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DESCRIPTIONS OF THE CRYSTAL B(c0) FOR G,

HYEONMI LEE

1. INTRODUCTION

We study the crystal base of the negative part of a quantum group. We introduce
two explicit descriptions of the crystal B(co) for types G2, namely, those that use
Young tableaux [3], extended Nakajima monomials [10]. We also extend CHff’s [1]
description of B(oc0) for classical finite types to the Ga-type. Note that this result
was dealt with by Kashiwara in [6] Example 2.2.7 and by Nakashima and Zelevinsky
in a more general form [12]. And we observe correspondence between the three
descriptions.

"The paper is organized as follows. We start by reviewing Young tableau expres-
sion-of crystal B(oo). Also, we cite the notion of extended Nakajima monomials
and the crystal structure given on the set of such monomials. We then proceed to
give a monomial description of the crystal B(oo). In the last section, we deal with
Cliff’s approach of describing B(co). In the process of obtaining these results, we
give explicit correspondences between the three descriptions.

2. NOTATIONS

We fix basic notations. Please refer to the references cited in the introduction
or books on quantum groups {2, 4] for the basic concepts on quantum groups and
crystal bases.

e I ={1,2}: index set for Gz-type

e A= (ay)ijer : Cartan matrix of type Gy with a;2 = —3 and ag; = —1

e a;, A; (i € I) : simple root, fundamental weight

e IIV = {h; | i € I} : the set of simple coroots

e II = {a;li € I'} : the set of simple root

o PV =@;c; Zh; : dual weight lattice

o P={lebh* | ANPV) CZ} = DicrZA; : weight lattice, where h = Q®z PV

o Pt ={Xe P|A(h;) > 0for all i € I'} : the set of dominant integral weights

e U (Gz) : quantum group for G,

e U, (Gy) : subalgebra of U,(G2) generated by f; (i € I)

e fi,& : Kashiwara operators

o B(\) : irreducible highest weight crystal of highest weight A

e B(o0) : crystal base of U; (Gz)
Throughout this paper, a Uy (G2)-crystal will refer to a (abstract) crystal associated
with the Cartan datum (A, ILIIY, P, PV). The crystal base B(c0) of U; (Gz) is &
U,(Ga)-crystal.
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FIGURE 1. Large (left), marginally large (middle), and non-large
(right) tableaux

3. YOUNG TABLEAU DESCRIPTION

In this section, we introduce a Young tableau description for the crystal B(co)
over type G2 [3]. '

For the Go-type, we shall take the Young tableau description of highest weight
crystal B(\) given in [5] as the definition of semi-standard tableaux. Since the work
is a rather well known result, we refer readers to the original papers and shall not
repeat the complicated definition here. The alphabet to be used inside the boxes
constituting the Young tableaux will be denoted by J, and it will be equipped with
an ordering <, as given in [5].

J={1<2<3<0<3<2<1}.
Definition 3.1.

(1) A semi-standard tableau T of shape A € P, equivalently, an element of an
irreducible highest weight crystal B()) for the G type, is large if it consists
of 2 non-empty rows, and if the number of 1-boxes in the first row is strictly
greater than the number of all boxes in the second row and the second row
contains at least one 2-box.

(2) A large tableau T is marginally large, if the number of 1-boxes in the first
row of T is greater than the number of all boxes in the second row by
exactly one and the second row of T contain one 2-box.

In Figure 1, we give examples of semi-standard tableaux. The one on the left
is large, the one on the middle is marginally large, and the one on the right is not
large.

Definition 3.2. We denote by 7 (co) the set of all marginally large tableaux. The
marginally large tableau whose i-th row consists only of i-boxes (¢ € I) is denoted
by Teo-

The set 7(c0) consists of all tableaux of the following form. The unshaded part
s optional with variable size.

