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1. INTRODUCTION

The aim of this note is to introduce a compound basis for the space of symmetric
functions. Our basis consists of products of Schur functions and Q‐functions. The
basis elements are indexed by the partitions. It is well known that the Schur
functions form an orthonormal basis for our space. A natural question arises. How
are these two bases connected? In this note we present some numerical results of
the transition matrix for these bases. In particular we will see that the determinant
of the transition matrix is a power of 2. This is not a surprising fact. However the

explicit formula involves an interesting combinatorial feature.
Our compound basis comes from the twisted homogeneous realization of the

basic representation of the affine Lie algebra A_{1}^{(1)} (cf. [4]). A brief account of the

relation with A_{1}^{(1)} is found in [lj. Also an expression of rectangular Schur functions
in terms of the compound basis is given in [3],

This note is not written in a standard style of mathematical articles. It is more

like a draft of a talk. In particular proofs are not given here. Details and proofs
will be published elsewhere.

2. SPACE OF SYMMETRIC FUNCTIONS

Throughout this note V denotes the spacc of polynoinials in infinitely many
variables:

V=\displaystyle \mathbb{Q}[t_{j};j\geq 1]=\bigoplus_{n=0}^{\infty}V(n) .

Here V(n) denotes the space of homogeneous polynomials of degree n , subject to

\deg t_{j}=j . This space can be regarded as the ring of symmetric functions by
identifying t_{j} with a constant multiple of the j‐th power sum p_{j}=x_{1}^{j}+x_{2}^{j}+\cdots,
where xk �s are the �original� variables.

The first basis for V consists of the Schur functions. Let P(n) denote the set of

the partitions of n . For  $\lambda$\in P(n) , the Schur function S_{ $\lambda$}(t) indexed by  $\lambda$ is defined

by

 S_{ $\lambda$}(t)=\displaystyle \sum_{p\in P(n)}$\chi$_{ $\rho$}^{ $\lambda$}\frac{t_{1}^{m_{1}}t_{2}^{ $\tau$ n_{2}}}{m_{1}!m_{2}!} \in V(n) .

Here the summation runs over all  $\rho$=(1^{7n_{1}}2^{m_{2}}\cdots)\in P(n) , and the integer $\chi$_{p}^{ $\lambda$} is

the irreducible character of  $\lambda$ of the symmetric group  S_{n} , evaluated at the conjugacy
class  $\rho$ . The ��original�� (symmetric) Schur function is recovered by putting  t_{j}=

© 2008 Research lnstitute for Mathematical Sciences, Kyoto University. All rights reserved.



64 KAZUYAAOKAGE, HIROSHI MIZUKAWAAND HIRO‐FUMI YAMADA

p_{j}/j . It is known that these Schur functions are orthonormal with respect to the

inner product

\{F, G\rangle=F(\partial)G(t)|_{t=0},
where \displaystyle \partial=(\frac{\partial}{\partial t_{1}}, \frac{1}{2}\frac{\partial}{\partial t_{2}}, \frac{1}{3}\frac{\partial}{\partial t_{3}}, \cdots) . By this orthogonality one deduces that \{S_{ $\lambda$}(t); $\lambda$\in
 P(n)\} forms an orthonormal basis for the space V( $\tau \iota$) .

The second basis for V is called the compound basis. Let SP(n) denote the set

of the strict partitions of n . For  $\lambda$\in SP(n) , the (Schur) Q‐function Q_{ $\lambda$}(t) indexed

by  $\lambda$ is defined by

 Q_{ $\lambda$}(t)=\displaystyle \sum_{ $\rho$\in OP(r $\nu$)}2\frac{\ell( $\lambda$)-\ell( $\rho$)+ $\epsilon$}{2}$\zeta$_{ $\rho$}^{ $\lambda$}\frac{t_{1}^{7n_{1}}t_{3}^{m_{8}}}{m_{1}!m_{3}!} \in V(n) .

