Let z € C\ {0} and

2 -1 0 -10 O
(2.3) - A=|1 0 z], D=f 0 1 0 )
0 -1 2 0 0 —z!

First consider the case © # —1. Then g = ¢’ and dimg = 17. and, moreover,
& = {*ay, Tag, £as, £(o1 +ag), £(az +as), £(on +og+a3), £(01 + 202+ a3)}.
Further, g is a finite dimensional simple Lie superalgebra and is called D(2,1;z).
The affine Lie superalgebra § is denoted by DM (2,1;z). As mentioned above,
DM(2,1; x) is identified with a contragredient Lie superalgebra. Its Dynkin dia-
gram is given in Figure 2 (see the one labeled d =2 in Figure 2 especially).
Now assume that z = —1. Then dimg = 16, dimg = 15 and g,g' are
called gi(2|2) and sl(2|2), respectively. Further, ® = {&ai,=*0s,*as, +(ay +
az), £(0 + o), £(c1 + a2 + as)}. However 5[(2]2) is not simple, and psl(2]2) :=
A(1,1) := 5(2|2)/C(H,; + 2H, + Hs) is a 14-dimensional simple Lie superalgebra.
We obtain a 17-dimensional Lie superalgebra from D(2,1;z) by performing a
specialization of x at —1. It is a universal central extension of psi(2|2) and
51(2|2). Similarly, we obtain a universal central extension of psl(22)®C[t,t"] and
s1(2]2) ® C[t,t7Y] from [DM(2,1;z), DW)(2,1;2)] by performing a specialization
of x at —1, see [IK].
Remark 2.1. The Lie superalgebras gi(m+1|n+1), sl(m~+1|n+1), psi(n+1|n+1),
A(m,n) and AW (m,n). Let m and n be non-negative integers such that m+n >
1. Fori,j € {1,...,m+n+ 2}, let E;; denote the (m +n+2) X (m+n+2)
matrix having 1 in (i,5) position and 0 otherwise, that is, the (4, §)-matrix unit.
Let Epynte denote the (m+n+2) X (m+n-2) unit matrix, that is, T g, .

t=1
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Denote by Mym4n42(C) the C-linear space of the (m +n + 2) x (m + n + 2)-
matrices, that is, @Z;L’,f‘-ZCEi,j. The Lie superalgebra gl(m + 1|n + 1) is defined
by gl{m + 1{n 4 1) = Mp4n42(C) (as a C-linear space), gi(m + 1|n + 1)(0) =
(@735 CEig) @ (®75L55CEyy), glim + 1n + 1)(1) = (SF1" &ins CEyy) ©
(@74 @Zt? CEy;) and [X,Y] = XY — (—1)dsX)eeM)y X for all X, Y €
gl(m+1|n+1)(0)Ugl(m-+1|n+1)(1), where XY and ¥ X mean the matrix product,
that is, E; ;Eg; = 6;xE;;. Define the C-linear map str : gi(m + 1jn +1) — C
by str(Eij) = 8(Opy G — Ypt™25;1). The Lie subsuperalgebra {X €
gl(m+1n+1)|str(X) = 0} of gl(m+1|n+1) is denoted as sl(m+1|n+1). The
finite dimensional simple Lie superalgebra A(m,n) (cf. [K]) is defined as follows.
Let 3 be the one dimensional ideal CEpyny2 of gli(m + 1|n + 1). If m # n, then
A(m, n) means sl{(m+1|n-+1). On the other hand, A(n,n) means sl(n+1|n-+1)/3,
and is also denoted as psi(n + 1|n + 1).

Recall the Lie superalgebras g = g(A,D,[,I°%) and § = g(A,I°%) = g ®
C[t,t™] @ CH; ® CH,,, introduced above.

Define the supersymmetric invariant form (, ) on gl(m+1|n+1) by (X,Y) =
str(XY). Then the infinite dimensional Lie superalgebra gl(m + 1|n + 1)®) is
defined in the same way as that for § with gl(m + 1jn+ 1) and (, ) in place of g
and (|) respectively. Further, sl(m + 1|n + 1)®) means the Lie subsuperalgebra
si(m + 1|n + 1) g C[t,t™!] @ CH; @ CHy, of gl(m + 1jn + 1), If m # n,
then A®(m,n) means sl(m + 1|n + 1)@. On the other hand, A® (n,n) means
sl(n+ 1|n + 1) /(3 & C[t,t71]). (See also [K], or [IK], for these notation.)

Assume A, D, I, and I°% to be the (m+n-+1) X (m+n+1) matrix (—§_;; +
2(1_5‘i,m+1)5i,j_ (—1)6""‘"‘1 6i—j,—1)1$i,j5m+n+l, the diagonal (m+n+1) X (m+n+1)
matrix (&J(ZZ’I:II (5,',}9—2?;::;_'-21 5‘i,l_))15i,j$m+n+17 {1, ce ,m+n+ 1}, and {m+1}
respectively.

Assume that m # n. Then we identify A(m,n) with g, since there exists a
unique isomorphism w : g — A(m,n) such that w(E;) = E;;+; and w(F;) =
Eit1;. Further, we identify A®(m,n) with the affine Lie superalgebra §, since
(@(X),w(Y)) = (X|Y) for all X, Y € g.

Assume that m = n. Then g is isomorphic to gl(n +1|n +1), and we identify
them. Note that g is not simple since [g,g] # g. Nevertheless, we define A, D,
f, and f°4 in the same way as above, and we let § := g(A, D, I, fcdd). Let 5l(n +
1|n+1) be the Lie subsuperalgebra sl(n+ 1jn+1)") @ CE, ; of gl(n+1|n+1)®.
Then § is isomorphic to sI(n + 1{n + 1)/(Brez (033 ® ") (cf. [Y, Section 1.5)).

3 Semigroups and braid semigroups

3.1 Semigroups

In this section we fix notations and terminology concerning semigroups. This will
be helpful for the definition of semigroups by generators and relations.
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Let K be a non-empty set. We call K a semigroup if it is equipped with
a product K x K — K, (z,y) — zy, satisfying the associativity law, that is,
(zy)z = z(yz) for z, y, z € K. If K is a semigroup, we call it a monoid if there
exists a unit 1 € K, that is, 1z = 21 = z for z € K. If K is a semigroup and does
not have a unit, let X denote the monoid obtained from K by adding a unit.

Let H be a non-empty set and L(H) a set of all the finite sequences of
elements of H, so, L(H) = {(h1,...,hs)|ln € N,h; € H}. We regard L(H)
as a semigroup whose product is defined by (R1,- -+ s Ben) (A1, - - - Bomn) =
(ﬁl’\‘ v+ By Bent1s -+ » Bman). Then L(H) is called a free semigroup on H and
L(H) a free monoid on H. Let {(z;,y;)|j € J} be a subset of L(H)x L(H), where
J is an index set. As usual, for at most two elements g, g’ of L(H), we let the
notation {g, ¢’} mean the subset of L(H) consisting of g and g'. (Hence the car-
dinality of {g, g’} is 2 — §g4. As for 8y, see the last paragraph in Introduction.)
For g1, g» € L(H), we write g; ~1 g if the equation {g1, g2} = {Zlﬂ?j,igﬁl'ijg}
(equality of subsets of L(H)) holds for some j € J and some 21, 23 € L(H). For
g, ¢ € L(H), we write g ~ ¢’ if g = ¢’ or there exist finitely many elements
a1, ..., g of L(H) such that g1 = g, g = ¢’ and g; ~1 gi41. Then ~ is an equiva-
lence relation in L(H). Let L(H)/~ be the set of the equivalence classes in L(H)
with respect to ~. For g € L(H), let [g] be the element of L(H)/~ containing
g. We regard L(H)/~ as a semigroup so that the map L(H ) — L(H)/~ de-
fined by g — [g] is & homomorphism. We call L(H)/~ the semigroup generated
by H and defined by the relations z; = y; (j € J). When there is not fear of
misunderstanding, we also denote [g] simply by g.

3.2 The Weyl groupoid of DM (2,1;x)

For the presentation of contragredient Lie superalgebras g one can use different
Dynkin diagrams. This fact leads to the definition of the Weyl groupoid as a
symmetry object of g. General properties of such groupoids were investigated
in [HY]. In this section we introduce the Weyl groupoid and the extended Weyl
groupoid of the affine Lie superalgebra DM(2,1; z).

Let D := {0,1,2,3,4}. Let >: S5 x D — D denote the usual (left) action
of the symmetric group S on D by permutations. The elements of the set D
will be used to label different Dynkin diagrams for the affine Lie superalgebra
DM(2,1;2). : )

Let I := {0,1,2,3}. Note that |I| = 4 is the rank of DW(2,1;z). This set will
be used to label the vertices in a given Dynkin diagram. In order to define the
Weyl groupoid we will need the following structure constants. For d e D\ {4}
and 4,5 € I with 4 5 j let

2 ifi#d#7,
3.1 igid = i.qs :=3.
(3.1) Mg {3 otherwise, Mg



DRINFELD SECOND REALIZATION OF D®(2,1;2) 179
The index d = 4 is distinguished, see Figure 2. Note that
My jid = Mjisd = Myjimgpd = M, jinjod
for all d € D and 4, j € I, where n; = (i4) as an element in S5. Further one has
ni>d=d if mjq=2, ﬁ,-njni =n;nn; = (1 7).

The extended Weyl groupoid defined below contains even and odd reflections
and elements corresponding to permutations of vertices of Dynkin diagrams. Note
that any permutation of vertices of a given diagram can be identified with a
permutation f of I. In our setting only the Klein four-group

(32)  Ka={fo:=1id, f1:=(01)(23), f := (02)(13), f3 := (03)(12)}

will be needed. Further, any f € K, induces a permutation ~( f) of Dynkin
diagrams d € D. Thus one obtains a group homomorphism

v: K4 — S5 = Perm D,
defined by the following formula, see Figure 2.

f(d) ifde{0,1,2,3},

"(f)bd={4 ifd=4

for all f € K4. This formula is accidentally true in our setting, and can not be
generalized to arbitrary contragredient Lie superalgebras: By abuse of notation
we will also write f > d instead of y(f) > d.

Let We** be the semigroup generated by

(3.3) {0}u{es|d€eD}U{siali € I,d € D}U {r14| f € Ks,d € D}
and defined by the following relations (3.4)—(3.12):

(3.4) 0 =0u = u0 for all elements u in (3.3),
(35) : €ded —€q, €Egeqg = 0 for d 7—‘- Cl/,

(3.6) EnpdSid =Sid, Sid€d = Si,d

(3.7 8inpdSi,d =€d,

(38) Si,dSj,d =8j,dSi,d if m; 5.d = 2,
(3.9) S npdSimpdSid =SjninpdSinpdSid if myja = 3,
(3.10) €rpdTfd =Tfd, TFd€d = Tfd, Tfo,d = €d,

(3.11) Tf,fodTfd =TFfd for f, f’ € Ky,

(3.12) TfnodSi,d =S£(i),fodTf,d-
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d=0

Tfs,1
fs Tf3,0

Figure 2: Dynkin diagrams of DW(2,1;z) (z # 0, —1)
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Definition 3.1. The semigroup W** is called the extended Weyl groupoid of the
affine Lie superalgebra D(2,1; ). 2 The subgroupoid of We* generated by the
set

(3.13) {0} U{es|d €D} U {sia|i € I,d € D}
is called the Weyl groupoid of DW(2,1;z) and will be denoted by W.