Too = |1 1]

[T

We recall the action of Kashiwara operators f;, & (i € I) on marginally large
tableaux T' € T (). '

(1) We first read the boxes in the tableau T' through the far eastern reading and
write down the boxes in tensor product form. That is, we read through each
column from top to bottom starting from the rightmost column, continuing
to the left, and lay down the read boxes from left to right in tensor product
form. :

(2) Under each tensor component z of T', write down &;(z)-many 1s followed by
pi(z)-many 0s. Then, from the long sequence of mixed Os and 1s, succes-
sively cancel out every occurrence of (0,1) pair until we arrive at a sequence
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of 1s followed by 0s, reading from left to right. This is called the i-signature
of T.
(3) Denote by T”, the tableau obtained from T, by replacing the box z corre-
sponding to the leftmost 0 in the i-signature of T' with the box fiz.
o IfT" is a large tableau, it is automatically marginally large. We define
fiT tobe T'. 5
e If TV is not large, then we define f;T to be the large tableau obtained
by inserting one column consisting of ¢ rows to the left of the box fi
acted upon. The added column should have a k-box at the k-th row
for1<k<i.
(4) Denote by T, the tableau obtained from T', by replacing the box z corre-
sponding to the rightmost 1 in the i-signature of T with the box é;z.
e If T is a marginally large tableau, then we define &;T to be T".
o If T is large but not marginally large, then we define &7 to be the
large tableau obtained by removing the column containing the changed
box. It will be of 7 rows and have a k-box at the k-th row for 1 < k < 1.
(5) If there is no 1 in the i-signature of T, we define &T = 0. -

Remark 3.3. The condition large imposed on the tableau T ensures that its i-
signature always contains 0’s.

Let T be a tableau in 7 (co) with the second row consisting of b2-many 3, one
2 and the first row consisting of bj-many js (1 < j < 1), (b + 2)-many 1s. We
define the maps wt : 7(o0) = P, @j,&; : T(00) = Z by setting

(3.1 wt(T') = (b} — b} — 2b3 — 3b} — 3b — 4b})a;

+ (~b3 — b} — b} — 26} — 26} — BB)as,
3.2) €;(T) = the number of 1s in the i-signature of T',
3.3) ¢i(T) = &(T) + (hs, wt(T)).

Theorem 3.4. ([3]) The maps given above, together with Kashiwara operators
define a crystal structure on T (o). The crystal T(oo) is isomorphic to B(oo) as a
U,(G2)-crystal.

4. EXTENDED NAKAJIMA MONOMIAL DESCRIPTION

It was Nakajima [11] that first introduced a crystal structure to a certain set of
monomials. A modified crystal structure was given to the same set by Kashiwara [7]
and an extension was introduced in [8]. The later two constructions were defined
for all symmetrizable Kac-Moody algebras, but we shall restrict ourselves to the
G case in this paper.

Let M€ be a certain set of formal monomials in the variables ¥;(m)(:®) and
Y;(m)®Y (i € I, m € Z) given by

@41 Mé= { H K(m)zie(m)

(im)eIxZ vanish except at finitely many (i, m)

yi(m) = (y?(m),y%(m)) €ZxZ } '

The product of monomials Y;(m)®?) and Y;(m)®' ") are set to ¥;(m)®+v'v+v),
for (u,v), (u',v') € Z x Z. We give the lexicographic order to the set Z x Z of
variable exponents.
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Fix any set of integers ¢ = (¢ij);j¢; Such j;hat ¢ij +¢ji =1, and set
(4.2) Ai(m)E = Yi(m) O (m 4+ 1) O ] ¥5(m + ¢50) =0,
J#i
The crystal structure on M is defined as follows. For each monomial M =
H(i,m)ezszi(m)yi(m) € ME, we set

wy e =3 (Sum) A= 2 (S 08m)ukm) A,

@ @0 =max{ Y uk)| mez},
k<m

(4.5) &(M) = max{ _ 3 wilk) | me z}.

k>m
Notice that the coefficients of wt(M ) are pairs of integers. In this setting, we have
@:(M) > (0,0), &(M) > (0,0), and wt(M) = 3=, (#i(M) — & (M))As. Set
@) w0 =Y (L uim)a,
i m

@n @)=Y yik) where gi(M) =Y (5(k),4i (K)),

k<m k<m
(4.8) (M) =~ yh(k) where &(M) =~ Y (4)(k), 5 (k).
k>m k>m

For the monomial M, we trivially have wt(M) = ¥, (vi(M) — &i(M))A;. From

the above definition, Y;(m)®") has the weight A;, and so A;(m) has the weight c.
We define the action of Kashiwara operators by

.o o if (M) = (0,0),

) han = {A.-(mf)—lM it () > (0,0),
oo o if &(M) = (0,0),

(410) &) = {Ai(me)M if £(M) > (0,0).