Here the summation runs over all odd partitions  $\rho$=(1^{m_{1}}3^{m_{3}}5^{m_{5}}\cdots) of n ,
the

integer $\zeta$_{ $\rho$}^{ $\lambda$} is the irreducible spin character of  $\lambda$ of the symmetric group  S_{n} , evaluated

at the conjugacy class  $\rho$ , and  $\epsilon$=0 or 1 according to that \ell( $\lambda$)-l( $\rho$) is even or

odd. The �original� (symmetric) Q‐function is recovered by putting l_{j}=2p_{j}/j.
It is known that the Q‐functions are orthogonal to each other with respect to the

inner product

\{F, G\rangle'=F(2\partial)G(t)|_{t=0}
By virtue of this orthogonality, the set

\{Q_{ $\mu$}(t)S_{ $\iota$/}(t^{\ovalbox{\tt\small REJECT}}); $\mu$\in SP(n_{0}),  $\nu$\in P(n_{1}), n_{0}+2n_{1}=n\}
forms a basis for the space V(n) , where we put

S_{ $\nu$}(t^{\ovalbox{\tt\small REJECT}})=S_{ $\nu$}(t)|_{t_{j}\mapsto t_{2\mathrm{j}}}.
This compound basis naturally arises in the study of rectangular Schur functions

as weight vectors of the basic representation of the affine Lie algebra A_{1}^{(1)} (cf. [4],
[1] and [3]).

3. TRANSITION MATRICES

We begin with some bijections between sets of partitions. The first one is

 $\varphi$:P(n)\displaystyle \rightarrow\bigcup_{n\mathrm{o}+2n_{1}=n}SP(n_{0})\times P(n_{1})
defined uy  $\lambda$\mapsto($\lambda$^{r}, $\lambda$^{d}) . Here the multiplicities m_{i}($\lambda$^{r}) and m_{i}($\lambda$^{d}) are given re‐

spectively by

mi ($\lambda$^{r})=\left\{\begin{array}{l}
1 m_{i}( $\lambda$)\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} 2)\\
0 m_{i}( $\lambda$)\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d}2),
\end{array}\right.
and

m_{i}($\lambda$^{d})=\left\{\begin{array}{ll}
\frac{1}{2}(m_{i}( $\lambda$)-1) & m_{i}( $\lambda$)\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} 2)\\
\frac{1}{2}(m_{i}( $\lambda$)) & m_{i}( $\lambda$)\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} 2) .
\end{array}\right.
For example, if  $\lambda$=(5^{3}4^{4}2^{7}1) , then $\lambda$^{r}=(521) and $\lambda$^{d}=(54^{2}2^{3}) . We set

P(n_{0}, n_{1})=$\varphi$^{-1}(SP(n_{0})\times P(n_{1})) .
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The second bijection is

 $\psi$:P(n)\displaystyle \rightarrow\bigcup_{n_{1}+2n_{2}=n}OP(n_{1})\times P(n_{2})
defined by  $\psi$( $\lambda$)=($\lambda$^{o}, $\lambda$^{\mathrm{e}}) . Here $\lambda$^{o} is obtained by picking up the odd parts
of  $\lambda$ , while  $\lambda$^{e} is obtained by taking halves of the even parts. For example, if

 $\lambda$=(5^{3}4^{4}2^{7}1) , then $\lambda$^{o}=(5^{3}1) and $\lambda$^{e}=(2^{4}1^{7}) .

The third bijection is called the 2‐Glaisher map. Let  $\lambda$= ($\lambda$_{1}, $\lambda$_{2}, \cdots , $\lambda$_{\ell}) be a

strict partition of n . Suppose that $\lambda$_{i}=2^{p_{i}}q_{i} (i=1,2, \cdots , \ell) , where q_{i} is odd.

Then an odd partition \tilde{ $\lambda$} of n is defined by

m_{2j-1}(\displaystyle \tilde{ $\lambda$})=\sum_{q_{i}=2j-1,i\geq 1}2^{p_{t}}.
For example, if  $\lambda$=(8,6,4,3,1) then \tilde{ $\lambda$}=(3^{3},1^{13}) . This gives a bijection between

SP(n) and OP(n) .