For an element w = s;, 4, - - * 8i,,d,5i,,4, of W, where dy, :=n;,_, -+ -n;, >d for
1 < u < r, we also use the abbreviations

(3.14)
W =8i, =+ 8ipSiydyy  Tfde W =TfSs, * 0 SigSipdys  WTH,fod =Si, * * * 8ip 84y T, fod-

fr= 0, let Siyp t* 8igSi,d = €dy TfSi, 0 8458i,d ‘= Tf,d and Sip * 80y Tfd = Tfd-
Note that ' :

WeXt={O}U{’I‘fsir“'sizsil,dldep,f€’C4,’I‘GN(), ’il,...,’l:.rEI,

3.15
(3:15) Gy Flyqy for 1 <u<r—1}

Now we prove that the elements 7ys;, - - - 5;,;, 4 in Eq. (3.15) are nonzero. Let
R? be an R-vector space of dimension |D|, and let {v;|d € D} be a fixed basis
of RP. Then there is a unique semigroup homomorphism

sgn : W™ — End(RP)
such that

SEfl(O)(Ud/) = 0, sfgi(ed)(vd:) =6dd,vd/,
(3.16) _ 8
sgn(s,-,d)('ud/) =(~1)5dd/vni>d, sgn(r f,d)('l)d') =5dd"Uf>d'

forall d,d' € D, i € I, f € K4 In particular 7ys;, - - - 55,854 # 0 for all d € D,
S €Ky, r €Ny, and iq,...,4. € I. Let

-1._ -1._
ed =€, (Tfs,-r see 8';28,7“1) = 31‘1 s 'sir-ls‘irTf,f'nir‘"nizﬂilDd‘

One says that an expression w = 7ys;, - « - 85,84, 4 is reduced if w = 7455, - - 84,85, 4
implies that s > r. In this case one defines £(w) :=r.

2Here we use the less standard terminology concerning groupoids, in which the multiplication
is globally defined, but may be zero (instead of nondefined). Then all groupoids are semlgroups
Removing 0 from the semigroup gives a groupoid in the standard sense.
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3.3 The braid semigroup

Lusztig [L1] defined automorphisms of quantized enveloping algebras of Kac-
Moody Lie algebras attached to all simple reflections of the corresponding Weyl
group. These automorphisms are not involutions, but nevertheless they satisfy
some Coxeter relations. Analogously there exist isomorphisms between different
realizations of quantized D®W(2,1;z), see Section 4.2, which also satisfy Coxeter
relations. At this place we introduce the abstract semigroup which forms a bridge
between the aforementioned isomorphisms and the Weyl groupoid of DW(2,1; z).
Let W be the semigroup generated by

317)  {0}U{é|deD}U{siali € I,d€ DYU{Fralf € Kyyd € D}

and defined by the relations analogous to (3.4)-(3.6), (3.8)-(3.12). Let W be the
subsemigroup of W generated by

(3.18) (0} u{é|deD}u{5i4lie,deD}.

Notation 3.2. For elements of W and We* we use a notation analogous to the
one in Eq. (3.14).

Similarly to Eq. (3.15) one has
(3.19) W = {0} U {75, - 5i8uald €D, f €Ky 7 €No, iy ir € I}.

Note that there exists a canonical semigroup homomorphism p : west — et
such that ‘

p(0) =0, P(F13i, - - - BinBig,a) =TFSiy *** SigSind

fora,lldeD,felC4,r€N0,andil,...,irel.

3.4 Special elements of Wext

The extended Weyl group of an affine Lie algebra §, which is the group generated
by the Weyl group and by diagram automorphisms of §, can be written as the
semidirect product of the (finite) Weyl group of g and a free abelian group,
and the latter can be identified with the weight lattice corresponding to g. We
expect that a similar decomposition holds for the extended Weyl groupoid of any
affine Lie superalgebra. Since we are mainly interested in the (quantum) affine
Lie superalgebra DM (2,1;z), we will not work out here the details of such a
decomposition, but concentrate on those formulas which are necessary to obtain
Theorems 4.7, 4.8, and 4.10. Nevertheless it may be helpful to think about
the elements wy, introduced below as the generators of the weight lattice in the
extended Weyl groupoid W®*. Further, the analog of the Weyl group of g will
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be the subgroupoid of Wext genelated by the reflections s; 4, where 7 € I'\ {0},
de D\ {0}

Define wyy € W*, where i € I\ {0} and d € D\ {0}, as follows. Let 3, j,
k € I\ {0} be such that {i,5,k} = {1,2,3}(= I'\ {0}). Let

Vo — —
Wi =Tf;,45445k,i55,i5i4 = Tf;8i5k5jSi,4 = Tf;5i875kS;,4,

(3.20) Wy =T, kSikSkaSiiSsi = Tf;5ikSiSj,

Wiy 1=805i,457,5k,5 55454 = 505i5;5k5;8i; = S0SiSkS;SkSis-
It is easy to check [HY] that all of the above expressions are reduced. Define also
@)y € W, where i € I'\ {0} and d € D \ {0} by the following formulas:

~V R T A S S S-S

Wi “=Tf,454,i5k,i55,i5i4 = T§,5iSkS;jSi4 = Tf,5i55SkSi,
~\ —r ~ ~ ~ ~ — ~ o~ A~ oA

(3.21) Wji “=T5;,kS5kSk4S8iiS)i = Tf;Sj5kS8iS],,
~\ PO -SSR - S S S . JI S-S S~ .
w,,i .—80’,3,4 48_7,181‘,,]8],48@, = 808i8jSkS;jSii = 80SiSkS;jSkSi,i-

Note that p(@);) = wy for all i € I'\ {0} and d € D\ {0}.
Remark 3.3. In order to understand the above definitions it is important to note

that for all 4 € I the vertex ¢ is playing a special role in the Dynkin diagram
labeled by 1.

The elements of Wt defined above satisfy the equations
éda}‘t}fd = ‘Z’Zdéd = &Zd
for all i € I'\ {0} and d € D\ {0}. Further, for 4, j, k as above let

(3.22) Ui =T858, - Uy =T, 588, Uig = 808;5;8,5;4.
Lemma 3.4. One has
17i,m>d§i,d = &Zd
Jor allie I\ {0} and d € D\ {0}.
Proof. This follows immediately from Eq.s (3.22) and (3.21). O

3.5 Some commutation relations in Wext

In [L2, Lemma2.7] Lusztig studies the braid group of the extended Weyl group
of an affine Lie algebra. In our setting the following related formulas are valid.

Theorem 3.5. (1) For alli,j € I'\ {0} and d € D\ {0} one has

(2) Assume that {i,5,k} = {1,2,3} and d € D\ {0}. Then one has
(3.24) 77i,d o =5 d( d)mu d— 2(wV Yk 4—2

~V
(3’25) wi,njbdsj, _sj,d t,d'
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Proof. Suppose that i # j and d = 4. One calculates

~V ~\/ _~ ~ ~ ~ ~ ~ -~ -~ ~ — -~ ~ ~ ~ ~ -~ -~ ~ ~
Wy aWjd =Tf;,43i,i5k,i85i5i4Tf; 454,i5k,5S1,j854 = TfATS; 48K,k 84,580,k 5k,455,j Sk,j 54,5 .4

=T, 45k,k 50,k i,k Sk,455,5 kg 51, Sj4 = Tfi 45Kk 80,k Si,k S5,k Sk,45j,j Si,j 55,4
=7f, 48k,k50,k5; 50,k 5k,454,1 55, Si4,

~v ~V —~ ~- o~ .~. .~o + 3 '~ 0~-0~- —~ - P ~. s I3 ~- ¢~ ¢~~-~.
WjdWi,d =T f5455, Ske,j Sind 85 ATf;,451,i5k,i55,i5i4 = Tfj,47f¢,45k,k31,k50,k3k,43z,13kn53ﬂ51,4

=7f, 48k 50,635,k 5k,451,i8k,i5.481.4 = T, fk,4§Ic,k30,k§j,k§i,kgk,4§i,i3j,i§i,4‘

The statement of part (1) for d € {1,2,3} and part (2) can be obtained analo-
gously. O

3.6 Symmetric bilinear forms

The affine Lie superalgebra D®(2,1;z) can be described with help of different
Dynkin diagrams. In this section we define symmetric bilinear forms associated
to all of these diagrams.

For any d € D let Vz be a four dimensional C-vector space, and let Ily =
{aiq|i €I} be a basis of Vi. Let z € C\ {0,—1}. According to the Dynkin
diagrams in Figure 2, for cach d € D define a symmetric bilinear form (,)=
(,)a: Vax Vg — C as follows:

(oz,;,4,a.i,4) =0 fori € I, (ao,4,a3,4) =(a1,4,a2,4) - —-1,
(0,4 a1,4) =(aa,4, 03,4) = -z, (0,45 02,4) =(a1,4s 053,4) =z+1,
(Oto,o,‘ao,o) =0, (Oz,;,o,aj,o) =0 fori,je{l,2, 3}, i # Js
(@10, 10) = — 2%, (01,0, 00) =%,

(g0, 02,0) =2(T + 1), (a0,200) =—2— 1,

(a3, 030) =— 2, (030, 200) =1,

and

(0t g5 0a) =(Ctf4(6),00 %44(10)

for d € {1,2,3}. For d € D define a Z-module map p = pq : ZIlg — Z by

i 0 if (ai,d; a{,d) ?é 0’
p(a"',d) '— {1 if (a‘i,tb ai’d) = 0

and call p(a) the parity of a € Zl,. The next lemma, follows immediately from
Eq. (3.1) and the definition of (,)-
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Lemma 3.6. One has
- Mija =2 if (0, j4) =0, Migid =3  if (04, 0j,a) 7 0.
forallde D andi,j € I withi # 3.

In the following lemma we give a representation of We* which is compatible
with the symmetric bilinear form defined above.

