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GENERALIZED SCHUR OPERATORS
ON PLANAR BINARY TREES

NUMATA, YASUHIDE

ABSTRACT. We introduce new families of operators on the vector
space spanned by rooted planar binary trees. We prove that they
are generalized Schur operators. For this purpose, we construct a
correspondence, which is an extension of Fomin’s r-correspondence.

1. INTRODUCTION

Young’s lattice is a prototypical example of differential posets intro-
duced by Stanley [11, 12]. A standard Young tableau can be identified
with a path in Young’s lattice. Under this identification, the Robinson
correspondence is a bijection between permutations and some pairs
of paths in Young’s lattice. The correspondence was generalized for
differential posets, and further for dual graphs (generalizations of dif-
ferential posets [2]) by Fomin [1, 3] (see also [10]). His method is as
follows. The up and down operators U and D of r-dual graphs satisfy
the relation DU —UD = rI, which implies some local correspondences,
called r-correspondences. By piecing them together, we can construct
global correspondences, which are the Robinson correspondence in spe-
cial cases. In this sense, paths in differential posets or dual graphs are
analogues of standard Young tableaux with respect to the Robinson
correspondence.

A Dbijection between certain matrices and pairs of semi-standard
tableaux is known as the Robinson-Schensted-Knuth correspondence.
In [4], Fomin introduced generalized Schur operators, and generalized
the method of the Robinson correspondence to that of the Robinson-
Schensted-Knuth correspondence. Roughly speaking, generalized Schur
operators are collections of up and down operators with some commu-
tation relations (see Definition 2.1). The relations mean some local
correspondences, which are extensions of r-correspondences. Again,
by piecing them together, we can construct global correspondences,
which are the Robinson-Schensted-Knuth correspondence in special
cases. Equivalently, the Robinson-Schensted-Knuth correspondence,
one of the most important combinatorial properties of semi-standard
Young tableaux, is induced from the relations of generalized Schur op-
erators.

In this paper, we consider the vector space spanned by rooted pla-
nar binary trees. We introduce new families of linear operators on the
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space, which have a relationship with some labellings on rooted pla-
nar binary trees. We show that they are generalized Schur operators
by constructing an extension of an r-correspondence. As applications,
we can generalize the Loday-Ronco correspondence, which is a bijec-
tion between permutations and pairs of labeling on planar binary trees,
by the Fomin’s method. In addition, we can show Pieri formula and
Cauchy identity for weighted generating functions of labellings on pla-
nar binary trees. Those generating functions are commutativizations
of basis elements of the Hopf algebra called Loday-Ronco algebra.

2. PRELIMINARIES

In this section, we define our main objects. In Subsection 2.1, we
recall the definition of generalized Schur operators introduced by Fomin
[4]. We recall the definition of rooted planar binary trees and labellings
on them in Subsection 2.2, and then we introduce linear operators on
the vector space whose basis is the set of rooted planar binary trees in
Subsection 2.3.

2.1. Generalized Schur Operators. Let K be a field of characteris-
tic zero that contains all formal power series of variables t,t, 1,10, . ..
Let V; be finite-dimensional K-vector spaces for all ¢ € Z. Fix a ba-
sis Y; of each V; so that V; = KY;. Let Y = [[,Y;, V = @, Vi and

V =TI, Vi For a sequence {4;} and a formal variable z, A(z) denotes
the generating function )., Az’

Definition 2.1. We call D(t;) - - - D(t,,) and U(t,) - - - U(t1) generalized
Schur operators with {an} if the following conditions are satisfied:

e {a,} is a sequence of elements of K.

e U; is a linear map on V satisfying U;(V;) C V4 for all 5.
e D; is a linear map on V satisfying D;(V;) C Vj_; for all j.
o The equation D(¥')U(t) = a(¢¢")U(t)D(t') holds.

2.2. Rooted Planar Binary Trees. Let F' be the monoid of words
generated by the alphabet {1,2}, and let 0 denote the word whose
length is zero. We also regard F as a poset by v < vw for v,w € F:
We call a subset T' C F an ideal of the poset F if w < v for somev € T
implies w € T. We call a finite ideal of the poset F' a rooted planar
binary tree or shortly tree. Let T denote the set of trees.