Here are several identities for the lengths of the partitions. Let (n_{0}, n_{1}) be fixed.

Then we have

\displaystyle \sum_{ $\lambda$\in P(n)}\ell( $\lambda$)=\sum_{ $\lambda$\in P(n)}(\ell($\lambda$^{r})+2\ell($\lambda$^{d}))=\sum_{ $\lambda$\in P(n)}(l($\lambda$^{o})+l($\lambda$^{\mathrm{e}}))=\sum_{ $\lambda$\in P(r $\iota$)}(\ell(\tilde{ $\lambda$}^{r})+\ell($\lambda$^{e})) ,

 $\lambda$\displaystyle \in P(n_{0}n_{1}) $\lambda$\in P(nn) $\lambda$\in P(n_{0}n_{1}\sum,\ell( $\lambda$)=\sum_{01},(\ell($\lambda$^{r})+2\ell($\lambda$^{d}))=\sum_{)},(\ell($\lambda$^{o})+l($\lambda$^{e})) ,

\displaystyle \sum_{ $\lambda$\in P(n)}2\ell($\lambda$^{d})=\sum_{ $\lambda$\in P(n)}2l($\lambda$^{e})=\sum_{ $\lambda$\in P(n)}(l($\lambda$^{o})+\ell($\lambda$^{e})-\ell($\lambda$^{r}))=\sum_{ $\lambda$\in P(n)}(l(\tilde{ $\lambda$}^{r})-l($\lambda$^{r})+\ell($\lambda$^{e})) ,

and

\displaystyle \sum_{ $\lambda$\in P(n_{0},n_{1})}2l($\lambda$^{d})=\sum_{ $\lambda$\in P(n_{0}n_{1})},(l($\lambda$^{o})+p($\lambda$^{\mathrm{e}})-p($\lambda$^{r}))
.

For simplicity we write

W_{ $\lambda$}(t)=Q_{$\lambda$^{r}}(t)S_{$\lambda$^{d}}(i')

for  $\lambda$\in P(n) . Our problem is to determine the transition matrix between two

bases. Let A_{n}=(a_{ $\lambda \mu$}) be defined by

S_{ $\lambda$}(t)=\displaystyle \sum_{ $\mu$\in P(n)}a_{ $\lambda \mu$}W_{ $\mu$}(t)
for  $\lambda$\in P(n) . Here is a small list of A_{n}.

A_{2}=

A_{3}=
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A_{4}=

A_{5}=

One readily sees that the entries are integers. Also, looking at the columns

corresponding to ( $\mu$, \emptyset) with  $\mu$\in SP(n) , entries are non‐negative integers. The

submatrix consisting of these columns will be denoted by $\Gamma$_{n} . The entries of $\Gamma$_{n}
are called the Stembridge coefficients, whose combinatorial nature has been known

([6], [5]).
Here we recall the definition of decomposition matrices for the p‐‐modular rep‐

resentations of the symmetric group S_{n} . Let p be a fixed prime number. A par‐

tition  $\lambda$= ($\lambda$_{1}, $\lambda$_{2}, \cdots, $\lambda$_{l}) is said to be p‐regular if there are no parts satisfying
$\lambda$_{i}=$\lambda$_{i+1}=\cdots=$\lambda$_{i+p-1}\geq 1 . Note that a 2‐regular partition is nothing but

a strict partition. The set of p‐regular partitions of n is denoted by P^{r(p)}(n) . \mathrm{A}

partition  $\rho$=(1^{m_{1}}2^{m_{2}}\cdots) is said to be p‐class regular of m_{p}=m_{2p}=\cdots= O.

Note that a 2‐class regular partition is nothing but an odd partition. The set of

pclass regular partitions of n is denoted by P^{\mathrm{c}(p)}(n) . The p‐Glaisher map  $\lambda$\mapsto\tilde{ $\lambda$} is

defined in a natural way. This gives a bijection between P^{r(\mathrm{p})}(n) and P^{c(p)}(n) . For

 $\lambda$\in P^{r(p)}(n) , we define the Brauer‐Schur function B_{ $\lambda$}^{(p)}(t) indexed by  $\lambda$ as follows.