Lemma 3.7. Let V := @3_yVa. Then there exists a unique semigroup homomor-
phism t : W — Endc(V) such that

8(0) =0, tlea) =idv,,  t(714)(0ua) =C5i),foas

t(sia)(2i.d) = —inpa; t(si.0)(@s.0) =Ctjmpa + (Migia — 2)Qimpa

foralli,j € I and d € D with i # j. Moreover, for w € W with weq = w and
for v, v € Vg and p € ZI1; we have

(3.26) (t(w)(w), t(w)(@)) = (v,v') and (—l)p(t(w)(“)) = (—1)”(”').
Further, if p(a;q) =0 then ny>d = d, (g, iq) # 0, and
2(ia; )

t(sia)(@a) = aja = (vigr @ig)
2,05 “C2y

foralli,jeI anddeD.
Proof. One has to check that the definition of t is compatible with the relations
(3.4)—(3.12). This is trivial for all relations different from (3.8) and (3.9), but
also easy for the latter. For example, if 7,7,k € I are pairwise distinct then one
gets
5ii85:8i,4(0ka) = 8i3853 (0 + o) =8ii(0ms + s + )

=04 + 0+ Qg = 8j,35i5854(0k,a)-
Further, Eq. (3.26) has to be checked for generators w of W®*. Again all calcu-
lations are easily done. O

(3.27)

For affine Lie (super)algebras there exists a distinguished root & (see Sec-
tion 2), which should be considered here. For all d € D set

3 3
(3.28) ba=) oug, 8a=ocua+» oig forde{0,1,2,3}.
=0

=0

Then these are the elements corresponding to 4. Note that for all d € D one has
Chy = {) € Vg| (A, p) = Ofor all u € Vy}.

Further, using Eq. (3.20) and Lemma 3.7 one gets by computations similar to the

one in Eq. (3.27) the following formulas:

(3.29) t(w)g) (04,0) = 0ia — 80, t(w)a)(0sa) = g, t(w)(8) = ba

for all 4,5 € I'\ {0} with i # j, and all w € W** and d,d’ € D \ {0} such that
e Weqg = w.
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4 Quantum affine superalgebras of DM (2,1;z)

Drinfeld [D] gave a second realization of quantum affine algebras U,(g). He
identified the generators of his algebra as loop-like generators in U,y(8). We fol-
low Beck’s method [Bec] to define the analog of Drinfeld’s second realization for
D™ (2,1;z). First we introduce the quantum affine superalgebra of DW(2,1; )
" for any Dynkin diagram. Then in Section 4.2 we will give Lusatig type isomor-

phisms between these algebras, and observe that these isomorphisms satisfy the
relations of the braid groupoid. ” :

4.1 Quantum affine superalgebras U
Fix A€ C\ Zrv/—1. For any u € C let

)
uh)"® ¢ —q
¢* :=exp(ufi) = Z '(_"")_7 q :=q1’ [u]q = -1
n=0 n: ) q - q

In this paper we assume that
(4.1) ¢ #1 forallue {l,z,z+1}and k€N
Let d € D. Let U} be the C-algebra (with 1) generated by the elements

(42) oo, Kb, Kil, Bia, Fia wherei€l

2y

and defined by the relations (4.3)-(4.7) below:

Y
(4.3) XY =YX for X,Y € {04, K2, Kif li € I},
v 1 1 11
(4.4) ‘73 =1, KZdKi,d2 = i,d2 iz,d =1,
(4.5) 0aF; 04 = (1P By g, oaFia0q = (—1)F (ed) B 4,

1
2

1 _1 _1
(4.6) Kiz,d Ejq Kz,f = q(ai.a,aj,d)/2 Ejq, K& Fja K; 3= q“(ai,d»aj,d)/z Fja,
1 _1
(K2)? — (K g )?
g—q*

4.7 E;oF;4— (_l)P(ai,d)P(O‘j,d) FjaEiq = 0i;

1
2
3

1
for all i,j € I. Note that for all ¢ € I the equations (K2;)™' = K;J and

(K. i%d)o =1 hold. Later on we will also use the abbreviations

) m . 1 m
48)  Kig=(KL)?, K&=(KL)" Ku=(K5? fralmel,

{3

3 3
1 1, .
(49) Ky.;d = H ,ifi ) for all H= -2' Zmiai,d € 'é‘ZIld with m; € Z.

=0 =0
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In particular, according to the definition of 4, in Eq. (3.28) we have

3 3 .
(4.10) Kjo =[] Kis K; g=Kaa|[ Kia for de{0,1,2,3}.

=0 =0

The algebra U, admits a unique ZII4-grading (see Section 3.6 for the definition
of ITy)

Uy= P Uy,  Lellyy, Uy Uy, Uy, forall p, ) € ZII,
AEZI,

such that og, K“f € Uyg, Eig €Uy, ,, and Fig €Uy _,,  for all i € I. Further,
there ex1sts a unique algebra automorphism ¥y of L{d such that

Uy(04) =04, Wa(KE}) =K7}, Wo(Big) =(—1P 9 F,q, Wy(F,q) =Eia.
Notice that U24(X) = 04X 0y for all z € U).

Notation 4.1. (Super-bracket and g-super-bracket) For elements of U; we use
the super-bracket [, ] and the g-super-bracket [, ] defined as follows. For any
p A € Zlly, a € C, and X, € Uy ,, Y € Uy, we let

(4.11) (X4, Vala := X,¥) — (—=1)PWPNgy, X,
(4'12) ' [XIMY)\] = [Xp.: YA]la l[X/.n YA] = [Xp;Y)\]q—(#,)\)

Now we define the quantum affine superalgebras U’ of DM)(2,1;z) for the
Dynkin diagrams labeled by d € D.

Definition 4.2. For any d € D let U} be the quotient of the algebra I by
the ideal generated by the following elements (see also [Y, Remark 7.1.1] (or
Prop.6.3.1(vii),(viii) in g-alg/9603015)):

(4.13) E},, where i€ I and p(auq) =1,
(4.14) [Eig, Ejdl, wherei,j €I, i+ j, and (aiq,054) =0,
(4.15) l[E‘i,d; I[Ei,d;Ej,dH; where i,j € I, ¢ # 7, p(ai,d) =0, and (ai,d,ozj,d) #0,
(4.16)  [(i, 0ol Bt Eal, Bra] = [(eia, 25,)lol[ Big, Ea], Ejal,
if d = 4, where 4,7,k € I such that 1 < j < k,
. (g + aa, oxat+aad)lolllEaa, Eidl, [Eaar Ejdll, [Eag, Bra]l—
(4.17) [(2ia + aauasa + 0aa)lolllBag, Bidl: [Eaa, Exdll, [Baa Ejdll
if d # 4, where {i,,k,d} =1 and i < j < k,
(4.18) Uy(X), forall X in (4.13)-(4.17).
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Notice that ¥4 induces an automorphism of U}, which will also be denoted
by 4. Further, Uj inherits a ZII;-grading from U, that is

Up= @D Uiy, 1€Uho  UiuUin Uy forall A € 2y,
Azl
* and hence Notation 4.1 can be applied also to the elements of Ug.
Lemma 4.3. For any p,\,¢ € 211y and X, € U}, Ya € Uy, Z¢ € Uje, (or,
alternatively, X, € Uy, YA €Uy, Z¢ € Uye,) one has the following formulas.
[X,, KxaVs] = e OPKxal X Yl KX, Yol = Kal X, Vi,
X, V3l Zel = X I3, Zel] + (~1PPPOqAO[X,,, Ze], Vilgoe-n,
1% [V, Zell = (1%, Vil Zel + (—1)P@PP g VY, [X,, Zellgou-o-

Proof. The first two equations follow from Eq.s (4.12) and (4.6). For the other
relations one needs only the definition of the g-super-bracket. O

Lemma 4.4. Let d € D and i, j € I with i # j. Then the following equations
hold in U} and in Uj. :

(4.19) B, Bsdl, Fid) = — (0,0, 50)0 K3 Eias

(420) ([Bia» Beal, Fjal =(=1)P@0®@09 (0 4, 05,0)]o i aK s
(4.21) [Ei g, [Fya Faal] =(—1)PC0P99 (0 4, 010l K aFa
(4.22) (B, [Fjr Foal) = — (0, 20) o FiaKid

(4'23) [EE jydy Eiad]’ n,F.,d’ Fivd]] =

(_1)p(ai,a)p(aj,d)q-—(ai,d,o:j’d) [(ai,d, Olj,d)]q Kz,dK(,Jd— qﬂ;,d Kj,d
Proof. Eq.s (4.19),(4.20) can be checked directly by using Eq.s (4.6),(4.7). Then
Eq.s (4.21),(4.22) can be obtained from (4.19),(4.20) by applying 4. Finally,
Eq. (4.23) follows from formulas (4.19)-(4.22) by using (4.3),(4.6). O

Let U0, US°, and U'° be the subalgebras of U} generated by the sets
1
{Eiali € T}, {Figli € I}, and {og, K:} |i € I}, respectively. Let U7, Uz,
and U'° denote the images of U, U<°, and U'C, respectively, under the canon-
ical projection U}, — U}. Notice that U< = Ug(U7®) and Ta(U3") = Up.

Theorem 4.5. (1) The C-algebras Uy and Uy can be regarded as Hopf algebras
Ui, A, S,€) and (U, A, S,€) such that

AX) = X ® X, S(X) = X, (X) =1 for X € {00, Ko |1 €T},
A(Eig) =Eiqa® 1+ Ki,doﬂ("‘"“) ® Eig, S(Bia)=-Ki3 G’S(Qi’d) Eid,
A(Fig) =Fa® K} + &% @ Fa,  S(Fia)=— (=1 (o40) F, 4 K 005",
e(Eig) = €(Fia) =0
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foralliel.

(2) The algebras U} and U} admit o triangular decomposition. More precisely,
the multiplication maps

u(li>0 ®ul0 ®ué<0 —_ u(/i, ucll<0 ®u10 ®U.§>O — u(li,
U¢/i>0 ® U/O ® Ué<0 N Uc/b Uc/l<0 ® UIO ® Ué>0 — Ué,

where X; ® X3 ® X3 is mapped to X1 XoX3 for all X, X, X3, are isomorphisms
of ZI14-graded C-vector spaces. Further, the algebra UT® is the free algebra gen-
erated by the set {E; 4|1 € I}, and U? is isomorphic to its quotient by the ideal
generated by the elements in (4.13)~(4.17). The algebras U'° and U'° are both

1
isomorphic to the commutative algebra generated by the set {0y, K: L1t €T} and
defined by the relations (4.4), so the set

3 1
{agn H(de)m |m e {0,1},n; € Z for alli I}

=0
is a C-basis of both UY° and U°.

