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matsu, but partlyjoint work with Professor Yuji Yoshino. For further details, please
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1. INTRODUCTION

Let k be an algebraically closed field of characteristic p\geq 0 , and J( $\alpha$, m) means

the Jordan block with eigenvalue  $\alpha$\in k and size m . We shall consider the problem
of finding out a Jordan canonical form of J( $\alpha$, m)\otimes J($\beta$_{i}n) , where \otimes means \otimes_{k}

(m\leq n) .

Over an algebraically closed base field of characteristic zero, this problem has

been solved by many authors including T. Harima and J. Watanabe [4], and A.

Martsinkovsky and A. Vlassov [8] etc. M. Herschend [5] solve it for extended

quivers of type \~{A}_{n} , with arbitrary orientation and any n . In this note we

solve it for any characteristic p\geq 0 . That is, we obtain two way to determine the

Jordan decomposition of the tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) .

In the case of  $\alpha \beta$=0 , the tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) has the same

direct sum decomposition as in Theorem 2.1 independently of characteristic of the

base field k in Proposition 2.6. In the case of  $\alpha \beta$\neq 0 , our problem is reduced to

the problem of finding the indecomposable decomposition of R as a k[Z]‐module,
where R means the quotient ring k[x, y]/(x^{m}, y^{ $\tau \iota$}) , Z=x+y and k[x, y] be a

polynomial ring over k . We regard finding the indecomposable decomposition of R

as calculating the partition \mathrm{c}= ( c_{1}, c2, . . .

, c_{r} ) of mn in Lemma 2.5. Then, we are

able to determine the Jordan decomposition of tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) .

2. MAIN RESULTS

Throughout this section, let k be an algebraically closed field. For an integer
m\geq 1 and an element  $\alpha$\in k , let

J( $\alpha$, m)=(^{ $\alpha$}
. 1.

 $\alpha$.  $\alpha$ 1)
denote the Jordan block of size m\times m with an eigenvalue  $\alpha$.

Theorem 2.1. [8, Theorem 2] Suppose that k has characteristic zero. Then the

following holds for integers m\leq n and  $\alpha$,  $\beta$\in k :

J( $\alpha$, m)\otimes J( $\beta$, n)=\left\{\begin{array}{ll}
J(0, m)^{\oplus n-r?x+1}\oplus\oplus_{i=1}^{2m-2}J(0, m-\lceil\frac{i}{2}\rceil) & if  $\alpha$=0= $\beta$\\
 J(0, m)^{\oplus n} & if  $\alpha$=0\neq $\beta$\\
 J(0, n)^{\oplus m} & if \mathrm{o}\mathrm{r} \neq 0= $\beta$\\
\oplus_{i=1}^{m}J( $\alpha \beta$, m+n+1-2i) & if  $\alpha$\neq 0\neq $\beta$
\end{array}\right.
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Remark 2.2. If one of the eigenvalues  $\alpha$ and  $\beta$ equals zero, then the tensored ma‐

trix  J( $\alpha$, m)\otimes J( $\beta$, n) has the same direct sum decomposition as in Theorem 2.1

independently of characteristic of the base field k (Proposition 2.6).

Theorem 2.3. There is an algorithm to determine the Jordan decomposition of
the tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) .

Remark 2.4. (1) \mathrm{T}\mathrm{h}\mathrm{e} matrix J((x, m) represents the action of X on k[X]/(X- $\alpha$)^{m}
as a k[X] ‐module.

(2) \mathrm{T}\mathrm{h}\mathrm{e} tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) is triangular. Therefore its eigenvalue
is  $\alpha \beta$.

(3) \mathrm{O}\mathrm{n}\mathrm{e} has an isomorphism

k[X]/(X- $\alpha$)^{m}\otimes k[Y]/(Y- $\beta$)^{n}\cong k[X, Y]/((X- $\alpha$)^{m}, (Y- $\beta$)^{n})
of k‐algebras.

Tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) represents the action of XY on k[X, Y]/((X-
 $\alpha$)^{m}, (Y- $\beta$)^{n}) as a k[XY] ‐module.

Lemma 2.5. Put R=k[X, Y]/((X- $\alpha$)^{m}, (Y- $\beta$)^{n})_{;} which we regard as a k[Z|-
module through the map k[Z]\rightarrow R given by Z\mapsto XY . Then there is a sequence of
 i_{7} $\iota$tegers such that  c_{1}\geq c_{2}\geq\cdots\geq \mathrm{c}_{r}\geq 1

R\displaystyle \cong\bigoplus_{i=1}^{r}k[Z]/(Z- $\alpha \beta$)^{c_{i}}
of k[Z] ‐modules.