 B_{ $\lambda$}^{(p)}(t)=\displaystyle \sum_{ $\rho$\in P^{\mathrm{c}(\mathrm{p}\rangle}(n)}$\varphi$_{ $\rho$}^{ $\lambda$}\frac{t_{1}^{\prime n_{1}}t_{2}^{rn_{2}}}{m_{1}!m_{2}!} \in V(n) ,

where $\varphi$_{ $\rho$}^{ $\lambda$} is the irreducible Brauer character corresponding to  $\lambda$ , evaluated at the

p‐‐regular conjugacy class  $\rho$ . These functions form a basis for the space  V^{(\mathrm{p})}(n)=
V^{(\mathrm{p})}\cap V(n) , where

V^{(\mathrm{p})}=\mathbb{Q}[t_{j};j\geq 1,j\not\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} p)\}.
Given a Schur function S_{ $\lambda$}(t) , define the \mathrm{p}‐reduced Schur function S_{ $\lambda$}^{(p)}(t) by

�killing� all variables t_{p}, t_{2p}, \cdots

;

 S_{ $\lambda$}^{(p)}(t)=S_{ $\lambda$}(t)|_{t_{j\mathrm{p}}=0}.
These p‐reduced Schur functions are no longer linearly independent. All linear

relations among these polynomials are known (cf. [2]). The p‐‐decomposition matrix
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D_{n}^{(p)}=(d_{ $\lambda \mu$}) is defined by

S_{ $\lambda$}^{(p)}(t)=\displaystyle \sum_{ $\mu$\in P^{r(p)}(n)}d_{ $\lambda \mu$}B_{ $\mu$}^{(\mathrm{p})}(t)
for  $\lambda$\in P(n) .

Now let us go back to the case of p=2 . We shall write D_{n} in place of D_{n}^{(2)} . By
definition, the Stembridge coefficients a_{ $\lambda \mu$} ( $\lambda$\in P(n),  $\mu$\in SP(n)) appear as

S_{ $\lambda$}^{(2)}(t)=\displaystyle \sum_{ $\mu$\in SP(n)}a_{ $\lambda \mu$}Q_{ $\mu$}(t) .

Looking at the matrices D_{n}=(d_{ $\lambda \mu$}) and $\Gamma$_{n}=(a_{ $\lambda \mu$}) , one observes that they are

��very similar� In fact one can prove that they are transformed to each other by
column operations. We consider the Cartan matrix C_{n}={}^{t}D_{n}D_{n} and the corre‐

spondent G_{n}={}^{t}$\Gamma$_{n}$\Gamma$_{n} . The elementary divisors of C_{n} and G_{n} coincide, They are

given by \{2^{\ell(\tilde{ $\lambda$})-l( $\lambda$)}; $\lambda$\in SP(n)\} ([7]). Our transition matrix A_{n}=(a_{ $\lambda \mu$})_{ $\lambda,\ \mu$\in P(n)}
can be regarded as a common generalization of the matrix $\Gamma$_{n} of Stembridge coef‐
ficients and the decomposition matrix D_{n}.

We have a formula for the determinant of A_{n}.

|\det A_{n}|=2^{k_{n}},

where k_{n}=\displaystyle \sum_{ $\lambda$\in P(n)}\ell($\lambda$^{d})=\sum_{ $\lambda$\in P(n)}(l(\tilde{ $\lambda$}^{r})-\ell($\lambda$^{r})) .

Here is a list of k_{n}.

\displaystyle \frac{n|12345678}{k_{n}|01145111528}
It is natural to consider the Cartan‐like matrix {}^{t}A_{n}A_{n} . Let us look at some of

these matrices.

