<table>
<thead>
<tr>
<th>Title</th>
<th>Lefschetz properties, Schur polynomials and Jordan canonical forms (Combinatorial Representation Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iima, Kei-ichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2008), B8: 37-41</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/174303</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Lefschetz properties, Schur polynomials and Jordan canonical forms

Kei-ichiro Iima

Graduate School of Natural Science and Technology,
Okayama University.

This report is a survey of the preprint [6] which is a joint work with Ryo Iwamatsu, but partly joint work with Professor Yuji Yoshino. For further details, please refer to it.

1. Introduction

Let \(k \) be an algebraically closed field of characteristic \(p \geq 0 \), and \(J(\alpha, m) \) means the Jordan block with eigenvalue \(\alpha \in k \) and size \(m \). We shall consider the problem of finding out a Jordan canonical form of \(J(\alpha, m) \otimes J(\beta, n) \), where \(\otimes \) means \(\otimes_k \) (\(m \leq n \)).

Over an algebraically closed base field of characteristic zero, this problem has been solved by many authors including T. Harima and J. Watanabe [4], and A. Martsinkovsky and A. Vlassov [8] etc. M. Herschend [5] solve it for extended quivers of type \(\tilde{A}_n \), with arbitrary orientation and any \(n \). In this note we solve it for any characteristic \(p \geq 0 \). That is, we obtain two way to determine the Jordan decomposition of the tensored matrix \(J(\alpha, m) \otimes J(\beta, n) \).

In the case of \(\alpha \beta = 0 \), the tensored matrix \(J(\alpha, m) \otimes J(\beta, n) \) has the same direct sum decomposition as in Theorem 2.1 independently of characteristic of the base field \(k \) in Proposition 2.6. In the case of \(\alpha \beta \neq 0 \), our problem is reduced to the problem of finding the indecomposable decomposition of \(R \) as a \(k[Z] \)-module, where \(R \) means the quotient ring \(k[x, y]/(x^m, y^n) \), \(Z = x + y \) and \(k[x, y] \) be a polynomial ring over \(k \). We regard finding the indecomposable decomposition of \(R \) as calculating the partition \(c = (c_1, c_2, \ldots, c_r) \) of \(mn \) in Lemma 2.5. Then, we are able to determine the Jordan decomposition of tensored matrix \(J(\alpha, m) \otimes J(\beta, n) \).

2. Main results

Throughout this section, let \(k \) be an algebraically closed field. For an integer \(m \geq 1 \) and an element \(\alpha \in k \), let

\[
J(\alpha, m) = \begin{pmatrix}
\alpha & 1 \\
& \ddots & \ddots \\
& & \ddots & 1 \\
& & & \alpha \\
\end{pmatrix}
\]

denote the Jordan block of size \(m \times m \) with an eigenvalue \(\alpha \).

Theorem 2.1. [8, Theorem 2] Suppose that \(k \) has characteristic zero. Then the following holds for integers \(m \leq n \) and \(\alpha, \beta \in k \):

\[
J(\alpha, m) \otimes J(\beta, n) = \begin{cases}
J(0, m)^{\otimes n-m+1} \oplus \bigoplus_{i=1}^{2m-2} J(0, m - \lfloor \frac{i}{2} \rfloor) & \text{if } \alpha = 0 \neq \beta \\
J(0, m)^{\otimes m} & \text{if } \alpha = 0 \neq \beta \\
J(0, n)^{\otimes n} & \text{if } \alpha \neq 0 = \beta \\
\bigoplus_{i=1}^{n} J(\alpha\beta, m + n + 1 - 2i) & \text{if } \alpha \neq 0 \neq \beta
\end{cases}
\]

© 2008 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
Remark 2.2. If one of the eigenvalues α and β equals zero, then the tensored matrix $J(\alpha, m) \otimes J(\beta, n)$ has the same direct sum decomposition as in Theorem 2.1 independently of characteristic of the base field k (Proposition 2.6).

Theorem 2.3. There is an algorithm to determine the Jordan decomposition of the tensored matrix $J(\alpha, m) \otimes J(\beta, n)$.

Remark 2.4. (1) The matrix $J(\alpha, m)$ represents the action of X on $k[X]/(X-\alpha)^{m}$ as a $k[X]$-module.

(2) The tensored matrix $J(\alpha, m) \otimes J(\beta, n)$ is triangular. Therefore its eigenvalue is $\alpha \beta$.

(3) One has an isomorphism

$$k[X]/(X-\alpha)^{m} \otimes k[Y]/(Y-\beta)^{n} \cong k[X, Y]/((X-\alpha)^{m}, (Y-\beta)^{n})$$

of k-algebras.

Tensored matrix $J(\alpha, m) \otimes J(\beta, n)$ represents the action of XY on $k[X, Y]/((X-\alpha)^{m}, (Y-\beta)^{n})$ as a $k[XY]$-module.