Let T be a tree. An element of T is called a node of T'. Let T; be the
set of trees of i nodes. For a node v, we call the node v2 (resp. v1) the
right (resp. left) child of v. A node without children is called a leaf. If
T is nonempty, 0 € T. We call 0 the root of . For T € T and v € F,
we define T, by T, :={weT|v<w}.
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Ezample 2.2. Let T = {0,11,2,21,211,22,221,2211 }. Then we have
the right child of 0: the root

the left child of I——

leaves&————-— #2211

Definition 2.3. Let T be a tree, and m a positive integer. We call a
map ¢: T — {1,...,m} a right-strictly-increasing labelling if
¢ p(w) < p(v) for w € T and v € Ty, and
e p(w) < p(v) for w e T and v € Tyy.
We call amap ¢: T — { 1,...,m } a left-strictly-increasing labelling if
o $(w) < ¢(v) for w € T and v € Ty, and
o P(w) < ¢p(v) for w € T and v € Typ.
We call a map ¢: T — {1,...,m } a binary-searching labelling if
e p(w) > Y(v) for w € T and v € Ty, and
o p(w) < P(v) for w € T and v € Tye.

Ezample 2.4. The following labellings are respectively right-strictly-
increasing, left-strictly-increasing, and binary-searching:

1 1 2
7N\ 7N\ 7N\

1 2 2 1 1 4
2 N Ny 37 5
s N i
4 3 3 3 3 5
/ / /

(right-strictly-increasing) (left-strictly-increasing) (binary-searching)

2.3. Definition of our generalized Schur operators. In this sub-
section, we define linear operators U;, U/, and D;. In Section 3, we
shall show that they are generalized Schur operators.

2.3.1. Up operators. We define up operators U; (resp.. U}) and consider
a relation between the up operators U; (resp. U}) and right-strictly
(resp. left-strictly) labellings.

Definition 2.5. We define the edges Gy of oriented graphs whose
vertices are trees to be the set of pairs (7,7") of trees satisfying the
following: A
e TCT.
o For each w € T"\ T, there exists v,, € T such that w = v, 1" or
w = v, 21" for some nonnegative integer n if T # 0.



YASUHIDE NUMATA

e For each w € T\ T, w = 1" for some nonnegative integer n if
T =0.

We call T' a tree obtained from T by adding some l-strips if (T, T") €
Gy. Fori e N=1{0,1,2,...}, we define Gy, by -
Gy, ={(T,T") € Gy||T| +i=|T"|}.

Definition 2.6. For i € N and T € T, we define linear operators U;

on KT by
ur= Yy, T.
T/: (T, T")€Gu,

Equivalently, U;T is the sum of all trees obtained from T by adding
l-strips with ¢ nodes.

Ezample 2.7. The action of Us on {0} is as follows:

o 3 / + />+ //\+ )
Remark 2.8. Let ¢ be a right-strictly-increasing labelling. The inverse
image ¢~1({1,...,n + 1}) is the tree obtained from the inverse image
©1({1,...,n}) by adding l-strips. Hence we identify right-strictly-

increasing labellings with paths (0 = T°,T%,...,T™) of the graph
(T’GU )

Ezample 2.9. We identify the right-strictly-increasing labelling in Ex-
ample 2.4 with the sequence

R N Ve
1 /1 2 /l /2\ /1 /2\
2 2 3 3 2 3 3
A0
3 4 3
/ Y
3 3

Next we define another family of up operators U;.

Definition 2.10. We define the edges Gy of oriented graphs whose
vertices are trees to be the set of pairs (T,T") of trees satisfying the
following:
eTCT.
e For each w € T"\ T, there exists v, € T such that w = v,2" or
w = v,12" for some nonnegative integer n if T # 0.

e For each w € T"\ T, w = 2" for some nonnegative integer n if
T=0.
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We call T a tree obtained from T by adding r-strips if (T, T') € Gyr.
For i € N, we define G‘ii by
| Gy ={(T,T) € Gu||T| +i =T }.
Definition 2.11. For i € N and T € T, we define linear operators U]

on KT to be
vr= Y. T
T': (T,T)€Gy;

Equivalently, U/T is the sum of all trees obtained from T by adding
r-strips with ¢ nodes.

Remark 2.12. We identify left-strictly-increasing labellings with paths
(0 =T°T",...,T™) of the graph. (T, Gv).

2.3.2. Down operators. We define down operators D; on KT, and we
consider relations between the down operators D; and binary searching
labellings. .