(2, \emptyset) (\emptyset, 1)

{}^{t}A_{2}A_{2}=(\emptyset,1)(2,\emptyset)\left(\begin{array}{ll}
2 & 0\\
0 & 2
\end{array}\right)
(3, \emptyset) (21, \emptyset) (1, 1)

{}^{t}A_{3}A_{3}=(1,1)(21, \emptyset)(3, \emptyset)\left(\begin{array}{lll}
3 & 1 & 0\\
1 & 1 & 0\\
0 & 0 & 2
\end{array}\right)
(4, \emptyset) (31,  $\phi$) (2, 1) (\emptyset, 2) (\emptyset, 1^{2})

{}^{t}A_{4}A_{4}=(2,1)(31,\emptyset)(\emptyset,1^{2})(\emptyset,2)(4,\emptyset)\left(\begin{array}{lllll}
4 & 2 & 0 & 0 & 0\\
2 & 3 & 0 & 0 & 0\\
0 & 0 & 4 & 0 & 0\\
0 & 0 & 0 & 3 & 1\\
0 & 0 & 0 & 1 & 3
\end{array}\right)
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(5, \emptyset) (41, \emptyset) (32, \emptyset) (3, 1) (21, 1) (1, 2) ( 1, 1^{2})

{}^{t}A_{5}A_{5}=(5,\emptyset)(41,\emptyset)(32,\emptyset)(3,1)(21,1)(1,2)(1,1^{2})\ovalbox{\tt\small REJECT} 5300010 3350000 3130000 0_{0}00620 0_{0}00220 00_{1}0003 0_{3}0_{1}000 \ovalbox{\tt\small REJECT}
It can be verified that {}^{t}A_{n}A_{n} is block diagonal indexed by the pairs (n_{0}, n_{1}) .

Let B_{n_{0},n_{1}} be ghe corresponding block in {}^{t}A_{n}A_{n} . Note that the principal block

B_{n0} is nothing Uut the matrix G_{n} . It is plausible that there is a nice formula

for elementaiy divisors of the block B_{n_{0},n_{1}} . At present, however, we only have a

formula for the determinant.

|\det B_{n_{0},n_{1}}|=2^{$\Sigma$_{ $\lambda$\in P(n_{0\prime}n_{1})}(\ell(\tilde{ $\lambda$}^{r})-l($\lambda$^{r})+\ell($\lambda$^{d}))}.

4. TOWARDS THE GENERAL CHARACTERISTIC

We want a compound basis for the general characteristic p , i.e., a basis for the

space

V=V^{(p)}\otimes V_{(p)},
where V_{(p)}-\mathbb{Q}[t_{\mathrm{p}j};g \underline{>}1] . However, since Schur�s Q‐functions are defined only

for the strict partitions, we must give up taking Q‐functions. We saw that the

Stembridge matrix $\Gamma$_{n} and the decompositton matrix D_{n} are similas. Therefore,

for the case of geneial p , we adopt ehe Brauer‐Schur functions B_{ $\lambda$}^{(p)}(t) instead of

Q‐functions.

Let p be a fixed prime number. For a partition  $\lambda$=($\lambda$_{1}, \cdots, $\lambda$_{\ell}) of n , partitions

$\lambda$^{r(p)} and $\lambda$^{d(p)} are defined in the following way. The multiplicities \uparrow n_{i}($\lambda$^{r(p)}) and

m_{i}($\lambda$^{d(p)}) are given respectively by

m_{i}($\lambda$^{r(p)})=k if m_{i}( $\lambda$)\equiv k (\mathrm{m}\mathrm{o}\mathrm{d} p)

and

m_{i}($\lambda$^{d(p)})=\displaystyle \frac{m_{i}( $\lambda$)-k}{p} if m_{i}( $\lambda$)\equiv k (\mathrm{m}\mathrm{o}\mathrm{d} p) .

For example, if p=3 and  $\lambda$=(5^{3}4^{4}2^{11}1^{2}) ,
then $\lambda$^{r(p)}=(42^{2}1^{2}) and $\lambda$^{d(p)}=(542^{3}) .