Proof. Part (2) of the theorem is standard [J, Prop.4.16, Thm.4.21]. The com-
patibility of A and ¢ with the defining relations of I/}, and the axioms of S can
be easily checked. In order to prove that A is well-defined on U7® and U/<® we
used the computer algebra program Mathematica. ' d

4.2 Lusztig type isomorphisms

The main result of this section is Theorem 4.10, which tells that the elements of
the braid semigroup W* defined in Section 3.3 can be represented by isomor-
phisms between the quantum affine algebras U,

Notation 4.6. For any d € D and i,j € I with 4 % j one has
(—1yres a4, 1)l € {0,1, [2lg, [~ — 1]}
We fix a square root of all of these four complex numbers, and write
Tigid = 1/ \/(‘1)”(5‘"“)”(“j’“) (2,0, 2.0)]
if (4, a54) # 0. In thié case one also has 7 jnpq = Tijd = 7ji4. Further,

let €;jq = (—1)%tP(@alP(@id) (As for the symbol d;;, see the last paragraph in
Introduction.)
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Theorem 4.7. The following statements are valid.
(1) For alld € D and i € I there exist unique C-algebra isomorphisms

(4.24) Tia Trg: Ug = Unppa
satisfying Eq.s (4.25)-(4.31) below.
(4.25) T d(0a) = T, 4(0a) = Onivds

-1
2

1 1
'E’,d(Kf,d) = z',-d(KiE,d) = Ki,mbd’

(4.26) Sy P s
Tya(Kjy) =Tia(Kja) = K,-,wd(Kian) 14id 2

where j € I and j # 1,

(@4, n;pd % pd)
_ - e
T, a( Eig) =(~1)Pnedlg FippaKinpd,

(4'27) (“i,ttibd’“i,n!'ba) -1
ﬂvd(Fi)d) =q 2 Ki,nide’l:,niDd7
_ _ (°‘i,n|~t>d’°‘i,n1~t>d) _1
’I:i d(Ei,d) =q 2 Ki nipdﬂ,n¢>d7
(4.28) ’ —
— Y (1P Cingpd) g pd-Finipd E K
T-i,d(Fz,d) =(-1)F*nedq 2 i,nibd L i,nidd)
] ) e ("‘i,nibd*“‘j,nivd) )
Tt,d(EJ,d) =Ti,5;:d9 ‘[Eg,nwd, Ei,nivdﬂ,
(4'29) (&i,n;0d %, ni0d)
'I;.',d(F'yd) =T'l:,j;dq 2 [Fj,mbd, Fi,’nibd])
_ e (°‘i,n1~bd*°‘j,n§bd)
(4.30) T}sd(E"d) =Tij:aq qu,dev Ej,n;wi]l,

(04,009 n;od)
N4 S
) [Fi

Tt,_d(F .'i,d) =T4,5;dd nidd) Ej,nwd]] ;

where in Eq.s (4.29),(4.30) one has j € I with j # 4 and (04,4, @j,d) # 0,
(4’31) J—Ld(Ejsd) = ﬂ?d(Eyd) = Ej,ﬂ@bd) "T;yd(F,d) = qu.d(Fid) = P}yn‘ipd

where j € I with j # 1 and (o4, j,0) = 0.
(2) One has Tpppq = (Tia) ™" for alld € Dandiel.
(3) The isomorphisms T;.a satisfy the equations Vpwdlia = Tia¥a.

Proof. Parts (2) and (3) of the theorem are obtained easily from the definition
of Tia» Tig, and ¥g, and from Lemma 4.4. The uniqueness of Tiq4 and T;; are
obvious, but to check the compatibility of T g, Ty With the defining relations of
U, we need again the computer algebra program Mathematica. A O

Theorem 4.8. For any d € D the following statements hold.
(1) Ifi,§ € I, where i # j and mija = 2, then

(4.32) T;,aT5a =TjaTia, T; a(Eja) =Eja, T;4(Fia) =Fja-
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(2) Ifi,j € I, where i # j and M j.a = 3, then the following equations hold.

(4‘33) n,njnibdr-l},nibdn,d = ’-I?'i,mnjbd’-l?i,njde',d) ‘

(4’34) 7-%,1'&_,'Dt17-",cl(-E,‘ni,d) = Ej,ﬂ@ﬂjbd) n,ndeT',d(F;:,d) = Fj,ninj>d~

Proof. All statements of the theorem follow from Theorem 4.7, the definition of
the algebras U}, and from Lemma 4:4. O

For all d € D and f € Ky, see Eq. (3.2), let Tfa : Uy — Ufyy denote the
C-algebra isomorphism satisfying the following equations.

+1 +1
Ty,4(0a) =0 fod, Tra(Kid) =K poa
Tt,a(Bia) =Ef(), fods T1a(Fig) =F), oa,
where 7 € I.

Definition 4.9. Let Mp = Uy gepHom (U}, U}, )U{0} be a disjoint union of sets,
where Hom (U3, Uj) denotes the set of unital algebra maps from U}, to U’,. The
set Mp admits a unique semigroup structure with the following properties.

$ro¢y if dy=ds,
0 otherwise,

0¢ = ¢0 =0, ¢1¢2={
for all ¢ € Mp and all ¢; € Hom (U} ,Uy,) and ¢, € Hom (U, U},), where
dl,dz,ds,d4 eD.

Note that the set Mp \ {0} in the above definition can also be considered as
the morphisms of a category with objects U, where d € D.
Recall the definition of W** from Section 3.3.

Theorem 4.10. There exists a unique semigroup homomorphism

(4.35) T : W™ = Mp

such that for alld € D, i € I, and f € K4 one has

(436) T(0) =0, T(@)=id:U3—=Uy T(5ia)=Tia, T(Fra) =Ta.

Moreover, for all % € W with @ # 0 and éywéy = W for some d,d' € D, we
have

(4.37) T(@)(Ué’#) =U€,l',t()‘)(ﬂ2))(u) f07‘ all M (S ZHd,

N 5 1
(438)  T(@)(0a) =0a, T(0)(Kua) = Kepuapyuye  for all p € 5214,
(4.39) T(@)¥g =Yy T ().
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Prggf. One has to show that Eq. (4.36) is compatible with the defining relations
of T7xt. This follows from Theorem 4.8 and the definition of the maps Ty, Where
feKsand deD. O

Note that by Eq. (3.26) also the formula
(4.40) T(®)([X, Yal) = [T(@)(X,), T (@) (V2]

holds for all & € W, X, €Uy, and Ys € U, where d € D, w, A € Zllg,
11')740, andzbed=ﬂ).

5 Root vectors associated to imaginary roots

The aim of this section is to construct root vectors to the imaginary roots de
for all k € N and d € D\ {0}. First we will give some technical results on the
isomorphisms 7 (@Y;), where &, and T are as in Eq. (3.21) and Theorem 4.10

respectively. Then we define root vectors i k:a Of weight kb, for each i € I'\ {0},
d € D\ {0}, and k € N. Finally we prove that these root vectors commute with
each other if they belong to the same algebra Uj.

5.1 Preliminary definition of root vectors to imaginary
roots

We start with the calculation of various values of the isomorphisms 7 (&)-

Lemma 5.1. Let d € D\ {0} and i, j € I\ {0} with i # j.
(1) The following formulas hold.

. . - +1 +1
T@Y)(Bja) =Eja,  T@)(Fad) =Fpa,  T@a)(K ) =K i
(2) We have

T(@Y2)([Bsa» Bial) =T (@) ([ Bidl)
T(@Yy)([Fia, Fial) =T (@5q)([Fsa, Fial)-

Proof. Part (1) can be checked easily by using Eq. (4.34) and Theorem 4.10.
(2) If (@ig,0j4) = O then Lemma 5.1(2) holds by Formula (4.14). Assume
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now that (aig, @jq) # 0. Using Theorem 4.10 we obtain the following formulas.

(@,dv2j,d)
g 7 ria? (@ d)(EEﬁd, E;4])

= T(09) Tjmypa( Eipnypd) (by Eq. (4.29))

= TmpdT (&;npa)(Binypa) (by Eq. (3.25))

= T(Vj,n,bd)T( ,njbd)(E ,n,bd) (by Eq. (3.24), Lemma 5.1(1))
= T (Vjnyod) (Binjod) (by Lemma 5.1(1))

= T (Ujn;0a) 13,47 pa( Eingod) (by Theorem 4.7(2))

[CTwRI)
=g 71 ;T (@)3)([Bja, Eia])  (by Lemma 3.4 and Eq. (4.29)).

Hence we have the first equation. The second one can be obtained from the first
one by applying ¥, and using Eq. (4.39). |

Recall from Notation 4.6 that for d € D and {7, ,k,l} = I with p(a;q) =1
one has the equation (7; j.ari k;ami d)‘2 = [z][—z — 1],

Lemma 5.2. Letd € D\ {0} and i, j, k € {1,2, 3} such that {i,j5,k} = {1,2,3}.
(1) The following formulas hold.

(@) (Kid Fia) =0 5 T (0 T Bunod) = 05T (o) Bioa)
—[(a0,4, 2k 4)I; [ Ess, [Era Eoull if d =4,
= Ti0:T6,3iTi kil Bjis [ Buis [Bis, Boglll  if d =1,
Ti0 s ki [ B [ By (B Boglll - if d = J.
(2) For alll,m € Z we have the followz'ng equations.
[7@)(Ki i Fia), KijFial =0, [Eia, T(@5) " (Eia)]l =0,
I[T(wi,d) (E,,d),T(w ',d)m(KjT«% Fia)] = 0.
Proof. Part (1) can be proven directly by using (4.32),(4.34). The first equation
of part (2) can be proven by using part (1) and 4.20. The second equation of

part (2) follows from the first one by applying the algebra map 7 (@;;) ™" o 4.
Let now [,m € Z. One gets

[T (@) (Bia), T(@)g)™(Kj 1 Fia)l
= T (@} )™ ([T (@}0) "™ T (& 2) (Eig), K; Fyal) (by Eq. (4.40))
=T(@ j,d)m(ﬁf(wi,d)”f(w '0) "™ (Eia), Kj,;F,,dll) (by Theorems 3.5(1), 4.10)

= T(@) )™ (1T (@) (Eia), K;3 Fal) (by Lemma 5.1(1))

= T(@) )T (&) ([Eia Kj3 Fyal) (as in the previous steps)
= T (@) )™ T (@}4) (g d)K l[E, & Fidl) (by Lemma 4.3)

=0 . (by Eq. (4.7)).
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In order to define root vectors for integer multiples of Sd, we now define for all
ieI\{0}, k€N, and d € D\ {0} a family {'&fk);d | s € Z} of elements of Uj. In
Proposition 5.6 it will be shown that the cardinality of each of these families is
one, and their unique elements will be considered as the root vectors associated
to the pairs (o 4, kda).

Definition 5.3. Recall the definition of Kj,; from Eq. (4.10). For d € D\ {0},
i€ I\{0},keN,and s € Zlet

(5.1) B 4 =(~1)fq e T (5 ([Bia, T (@30)" (Kig Fia)l)
=(—1)F gt [T (5Y,)*(Bia), T (@0)"(Kig Fia)]
(DR KT (@) (Bia), T(@a) ™ (Fua)),
where the last equation follows from Theorem 4.10, Eq. (3.29), and Lemma 4.3.
Note that ¥, € Uf ;..
We will also need the element

-2

- 1-K;
0 — (e, - ‘t,d
(5.2) Q = g e [By g, K Fig] = ppp— € Ul

Lemma 5.4. Let d € D\ {0}, i,j € I\ {0}, k €N, and s € Z. Then we have

7 (s+1) f =1
TG ) = Vi F1=1,
( ‘l,d)("ﬂbjyk,d) §f,z;d if’i # j'

Proof. The statement in the case i = j follows from the definition of "/—’§812d If
i # j then one obtains the claim by Eq. (3.23) and Lemma 5.1(1).