For T € T, let Ry denote the set {w € T|w2 € T'}. For w € Rr, we
define

Tow=(T\Ty)U{wv|wlveTy}.
There exists the inclusion vz, from T'© w to T defined by
{UT,w(wv) =wlv (wv€Ty)
vr(V) =1 (v & Toy).
Ezample 2.13. For w = 1221 and

T = TOw=

where o are nodes in Ry or Rrgw, and #is w = 1221. The inclusion v,

maps the nodes in <} of T ®w to the nodes in Q of T, and the nodes

in / of T © w to the nodes in \ / of T, respectively.

For T'e T, let Er denote {w € T 1% = vlw then v2 ¢ T}.
Roughly speaking, it is the set of nodes of T' between the root 0 and
the right-most node of T. We define rr by rr = ErN\ Rr. The set rr is
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a chain. Let rr = {wm <wrg <wrg <- < wT,k}. Let T denote
the ideal {wr,1, wre, wrs, ..., wr;} of rr consisting of ¢ nodes.

Ezample 2.14. Let T be the one in Example 2.13. Then the nodes in
Er are on the thick line, and the nodes in Ry are e in the following

picture:
w1

wr,2
wT,3
wr4

wrs -
Hence rp = { 0,122,1221,12211,1221112 }, and rr,3 = { 0,122,1221 }.
We define T © rr; inductively by
{(T Quwr;) O rri-1 1>0
T i=0.
We also define the inclusion vr; from T © rr; to T inductively by
VTi = VTowri—-1 © VTwr,-

Ezample 2.15. For T in Example 2.13, we have

— — 6 — =T6TT,3-
LR

The inclusion vr3 maps the nodes o in T ©rr3 to the nodes o in T

We also define a bijection Dr; from the words F of { 1,2 }to F\rr:
by
vri(w) = vri(v),
where w = v/ and v = max{u € T©rr;|w=wuu'}. By deﬁmtlon,
vpi(w) = vpi(w) for w € T © 71y

Definition 2.16. We define the edges Gp of oriented graphs whose
vertices are trees to be the set of pairs (T,T") of trees such that T' =
T' & rpv; for some i. For i € N, we define Gp, by

Gp, = {(T,T") € Gp||T| +i=1|T" }.

Remark 2.17. By definition, Gp, = { (T,T)|T € T }. For each i and
TeT, |{(T,T)eGp|T"=T} <1
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Definition 2.18. For i € N, we define linear operators D; by
DT= > T
T': (T",T)€Gp,
for TeT.
Ezample 2.19. The operator Dj acts as follows:

2
-

)

Next we consider a relation between Gp and binary-searching la-
bellings. Let ¢,,: T — {1,...,m} be a binary-searching labelling. By
the definition of binary-searching labelling, the inverse image ¥} ({m})
equals rr, = {wr1,...,Wrk,} for some k,,. Hence we can construct
the tree T © vy} ({m}). Let T™ ! be the tree T © ¢, ({m}). Then the
inclusion vry,, induces a binary-searching labelling

Tpm—l-—-’l/)mOVT,km:Tm‘l-—->{1,...,m-—1}

on the tree T™~!. Hence we identify binary-searching labellings on T'
with paths '

@=1°T,..., T =T)
of the graph (T, Gp).

Ezample 2.20. We identify the binary-searching labelling in Example
2.4 with the sequence '

2
\4
A Y AN
Y s

3. MAIN RESULTS

We retain all the notation used in the previous sections. In Subsec-

tion 3.1, we show the main theorems, which are proved in Subsection
3.2.
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3.1. Main Results.

Theorem 3.1. The operators D(t) and U(t') satisfy the equation

(1) DEU() = = U()D()

Equivalently, D(t1)--- D(t,) and U(t,)---U(t1) are generalized Schur
operators with {1,1,1,...}.

Theorem 3.2. The operators D(t) and U'(t') satisfy the equation

(2) DU () = (1 +t)U' () D().

Equivalently, D(t;) - - - D(tn) and U'(ts) - - - U'(t1) are generalized Schur
operators with {1,1,0,0,0,0...}.

Corollary 3.3. The graphs (T, Gy, = Gu:) and (T, Gp,) are 1-dual in

the sense of Fomin [4]. Equivalently, Uy and D, satisfy the equation
DU, - UDy =1,

where I is the identity map on V.