This means that J( $\alpha$, m)\otimes J( $\beta$, n)=\oplus_{i=1}^{r}J( $\alpha \beta$, c_{i}) . We can regard \mathrm{c}=

( \mathrm{c}_{1} , c2, . . . , c_{r} ) as a partition of mn in obvious manner. The main problem is

to determine the partition \mathrm{c} . For this purpose let \mathrm{b}= (b_{1}, b2, . . . , b_{rn+n-1}) be

the partition conjugate to \mathrm{c} . Put  z=Z- $\alpha \beta$ . Note that  b_{i}=\#\{j|c_{j}\geq i\}=
\dim_{k}(z^{i-1}R/z^{i}R) . Setting a_{i}=\dim_{k}(R/z^{i}R) , we have b_{i}=a_{i}-a_{i-1} . Therefore,

it is sufficient that we calculate the value of a_{i} for each case.

If one of the eigenvalues  $\alpha$ and  $\beta$ equals zero, then the result is independent of

the characteristic of  k as we show in the next proposition.

Proposition 2.6. We have the \displaystyle \intollowing e qualiLies_{f}.

a_{i}=\left\{\begin{array}{ll}
(m+n)i-i^{2} (1\leq i\leq m) & if  $\alpha$=0= $\beta$\\
 ni (1\leq i\leq m) & if  $\alpha$=0\neq $\beta$\\
 mi (1\leq i\leq n) & if  $\alpha$\neq 0= $\beta$
\end{array}\right.
Proof. Put  x=X- $\alpha$ and  y=Y- $\beta$.

(1) The case  $\alpha$=0= $\beta$ :

Since  R/z^{i}R=k[x, y]/(x^{m}, y^{n}, (xy)^{i}) ,
we have a_{i}=(m+n)i-i^{2} . Therefore we

get J( $\alpha$, rn)\displaystyle \otimes J( $\beta$, n)=J(0, m)^{\oplus n-m+1}\oplus\oplus_{i=1}^{2m-2}J(0, m-\mathrm{r}\frac{i}{2}\rceil) .

(2) The case  $\alpha$=0\neq $\beta$ :

Since  R/z^{i}R=k[x, y]/(x^{m}, y^{n}, x^{i}) as  y+ $\beta$ is a unit in  k[x, y]/(x^{rn}, y^{n}) , we have

a_{i}=ni . Therefore we get J (or, m) \otimes J( $\beta$, n)=J(0, m)^{\oplus n}.
(3) The case  $\alpha$\neq 0= $\beta$ :

Sinse  R/z^{i}R=k[x, y]/(x^{m}, y^{n}, y^{i}) as  x+ $\alpha$ is a unit in  k[x, y]/(x^{rn}, y^{n}) ,
we have

a_{i}=mi . Therefore we get J( $\alpha$, m)\otimes J( $\beta$, n)=J(0, n)^{\oplus m}. \square 
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In the case of  $\alpha$\neq 0\neq $\beta$ , then we have the following isomorphism of  k‐algebras,

given Uy X- $\alpha$\mapsto x, Y- $\beta$\mapsto y' and \displaystyle \frac{ $\alpha$ y'}{y+ $\beta$}\mapsto y :

k[X, Y]/((X- $\alpha$)^{m}, (Y- $\beta$)^{n}, (XY- $\alpha \beta$)^{ $\iota$})\cong k[x, y]/(x^{rn}, y^{n}, (x+y)^{l}) .

Using this isomorphism together with [3, Proposition 4.4][4, Proposition 8], we have

the following proposition in the case of characteristic zero.

Proposition 2.7. Suppose  thaL $\alpha$\neq 0\neq $\beta$ and that  k has characierisLic zero.

Then we have

Proof. It is easy to show by using x+y\in k[x, y]/(x^{m}, y^{n}) is a Lefschetz element

[4]. Therefore we get J( $\alpha$, m)\otimes J( $\beta$, n)=\oplus_{i=1}^{m}J( $\alpha \beta$, m+n+1-2i) . \square 

We consider in the rest the case where  $\alpha$\neq 0\neq $\beta$ and that  k is of positive
characteristic p . Put S=k[x, y] , R=k[x, y]/(x^{m}, y^{n}) and A^{(l)}=R/(x+y)^{ $\iota$}R . To

determine a_{l}=\dim_{k}(A^{(l)}) . We have the following isomorphism:

A^{(l)}\cong k[x, y, z]/(x^{m}, y^{n}, z^{t}, x+y+z) .

Therefore we may assume that m\leq n\leq l without loss of generality. For each

integer l satisfying m\leq n\leq l\leq m+n-1 ,
we describe

\lfloor^{\neg}. \underline{\urcorner} \square \square 0

(x+?1)^{1}\equiv
 l

x^{m-1}y^{ $\iota$-m+1}+
l

x^{m-2}y^{\mathrm{t}-m+2}+\cdots+
 $\iota$

 x^{l-n+$\iota$_{y^{n-1}}} (\mathrm{m}\mathrm{o}\mathrm{d} (x^{m},y^{n})) .

