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SYMMETRIC CRYSTALS
AND
LLTA TYPE CONJECTURES FOR THE AFFINE HECKE ALGEBRAS
OF TYPE B

NAOYA ENOMOTO AND MASAKI KASHTWARA

ABSTRAGT. In the previous paper [EK1], we formulated a conjecture on the relations
between certain classes of irreducible representations of affine Hecke algebras of type B
and symmetric crystals for gl... In the first half of this paper (sections 2 and 3), we give
a survey of the LLTA type theorem of the affine Hecke algebra of type A. In the latter
half (sections 4, 5 and 6), we review the construction of the symmetric crystals and. the
LLTA type conjectures for the affine Hecke algebra of type B. '

1. INTRODUCTION

1.1. The Lascoux-Leclerc-Thibon-Ariki theory connects the representation theory of the
affine Hecke algebra of ¢ype A with representations of the affine quantum enveloping algebra,
of type A. Recently, we presented the notion of symmetric crystals and conjectured that
certain classes of irreducible representations of the affine Hecke algebras of type B are
described by symmetric crystals for gl or A(l_)1 ([EK1]). In this paper, we review the
LLTA-theory for the affine Hecke algebra of type A, the symmetric crystals, and then our
conjectures for the affine Hecke algebra of type B. For the sake of simplicity, we restrict
ourselves in this note to the case where the parameters of the affine Hecke algebras are not
a root of unity.

This paper is organized as follows. In part I (sections 2 and 3), we review the LLTA-
theory for the affine Hecke algebras of type A. In section 2, we recall the representation
theory of U,(gl.,), especially the PBW basis, the crystal basis and the global basis. In
section 3, we recall the representation theory of the affine Hecke algebra of type A and
state the LLTA-type theorems. In part II (sections 4, 5 and 6), we explain symmetric
crystals for gl,, and the LLTA type conjectures for the affine Hecke algebras of type B.
In section 4, we recall the construction of symmetric crystals based on [EK1] and state
the conjecture of existence of the crystal basis and the global basis. In section 5, we
explain a combinatorial realization of the symmetric crystals for gl by using the PBW
type basis and the f-restricted multisegments. This section is a new additional part to
the announcement [EK1]. The details will appear in [EK2]. In section 6, we explain
the representation theory of the affine Hecke algebra of type B and state our LLTA-
type conjectures for the affine Hecke algebra of type B. We add proofs of lemmas and
propositions in [EK1, section 3.4].

1.2. Let us rccall the LLTA-theory for the affinc Hecke algebra of type A.

The representation theory of quantum enveloping algebras and the representation theory
of affine Hecke algebras have developed independently. G. Lusztig [L] constructed the PBW
type basis and canonical basis of U, (g) for the A, D, E cases. The second author [Kas]
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defined the crystal basis B(co) and the (lower and upper) global bases {G'"(b)}beB(oo)s
{G*(b)}sep(oo) Of Uy (9)- The lower global basis coincides with Lusztig’s canonical basis.
On the other hand, A. V. Zelevinsky [Z] gave a parametrization of the irreducible repre-
sentations of the affine Hecke algebra of type A by using multisegments. Chriss-Ginzburg
[CG] and Kazhdan-Lusztig [KL] constructed all the irreducible representations of the affine
Hecke algebras in geometric methods. '

Lascoux-Leclerc-Thibon conjectured in [LLT] that certain composition multiplicities
(called the decomposition numbers) of the Hecke algebra of type A can be written by
the transition matrices (specialized at ¢ = 1) between the  upper global basis and a stan-
dard basis of the level 1 fundamental representation of Uy(sl,). In [A], S. Ariki generalized
and solved the conjecture for the cyclotomic Hecke algebra and the affine Hecke algebra of
type A by using the geometric representation theory of the affine Hecke algebra of type A.
In [GV], I. Grojnowski and M. Vazirani proved the multiplicity-one results for the socle of
certain restriction functors and the cosocle of certain induction functors on the category
of the finite-dimensional representations of the affine Hecke algebras H* of type A. By
using these functors, Grojnowski ([G]) gave the crystal structure on the set of irreducible
modules over the affine Hecke algebras H# of type A. In [V], Vazirani combinatorially
constructed the crystal operators on the set of multisegments and proved the compatibility
between her actions and Grojnowski’s actions.