Lemma 5.5. Let d € D\ {0} and, j € I\{0}. Then for all k € N the following
equations hold. :

- i 7(0 ~ —
[¢i,k3¢37Ej:d] =€i,j;dq( %) [Q/)‘E,lz—l;d’T(wy,d) YE ‘,d)]q-z(ﬁi,dv%,d)a

T(1-k - —(c —-(1-k ~. -
[ -g,k;d )) K j,; Fj,d] =€;,5:dq ( i’d’aj’d)[ zs,k—l);dv T(wv,d)(K ',c} F:‘i»d)]qz(“i,d'“j,d) .
In particular, one has the formulas

[B5Y, Bidl =¢ijial(0i: 23,0l T @5a) ™ (Bsa),

B KiaFidl = — € gial(ia 25,0l T (@5a) (K Fi)-
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Proof. Assume first that s = j. By Eq. (5.1), Lemma 5.2(2), and Lemma 4.3 we
have the following. ’
[1/7§,7c;1¢): Eig) = ~[E;q, «Zf;liﬂ
= (=1)*H g Cad [By 4, [T(@Y) ™ (Bia), T (@) (K Fia)ll
= (- l)k"‘lq'(ai.dyai.d) (- 1)P(a¢,d)+1 q(ai,d:ai,d)
[[E:a, T(@0)* (Kig Fia)l, T (@) ™ (Bia)] j-ates,ams0
= €isag PO T@) 7 (i)l oo ocar
Wi’ Kid Fidl = Wi’ Kid Fid)
= (=1)rq o [[T(@,) *(Bsa), T(@0) (Ko Fia)l, Ki Fidl
= (__1)kq—(ai,d,ai,d)(_1)p(ai,d) q‘(ai,dsai,d)
[T @)~ (Boa), Kid Fial, T (@) (Kid Fia)] e a0
= €00 D GO T (@) (K Fi,a)] posaiesa)-

Assume now that ¢ # j. First notice that because of Lemmata 5.2 and 5.1 we
have the following.

PS> Esal = ~[Bja, Biz) B
= (=1 g e [B, o, [T (@)™ (Bia), T (@) (Kid Fia)l
= (—1)F*tg e d [ By, T(@)y) ™ (Bsa)], T(@Y) ™ (Kig Fia)l
= (-1 g s [T (o)) ™ ([Bra, Bil), T(@0)* ™ (Ki Fia))
= (-1)F*tq ST (&))" ([Big, Bjal), T(@0Y0)* (K Fia)l
= (-1)**gCa s [[ By g, T(5)0) 7 (Bja)l, T (@Ya)* (K3 Fia)l
=(- 1)k+1 q—(ai,d,ai,d) (~ ]_)P(O‘i,d)l’(‘-"‘j,d) q(aj,a,oq,d)
[[Ei,da'T(‘DZd)k—l (K;dl Fi,d)]L T(‘:’}{d) - (E ':d)]q"z("‘j,d""i,d)

. . -(0 ~ -
= €15aq OGO T (@0 ™ (Bra)] -scesgas-

The remaining equation can be proved similarly. O

5.2 Definition of type one imaginary root vectors
The main result of this subsection is the following statement.
Proposition 5.6. Let d € D\ {0}.
(1) One has YLy = By for alli € I\ {0}, k €N, and s € Z.
(2) One has [§5g, Bl =0 for alli, j € I\ {0} and k, r € N.
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Definition 5.7. Let Wi := Pipg for alli € I\ {0}, k €N, and d € D\ {0}.
For ke -Nandi€I\{0},deD)\ {0} set Piga = Ya(i—ka). The elements
Yiga €U ;,kéd’ where k € Z \ {0}, are called type one imaginary root vectors.

In order to prove the above proposition we need a technical lemma. We use
the notation {k;c} := Z?;é %+ for all k € Nand c€ C.

Lemma 5.8. Let d € D, and let e,n € {1,-1} € C, a, b, c € C\ {0}, and
m,n € N with m < n. Let (Xu)oguzn, (Ya)ousn, (ZH)oez, and (Z; )vez be
families of ZIl4-homogeneous elements of Uy, with the following properties.

1. The parity of the ZI14-degree of X, is even for all u € {0,1,...,n}.

9. The families (Xu)ocu<n, (Yu)ocugns (Z3)vez, and (Z; )vez satisfy the fol-
lowing equations.

(5.3)
[Xy, Z2] =e(cF Xuo1Ziy — FZE X)) Hl<usmvel,
Yo =aZ§ Z5 — bZ5 Z7,
Y, =n(aZ§ Z; — bZ; Z§) ifl<u<n—1,
Yu =’l7u(aZi_1Z,;_1 - bZ-z:—-],Zi-l) 'I;f ]. S u S n— ].,
Yo =n"(a2% 25y — bZ; 1 27,).
3. One has [Xo,Ya] = 0.
Then for all u with 2 < u < m we have
(5.4) [Xu, Y] = (ne)*~Hu; c} X1, Y-
Moreover if there exists 7 € C such that the equations
(5.5) X, 2] =rZ%, X3, 2] =~ 725
hold, then one also has
(5.6) Yy — (X1, Yao1] = r™(aZg Z; — b2, Z5).

Proof. The strategy of the proof of the first part of the lemma is the following. -
First we prove that

(57) [X-u; Yn—u] = 776(0 + C~1)[Xu—1’ Yn-—'u+1] - [Xu—2; Yn—u+2]
for all u € {2,...,m}. Then assumption 3 implies that

[X2, Yn_a] = ne(c+ N[ X1, Ya-ils
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and induction on u using (5.7) implies Eq. (5.4).
Now we prove Eq. (5.7). Using (5.3) and Jacobi identity for [, ] one obtains
for all u € {2,...,m} the following.

[Xu;Yn—u] = [Xuann_u Z+ ‘r:—'u - n—ubZ‘;—uZ-l-]
T va{e(cXus 2 - Xut) 2
+ Zg e(c Xum1Zn i1 — Zp_yi1 X, —1)}
- nn—ub{e(c_lxu—lz‘r:—u—i-l - CZr:—u+1Xu—1)Z3"
+ Zo (e Xur ZF, — c-lztlxu_l)}.

We calculate the first four summands of the last expression separately by using
Eq.s (5.3).

Yi-u b
" MeacXy-125,2,_, = 1" eacXu1 (ﬁ-_—@% + —Zn_uZ )

= necXu-1Yn-us1 + 0" Vebc(Z,_y Xu-1+ e Xy—22y i1 — €€y i1 Xu-2)Z,,
— " Yeac” 14+1Xu_1Z'

n—u
= —n""eac ' ZF(Z7_Ku-1 + € Xy 2Z i1 — €21 Xu2)
-~ Y_ b,
— P veac 1((ﬂnfi_§lla+ 27774 Xuss

¢ 2 X a s — €2 7 i Xuma),
" eac Z§ Xu1Z,_yin :
= 1""%eac  (Xu1Zg — €cXy2Zt + e 25 Xu2) Zi_ i1,
= n""eac Xyor Zd Zoyr + 1V a2 X a Z
w-2(Ynut2 + 1" %02, _ 11 ZH),
— " eacZy Zy_yy1 Xu-1 = —N€c(Yomuir + 0" 0211 Z8) X
= —necYpy11Xu-1 + 1" b i1 (~Xuc1 2§ + ecXy2Zt) — e 21 Xy s).

Comparison of the latter formulas gives that

Xu Yol
= neCXu—IYn—u+1 - nfc_lyn—zﬁlX -1
ezt 2 1 Xu—a + " Veac” X128 Z; meutl — Xu—2Yn—ut2
—'r)ecYn_uﬂX =2 ZE Xy — “ebe Xy-1Z5_ui1 20
= nec[Xu-1, Yn-us1] — neC—IYn—u+1X -1 :
+ Yoouso Xu—2 +nec Xy Yoourr — XuoYaupa
=ne(c+ C_l)[X ~1; Yn—u+1] - [Xu—27 Yn—u+2]~
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This proves Eq. (5.7).
Now we prove Eq. (5.6). We have
rY, =rq"aZ, Z;_, — "bZ;_ Z7F,
=n"a(X1 24 — Zd X1)Z_y = 10254 [X1, Z4]
=1 X1 (Yam1 + 0" 0271 Z3) — a2 (Z 1 Xa — rZ7) — n"bZn [ X, Zf]
=nX1Yo_1 + 176 X1, Z_ | Z& + n"arZg Z; — ™ aZf Zy_y — b2 1 Z3) Xa
=0X1Yp1 — "brZ; Z3 + ntarZd Z; — nYn_1 X1,
which gives (5.6). O
Proof of Proposition 5.6. We prove both parts of the proposition simultaneously
by induction on k + r, where r = 0 in part (1). Let n € N and assume that we
have proved (1) for all k € N with k < n and (2) for all k,7 € N with k+7 <n.

First we assume that i # j. We want to apply Lemma 5.8 with m = n and
the following setting.

€ 1=€; jid; _ n=-1, 7 =¢iga(d; %d)les
a =g~ (O6a%id) b i=(—1)P(%d) ¢ 1=q(@a)
Xy =P, (0<u<n), Y=g, 0<usn-1), Y =P,
Z§ = T(@]4)"(Bja), Zy =T (@)4)"(K; i Fya);
for all v € Z. Note that the first formula in Eq. (5.3) holds by Lemmata 5.1(1),

5.4 and 5.5 and by the induction hypothesis for part (1). The fourth line in

(5.3) can be shown by applying T(@;) to the definition of zﬁg;d and using the

induction hypothesis for part (1). All other formulas in (5.3) hold essentially by
the definition of ¥,. Eq.s (5.5) follow essentially from Lemmata 5.1(1), 5.4 and
5.5. Eq. (5.2) implies assumption 3. Thus Lemma 5.8 gives that

(5.8) [_g'i;d, _§32—u;d] = (‘6i,j;d)u—1{“§ q(a"d’aj ’d)}[—g);w @(‘2—1@]’

for 2 < u < n. Let u = n in the last formula. Then from the definition of %‘?o);d
one gets

-0 7T _ A ) 70
0= [¢S2;d, "/)ﬁj);d = (“QJ;d)n 1{”3 q(ai,a,aa,d)}[,wél);d’ J(',rz-l;d]'
Therefore the assumption in (4.1) implies that
—0) 70
(5.9) [ Pl = 0.
This with Eq. (5.8) gives part (2) of the proposition for #jandk+r=n.In

order to prove part (1) of the proposition, assume that ¢ # j and (@ g4, 05,4) 7O
The second part of Lemma 5.8 gives that

(5.10) |
—(-1 - - ~ =(—
il (0idy @) Pimps = B 1 + € gl (i d 3,0) T (@L) (Pimi):
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and hence part (1) of the proposition follows from (5.9) and Lemma 5.4 together
with assumption (4.1) and relation (a4, @ja)lq # 0.

