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This report is a survey of the preprint [6] which is a joint work with Ryo Iwa-

matsu, but partly joint work with Professor Yuji Yoshino. For further details, please
refer to it.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic p > 0, and J(a, m) means
the Jordan block with eigenvalue « € k and size m. We shall consider the problem
of finding out a Jordan canonical form of J(a,m) ® J(B,n), where ® means
(m < n).

Over an algebraically closed base field of characteristic zero, this problem has
been solved by many authors including T. Harima and J. Watanabe [4], and A.
Martsinkovsky and A. Vlassov [8] etc. M. Herschend [5] solve it for extended
‘Dynkin quivers of type A,, with arbitrary ovientation and any n. In this note we
solve it for any characteristic p > 0. That is, we obtain two way to determine the
Jordan decomposition of the tensored matrix J(a, m) ® J(8,n).

In the case of a@f = 0, the tensored matrix J(a,m) ® J(B,n) has the same
direct sum decomposition as in Theorem 2.1 independently of characteristic of the
base field k in Proposition 2.6. In the case of a3 # 0, our problem is reduced to
the problem of finding the indecomposable decomposition of R as a k[Z]-module,
where R means the quotient ring k[z,y]/(z™,y™), Z = z + y and k[z,y| be a
polynomial ring over k& . We regard finding the indecomposable decomposition of R
as calculating the partition ¢ = (ci,c¢g,...,¢) of mn in Lemma 2.5. Then, we are
able to determine the Jordan decomposition of tensored matrix J(a, m) ® J(B,n).

2. MAIN RESULTS

Throughout this section, let k be an algebraically closed field. For an integer
m > 1 and an element o € k, let

J(a,m) =

a 1
«

denote the Jordan block of size m x m with an eigenvalue a.

Theorem 2.1. [8, Theorem 2] Suppose that k has characteristic zero. Then the
following holds for integers m < n and a, 3 € k:

J(0,m)®r-mtl o @2 J(0,m — [£]) i a=0=4

=1
on N _
J(a,m)® J(B,n) = jgg::?))@m | Z Z¢gig
@, J(eBm+n+1-2i) if a#0#£p
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Remark 2.2. If one of the eigenvalues o and 8 equals zero, then the tensored ma-
trix J(a,m) ® J(B,n) has the same direct sum decomposition as in Theorem 2.1
independently of characteristic of the base field k (Proposition 2.6).

Theorem 2.3. There is an algorithm to determine the Jordan decomposition of
the tensored matriz J(a,m) ® J(B,n).

Remark 2.4. (1)The matrix J(c, m) represents the action of X on k[X]/(X —a)™
as a k[X]-module. _

(2)The tensored matrix J(c, ) ® J(B,n) is triangular. Therefore its eigenvalue
is af.

(3)One has an isomorphism

KX)/(X — ™ @K[Y]/(Y = B)" 2 kX, Y]/(X =)™, (Y = B)")
of k-algebras.

Tensored matrix J(a, m)®J(f3, n) represents the action of XY on k[X,Y]/((X -
a)™, (Y — B)™) as a k[XY]-module.

Lemma 2.5. Put R = k[X,Y]/((X — )™, (Y — B)"), which we regard as a k[Z]-
module through the map k[Z] — R given by Z — XY . Then there is a sequence of
integers such that ¢ >c2 > -+ 2 ¢ =1

R QB k[Z)/(Z - oB)"

i=1

of k[Z]-modules.

This means that J(a,m) ® J(B,n) = Pj., J(@B,c;). We can regard ¢ =
(c1,¢2,...,¢r) @8 a partition of mn in obvious manner. The main problem is
to determine the partition c. For this purpose let b = (b1, ba,...  brmtn—1) be
the partition conjugate to c. Put z = Z — af. Note that b; = #{jlc; = i} =
dimg(2*~'R/%*R). Setting a; = dimg(R/2'R), we have b; = a; — a;—1. Therefore,
it is sufficient that we calculate the value of a; for each case.

If one of the eigenvalues a and 3 equals zero, then the result is independent of
the characteristic of k as we show in the next proposition.

Proposition 2.6. We have the following equalilies;

(m+n)i-i (1<i<m) if a=0=0
mi (1<i<n) if a#0=0

Proof. Ptz =X —candy=Y - §.
(1) The case a =0 = B:
Since R/#R = k[z,y]/(z™,y" (zy)?), we have a; = (m + n)i — i®>. Therefore we
get J(a,m) ® J(B,n) = J(0,m)® ™+ & @I J(0,m — [£]).
(2) The case o =0 # §:
Since R/z'R = klz,y}/(a™,y",z%) as y + B is a unit in k[z,y]/(z™,y"), we have
a; = ni. Therefore we get J(a,m) ® J(B,n) = J(0,m)®", '
(3) The case . # 0 = f3:
Sinse R/2R = k[z,y]/(z™ y™¥') as « + a is a unit in kfz,y]/(™,y"), we have
a; = mi. Therefore we get J(a, m) ® J(B,n) = J(0,n)®™. O
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In the case of a # 0 # 3, then we have/the following isomorphism of k-algebras,
givenby X —a—2,Y -8~ ¢ and ﬁ_{-ﬁv—»y:
KX, Y1/(X — )™, (Y = B)", (XY = aB)) = klz, ]/ (=™, v™ (z +v)").