For p € C*, let H2(p) be the affine Hecke algebra of type A of degree n generated by
T; (1 <i<n—1)and X;' (1 <j < n). Forasubset J of C*, we say that a finite-
dimensional HA-module is of type J if all the eigenvalues of X; (1 < j < n) belong to
J. We can prove that in order to study the irreducible modules over the affine Hecke
algebras of type A, it is enough to treat those of type J for an orbit J with respect to the
Z-action on,C* generated by a — ap?® (see Lemma 3.3). For a Z-orbit J, let K;(HA) be
the Grothendieck group of the abelian category of finite-dimensional H{-modules of type
J, and K4 = ®,50K;(H2). The LLTA-theory gives the following correspondence between
the notions in the representation theory of a quantum enveloping algebra Uy(gl,,) and the
ones in the representation theory of affine Hecke algebras of type A.

the quantum enveloping algebra the affine Hecke algebra of type A
Uq(9l) My (p) (n > 0)
Uz (gles) K$ = @nz0Ks(H7(p))
e fa certain restrictions e, and inductions f,
the crystal basis B(oo) M = {the multisegments}
the upper global basis the irreducible modules
{G"(b) }eB(oo) {Ls}veB(oo)
the modified root operators €, = soc(e,), fo = cosoc(f,)
Cufa &alb = Las, falo = Lz,
the PBW basis {P(b) }seB(s0) the standard modules {M (b) }scB(0)

FIGURE 1. Lascoux-Leclerc-Thibon-Ariki correspondence in type A

The additive group K4 has a structure of Hopf algebra by the restriction and the in-
duction. The set J may be regarded as a Dynkin diagram with J as the set of vertices
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and with edges between a € J and ap®. Let g; be the associated Lie algebra, and g; the
unipotent Lie subalgebra. Hence g; is isomorphic to gl if p has an infinite order. Let
U; be the group associated to g7. Then C ® K% is isomorphic to the algebra €(U;) of
regular functions on Uj;. Let U,(gs) be the associated quantized enveloping algebra. Then
U, (87) has a crystal basis B(co) and an upper global basis {G"(b)}seB(oc). By special-
izing €D Clg, ¢']G*®(b) at g = 1, we obtain &(U;). Then the LLTA-theory says that the
elements associated to the irreducible H*-modules correspond to the image of the upper
global basis. Namely, each b € B(0), an irreducible H4-module L, is associated and we
have :
[eaLb : Lb’] = e:;,b,b/‘q=1, [fa.Lb : Lb’] = fa,b,b'|q=1~

Here [eoLy : Ly and [f,Ls : Ly| are the composition multiplicities of Ly of e, and f,L,
in K7. (For the definition of the functors e, and f, for a € J, see Definition 3.4.) The
Laurent polynomials oy 80d fouy are defined by

QGP0) = D €upGH), LGPB) = Y furwGOE).

¥/€B(c0) ¥ eB(o0)

1.3. Let us explain our analogous conjectures for the affine Hecke algebras of type B.

For po,p1 € C*, let HZ(po,p1) be the affine Hecke algebra of type B generated by
T; (0 <i<n—1)and X; (1 <j < n). The representation theory of H5(pg,p;) of type
B are studied by V. Miemietz and Syu Kato. In [M], V. Miemietz defined certain restric-
tion functors E, and the induction functors F, on the category of the finite-dimensional
representations of the affine Hecke algebras of type B, which are analogous to Gro jnowski-
Vazirani’s construction, and proved the multiplicity-one results (see sections 6.3 and 6.4).
On the other hand, S. Kato obtained in [Kat] a geometric parametrization of the irreducible
representations of the affine Hecke algebra HZ(py,p;), which is an analogue to geometric
methods of Kazhdan-Lusztig and Chriss-Ginzburg.

We say that a finite-dimensional HZ-module is of type J C C* if all the eigenvalues
of X; (1 < j < n) belong to J. Let us consider the Z x Zy-action on C* generated by
a > ap} and a — a~!. We can prove that in order to study HB-modules, it is enough to
study irreducible modules of type J for a Z x Zy-orbit J in C* such that J is a Z-orbit or
J contains one of £1,%py (see Proposition 6.4). Let I = Zoaq be the set of odd integers.
In this paper, we consider the case J = {pk | k € I } such that +1, +py ¢ J. Let K;(HB)
be the Grothendieck group of the abelian category of finite-dimensional representations of
HE (po,p1) of type J.