Second we assume that ¢ = j. We can apply the same argument as above,
together with the equation

0
fk? =T(&; d)(¢£lzd 1(23:1

for 1 < k < n, since part (1) with k£ < n has already been proved (cf. Lemma 5.4).
Then one has the same equations as in (5.8)—(5.9) with j = i. As a result one
gets part (2) for i = j. O

5.3 Definition of type two imaginary root vectors
We start with the definition.

Definition 5.9. Let d € D and z a formal parameter. The coefficients Ei,k;d €

U ; ks of the formal power series

(5.11) Z hi ka2 : — log (1 -+ Z(q g i raz )

k=1 r=1

together with the elements h;_,q := —Uy(hix,a), where k € N, are called type
two imaginary root vectors.

Note that the above definition is equivalent to the more common formulas

exp ((q -¢ > ﬁi,k;dzk) =1+ (¢— ¢ )Pira?",

,‘7=1 7‘=1
o0 o0
-1 = A T
exp ( —(g—q ); hi,—k;qz ) =1+ ;(q 0V —ria?".

In order to determine commutation relations between root vectors to real
roots and type two imaginary root vectors, we need two technical lemmata. The
first of them is standard in a more general setting.

Lemma 5.10. Letd € D and e € C, c € C\ {0}. Let (Xu)uen and (Zy)vez be
families of ZI1;-homogeneous elements of U such that the parities of the degrees
of the elements X, are even for all u € N. Then the three conditions (i), (ii) and
(iii) below are equivalent.

(i) For all u > 2 one has

[Xu,Zv] = G(CXu_1Z -1 C_IZ _1X _1).
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(i) For all w>1 one has

u—1
[Xu, Zo] = (€0)* 1 [ X1, Zomusr] + €(c — )Y _()* " Zpmrir X
r=1
(iii) For all w > 1 one has
u—1
[Xu, Zv] = (Ec—l)u_l[Xl, Zv—-u+1] + é(C - C_l) Z(ec'l)u_l'TXTZv‘u.l.,..
r=1

Lemma 5.11. Letd € D, and lete € {1,—1} C C, and c € C\{0}. Let (Xu)uen,
(ZF)vez and (Z7)yez be families of ZI14-homogeneous elements of Uy, with the
following properties.

1. The parity of the ZI1;-degree of X, is even for all u € N.
2. For all u,u' € N one has [X,, Xy] =0.
3. The families (Xy)uen, (ZF )vez, and (Z; )vez satisfy the following equations.

[Xu, ZE] =e(¢* X1 2, — F1ZE  Xu1) foralueN,veZ,

5.12
(512) (X1, Z] 1 =rZ},, [X1,Z;]=-rZ,, forallv€Z.

Let b € C\ {0} such that rb = e(c — ¢™*). For all u € N define Ly € Uy by the
following generating function in 2.

(5.13) exp (bi Euz"’) =1+ bi X, 7"

u=1 u=1
Then for all uw € N and v € Z we have

+u _ Fu
(5.14) (L, Z2] = 0 7%

TZTFFU‘
Proof. We proceed by induction on u. For v =1 one has £; = Xi, and hence
the second line in (5.12) together with the definition of b implies the claim.

Let 7 € N and assume that Eq. (5.14) holds for u < n. Let £(2) = > 32, Lu2"

=1
and Z%(y) = 5.0 __ Z¥y®, where y is a formal parameter, and let "’
. C:l:n — o
P() =lLn, Z* W) ~ V" 2% ()
i oA — o Y
= Z ([‘Cna Z;t] - enTZ;b:Fu)y .

v=—00
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In the remainder of this proof we treat equations in the algebra Uj[z]/(z"*).
We have the following:
[o0]
— C:F'u' c:l:u _ c:Fu
Lo, Z5(y)] = Z Ziry’ =y ———2*(y),

for all v € N with u < n by induction hypothesis, and hence

BEG), ZE ] =P+ 3 e gy

u=1

This gives
(exp bL(2)) 2% (y)(exp bL(2)) ™ = exp(ad bL(2))(2*(y))

= () +bP(y)2" + fj @S gy
U

u—l
+ Z (z - yiuzu) Zi(y)
'u—2 u=1
= bP(y)z" + exp (Z %((ecil B (ec*lyilz)“))Zi(y)
u=1

= bP(y)2" + exp ( — log(l — ec*y*'z) + log(1 — ec¥'y*'2)) Z2*(y)

= bP(y)2" + (1 — ecTlytlz) Z(eflyilz)vzi(y)

v=0
P + BH) + (1 - ) 3 (et ) B,
v=1

Next we compute [exp bL(z), Z%(y)] in two different ways. By Lemma 5.10
we obtain that '

(>}

X220 = Y K Z8 = 3 ()1, 2 )

V=—00 V==—00

+6(Cﬂ:1 _ =F1) Z(ﬁcil)u— -mz v:F(u—m)X )y'u’

and using the second line in Equation (5.12) we get

[Xus Z2%(y)] = £ r(ec™) 1y 2*(y)
) u—1
+ ¢E(c:l:l _ c=|=1) Z(ec:tl)u—l—my:l:(u—m)zﬂ:(y)Xm_

m=1
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Thus we have

()
[exp bL(2), X)) = b ) _[Xus Z*(3)]2"
- u=1
= +br Z(ecﬂ:l)u—ly:}:uzuzi (y)
u=1
oo u—1 ’
+ be(c:bl _ C:Fl) Z Z(Cczl:l)u—l—my:i:(u—m)zuzi(y)Xm,
u=1 m=1

and also
[exp bL(2), 2% (y)] = (exp bL(2)) Z* (y)(exp bL(2)) ™ exp bL(2) — Z*(y) exp bL(2)

= (BP(y)2" + Z5(y) + (1 - &) Y _(ec™'y*!) 2" 2% (y)) expbL(z)

~ Z*(y) expbL(2)

= bP(y)2" + (1 = ™) i(ecﬂyﬂ)"z"zi(y)(l + bi X, 2")

v=1 u=1

Comparison of the two expressions for [exp bL(2), Z2%(y)] using the formula +br =
e(ct!—cF1) gives that bP(y)z" = 0, and hence P(y) = 0. This gives the statement
of the lemma. O

Next we calculate commutation relations between root vectors to real roots
and type two imaginary root vectors. Let

0 ifk<0
5.15 (k) = =7
(5.18) (k) {1 if k>0,

denote the Heaviside function.

Lemma 5.12. Let d € D\ {0}.
(1) For alli,j € I\ {0} and k € Z\ {0}, m € Z one has

- . m k O .dy O, - ~ m— ‘
s T ()] = ey B B e SC AT 31 b B ),

T ~, m k ai) ’a.’ ~, m
s T @)™ (Fy )] = =y X0 Gl b 0y, ),

(2) For alli,j € I\ {0} and k,l € Z\ {0} one has

k -k
- - k(aia, o Ky o~ K5,
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Proof. Part (1) follows immediately from Lemmata 5.4, 5.5, 5.11 and Proposi-
tion 5.6. ‘

To part (2). If k> 1> 0or k <! <0, then the equation [h; k4, hjpa) = 0
holds by Preposition 5.6(2). Assume now that k¥ > 0 > [ and let m = —I. By
Definitions 5.7, 5.3 and Preposition 5.6(1), we have for all s € Z the equation

Pisa = V() = (1" KG ™ K a(~1)PCo9 [T (@5 ,)" (Fia), T (@)™ (Eja)]
By part (1) of the lemma and by Proposition 5.6(1) we have

[ i,k;d "py,l d] [ i,k;dy ( 1)l Said J,d( ]_)P(Ota d)[ 3y ( g, )m(E ,d)]]
) k Qi d, Ay,
= (_1)m+p(a;,d) Kf?d;d K;, def,j; d[(_’dk_ﬂ‘l {

[~KE T (@) (i), T(@ )™ (Bya)] + [Fya, T (@)™ (Eja)]}

0 ifm<k,
-k
_ ( 1)k+1 k,J’ [k(az d;saj d)] 5dq,d qigd;d lf m = k,
k(c,q, o, -
(—1)F*ef (0w, 050)la dk ]d)]q( 5“,—-[( k)¢dk—m,d ifm > k.
Then part (2) of the lemma can be shown along the lines of the last part of the
proof of Lemma 5.11. O

The commutation relations in the following two lemmata will also be needed
in the last section.

Lemma 5.13. Letd € D\ {0} andi,j € I\ {0}. For all k, | € Z, one has
[T(@)" (Bia), T(@50) (Bja)l = (-1 [T (@) )"* (Bja), T (@) (Bia)],
[7(@)* (Fia), T(@50) (Fya)l = (1% [T (@] )™ (F3,0), T (@) (Fra)].

Proof. First, treat the first equation. If ¢ # j then the statement follows from

Lemma 5.1, Theorem 4.10, and Theorem 3.5(1). Assume now that ¢ = j. Without

loss of generality, by Lemma 5.1(1), Theorem 4.10, and Theorem 3.5(1), let k > 1

and [ = 0. If £ = 1 then the statement of the lemma follows from Lemma 5.2(2).