Using this isomorphism together with [3, Proposition 4.4][4, Proposition 8], we have
the following proposition in the case of characteristic zero.

Proposition 2.7. Suppose thal o # 0 # [ and that k has characteristic zero.
Then we have

b= (m,m,....mm-1m-1m-2m-2,...,1,1).
LA QA
n-m-+1
Proof. 1t is easy to show by using z + y € klz,y]/(z™,y") is a Lefschetz element
[4]. Therefore we get J(a,m) ® J(B,n) = B, J(af,m+n + 1 — 2). O

We consider in the rest the case where o # 0 # [ and that k is of positive
characteristic p. Put S = k[z,], R = k[z,y]/(a™,y") and AD = R/(z +y)'R. To
determine a; = dimg(A®). We have the following isomorphism:

AW k[.’l,', Y z]/(xmv y", zl, r+y+ z)

Therefore we may assume that m < n < [ without loss of generality. For each
integer [ satisfying m <n <l < m+n — 1, we describe

o 3 o G o
(w+u)l = ml—l zm—lyl—m+1+ ml—z wm—2yl—m+2+“ + l—:‘+l zl—n+1yn—1 (mod (wm’yn))'
We set ¢1 = (mf-l)’ 2= (ml—z)f e = (l—7lz+1) andr=m+n—-1-1
. .
‘We obtain the representation matrix of R (@ty) R with respect to the natural
base {1,z,y, 2%, zy,9%,...,2™ 1y} as follows; '
H,
H,y
H, ’
Hr——2
\ H'r—l
where
G+1 G 1
dGi+2 Qi+ Q2
H=|. " .
ar Gr-1 - Qr—i

For each 0 < ¢ < r — 1 the matrix H; is an (r — 7) x (¢ + 1) matrix whose entries
are integers. We denote by I; .1 (H;) the ideal of Z generated by (i + 1)-minors of
H; for 0 < i < r — 1. Obviously there exists an integer &; > 0 such that I;}.1(H;)
= 6;Z. From the argument in the case of characteristic zero in [3, Proposition 4.4],
we have I;;(H;) ®z Q # 0, particularly &; # 0, for any 0 < i < [(r —1)/2].
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Proposition 2.8. Under the same notation as above, for each | satisfyingl <m <
n<l<m+n~—1, and for each i satisfying0 <i < |(r—1)/2/(r =m+n-1-1),
the following equalities hold;
61', = ng{S)\j(la 11 reey 1)‘.7 = (jl’jé? se 7ji+1)a 1 ..<- j] < j2 <...< ji+1 S T 7'}1
l
where M is the partition conjugate to p? = (m — ji,m — ja — 1,...,m — fip1 — i),
and Syi is the Schur polynomial.

Proof. Computation using Jacobi-Trudi formula [2] ,[7].

Let

0 — §(=a) @ S(=b) — S(—m) @ S(=n) & §(~1) " E) g s 4® 0

be a minimal graded S-free resolution of A®), where 1 <m <n <I<a <b The
Hilbert-Burch theorem implies that a+b = m+n+1, and the Hilbert series of AW
is given as
i i e i

(1-1)?
Tt follows from this that dimy(A®) = mn+mil+nl— ab. Letting io = min{i|é; =0
(mod p)}, we get a = [+ip and b = m-+n—io, since a is the least value of degrees of
relations of (z™,y", (z +v)!). Thus, we can calculate the dimension of the k-vector
space A, and hence the indecomposable decomposition of J(a, m) ® J(B,n).

1
Hyo(t) =

Theorem 2.9. We are able to compute a Jordan canonical form of J(a,m) ®
J(B,n) by taking the following steps:

(1) Ewery b is determined.

(2) For each1<l<m+n—1, a is determined. -

(8) The partition b is determined.

(4) The partition c is determined.

(5) The Jordan decomposition of tensored matriz J(c,m) ® J (B,n) is deter-

mined.

From the discussion in Theorem 2.9, one immediately obtains the following.

Theorem 2.10. The tensored matriz J(a, m) ® J(B,n) has the same direct sum
decomposition as in Theorem 2.1 if char(k) >m +n—1 or iy (H;) ®z k #0 for
any 0 <4 < [f-glj

Proof. It is easy to show that if char(k) > m +n — 1 then Liy1(H;) ®z k # 0 for
any 0 <i < |55t
O
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