Here,

(4.11) my = min{m| 5:(M) = 3 wi(k)},

k<m
(4.12) Me = max{m| &(M) = - Z yi(k)}.
k>m

Note that yi(mf) > (an)a yi_(mf + 1) < (an)’ y‘i(me + 1) < (an)» and y‘i(me) b
(0,0).

For any fixed set of integers ¢ = (¢i;);4jer such that ¢;; +cj; = 1, the Kashiwara
operators defined in (4.9) and (4.10), together with the maps y;, €; (i € I), and
wt of (4.6) to (4.8), define a crystal structure on the set ME [8]. We refer to an
element of the set M¢ as an extended Nakajima monomial and denote by ME the
set M€ subject to the crystal structure depending on the set ¢, as given above.
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Remark 4.1. Now, we may give many different crystal structures to the set of
extended Nakajima monomials through the choice of the set c. For Gy type Lie
algebras, all the different crystals induced from the set of extended Nakajima mono-

mials through different choices of the set ¢, are isomorphic (see [7] or Proposition
3.2 of [8]).

Unless there is possibility of confusion, we shall omit ¢ and use the notation M¢
instead of MZ.

We now give a description of the crystal B(co) in terms of extended monomials.
For simplicity, from now on, we take the set C = (¢;j)izjer to be c12 = 1 and
¢g1 = 0. Then for m € Z, we have

(4.13) A1 (m) = Y3 (m) VY (m + 1)V Yy (m) @Y,
AZ(m) = Yz(m)(o,l)yz(m + 1)(0,1)1/1(’"1 + 1)(0’_3).

Consider elements of M¢ having the form
M =Y, (_1)(17%'1)1/1 (O)(O»G?)Yl (1)(0,(&%)}/'1 @) (0,03)

4.14
( ) . YZ(_2)(1,a2_3)Y2(_1)(0,«:;1)1,2(0)(0,(:2)E(l)(o,aé)

with conditions
(1) (a3 - a3"), a3, a3, a3° <0,
(2) (a7* —al —a?) + (2052 + a3 — a8 — 2a}) =0 and
(a7’ +ad —a?) + (az% + 245 +ad — a}) =0,
(3) (af +a3" —a3?),(—al - a}) € 2230 or
(a? + a3 — a3?),(—at — al) € Zxo and odd.

Specifically, in case of af = 0 for all 1, j, we have
(4.15) M= H(_l)(170)1f2(_2)(1y0).

We denote by M(co) the set of all monomials of these form and by M., the mono-
mial of (4.15). ;

This set was originally obtained by applying Kashiwara actions f; continuously
on the single element Yl(---l)(l ’0)}’2(—2)(1’0) € ME. This choice of starting mono-
mial will allow us to relate monomials of the set defined below to tableaux in 7 (o0)
naturally.

We now introduce new expressions for elements of M(c0). First, we introduce
the following notation.

Definition 4.2. For u € Z5¢, v € Z, and m € Z, we use the notation
Y (m) Yo (m+ 1)) for j = 1,2,
. X (wv) J J
(4 16) J(m) {K(m‘*' 1)(2u,2v)Y2(m+ 1)(—0,—‘0) for j = 3’
417 Xo(m)™® = Yi(m + 1)y (m+2)"),

Vioim+ (4 - )Y (m+ 4 - )" forj=1,2,

. X= (u,v) =
(4 18) j(m) {Yz(m‘l‘ 1)(u,v)n(m+ 2)(-214,—21:) for j =3.