Remark 3.4. Nzeutchap [8] constructs r-dual graphs from dual Hopf

algebras. The graphs (T,Gy,) and (T,Gp,) are identified with the
1-dual graphs obtained from the Loday-Ronco algebra by his method.

Corollary 3.5. The up and down operators Uy and D satisfy
DU1 - U1D = D.

Let ( , ) be the natural pairing in KY, i.e., the bilinear form on

¥V x V such that (Yyey 03\, Y ey but) = Ssey dabr. We define Uy
and D? as the maps obtained from the adjoints of U; and D; with
respect to ( , ) by restricting to V, respectively. Then we have the
following corollary.

Corollary 3.6. The up and down operators Df and U* satisfy

U*D; — DiU* =U",
where U* =y, U}
3.2. Proof of Main results. In this subsection, we prove Theorems
3.1 and 3.2. First we rewrite their statements as the equations of the
cardinalities of some sets (Remark 3.10). Then we show the equations
by constructing bijections (Lemmas 3.11 and 3.12).
Lemma 3.7. The equation (1) is equivalent to

min (i,k)

(3) DiUi= Y UiiDj for all 4,j.
k=0



GENERALIZED SCHUR OPERATORS ON PLANAR BINARY TREES

Lemma 3.8. The equation (2) is equivalent to
min (1,i,k)

(4) DiUj= > Ui_Dj for all 4, j.
k=0

Definition 8.9. We define N;;(T,T") and N{;(T,T') by
N’;»j(T’ T,) = { ((T’ T”)i (TI7 T”)) € GU{ X GDj }

and

Ni(T,T') = { (T,T"),(T',T")) € Gu; x G, }.

We define S;;(T,T") and S (T, T") by
S;4(T,T) = { (T",T),(T",T")) € Gp, x Gy, }
and
Sii(T,T) = { (T",T),(T",T")) € Gp,; x Gy } .
We also define S;,(T,T") and S},(T,T") by
_ mins,j)
ST = [ Si-kes(T,T")
k=0
~ min(1,3,5) .
S;,::(Ta T/) = H S,;‘-—k,i—k(Tv Tl)’
k=0
where ]| denotes the disjoint union.
Roughly speaking, N;;(T,T') and: N ;(T,T’) are the set of pairs of
edges which share the same trees as their end points, while S;;(T,T")

and S} (T, T") are the set of pairs of edges which share the same trees
as their start points.

Remark 3.10. By definition,
(D;UT,T') = [Niy(T, T')},
(DJUT,T') = [Niy(T,T')],
(U;DT, Ty = |5 ;(T, T"),
and
(U;DIT, T') = |S4,(T, ")
for T,T' € T. Hence the equation (3) (resp. (4)) is equivalent to the
equation [Ny (T, T)| = |5;s(T, )| (esp. [N, (T, )| = 81T, ).

Lemma 3.11. For T, T' € T and i, j € N, there ezists a bijection
from N ;(T,T") to S;s(T,T").
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Proof. First we construct an element of gj,i(T, T") from an element of
N;;(T,T"). Let ((T,T"),(T",T")) be an element of N;;(T,T"). Equiv-
alently, (T,T") is an edge of Gy, such that T” © rpv; = T'. Let k be
§ = |rpn; O rp|. We have rrj_ = rpv; O rr since rrv is one of the
following:

rT,

regU{ w2l [i<n },

regU {wrpalf|i<n }
for some I, n € N. Let us consider

(T errixT), (T orrj-kT)).

We prove (T © rrj—i; T), (T © r1ji, T')) € S;:(T, T"). Equivalently,
we prove (T © rrjk,T) € Gp,_, and (T © rrj-k,T') € Gu,_,- By
definition, it is clear that the edge (T © 71—k, T) is in Gp,_,- On the
other hand, (T,T") € Gy, implies that (T’ © r1j_k,T" © rrv5) is in
Gy,_,. Since T' = T" © rrn;, the edge (T © rrj—k,T") is in Gu,_,-
Hence we have (T © r1-k, T), (T © rrj—1, T")) € Sja(T, T").