Let a, (a € J) be the simple roots with

2 ifa=b
(Ca,ap) = ¢ =1 if b= api?,
0  otherwise.

Then the corresponding Lie algebra is gl,. Let 6 be the involution of J given by f(a) = a71.
In sections 4 and 5, we introduce the ring By(gl,.) and the By (gl )-module V(0). They
are analogues of the reduced g-analogue B,(gl,,) generated by €, and f,, and the B, (gl )-
module U (gl,,). We can prove that V,(0) has the PBW type basis {Ps(b)}veBo(0)s the
crystal basis (L(0), Be(0)), the lower global basis {G}™ (b)}sey(0) and the upper global
basis {Gy®(b) }ves,(0). Moreover we can combinatorially describe the crystal structure by
using the f-restricted multisegments.

We conjecture that the irreducible HZ-modules of type J are parametrized by By(0)
and if Ly is an irreducible H®-module associated to b € By(0), then we have E, L = L B
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ﬁaLb = Lfab and [EaLb : Ly] = Ea,b,y|q=1, [FaLb . Lb/] = Fa,b,b'|q=1~ (FOI’ the definition of

the functors E,, F,, E, and ﬁa for a € J, see Definition 6.5.) Here the Laurent polynomials
Eupp and Fopy are defined by

E,GR(b) = Z BappGP(Y), F.GPO) = > FupyGi®).

v'€Bo(0) b'€By(0)
the quantum enveloping algebra the affine Hecke algebra of type B
Ug(gloo) with 6 Hp (po,p1) (n > 0)
Vo (0) = Uy (9le0)/ 203 Ug (8leo) (fi — foi)) K% = ®nz0K (M7 (9o, 1))
E,, F, certain inductions E, and restrictions F,
~ the crystal basis By(0) - Mg = {the -restricted multisegments}
the upper global basis {Gy" (b) }ve,(0) the irreducible modules {Ly}ves,(0)
the modified root operators E,= soc(Ey), E,= cosoc(Fy)
B, F, EuLy = Lg,, Fuls = L,
the PBW basis {Fy(b)}seB,(0) . the standard modules

FIGURE 2. Conjectural correspondence in type B

Part I. Review on Lascoux-Leclerc-Thibon-Ariki Theory
2. REPRESENTATION THEORY OF Uy(gl,,)

2.1. Quantized universal enveloping algebras and its reduced g-analogues. We
shall recall the quantized universal enveloping algebra U,(g). Let I be an index set (for
simple roots), and Q the free Z-module with a basis {a;}icr. Let (+,+): @ xQ —Z be a
symmetric bilinear form such that (e, @;)/2 € Zso for any i and (0, o;) € Zgo for i # j
where o := 20;/(a;, ;). Let ¢ be an indeterminate and set K := Q(q). We define its
subrings Ay, Ao, and A as follows. '

Ay = {fe€K| fisregular at ¢ =0},
Ay {f € K| f is regular at ¢ = oo},
A = Q[Q)qnl]‘

Definition 2.1. The quantized universal enveloping algebra Uy(g) is the K-algebra gen-

erated by elements e;, f; and invertible elements t; (¢ € I) with the following defining
relations.

]

(1) The t;’s commute with each other.
(2) tjes tj'1 =qle%) e, and t; fitj"1 =g @) f, for anyi,jel.
ti—t; " :

(3) les fil = 5ij';_(1£:f fori, j € I. Here g;:= q(ae,m)/z
. ;i — g,
(4) (Serre relation) Fori# j,
b b ‘
S (DkePeel™ =0, (-1 P 5 =0,

k=0 : k=0
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Hereb=1- (o), ;) and

e = e /Ikl!, £¥ = /IR, (R = (aF — q7%)/(as — g7), (KL = [1);- -+ [K]:.-

Let us denote by U, (g) the subalgebra of Uq(g) generated by the f;’s.
Let €; and €] be the operators on U; (g) defined by
' (eta)t; — t;'ela

es,a] = qul— (a €Uy (9)-

These operators satisfy the following formulas similar to derivations:
21) e;(ab) = €j(a)b+ (Ad(t;)a)eld,
2.1
€;(ab) = aefb + (e}a)(Ad(t:)D).
The algebra U; (g) has a unique symmetric bilinear form (+, +) such that (1,1) = 1 and
(e1a,b) = (a, fib) for any a,b € U7 (g).