Here, we set Yo (k)(“?) = 1.
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Remark 4.3. Using the above notation, we may write
Ay (m) = Xy (m) D X (m) O
= Xg(m — 1)@ Xo(m — 1)1
= Xo(m — 1)) Xy(m — 1)®-
= Xz(m — 2)®V Xy (m - 2) 7,
Az(m) = Xa(m) O X5 (m) @~V
= Xz(m — 1)V X3(m — 1)1,
This is very useful when computing Kashiwara action on monomials written in
terms of X;(m)®Y) or Xj(m)().
Proposition 4.4. Each element of M(co) may be written uniquely in the form
M =X1(_1)(2,—b;1—b§1—b§1—b§1-—bgl—b;l)XZ(__l)(O,b;l)Xa(_l)(o,b;‘)
(4.19) - Xo(=1) ) Xg(=1) 45 ) X5 (-1) ) Xy (- )
- Xo(~2)18) X5 (~2) 05

where bf >0 for all i,j and by' < 1. Conversely, any element in ME of this form
is an element of M(00).

The Kashiwara operator action on M may be rewritten as given below for
elements of M(co) of the form (4.19). Elements of the above form constitutes
M{(o0) and this set is closed under Kashiwara operator actions.

(1) Kashiwara actions f) and &;:

e Consider the following ordered sequence of some components of M.
X(=1) 0" X5(—1) @45 x5 (=1) O ) Xo(=1) 00 ) X5 (—1) @8 ) Xy (—1) @2 ).
¢ Under each of the components
Xi(=1) ), Xo(-1) ), Xp(-1) ),

given in the above sequence, write b;"l-many 1’s and under Xg(—l)(o’bg 1),
write (2b3 !)-many 1’s. Also, under each of the components

X3(=1) %, Xo(~1) %,

write bj '-many 0’s and under Xg(-l)(o’b’;l), write (2b3*)-many 0’s.

e From this sequence of 1’s and 0's, successively cancel out each (0, 1)-pair to
obtain a sequence of 1’s followed by 0’s (reading from left to right). This
remaining 1 and 0 sequence is called the 1-signature of M.

e Depending on the component X corresponding to the leftmost 0 of the
1-signature of M, we define f; M as follows:

MX@(—1)(0’“1).¥i(—1)(°“) =MA Q) fX= X§(—1)(°’52—1),
(420)  FiM ={ MXo(=1)ODX5(=1)@ = MA1(0)~! if X = Xo(—1)%% h,
MXs(~1)® D Xo(=1)O = MA;(0)™ if X = Xa(~1)®% ).
We define
(4.21) AM = MX1(-1) @V X, (-1) O = MA; (-1)7!



DESCRIPTIONS OF THE CRYSTAL B(«) FOR G2

if no 0 remains.
¢ Depending on the component X corresponding to the rightmost 1 of the

1-signature of M, we define é; M as follows:
MX§(—1)(0,1)XT(_1)(0,-1) =MA(1) ifX = Xi(—l)(o’bi_l)’
&M= MXo(-1)OV X5(=1)@=) = M 4,(0) if X =X§(-1)(°’°s"’),
1 - -_—
MX3(_1)(0,1)X0(_1)(0,"1) = ]V-[Al (0) ifX = Xo(_l)((),bo 1),
MXl(—l)(O»})Xz(—l)(o,-l) = MA(-1) if X = X,(—1)®% "),
We define & M = 0 if no 1 remains.
(2) Kashiwara actions f, and €y :

» Consider the following finite ordered sequence of some components of M.
Xi(__l)(o:bgl)xg (_1)(O,bgl)Xs(_l)(O,bgl)Xz(_1)(0;"51)X3(_2)(0,bs'2)'

e Under each of the components

X§(—1)(0’b’_1),Xg(-—l)(o'b"‘-l),Xs(—2)(o’b;2),

from the above sequence, write b;?-many 1’s, and under each

—-1 -1
X3(-1)% ), x5 (1)),

write b}'l-many 0’s.
e From this sequence of 1's and 0’s, successively cancel out each (0, 1)-pair to
obtain a sequence of 1’s followed by 0’s. This remaining 1 and 0 sequence
is called the 2-signature of M.
* Depending on the component X corresponding to the leftmost 0 of the
2-signature of M, we define foM as follows:
; MX5(-1)® "D X5(-1)D = MA(0)! if X = X3(~1)b ),
(4.22) foM = 1. o1
MXz(—l)(°v“1)X3(-1)(°’1) =MAx(-1)"tif X =X2(_1)(0,62 )

We define
(4.23) oM = MX2(—2)""D X3(~2) O = MA,(~2)~!

if no 0 remains.
¢ Depending on the component X corresponding to the rightmost 1 of the

2-signature of M, we define &M as follows:
MX3(-1)ODXy(—1)O=1) = MA(0)  if X = X5(—1)®% ),
-1
&M = § MX,5(-1)OVX3(~1)01) = MAy(-1) if X = X3(~1)®% "),
-2
MX5(=2) "V X3(=2)0Y = MAy(~2) if X = X5(=2)% "),
We define é; M = 0 if no 1 remains.