This gives a bijection

$\varphi$^{(p)}:P(n)\displaystyle \rightarrow\bigcup_{7$\tau$_{0}+pn_{1}=n}P^{r(p)}(n_{0})\times P(n_{1})
.

In view of this bijection, we define, for  $\lambda$\in P(n) ,

W_{ $\lambda$}^{(p)}(t)=B_{$\lambda$^{r(p\rangle}}^{(\mathrm{p})}(t)S_{$\lambda$^{d(p)}}(t_{(\mathrm{p})}) ,
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where t_{(p)}=(t_{p}, t_{2p}, t_{3p}, \cdots) . These functions are linearly independent and form a

compound basis for the space V(n) . Inconsistently W_{ $\lambda$}^{(2)}(t) and W_{ $\lambda$}(t) are not the
same. Unfortunately we do not know any connection with representation theory of
affine Lie algebras yet. At present we only verify some numerical properties of this

compound basis.

Let A_{n}^{(p)}=(a_{ $\lambda \mu$}) be the transition matríx defined Uy

S_{ $\lambda$}(t)=\displaystyle \sum_{ $\mu$\in P(n)}a_{ $\lambda \mu$}W_{ $\mu$}^{(p)}(t)
for  $\lambda$\in P(n) . One verifies that A_{n}^{(p)} is an integral matrix and

\det A_{n}^{(p)}=p^{k_{n}^{(\mathrm{p})}},
where k_{n}^{(p)}=\displaystyle \sum_{ $\lambda$\in P(n)}\ell($\lambda$^{d(p)}) . As in the case of p=2 , we consider the matrix

{}^{t}A_{n}^{(p)}A_{n}^{(p)} . This is a block diagonal matrix indexed by the pairs (n_{0}, n_{1}) . Let B_{n_{0},n_{1}}^{(p)}
be the corresponding block in {}^{t}A_{n}^{(p)}A_{n}^{(p)} . It is obvious that the principal block B_{n,0}^{(p)}
coincides with the Cartan matrix C_{n}^{(p)} at characteristic p . The elementary divisors

of B_{n,0}^{(p)}=C_{n}^{(p)} are given ([7]) by

\displaystyle \{p\frac{\ell(\overline{ $\lambda$})-\ell( $\lambda$)}{p-1}; $\lambda$\in P^{r(p)}(n)\},
where \tilde{ $\lambda$} denotes the image of the p‐‐regular partition  $\lambda$ via the  p‐Glaisher map. For
the general block we are only aware of the determinant.

\det B_{n_{0},n_{1}}^{(p)}=p^{\triangle_{nn}}0,1)
where

$\Delta$_{n_{0},n_{1}}=\displaystyle \sum_{( $\mu,\ \nu$)\in P^{r(p)}(n_{0})\times P(n_{1})}(\frac{\ell(\tilde{ $\mu$})-\ell( $\mu$)}{p-1}+\ell( $\nu$)) .

We give the matrices A_{n}^{(\mathrm{p})} and {}^{t}A_{n}^{(p)}A_{n}^{(p)} for the case p=3 and n=5.

A_{5}^{(3)}=

(5, \emptyset) (2^{2}1, \emptyset) (41, \emptyset) (32, \emptyset) (31^{2}, \emptyset) (2_{ $\gamma$}1) (1^{2},1)

{}^{t}A_{5}^{(3)}A_{5}^{(3)}=(2^{2}1, $\phi$)(5,\emptyset)(32,\emptyset)(41,\emptyset)(2,1)(31^{2}, $\phi$)(1^{2},1)( 0020001 0020001 0020001 0002001 0000001 0000300 0000003 )
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There may be another natural generalization using the Hall‐Littlewood symmet‐

ric functions at root of unity (cf. [5]). The Brauer‐Schur function B_{ $\lambda$}^{(p)}(t) can be

replaced Uy P_{ $\lambda$}(t;\exp 2 $\pi$\sqrt{-1}/r) for any natural number r . This version of com‐

pound bases should be investigated separately.
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