It is non-degenerate and satisfies (efa,b) = (a,b f;) Let B(g) be the algebra generated by
the e;’s and the f;’s. The left multiplication of f;, e} and e} have the commutation relations

eif5 = a7 %) fiel + 8y, €1 f; = fre} + 6,5 Ad(t:),
and both the e;’s and the e}’s satisfy the Serre relations.

Definition 2.2. The reduced g-analogue B(g) of g is the Q(g)-algebra generated by €; and
fi-

2.2. Review on érystal bases and global bases. Since €] and f; satisfy the g-boson -
relation, any element a € U; (g) can be written uniquely -as

a= Z f,.(")an with €}a, = 0.

n n20
Here f(") [f i x

Definition 2.3. We define the modified root operators & and f; on Uy (9) by
ga= Z fi(n—l) an, fa= Z f,i("ﬂ)an

T on2l n20
Theorem 2.4 ([Kas]). We define
L(OO) = Z A0ﬁ1"'ﬁt'1 c Uq—(g)7

620, i1, ig€l
B(c0) = {f v+ fig -1 modqL(00) | £ 2 0,4y, -+ i € I} C L(00)/qL(00).

Then we have

(i) &L(00) C L(00) and fiL(c0) C L(c0),

(ii) B(co) is a basis of L(c0)/qL(00),

(iii) f;B(c0) C B(c0) and €;B(00) C B(oo) U {0}.
We call (L(c0), B(00)) the crystal basis of Uy (g).

Let — be the automorphism of K sending g to ¢~!. Then Aq coincides with A,

Let V be a vector space over K, Ly an A-submodule of V, Lo, an Ao~ submodule, and
Va an A-submodule. Set E := Ly N Lo, N V.



NAOYA ENOMOTO AND MASAKT KASHIWARA

Definition 2.5 ([Kas]). We say that (Lo, Lo, Va) is balanced if each of Lo, Lo and
Va generates V as a K-vector space, and if one of the following equivalent conditions is
satisfied. :

(i) E — Lo/qLo is an isomorphism,
(ii) E = Loo/q 'L is an isomorphism,
(iii) (LoNVa) ® (g7 Lo N Va) — Va is an isomorphism.
(iv) Ag®gE — Lo, Aw®QE — Loo, AQgE — Vs and K®gE — V are isomorphisms.
Let — be the ring automorphism of U,(g) sending g, t;, e;, f; to a7 e fi
Let U,(g)a be the A-subalgebra of Uy(g) generated by e™, f™ and t;. Similarly we
define U, (g)a- ' ‘

Theorem 2.6. (L(c0), L(c0), Uy (9)a) is balanced.

Let
) G L(0)/gLi{o0) B = L(o0) N () N Uy (@)a

be the inverse of E-~-L(c0)/qL(c0). Then {G'¥(b) | b € B(co)} forms a basis of U (g).
We call it a (lower) global basis. It is first introduced by G. Lusztig ([L]) under the name
of “canonical basis” for the A, D, E cases.
Definition 2.7. Let .

{G*(b) | b € B(0)} .
be the dual basis of {G*(b) | b € B(co)} with respect to the inner product (+, «). We call
it the upper global basis of U7 (g).

2.3. Review on the PBW basis. In the sequel, we set ] = Zoqq and

2 fori=j,
(ai,aj) = -1 for ] =i+ 2,
0 otherwise,
and we consider the corresponding quantum group Uy(gl,,). In this case, we can param-

etrize the crystal basis B(co) by the multisegments. We shall recall this parametrization
and the PBW basis.

Definition 2.8. For i,7 € I such that i < j, we define a segment (i,7) as the interval
" [6,5] C Zoga- A multisegment is a formal finite sum of segments:

m= ZmU(?’?J)
<7

“with mi; € Zzo. If my; > 0, we sometimes say that (i,j) appears in m. We denote
sometimes (i) for (i,i). We denote by M the set of multisegments. We denote by 0 the
zero element (or the empty multisegment) of M.