Proposition 4.5. The set M(oo) forms a U,(G3)-subcrystal of ME.

-Recall from Theorem 3.4 that the set 7(co) gives a description of the crystal
B(co). We define a canonical map © : 7 (c0) = M(co) by setting, for each tableau
T € T(oo) with second row consists of b2-many 3-boxes and just one 2-box, and
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with first row consists of b;-many j-boxes, for each j > 1, and (b2+2)-many 1-boxes,
O(T) = M, where
M =X1(_1)(2,—b§—b§—bé—bé—bé—b%)Xz(_l)(o,bé)xs(_1)(0,1%)
- Xo(~1)@%5) X5(—1)(0:08) X5 (=1)(0:02) Xg(—1)©b1)
- Xa(=2) 9 X5 (~2)©) € M(c0).
It is obvious that this map © is well-defined and that it is actually bijective.
The new expression of the action of Kashiwara operators on M(oo) follows the

process for defining it on 7(c0). Hence, the map © naturally commutes with the
Kashiwara operators f;.and é;.

Theorem 4.6. ([10]) There exists a U, (Gg)-crystal isomorphism
(4.24) T (00) = M(00)
which maps Too to M.

5. CLIFF’S DESCRIPTION

Let us recall the abstract crystal B; = {b;(k)|k € Z} introduced in [6] for each
i € I. Tt has the following maps defining the crystal structure.

wt bi(k) = ko,
pi(bi(k)) = k, ei(bi(k)) = -k,
@i(bj(k)) = —o0, ei(bj(k)) = —o0,  fori#j,
fibi(k)) = bi(k = 1), &(bi(k)) = bi(k +1),
fibi(k) =0, &i(b;(k)) =0, for i # j.
From now on, we will denote the element b;(0) by bi. We next cite the tensor

product rule on crystals.

Proposition 5.1. ([6]) Let B%(1 < k < n) be crystals with b € B¥. We set
(5.1) ap =&i(t*) = Y (b, wt(8)).

1<v<k
Then we have
1) &P e )= b te&gtett o . 00"
3 ifak>a,,for1§v<k~andak2a..,fork<v§n,
2) fitt® - @b =b Q- lftf R - @b
ifag > ay for 1 <v <k andag > ay fork<v<n.
Kashiwara has shown [6] the existence of an injective strict crystal morphism
(5.2) ¥ : B(co) = B(oo) ® Biy, @ Biy,_, ® -+ ® By,

which sends the highest weight element oo t0 Uoo ® by, ® - - - ® by, , for any sequence
S = iy,ig, ++ ,ix of numbers in the index set I of simple roots. In [1], Cliff uses
this to give a description of B(co) for all finite classical types, with a specific choice
of sequence S. It is our goal to do this for type Gz. This was also dealt with in [6]
Example 2.2.7 by Kashiwara and in [12] by Nakashima and Zelevinsky.
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Proposition 5.2. We define
B(l) =B1 ®B: ® By ® B, ® By and B(2) = B,.
Consider the subset of crystal B(oo) ® B(1) ® B(2) given by
Z(0) = {uc ® A1 ® B2},
where
(6:3)  Br=bi(~k12) ®ba(—ky 3) ® br(—k13) ® ba(~ky2) ® by(~k1,1) € B(1),
(54) B2 = by(—ka2) € B(2),
and where ky,,, are any. nonnegative integers such that
0<ki3<k 35k 3/2<kis2<kis.
The set Z(co) forms a Uy(Gz)-subcrystal of B(oo) ® B(1) ® B(2).
Proof. Tt suffices to show that the action of Kashiwara operators satisfy the follow-
ing properties : _
fiZ(0) CI(o0), &Z(c0) C Z(oc0) U {0},
forallie I 5
We will compute the value f; on each element of Z(c0), using the tensor product

rule given in Proposition 5.1. First, we compute the finite sequence {a} set by (5.1)
for

b=1ux®p QP
= Uoo ® b1 (=K1 2) ® ba(~ky3) ® bi(—Fk1,3) @ ba(—k1,2) ® by (—k1,1) ® ba(—kz,2).