Next we construct an element of N;;(T,T’) from an element of
S,4(T, T"). Let (T",T),(T",T")) be an element of S;;(T, T"). Bquiv-
alently, (T",T") is an edge of Gy, such that.T © rr;— = T". First
. we consider the case where |rp| > j — k. Let w = wr; k41 and
W' € vgs_(w). Since o/ € T © 7y, and w2 & T © 71—k, We have

T!y={w2,w21,... 021" }

w

for some n € N. (In the case where n = 0, { w'2,0/21,... ,w'21m1 )
denotes the empty set.) For such n, let R denote

{w2,w2l,...,w2l" R}
We define T" to be
ﬁT,j~k(T) Urrj-x U R.

Since row = rp;_xUR, the pair (T, T"), (T",T")) is in Niy(T, T"). Next
we consider the case where |rp| = j — k. Let w be

max{w & rr|w < wrjk }
and w' € vg;_4(r). Since ' € TS rr;k and W2 € T Orrj-k, We have
Tin={w?2,w2l,... ,w'21m1 )
for some n € N. For such n, let R denote
{wrjksl,..., wrjokpr 1V}
We define T” to be
vrj—k(T)Urrj—kU R.
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Since rpw = rr;_; U R, the pair ((T,T"),(T",T")) is in N;;(T,T").
Thus we can construct an element of N;;(T,T") from an element of

S;(T, T").
By the definition of them, these constructions are the inverses of each
other. Hence we have the lemma. O

We can prove Lemma 3.12 by the same argument as in the proof of
Lemma 3.11. :

Lemma 3.12. For T, T' € T, there exists a bijection from N ;(T,T")
to S} (T, T").
Lemmas 3.11 and 3.12 imply Theorems 3.1 and 3.2.

4. APPLICATION

In this section, we consider a relation between our generalized Schur
operators and the Loday-Ronco algebra. _

We have correspondences between the sets N; ;(T,T") and S; ;(T,T")
for all 4, § by the proof of Lemma 3.11. From them, we can construct
a Robinson-Schensted-Knuth correspondence for paths of Gy and Gp
by the method in [4]. This correspondence is a generalization of the
Loday-Ronco correspondence, which is a Robinson correspondence for
labellings on binary trees. By Lemma 3.12, we also have correspon-
dences between N; ;(T,T") and S;,(T,T"). By the same argument as in
the case of Gy and Gp, we can construct a Robinson-Schensted-Knuth
correspondence for paths of Gy and Gp, which is another generaliza-
tion of the Loday-Ronco correspondence.

Remark 4.1. Rey gave a construction of the Loday-Ronco algebra in
[9]. He introduced a new Robinson-Schensted-Knuth correspondence
for binary trees to construct the Loday-Ronco algebra. Some of our
correspondences are equivalent to his correspondence.

Definition 4.2. For \, u € V, we define quasi-symmetric polynomials
sf’“(tl,...,tn), si‘,’"(tl, ooy b)), and si,",“(tl, eyt by

shu(tiy -y tn) = (D(t) - D(t)T, T')
sph(tyy. . te) = (U(ts) - Ut)T', T),
sty s tn) = (U'(ta) - - U'(01)T', T) .

For a labelling ¢ from T to {1,...,m}, set t¥ = [[, 7 toqw). For a
tree T, by the definition of labellings,

'STQ,(D(tI’ cetn) = tha
¥

sty te) = 31,
@
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ol ta) = 312,
¢

where the first sum is over all binary-searching labellings ¥ on T, the
second over all right-strictly-increasing labellings ¢ on T, and the last
over all left-strictly-increasing labellings ¢ on T'.

Remark 4.3. The polynomials sg’ﬁ(tl,...,tn) and spy(ty,---,ta) are
the commutativizations of the basis elements Qr and Pr of PBT in
Hivert-Novelli-Thibon [6].

Since D(t) and U(t) are generalized Schur operators, we have Pieri
formula for s5° (1, ... ,t,) and s29(t1,-- -, ta) by [7]. By [4], we have
Cauchy identity for them. We also have a “skew” version of them.
We also have Pieri formula and Cauchy identity for sgto(tl, ..., l,) and
Sr_,Dw’m(tl, ey tn).

Remark 4.4. These polynomials are not symmetric in general. This is
because D; does not commute with D; in general. For example, since

D(t1)D(t2){0,1,12}

=D(t)({0,1,12} +£{ 0,2} +3{0})

= ({0,1,12} + {0, 2} + 2{0}) + t2({0, 2} + t1{0}) + 13({0} + t.0),
we have (D(t;)D(t) {0,1,12 },0) = t1t3, which is not symmetric.
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