Definition 2.9. For two segments (i1, 71) and (iz, j2), we define the ordering >ppw by the
following:
’ J1>J2
(i, J1) ZpBw (i2, J2) <= { or

Ji=J2 and iy 2 @2, -
We call this ordering the PBW ordering.

Example 2.10. We have (1,1) >ppw (~1,1) >ppw (=1, -1).
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Definition 2.11. We define the element P(m) € U7 (8ls) indezed by a multisegment m
as follows: :

(1) for a segment (i, j), we define the element (i,5) € Uy (8ly) inductively by
<i) 7’) = fi
(@.7) = (.7 —2)(G,5) — (i, 5) (0,5 - 2),
(2) for a multisegment m = Zmij (,7), we define
i<y

P(m) = ﬁ (i,j>(mj)-

Here the product ﬁ is taken over segments appearing in m from large to small with
respect to the PBW ordering. The element (i, j)(m‘j) 1s the divided power of (i, j) i.e.
Camg) L amy .
i, = ——(i, .
(3,9) [mij]!< 3)
Set wt P(m) = — Zmijaij.
i< .
Theorem 2.12 ([L]). The set of elements {P(m) | m € M} is a basis of the K-vector
space Uy (gl,,). Moreover this is a basis of the A-module U7 (8l)a. We call this basis the
PBW basis of Uy (gl,.).
Definition 2.13. For two segments (i1,51) and (i, o), we define the ordering Zcry by the
following: ' : .
1> J2
<i17j1> >cry <i29j2> = or
: J1=Js and iy < 0.
We call this ordering the crystal ordering. For m = g Mig(i, ) € M and and m' =
> ig; Mi (i, J) € M, we define m’ < m if there exists a segment (t0, jo) such that mj ; <
cry
Mig,jo and m;J = m; for any (3,5) >y (to, jo).
Example 2.14. The crystal ordering is different from the PBW ordering. For example, we
have (~1,1) >cry (1,1) >y (—1,—1), while we have (1, 1) >pw (=1,1) >ppw (~1,-1).
Definition 2.15. We define the crystal structure on M as follows: form =" m;;(i,j) €
Mand i € I, set A,(:) (m) = Yowsk(Miy — Miyapy2) for k > 4. Define gi(m) as
max {Aff)(m) | k> z} =>0.

(i) If ei(m) = 0, then define &(m) = 0. If e;(m) > 0, let k. be the largest k > i such
that ei(m) = AP (m) and define &(m) = m — (i, ko) + 0,256 + 2, ko).

(i) Let ky be the smallest k > i such that e;(m) = Ag:) (m) and define fi(m) = m —
6!:;#(7: + 2, kf) + (i, kf).

Remark 2.16. For i € I, the actions of the operators &; and fionm € M are also

described by the following algorithm:

Step 1. Arrange the segments in m in the crystal ordering,.

Step 2. For each segment (i, j), write —, and for each segment (i + 2, j), write +.

Step 3. In the resulting sequence of + and —, delete a subsequence of the form +— and
keep on deleting until no such subsequence remains.
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Then we obtain a sequence of the form — — -+ — 4+ +---+.

(1) i(m) is the total number of — in the resulting sequence.

(2) fi(m) is given as follows: ’
(a) If the leftmost + corresponds to a segment (i + 2, ), then replace it with (i, j).
(b) If no + exists, add a segment (i,4) to m.

(3) €(m) is given as follows:
(a) If the rightmost — corresponds to a segment (4, j), then replace it with (i + 2, 7).
(b) If no — exists, then &;(m) = 0.

Theorem 2.17. (i) L(oo) = @ AoP(m).
M

(i) B(00) = {P(m)mod gL(oo) | m € M}.

(iii) We have v
%‘P (m) = P ('Cz(m)) mod gL(c0),
f;P(m) P(fi(m)) modgL(c0).