In the 7 = 1 case, we have

a; =0, a3=d5=a7=—oo,

az =ky3, a4=kys+2k3—3k3,

ag = k1,1 + 2k1,§ - 3’91,3 + 2k1,3 — 3k 2,

and for ¢ = 2 case, :
a1 =0, az=a4=a¢=-00,
az = k1,§ - k1,§, as = kl,2 - k1,§ + 2k1,§ — ki3,
ar=kg2—Fk13+2ky 3~ ki3+2k1 5 — ki,

By Proposition 5.1, we obtain the following three candidates of fi(b) for each i:
fi(b) = ueo ® fl(bl(—kl,ﬁ)) ® ba(—ky1 3) ® b1 (~k1,3) ® ba(—k1,2) ® by(—k1,1)
® by(—kz,2)
= Uoo ® (b1(~k1 3 — 1) @ ba(—ky3) ® bi(—Fk1,3) ® ba(—k1,2) ® by (—k1,1))
® ba(~k2,2) € U ® B(1) ® B(2),
when a; >ag for 1<k <2andaz >arfor2< k<7,
F(d) = U0 ® by(—ky13) ® ba(~ky 3) ® fi(bi(—k13)) ® by(—ki,2) ® by (—k1)
® ba(—kz,2)
= Uoo ® (b1(—ky 3) ® ba(—ky 3) ® bi(—k1s — 1) ® ba(—k1,2) ® by (—k1,1))
® ba(—k2,2) € ueo ® B(1) ® B(2),
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when aq >ap for l<k<4andays>arford<k<7,

Fi(B) = Uoo ® bi(—ky 3) @ ba(—ky 3) ® bi(—Fk1,3) ® ba(—kr2) ® Fi(bi(~k1,1))
® ba(—kz,2) ‘ -
= oo ® (b1(—ky3) ® ba(—ky3) ® by(—k1,3) ® ba(—k1,2) ® bi(—k1, — 1))
® ba(—kz.2) € uco ® B(1) ® B(2),
when ag > a for 1 <k<6andag>arfor6<k<7,

Fo(b) = uoo ® b (—k1 3) ® falba(—ky3)) ® bi(—ki1,3) ® ba(—k1,2) ® br(—F1,1)
® ba(—ka,2) |
= Uoo ® (b1(—ky3) ® ba(—ky 3 — 1) ® by(—F1,3) ® ba(—F1,2) ® bi(—k1 1))
® ba(~ks2,2) € uco ® B(1) ® B(2),
whenag > apforl1<k<3andaz >arpfor3<k<7,

Fo(b) = oo ® by (k1 3) ® ba(—ky 3) ® by(—ku,8) ® falba(—k1,2)) ®b1( —k1,1)
® ba(—ka,2)
= Uoo ® (b1(—ky 3) ® ba(—ky 3) ® bi(—F13) ® ba(—k12 — 1) ® bi(—k1,1))
® b2(““‘k2,2)_ G Uoo ® B(l) ®B(2):
whenas >apfor 1<k <bandas >apfor 5<k<T,
F2(b) = oo ® bi(—ky 3) ® ba(—Fky1 3) ® bi(—k1,3) ® ba(—Fk1,2) ® ba(—Fk1,1)
® falba(~k2,2))
= Ugo @ (b1 (—Fy3) ® ba(—F; 3) ® by (—Fk1,3) ® ba(—k1,2) ® br(~Fr,1))
® ba(—k2,2 — 1) € ueo ® B(1) ® B(2),
when a7 > ai for 1 < k < 7. And for each case given above, we obtain the following
result from conditions for thg sequence ay. In the i = 1 case, ky , values, appearing
in the above expression for f;b, are nonnegative integers satisfying
o ks +1<k3<ki3/2Skp <k,
whena2>akfor1<k<2anda2>ak for2<k<7,
e k3 <k 3<(kiz+1)/2< ki <k,
whena4>akfor1<k<4anda.4>ak fora<k<7,
' kli <k1§ <k13/2<k12 <ki+1,
whena6>akfor1<k<6anda5>ak for6<k<7,
and in the i = 2 case, :
® 0<kl§<k13+1<k13/2<k12<k11,
whena3>akfor1<k<3anda3>ak for3<k<T,
® 0<k1§<k1§<k13/2<k12+1<k11,
whenas>akfor1<k<5anda5>akfor5<k<7
o 0<keo+1,
whenay > afor1 <k <T.