Lemma 2.5. Put $R = k[X, Y]/((X-\alpha)^{m}, (Y-\beta)^{n})$, which we regard as a $k[Z]$-module through the map $k[Z] \rightarrow R$ given by $Z \mapsto XY$. Then there is a sequence of integers such that $c_{1} \geq c_{2} \geq \cdots \geq c_{r} \geq 1$

$$R \cong \bigoplus_{i=1}^{r} k[Z]/(Z-\alpha \beta)^{c_{i}}$$

of $k[Z]$-modules.

This means that $J(\alpha, m) \otimes J(\beta, n) = \bigoplus_{i=1}^{r} J(\alpha \beta, c_{i})$. We can regard $c = (c_{1}, c_{2}, \ldots, c_{r})$ as a partition of mn in obvious manner. The main problem is to determine the partition c. For this purpose let $b = (b_{1}, b_{2}, \ldots, b_{m+n-1})$ be the partition conjugate to c. Put $z = Z - \alpha \beta$. Note that $b_{i} = \#\{j|c_{j} \geq i\} = \dim_{k}(z^{i-1}R/z^{i}R)$. Setting $a_{i} = \dim_{k}(R/z^{i}R)$, we have $b_{i} = a_{i} - a_{i-1}$. Therefore, it is sufficient that we calculate the value of a_{i} for each case.

If one of the eigenvalues α and β equals zero, then the result is independent of the characteristic of k as we show in the next proposition.

Proposition 2.6. We have the following equalities;

$$a_{i} = \begin{cases} (m+n)i - i^{2} & (1 \leq i \leq m) \text{ if } \alpha = 0 = \beta \\ ni & (1 \leq i \leq m) \text{ if } \alpha = 0 \neq \beta \\ mi & (1 \leq i \leq n) \text{ if } \alpha \neq 0 = \beta \end{cases}$$

Proof. Put $x = X - \alpha$ and $y = Y - \beta$.

(1) The case $\alpha = 0 = \beta$:

Since $R/z^{i}R = k[x, y]/(x^{m}, y^{n}, (xy)^{i})$, we have $a_{i} = (m+n)i - i^{2}$. Therefore we get $J(\alpha, m) \otimes J(\beta, n) = J(0, m)^{\oplus n} \oplus \bigoplus_{i=1}^{2m-2} J(0, m-\lceil \frac{i}{2} \rceil)$.

(2) The case $\alpha = 0 \neq \beta$:

Since $R/z^{i}R = k[x, y]/(x^{m}, y^{n}, x^{i})$ as $y + \beta$ is a unit in $k[x, y]/(x^{m}, y^{n})$, we have $a_{i} = ni$. Therefore we get $J(\alpha, m) \otimes J(\beta, n) = J(0, m)^{\oplus n}$.

(3) The case $\alpha \neq 0 = \beta$:

Since $R/z^{i}R = k[x, y]/(x^{m}, y^{n}, y^{i})$ as $x + \alpha$ is a unit in $k[x, y]/(x^{m}, y^{n})$, we have $a_{i} = mi$. Therefore we get $J(\alpha, m) \otimes J(\beta, n) = J(0, n)^{\oplus m}$.

\square
In the case of \(\alpha \neq 0 \neq \beta \), then we have the following isomorphism of \(k \)-algebras, given by \(X - \alpha \mapsto x \), \(Y - \beta \mapsto y' \) and \(\frac{\alpha y'}{y+\beta} \mapsto y \):

\[
k[X, Y]/((X-\alpha)^m, (Y-\beta)^n, (XY-\alpha\beta)^{\iota}) \cong k[x, y]/(x^{rn}, y^{n}, (x+y)^{l}).
\]

Using this isomorphism together with [3, Proposition 4.4][4, Proposition 8], we have the following proposition in the case of characteristic zero.

Proposition 2.7. Suppose that \(\alpha \neq 0 \neq \beta \) and that \(k \) has characteristic zero. Then we have

\[
b = \left(\begin{array}{c} m, m, \ldots, m, m-1, m-1, m-2, m-2, \ldots, 1, 1 \end{array} \right).
\]

Proof. It is easy to show by using \(x + y \in k[x, y]/(x^{m}, y^{n}) \) is a Lefschetz element [4]. Therefore we get \(J(\alpha, m) \otimes J(\beta, n) = \bigoplus_{i=1}^{m} J(\alpha \beta, m+n+1-2i) \).

We consider in the rest the case where \(\alpha \neq 0 \neq \beta \) and that \(k \) is of positive characteristic \(p \). Put \(S = k[x, y] \), \(R = k[x, y]/(x^{m}, y^{n}) \) and \(A^{(l)} = R/(x+y)^{l}R \). To determine \(a_{l} = \dim_{k}(A^{(l)}) \). We have the following isomorphism:

\[
A^{(l)} \cong k[x, y, z]/(x^{m}, y^{n}, z^{t}, x+y+z).
\]

Therefore we may assume that \(m \leq n \leq l \) without loss of generality. For each integer \(l \) satisfying \(m \leq n \leq l \leq m+n-1 \), we describe

\[
(x+y)^{l} \equiv \sum_{i=0}^{l} \binom{l}{m-n+i} x^{m-n+i} y^{l-m-n+i} \pmod{(x^{m}, y^{n})}.
\]

We set \(q_{1} = \binom{l}{m-1}, q_{2} = \binom{l}{m-2}, \ldots, q_{r} = \binom{l}{l-n+1} \) and \(r = m+n-1-l \).