Note that €; and ﬁ in the left-hand-side is the modified root operators.
(iv) We have the ezpansion

P(m)e Pm)+ ) AP(m").

m' <m
cry

Therefore we can index the crystal basis by multisegments. By this theorem we can
easily see by a standard argument that (L(c0), L(c0), U7 (9)a) is balanced, and there ex-
ists a unique G**¥(m) € L(co) N U; (g)a such that G°*(m) = G*"(m) and G**"(m) =
“P(m) mod ¢L(c0). The basis {G'"(m)}menm is a lower global basis.

3. REPRESENTATION THEORY OF H2 AND THE LASCOUX-LECLERC-THIBON-ARIKI
THEORY
3.1. The affine Hecke algebra of type A.

Definition 3.1. Forp € C*, the affine Hecke algebra H2 of type A is a C-algebra generated
by .
Tl"' : aTn—l’Xfﬂy” : 7X7=1,&1
satisfying the. following defining relations:
(1) XiX; = X;X; for any 1 < 4,j < n.
(2) [The braid relations of type A]
T.TinT; = Tii1TiTia (1<i<n—2),
TT; =T;L (li =4l >1).
(3) [The Hecke relations]
(Ti=p)(Ti+p)=0 (1<i<n-1)
(4) [The Bernstein-Lusztig relations]
TXTi=Xin (1<i<n—-1),
TX;=X;Ti (#4i+1).
Since we can enbed M into 'Hﬁ_‘_m byTi—= Tim 1<K n=1),X; > Xpnyj (1<35 < m),
we consider HA @ HA as a subalgebra of Ha .,
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Definition 3.2. For a finite-dimensional H2-module M, let
M= P M,
a€g(C*)n
be the generalized eigenspace decompositz‘on with respect to Xa,...,X,. Here
My:={ueM|(X;—a)Nu=0foranyl<i<n and N > 0}

fora=(as,...,a,) € (C*)".
(1) We say that M is of type J if all the eigenvalues of X, . .., X, belong to J C C*.

(2) Put
K} =PKs:.
- n20

Here K ’j}n is the Grothendieck group of the abelian category of finite-dimensional HA-

modules of type J.
(3) The group Z acts on C* by Z 3 n: a — ap®™.
Lemma 3.3. Let J; and J, be Z-invariant subsets in C* such that hNnd= 0.
(1) If M is an irreducible Hh,-module of type Ji and N is an irreducible HA-module of type

b

Ja, then Ind;zt (M ® N) is irreducible of type J, U J,.

(2) Conversely, if L is an irreducible H2-module of type J, U Jo, then there exist m (0 <

m < n), an irreducible HA-module M of type Ji and an irreducible HA _,.-module N
of type Jo such that L is isomorphic to Ind:'ﬁ ot (M®N).

Hence in order to study the irreducible modules over the affine Hecke algebras of type
A, it is enough to treat the irreducible modules of type J for an orbit J with respect to
the Z-action on C*.

3.2. The a-restriction and the a-{nduction. For a C-algebra A, let us denote by
A-mod™ the abelian category of finite-dimensional A-modules.
Definition 3.4. Forq € C, letvus define the functors
€t My -mod™ — M2 -mod™, f,: H2-mod® — M4, -mod®
by: eaM is the generalized a-eigenspace of M with respect to the action of Xn, and

Ha
faM = Indﬂé‘;qxﬁl] M @ {a),

where (a) is the 1-dimensional representation of ClXE] defined by Xpi1 — a.
Moreover, put
€M :=soce,M, f:M = cosoc foM
for a € C*. Here the socle is the mazimal semisimple submodule and the cosocle is the
mazimal semisimple quotient module.

Theorem 3.5 (Grojnowski-Vazirani [GV]). Suppose M is irreducible. Then faM is irre-
ducible, and €,M is irreducible or 0 for any a € C*.
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3.3. LLTA type theorems for the affine Hecke algebra of type A. In this subsec-
tion, we consider the case

J = {p"| k € Zoaa},
and suppose p is not a root of unity. For short, we shall write e;, &, fi and f; for ey, €y, fy
and fp, respectively.
The LLTA type theorem for the affine Hecke algebra of type A consists of two parts. First
is a labeling of finite-dimensional irreducible H#-modules by the crystal B(co). Second js
a description of some composition multiplicities by using the upper global basis.