Thus the action of Kashiwara operator f; is closed on Z(0).
Proof for the statements concerning & may be done in a similar manner. ]

The notation f; and B2 appearing in this proposition will be used a few more
times in this section.



DESCRIPTIONS OF THE CRYSTAL B(c) FOR G2

Theorem 5.3. There exists a Ug(G2)-crystal isomorphism
(5.5) T (00) = Z(00) C B(o0) ® B(1) ® B(2),
which maps Teo 10 Uoo @ (b1 ® b2 ® by @ by @ b1) @ (by).
Proof. With the help of tensor product rules, it is easy to check the compatibility
of this map with Kashiwara operators. Other parts of the proof are similar or easy.
Hence we shall only write out the maps and give no proofs.

For each tableau with the second row consisting of b2-many 3-boxes and just one
2-box, and with the first row consisting of b;-ma,ny j-boxes, for each j > 1, and
(b3 + 2)-many 1-boxes, we may map it to the element uc, ® 8; ® B2 where

1 1 i
kia=Y b kia=)Y b}, k= 203 b}) + b,
j=3

j=2 j=3
kl,ﬁ = b% + b%, k1,§ = b%, kg,z = bg.

Conversely, an element us, ® f1 ® f2 is sent to the tableau whose shape we
describe below row-by-row.

o The first row consists of
(ky,3)-many 1s, (k1,3 = ky,3)-many 2s,
|k1,3/2 — kq 3)-many 3s, ((A + B) — (4’ + B'))-many 0s,
(k1,2 = k1,3/2)-many 3s, (k1,1 — k1,2)-many 2s, and
(k2,2 + 2)-many 1s.
¢ The second row consists of
(k2,2)-many 3s and one 2.
Herjs, A=k a—ki3/2,B=ki3/2—Fki3, A" = |k12—k1,3/2],and B' = Lk1,3/25
ky 3]

Since the above theorem has shown B(co) = Z(co) as crystals, image of the
injective crystal morphism

¥ : B(oo) = B(oo) @ B(1) ® B(2) = B(o0) ® (B1 ® B2 ® B1 ® B2 @ B1) ® (B2),
which maps e, t0 Ueo ® (b1 ® by ® by ® by ® by) @ (be) is Z(o0).

In the following corollary, a description of B(co) for Ga-type is given follow-
ing Cliff’s method. A specific choice for the index sequence of crystals S =
(1,2,1,2,1,2) corresponding to a longest word wo = 815281528182 of the Weyl
group is used.

Corollary 5.4. Image of the injective strict crystal morphism
¥ :B(co) = B(oo)@(B1®B2:@B1 9B, ®@B1) ® (B2),
which Maps Ueo 10 Ueo ® (b1 ® by @ by ® be ® by) @ (by) is given by
¥(B(00)) = Z(00) = {uco ® f1 ® f2}-
We illustrate the correspondence between 7 (co0) and ¥(B(oc0)) for type Gg.

Example 5.5. The marginally large tableau
1]2]ols]s]1]

1|1
2]18]8

-
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of T (o0) corresponds to the element

Ugo ® b1 (—1) ® ba(—1) ® b1 (—7) ® bz(—4) ® b1 (—5) ® b2(~2)

of ¥(B(c0)) under the map given in Theorem 5.3.

Remark 5.6. We can provide maps between the two giving crystal isomorphisms

in

M(o0) — (B(c0))
both directions. The maps can easily be drawn from Theorem 4.6 and Theo-

rem 5.3.

N =

10.

11

12,

13.
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