7n-1 m-2 l-n+\mathrm{i}

We set q_{1}=\left(\begin{array}{l}
 $\iota$\\
 m-1
\end{array}\right), q_{2}=\left(\begin{array}{l}
 $\iota$\\
 rn-2
\end{array}\right),\cdots, q_{r}=\left(\begin{array}{l}
 $\iota$\\
 l-n+1
\end{array}\right) and r=m+n-1-l.

We obtain the representation matrix of R\rightarrow(x+y)^{1}R with respect to the natural

base \{1, x, y, x^{2}, xy, y^{2}, . . . , x^{m-1}y^{n-1}\} as follows;

(^{H_{0}} H_{1} H_{2} .. H_{r-2} H_{r-1}) ,

where

H_{i}=\left(\begin{array}{llll}
q_{i+1} & q_{i} & \cdots & q_{1}\\
q_{i+2} & q_{i+1} & \cdots & q_{2}\\
 &  &  & \\
q_{r} & q_{r-1} & \cdots & q_{r-i}
\end{array}\right)
For each 0\leq i\leq r-1 the matrix H_{i} is an (r-i)\times(i+1) matrix whose entries

are integers. We denote by I_{i+1}(H_{i}) the ideal of \mathbb{Z} generated by (i+1)‐minors of

H_{i} for 0\leq i\leq r-1 . Obviously there exists an integer $\delta$_{i}\geq 0 such that I_{i+1}(H_{i})
=$\delta$_{i}\mathbb{Z} . Fkom the argument in the case of characteristic zero in [3, Proposition 4.4],
we have I_{i+1}(H_{i})\otimes_{\mathbb{Z}}\mathbb{Q}\neq 0 , particularly $\delta$_{i}\neq 0 , for any 0\leq i\leq\lfloor(r-1)/2\rfloor.
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Proposition 2.8. Under the same notatio} as above, for each t satisfying  1\leq m\leq

 n\leq l\leq m+n-1 , and for each i satisfying 0\leq i\leq\lfloor(r-1)/2\rfloor(r=m+n-1-l) ,

the following equalities hold;

where $\lambda$^{j} is the partition conjugate to $\mu$^{j}=(7n-j_{1}, m-j_{2}-1, \ldots, m-j_{$\tau$_{\ovalbox{\tt\small REJECT}}+1}-i) ,

and S_{$\lambda$^{j}} is the Schur polynomial.

Proof. Computation using Jacobi‐Trudi formula [2],[7].
\square 

Let

0\rightarrow S(-a)\oplus S(-b)\rightarrow S(-m)\oplus S(-n)\oplus S(-l)^{(x^{m},y}\rightarrow Sn,(x+\prime y)^{ $\iota$})\rightarrow A^{( $\iota$)}\rightarrow 0
be a minimal graded S‐free resolution of A^{(l)} , where 1\leq m\leq n\leq l\leq a\leq b . The

Hilbert‐Burch theorem implies that a+b=m+n+l , and the Hilbert series of A^{( $\iota$)}

is given as

H_{A( $\iota$)}(t)=\displaystyle \frac{1-t^{m}-t^{n}-t^{l}+t^{a}+t^{b}}{(1-t)^{2}}.
It follows from this that \dim_{k}(A^{(l)})=mn+ml+nl-ab . Letting i_{0}=\displaystyle \min\{i|$\delta$_{i}\equiv 0

(\mathrm{m}\mathrm{o}\mathrm{d} p we get a=t+i_{0} and b=m+n-i_{0} , since a is the least value of degrees of

relations of (x^{rn}, y^{n}, (x+y)^{ $\iota$}) . Thus, we can calculate the dimension of the k‐vector

space A^{(l)} ,
and hence the indecomposable decomposition of J( $\alpha$, m)\otimes J( $\beta$, n) .

Theorem 2.9. We are able to compute a Jordan canonical form of  J( $\alpha$, m)\otimes
 J( $\beta$, n) by taking the following steps:

(1) Every  $\delta$. is determined.

(2) For each  1\leq l\leq m+n-1, a_{l} is determined.

(3) The partition \mathrm{b} is determined,

(4) The partition \mathrm{c} is determined.

(5) The Jordan decomposition of tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) is deter‐

mined.

From the discussion in Theorem 2.9, one immediately obtains the following.

Theorem 2.10. The tensored matrix J( $\alpha$, m)\otimes J( $\beta$, n) has the same direct sum

 deco\uparrownposition as in Theorem 2.1 if char (h)\geq m+n-1 or I_{i+1}(H_{i})\otimes_{\mathbb{Z}}k\neq 0 for

any 0\displaystyle \leq i\leq \mathrm{L}\frac{r-1}{2}\rfloor.
P_{7'}oof. It is easy to show that if char (k)\geq m+n-1 then I_{i+1}(H_{i})\otimes_{\mathbb{Z}}k\neq 0 for

any 0\displaystyle \leq i\leq \mathrm{L}\frac{r-1}{2}\rfloor.
\square 
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