Let I € I'\ {0} be such that (a;q,,a) # 0. We proceed by induction on k. By
Lemma, 5.12(1) one has

61:, H — T ~
0 = m Kﬁd;ld[hh—l;d’ ﬂT(de)k ( Ei’d) ’ Ei’d]'

+H[T (@Y0) (Bia), T (@) (Eia)]]
= I[T(‘:’:/d)kH(Ez d) E; d] + T( n )(ﬂT(‘:’:/d)k_l(Ez d) E; d]'

HT (@50 (Bia), T(@10)* 2(Ez D) + [T(@0) (Boa), T(@1a) " (Bia)]
= [[T( i,d)k+1(Ez,d): Ez,dﬂ + |[T( i,d)( z,d)a T( i,d)k(Ee,d)],

as desired. The second equation is obtained from the first one by applying ¥;. O
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Lemma 5.14. Let d € D\ {0} and i,j € I\ {0}.
(1) Ifd € {1,2,3} and i # d, then for all k, , | € Z, one has
[T (@0)*(Bia), [T (@30)"(Bia), T(@)a) (Ba)]1+
[T (@Y) (Bsa), [T @10)* (Bia), T (@) (Esa)]] = 0,
[T (@Y0)  (Fia), 1T @) (Fia), T (@) (Fia)ll+
7@ (Fia), [T (@) (Fra), T (@}0) (F3a)ll = 0.
(2) If (04, @ja) =0, then for all k € Z, one has

[T (@) (Bia), T (@)0)' (Eja)] =0,
[T (@)F(Fia), T (@) (F3a)] = 0.
(3) If d = 4, then for all k, 7, | € Z, one has

(1,4, 3ol T @Y,0)* (Bra), T(@3a) (Baa)], T(@5,0)' (Boa)]+
(.4, 02,0)|a[[T (@Y 0) (Bra), T(@Y0)* (Bs )], T (@3,) (B20)] = 0,
(0,0, 8, )G IIT (@Y.0) o (F1a), T(@5,0) (Foa)], T (@3,0)' (F3.0)]+
(0.0, 02,07 @Y.0)" (Fua), T (@3, 0)*(Fa0)], T (@3,0) (F20)] = 0.
Proof. These equations are obtained from the equations X = 0in U}, where X are
the elements having the same expressions as those in (4.13)-(4.18), by applying

T (@y 4)™ and the C-linear map ad Frumsa defined by ad huma(Y) = [Pumia, Y] and
using Lemma 5.1(1), Theorem 4.10, and Theorem 3.5(1). 0

6 Second realization of the quantum affine su-
- peralgebras

6.1 Main theorem for Uj

Here for each d € D\ {0} = {1,2,3,4}, we introduce Drinfeld second realization
associated with D®(2,1; z) and prove that it is isomorphic to Uj as a C-algebra.
We first give a modified version of the Drinfeld second realization of U;. Then
via the version we give the Drinfeld second realization of Uj. :

Definition 6.1. Let d € D\ {0} = {1,2,3,4}. Let DU} = @ ,czn, DUa,, be the
ZIl -graded C-algebra generated by the elements

1
6.1) 04, Kby, K7 € DU, (i€ 1)
(6.2) g € DUy 1o sy (€ T\{0}, k€ Z)

(6.3) Yirdy Pigid € DU;’rsd, (i e I\ {0}, r € Z\ {0})
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and defined by the relations below, where the elements K;,4 and K 3,.q are defined
as in Eq. (4.10).

(6.4) oi=1, K2K,d_K 2=
(6.5) XY =YX foral X,Y in Eq. (6.1)
(a4,g:0)
(6.6) 04Xoq= (—1FWX, K; dXsz = ¢ X for all X € DU}, p € 211,
(0 ifi#7, .
Kg_dl;dKi,d")bz ktisd ifi=jandk+1>0,
(6.7) et = Kf Kig— K* K7
[ ’]‘bd .71lyd] 6d1d q q_15 d 1 if’l =j a,nd k + l — 0’
\_K&t dKz,d¢1,k+ld ifi=jand k+1<0,

(6.8) exp ( t(g-q")) 2 hi,:l:k;d) =1+(q—-a") ) Fiana

k>0 k>0

(as equations of generating functions in z)

&
A [k(a‘l ds a] d)]q 5,1 d Ks sd
(6.9) (i s Pejisal = O, p pp—
k(ai,g, 04 O(Fk)k
(6.10) [hisar 25,1] = L(_i_.k_a_)_]_ KOGt
0 if (O‘i,d: Olj,d) = Oa
(611) ﬁxii’k;d’ x;":l;d]] = _Ilm.;"fl=l=1;d’ x«fk:l:l;d]' ifde {17 2a 3}7
(25 51,00 Tisn.a] ifd=4

(6.12) Ew;:r;d’ ﬁxfk;d,a:;fl;dﬂ + [[wf;k;d, Iwz:r;d’ w,-’fz;dlﬂl =0ifd € {1,2,3} and i # d,

(6.13)
[(a174’ a3,4)]q|”[$fr;4: xg:k;d’ xg-:l;:l] - [(011,4, a2y4)]QM"BZ:lt,r;47 xg:,k;4]]? xg:,l;‘i]‘ =0if d=4.

Note that if i € I\ {0} then in DU}, one has [z, 4,z T pera] = 0 for all
k € Z. Note that if i € I\ {0} and p(a;4) = 1 then in DU}, one has (z,,)* =
3le5ia 1l = 0 for all k € Z.

Proposition 6.2. Let d € D\ {0}. Then there exists a unique C-algebra homo-
morphism

(6.14) F,: DU, — U,
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such that for allue I, i€ I\ {0}, k € Z, and'reZ\{O}, one has

(6.15) Fi(0q) = 04, fd(Kfé) = K.2,

(6.16) F. d(xi,k;d) = (- fz,z;d)kT(wi,d) k(Ez,d),

(6.17) Fa(@ia) = (—6ia) T (@a)" (Fia),

(6.18) Fa(hipia) = € iahizar,  Fa(Wira) = € aWind-

Proof. This follows immediately from Definitions 5.3, 5.7, 5.9, Proposition 3.6,
and Lemmata 5.12, 5.13, and 5.14. O

Let d € D\ {0}. Define D\Ifd to be the automorphism of DU} such that

1
D¥4(04) = 04, D\de(K:dz) = Kud? D¥y(zF,) = (F1Ple V5T pgr DVa(Wira) =
Wi —rdy a0d DV g(hipg) = —hi—r,g. Note that

(6.19) FiDUy = UyF,.
Define the two elements X7 € DUj 14, , bY
—Td,j;dTd,kidTd,00 K, o:%alz l[HwZZﬂ;d, "B;",:O;dll’ xl:sl::,o;d]] ) xzo;dﬂ
(6.20) X% if d € {1,2,3}, where {j,k,d} = {1,2,3} and j < k,
+[(en0 02,0)]7 Kod 2T 2130 23 00a) 280l d =4
Lemma 6.3. Let d € D\ {0}. One has F4(X}) = Foa and Fu(Xy) = Foa.
Proof. Assume that d = 4. By Lemma 4.3, for all 4, j € I = {0,1,2,3} and all
Y € Uj,, one has [Fy, F;aK;1] = it and
(6.21)
[[Eie, Vol, FiaK;il = [Esa, [Ya, FyaKGA 1]+ 8is(= 17O (X, i)V
Note that for X, € U; , and Yy € Uy, one has
(6.22) (XK s VK = g9 X, VAl K s
By Eq.s (3.28), (3.29) and (4.38), one has
(6.23) T (@Y 4)(Kis) = KouK24Ks4.

Then one has
FuXf) = Koall - T[((L;l’i)ilf))]’ Fadl, Foal (by Eq.s (6.17) and (6.20))
= —[(e1,4, a2,0)]7 1T (@Y.0) (FLaKT2), FouKial, FsuKigl
(by Eq.s (6.22), (6.23), and (4.6))
l[Es.4, (B2, Eoall, Fos K31l FsaKs4l

= CYERR ) (by Lemma 5.2(1))
= —[(011,4; 02,4)];1“_1-’73,4‘, Eo,d, F3,4K3—’41]l (by Eq. (621))

— Eou (by Eq. (6.21)).
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Thus one has F4(X]) = Ey4. By this and Eq. (6.19), one obtains

Fu(X7) = Fu(-D¥4(X])) = —Ua(Fu(XY)) = —Va(Eo,s) = Fou,

as desired.
The lemma for d € {1,2,3} can be proven in an entirely similar way. O
Fori €I\ {0} and d € D\ {0}, let 2, := z} ;K KE

dasd’
To prove the existence of the inverse of F, we need the foﬁowmg lemma, which

is similar to Lemma 4.3.

Lemma 6.4. Let i1, \,§ € ZIy, i,j € I\ {0}, and k,r € Z, and let X, € DUy ,,
Y, e DU(/M, and Zg € DUé’é.

(1) One has
(6.24) i[Xu: Kya¥h] = q_('\’“)KA;d[Xw v, ﬂK;;éXw Y] = K;;cll[Xw Y,
(625) MXM YA]: Z&E = I[X#a ‘[YA: Z&M .+ (_l)p(/\)p(é)q—()\,f) [EXIH Zﬁ]]) Y)\]q(kﬁ—u),
(626) ﬂXw [Y)w ZEM = MX,LH Y)\]l) Z€]' + (_1)p(p)p(/\)q—(/,t,)\) [Y)w I[Xu’ Zﬁmqo"“"f)‘

Further, one has

(6.27) |[~'3f Kesel? [Yx, 2 % _k; Al = Mﬁk @ Nl % _k; = 5ij(—1)p(aj'd)p('\) (.4, M]gYa

(628) [2iur hmal = 09 a0 35 A GG G K5 ET

(6.29) 2 %mdl = g useadzh | ar KiK. lng;';

0 if i # j.
(2) If p(A\) =1 and (A, \) =0, then one has

K K¥ -KgKsE
- {q_(ai,dxa.‘i,d) q_q_; Sgid zf'[, =7 a,nd r= —k,

(6.30) HXMYALY)\]I = [, ![Y}wX#MI =0 ¥ YA2 =0,
(6.31) IIX#’Y/\EZ =0 fY2=0, [X,,[X.,Y]]=0, and g + (=1)P® £ 0,
(6.32) [V, X =0 ifY2=0, [[V», X.], X.] =0, and ¢¥ + (=1P®) 0.

(3) If (1, X) + (A, €) + (&, ) = 0 and p(i) = p(A) = p(§) = 1, then one has

[Ca o llX s Y2, Ze — ({11 Ml Xis Ze], Yo

= [(1, Ola(Xu¥2Z¢ — ZeYaX,) + [(A w)o(YaZe Xy — XuZeYn)
+ [(5) )\)]q(ZEXuYA - Y)\X,‘Zg)

= = (1, 1ol Ze, IV2, X1 + [(1, N[, [Ze, X,u]]-
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(4) Let X_, € DU} _, andY_y € DU} _;. Assume that [Xj,, X} = L
Y, Yool = _@;__—qﬁ_}m, and [Xuiu, Yor) = 0. Then one has

_ Koing— K_u-»
[I[X[MY)\..“? ﬁX";“Y-—)\]] = (_1)?(/\)}7(/.&)(] (Aor) [()‘a N)]q “+}‘;;_ q_l £ }"da

where K .4 and Kxg are defined as in (4.9).
Proof. ‘One needs only the definition of g-super-bracket and Eq. (6.7). O
We also need the following lemma.