We obtain the representation matrix of \(R \xrightarrow{(x+y)^{l}} R \) with respect to the natural base \(\{1, x, y, x^{2}, xy, y^{2}, \ldots, x^{m-1}y^{n-1}\} \) as follows;

\[
\begin{pmatrix}
H_{0} & \vdots \\
H_{1} & \ddots \\
& \ddots \\
& & H_{r-2} \\
& & & H_{r-1}
\end{pmatrix},
\]

where

\[
H_{i} = \begin{pmatrix}
q_{i+1} & q_{i} & \cdots & q_{1} \\
q_{i+2} & q_{i+1} & \cdots & q_{2} \\
& \vdots & \ddots & \vdots \\
& & & q_{r} \\
& & & q_{r-1} & \cdots & q_{r-i}
\end{pmatrix}.
\]

For each \(0 \leq i \leq r-1 \) the matrix \(H_{i} \) is an \((r-i) \times (i+1)\) matrix whose entries are integers. We denote by \(I_{i+1}(H_{i}) \) the ideal of \(\mathbb{Z} \) generated by \((i+1)\)-minors of \(H_{i} \) for \(0 \leq i \leq r-1 \). Obviously there exists an integer \(\delta_{i} \geq 0 \) such that \(I_{i+1}(H_{i}) = \delta_{i}\mathbb{Z} \). From the argument in the case of characteristic zero in [3, Proposition 4.4], we have \(I_{i+1}(H_{i}) \otimes_{\mathbb{Z}} \mathbb{Q} \neq 0 \), particularly \(\delta_{i} \neq 0 \), for any \(0 \leq i \leq [(r-1)/2] \).
Proposition 2.8. Under the same notation as above, for each l satisfying $1 \leq m \leq n \leq l \leq m + n - 1$, and for each i satisfying $0 \leq i \leq \lfloor (r - 1)/2 \rfloor (r = m + n - 1 - l)$, the following equalities hold;
\[
\delta_i = \gcd(S_{\lambda_i}(1, 1, \ldots, 1) | j = (j_1, j_2, \ldots, j_{i+1}), 1 \leq j_1 < j_2 < \ldots < j_{i+1} \leq r - i},
\]
where λ^j is the partition conjugate to $\mu^j = (m - j_1, m - j_2 - 1, \ldots, m - j_{i+1} - i)$, and S_{λ} is the Schur polynomial.

Proof. Computation using Jacobi-Trudi formula [2],[7].

Let
\[
0 \rightarrow S(-a) \oplus S(-b) \rightarrow S(-m) \oplus S(-n) \oplus S(-l) \rightarrow (x^{m}, y^{n}, (x+y)^l) \rightarrow A^{(l)} \rightarrow 0
\]
be a minimal graded S-free resolution of $A^{(l)}$, where $1 \leq m \leq n \leq l \leq a \leq b$. The Hilbert-Burch theorem implies that $a + b = m + n + l$, and the Hilbert series of $A^{(l)}$ is given as
\[
H_{A^{(l)}}(t) = \frac{1-t^{m}-t^{n}-t^{l}+t^{a}+t^{b}}{(1-t)^{2}}.
\]
It follows from this that $\dim_k(A^{(l)}) = mn+ml+nl-ab$. Letting $i_0 = \min\{i | \delta_i \equiv 0 \pmod{p}\}$, we get $a = l+i_0$ and $b = m+n-i_0$, since a is the least value of degrees of relations of $(x^{m}, y^{n}, (x+y)^l)$. Thus, we can calculate the dimension of the k-vector space $A^{(l)}$, and hence the indecomposable decomposition of $J(\alpha, m) \otimes J(\beta, n)$.

Theorem 2.9. We are able to compute a Jordan canonical form of $J(\alpha, m) \otimes J(\beta, n)$ by taking the following steps:

(1) Every δ_i is determined.
(2) For each $1 \leq l \leq m + n - 1$, a_l is determined.
(3) The partition b is determined.
(4) The partition c is determined.
(5) The Jordan decomposition of tensored matrix $J(\alpha, m) \otimes J(\beta, n)$ is determined.

From the discussion in Theorem 2.9, one immediately obtains the following.

Theorem 2.10. The tensored matrix $J(\alpha, m) \otimes J(\beta, n)$ has the same direct sum decomposition as in Theorem 2.1 if $\text{char}(k) \geq m + n - 1$ or $I_{i+1}(H_i) \otimes_k k \neq 0$ for any $0 \leq i \leq \lfloor \frac{r-1}{2} \rfloor$.

Proof. It is easy to show that if $\text{char}(k) \geq m + n - 1$ then $I_{i+1}(H_i) \otimes_k k \neq 0$ for any $0 \leq i \leq \lfloor \frac{r-1}{2} \rfloor$.

REFERENCES