Lemma 6.5. Let {d,i,5} = {1,2,3} andl,r,m € Z. Let Y and Y3 be the ele-
ments of DU} defined by Yf = Hzi;,;d, z;'f:Fr;d]l, z,f,:Fm;d] and Y§ = l[Yli, zi:\:(l—l); 4
(1) One has the following:

(6.33) (z30* =0, [Zra Zomsdl = [Zmias Zial =0,
(6.34) e300 Zimdl = ~1Ziri100 ZJ,z—l;J’ Mzz1ar Zimsals Z sl = 05
(6.35) Y5 = 2300 Zrmils Zimals 27 a0 Zaal 254l =0,
(6.36) [z a0 ZcZz;d]IZ =0, [z Zj—,r;d]]z =0,
637) IV 7 =0, YD Zemd =0 (¥1)'=0, V7, ¥;]1=0,
(6.38) Y7 = —lzemenar zE,z—nd]s Zial = ~zk mara 221100 Zimalls
(6.39) Y7, 25,4 =0, [Y3, Th ) = 0-

(2) One has

(6.40) [o] i1 Y71 =0, o3 e Yol = ~[(0ya + oy @a,d)la Y1 5
641) (51 10 Y2l Y31 =0, o} Y21 =0, [5 _ma Y21 =0

(3) Ifl=1 and r = m =0 then one has
Koa— Kgg
e
Proof. To Part (1): Eq.s (6.33),(6.34) hold just by (6.11)-(6.12) and (6.28). Each

equation in (6.35)-(6.38) follows from the ones in (6.33)-(6.38) before it and
Lemma 6.4(1),(2). One obtains the first equation in (6.39) in the following way.

(6.42) Y5, Y§] = (e oj.0)lal(cas @ka)lal(ea a0d)le

[Y2_7 x;r;d]K ;;c} K gd;d = I[Y2-7 z;r;d]] (by the equa‘t‘ion [K J-,C% K gd;d’ Y;] = 0)
= [IY7, 23;_1,als zjmal (Y the definition of Y3)
= [Y7, [231-1,00 Zimiad] (DY B (6.25) and the first equation in (6.37))

= —[nzl:,m-l-l;d? n:z;,l—l;d’ z_;'};d]]’ [z;;l—-l;d’ z;r;d]:“ (by using (6'38))
=0 (by the second equation in (6.36) and by using (6.30)).
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Similarly one has the second equation in (6.39). '

To Part (2): Applying Eq. (6.27) twice, one has the first equation in (6.40) by
using the first one in (6.38) and the second one in (6.33). Similarly, the second
equation in (6.40) holds by the first one in (6.40). The first equation in (6.41)
follows from the second one in (6.40) and the fourth one in (6.37). As for the
second equation in (6.41), one has

[‘”;—r;d’Y; 1 = ~l(aaa @ia)lallzima,a0 221-1:4)s 221-1,4]
(by using (6.27) and the first equation in (6.38))
= 0 (by the second equation in (6.35)).

Similarly one has the third equation in (6.41).

To Part (3): Using the second equation in (6.24) and applying D¥, to the
first one in (6.40) one has [z;’f_, +1,0> Y2 ] = 0. Then applying Lemma 6.4 (4) and
Eq. (6.29) repeatedly one obtains (6.42). O

We first give a modified version of the Drinfeld second realization of Uy.

Theorem 6.6. For each d € D\ {0} the map Fy : DUj — U} is a ZIl4-graded
C-algebra isomorphism.

Proof. We show the existence of the inverse map ;' directly. _
Assume that d € {1,2,3}, {d,5,k} = {1,2,3}, and j < k. Let X} =
—(’I’d ,j;drd,k;drd,o;d)“IXj. ,One has

(6~43) XI = Mﬂz‘h;d: Zj_,o;d]l: le,o;dl z;,o;dl' = I““[Zd_,l;d’ zl:,O;d]l’ Z;O;d]l? Zé_,o;d]]a

where we used the first part of (6.35) for the second equation. By the first
equation in (6.43) and Lemmas 6.4(1), 6.5(1),(2), one has

Mx:{,o;d’ x}to;ai: [xio;d’ X;M = ![x:zr,o;d: l[x}:o;d’ [xzo;d’ ij
(by Eq.s (6.25),(6.30) and the equation (x;’;o;d)_z =0)

= [(Oéd,d, aO,d)]ql[x:;,mda I[xzo;w Hzc?,m, zj_,o;d]]) Z;,o;dlllﬂl
(6.44) (by the second equation in Eq.s (6.40))

= —[(aas w0d)lolTio [%50.40 k.5 220.a) 2704l
(by the first equation in (6.38))
= —[(oa, 20,4)]ql(@ad, %a)lal(@d, aka)lazi1,4 (by using (6.27)).

By Eq.s (6.11),(6.27) one has

(64'5) Mx:i-,o;d’ xl_:_,o;d]’ zl;,l;d]l = _[[w;:,—l;d’ xc—il:l;d]’ zl:,l;d]] = —[(Otd,d, ak:d)]qx:l‘-,l;d’
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By the second equation in (6.43), using the same argument as above, one also
has the equations obtained from (6.44),(6.45) by changing j and k. Hence one
conclude that the following equation holds:

[(@a,ds aj,d)]qlu[x:il—,ﬂ;d’ wZ,o;d]!, ijio;d, x;:o;dﬁy Hm-dto;dv XHH
(6.46) = [(aaa, 20.0)lal(@da, 7.a) 2 [(Cda, ha) 525 1,00
= [(oa,a, ak,d)]q”"?&to;da x;:o;d]» M‘U&'-,o;da -":,o;d]]a [x;ito;d’ XHM

By (6.46) and Lemma 6.4(3), one obtains

[(aa,a + 00,4, @, + ad,d)]qﬁl[llwzo;d, Xﬂ, i[x;f,o;da xg:o;d]]a ﬂxzo;d: x}to;d]l]l

(6.47)
= [(0g + 0,4, Aa + Ca,)alllzF 00 X3, @ 0.0 0,0l [ 000 T 0iall

Denote by (U4)% the C-subalgebra of Uj generated by the elements og, K l:;%
(1 € I) and E,g4, Fpq (r € I\{0}). By Theorem 4.5(2), one conclude that
(U})* admits the presentation with these generators and the relations formed by
Eq.s (4.3)-(4.7) and the relations X = 0 for all elements X in (4.13)-(4.18). Note
that one also has the same fact with U/, and I in place of (U})* and I \ {0} re-
spectively. Clearly, by Definition 6.1, one has a unique C—algelzra homorlnorphism
(F)4 : (U)* — DU} such that (F5)(0a) = 0u, (F*(Kif) = Kig (1 € ),
(FHEpa) = T}oa (F)*(Frg) = zrgq (r € I\ {0}). Then, by Eq.s (6.47),
(6.39),(6.41),(6.42), using DTy, one has a unique C-algebra homomorphism Fy:
U, — DU, such that F(Y) = (F*(Y) (Y € (Up?) and Fi(Eoa) = X7,
Fi(Fo4) = X7. By the equations in Definition 6.1, one concludes that as a
C-algebra, DU} is generated by the elements oy, Kf 7 (1 € {0,1,2,3}), acjfo;d
(r € {1,2,3}) and x]::q:l;d' Hence Eq.s (6.44) and (6.19) imply that the homomor-
phism F}, is surjective. By Lemma 6.3, one obtains the equation FaFy = idpy;,
Hence F}, is injective. Thus one gets this theorem for d € {1,2,3}.

The theorem for d = 4 can be proved similarly, or more easily. 0

The following lemma implies that Eq.s (6.8)-(6.10) are equivalent to the ones
of the original Drinfeld second realization.

Lemma 6.7. Letd € D\ {0}. Let

~ k .
(648)  Bia = K2 (b0 + OR) (@ — 0 )K; ibika), (1 €T\ {0}, k€ 2)
(6.49) hipsa = K Shipa. (i € I\ {0}, r € Z\{0})

Then one has

6.50) K ewp((g—g )Y s =1+(@-q7) > i,

r=1 k=-—0c0
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(as equations of generating functions in z)

k i - ~_
K k Iid I{ k+l d
6.51 T a Tl = 6 §:d Tk i,
(6.51) %3 ksas Tipal = 0ij P q—l
Kok

~ A k C\!,, ,a y A o
(652) [hi,k;d, hj’[;d] — 616, [ ( dk Jd)] 5;(1 q—lfsd,d

A [k(a'i,d7 (o j,d
(6-53) [hi,k;d) xfl;d] = :I:_—k_jl]—q-K; ; Jik+lid

Proof. This follows from (6.8)-(6.10) by using the definition of the elements in
(6.48)-(6.49). O

Now we give the Drinfeld second realization of Uj.
Theorem 6.8. Letd € D\ {0} = {1,2,3,4}.
(1) Asa ZHd-graded C-algebra, DU, , admits the presentation with the genera-

tors og, Kud, ik € DU’, T andh”d € DU b whereu € I, 1 € I\{0},

k €Z andr € Z\ {0}, and the defining relations obtained from Eq.s (6.4), (6.5),
(6.6), (6 11), (6.12), (6.13), (6.51), (6.52), and (6.53) by determining the ele-
ments z/zzkdfor alli € I'\ {0} and all k € Z by Eq.s (6.50). '

(2) There ezists a unique ZI1;-graded C-algebra isomorphism Fa: DU, — U
satzsfyzng the equations obtained from Eq.s (6.15), (6 16), (6.17) by replacing

Fy with Fu, and the equations fd(hz,r,d) “dK h”d for all i € I\ {0}
and all 7 € Z\ {0}. Further, Fy coincides with f’d as a map and one has
~ o~ Lo

fd(lbz:il;d) = §£,i;d(q - q—l)Ki:!:;K;;?d")bi,dzl;d fO’l" alli e I\ {0} and all I € N.

Proof. This theorem holds by Definition 6.1, Theorem 6.6, and Lemma 6.7. [

6.2 Extension of the C-algebras

Recall the definitions of § and DM(2,1;x) from Section 2. Assume § to be
DM)(2,1; ). Strictly U}, is the quantum superalgebra of [§, §]. Here we treat the
quantum superalgebra of §.

Definition 6.9. (1) Let d € D. Define the additive group map xq : ZIlg —
Z by xdi(aiq) = b for i € I. The group ring of Z is the commutative and

1 1
cocommutative Hopf algebra C[KZ .;, K Aodls Where

Y ! 1 1 -1 1 -1
KfaBaga=1 OAKZ0) =KRa® Kfjar AKpga) = Kpja ® Kpja



212 ISTVAN HECKENBERGER, FABIAN SPILL, ALESSANDRO TORRIELLI AND HIROYUKI YAMANE

Then U} is a left C[K,%o;d, Kxo%d]-module algebra [Mo, Sect. 4.1] with left action
1 -1 .
+: CIKZ 4 K 2al X Uy — Uy defined by

1 (1)
Kl  X,=0% X,  pelllyX,eUy,

Let U, be the smash product algebra [Mo, Def.4.1.3] Uy := U#C[K /%o;d’ K;jd].
(2) Let d € D\ {0}. Similarly to the construction in Part (1) define the smash
1 _1
product algebra DUy := DUH#C[KZ .4, K 4l

We extend Theorem 6.8 to that for Ug.

Theorem 6.10. The map fd can bgﬂ extended to a C-algebm" isomorphism from
DUy to Uy by letting F4(Ky ;) = K2 ; for allm € Z.

Proof. This theorem follows from Theorem 6.8 and Definition 6.9. d
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