Theorem 3.6 (Vazirani [V]). There are complete representatives
{Ly | b€ B(c0)}
of the finite-dimensional irreducible HA-modules of type J such that
&Ly =Lep, Ffilo=Lg,
foranyiel.

Theorem 3.7 (Ariki [A]). For i € I = Zog, let us define €y, fipy € Clg,q7"] by the
coefficients of the expansions:

dGPb) = Y epyGPl), £GTO)= Y fiwG).
b €B(o0) Y eB(o0)
Then
leiLs : Ly] = €jpplo=1,  [fiLlo: Ly] = fipplo=1-
Here [M : N] is the composition multiplicity of N in M on K4.

Part II. The Symmetric Crystals and some LLTA Type Conjectures for
Affine Hecke Algebra of Type B

4. GENERAL DEFINITIONS AND CONJECTURES FOR SYMMETRIC CRYSTALS

We follow the notations in subsection 2.1. Let 6 be an automorphism of I such that
6% = id and (o), ae(j)) = (o, 0y). Hence it extends to an automorphism of the root
lattice @ by 6(c;) = ag(;), and induces an automorphism of Ug(g).

Definition 4.1. Let By(g) be the K-algebra generated by E;, F;, and invertible elements
T; (i € I) satisfying the following defining relations:
(i) the T;’s commute with each other,
(ii) Tosy = T; for any i,
(iil) GE;T ! = q(“"""‘"(‘)""f)E and T,F;T! = ¢(@teom—2) F; for i,jel,
(iv) E; F =q A FE + (8,5 + 69(,),, ) fori,jel,
(v) the E s and the F s satisfy the g-Serre relations.

We set E™ = EP/[n],! and F™ = F7/[n)j!.
Proposition 4.2, Let A € P.:={)\ € Hom(Q Q) | (a yA) € Zzg for any i € I} be a dom-

inant integral weight such that 6(\) =

(i) There exists a By(g)-module Vg()\) genemted by a non-zero vector ¢, such that
(@) Eipr=0 foranyi €I, :
(b) Tigs = ¢*N¢y for anyi € I,

(¢) {ueVo(A\) | Esu=0 for anyi € I} = K¢,.
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Moreover such a Vg(A) is irreducible and unique up to an isomorphism.
(ii) there exists a unique symmetric bilinear form (s, «) on Vy()\) such that (¢r,dy) = 1
_and (B, v) = (u, Fv) for any i € I and u,v € Vp()), and it is non-degenerate.
(iii) There exists an endomorphism — of Va(\) such that ¢y = ¢ and @G0 = Gv, Fv = Fiv
for any a € K and v € Vp()).

The pair (By(g), Ve(})) is an analogue of (B(g),U, (g)).- Such a Vj(}) is constructed
as follows. Let U (g)#) and U (g)¢} be a copy of a free Uy (g)-module. We give the
structure of a Bg(g) module on them as follows: for any i € I and a€U;(9)

Ti(agh) = q@N(Ad(titea))a)dh
(4'1) {Ei(a¢f\) = (ega-i—q(%") Ad(ti)(eZ(,')a))qﬁ’A,
Fi(ad)) = (fia)¢
and
Ti(ag}) = ¢@N(Ad(tites)a)dh,
(42) {E (agd) = (eja)dh,
Fi(ag}) = (fia-l-q(“")‘)(Ad(t’)a)fo(i)) i

Then there exists a unique Bjy(g)-linear morphism ¢: Uy (g)¢ — U, (g)#% sending &) to

- Its image ¢(U; (g)¢}) is Ve(N).
Hereafter we assume further that

-there is no i € I such that 6(z) = 1.

We conjecture that Vp(\) has a crystal basis. This means the following. Since E; and F; -
satisfy the g-boson relation E;F; = ¢~(*»*)F;E; + 1, we define the modified root operators:

E;(u) = Z Fz’(n_l)un and E(u) - Z Fi(n+1)um
n2l } n20
when writing u = 3_ ., F{™u, with Eyu, = 0. Let Ly(\) be the Ag-submodule of V()
generated by F;, --- F;,¢5 (£ >0 and 4y,...,3,.€ I), and let By()\) be the subset

{ﬁu‘ Fiypamod gLe(A) [ £ 20, 41,... 4 € I}
of Lg(N\)/qLe(N).

Conjecture 4.3. Let ) be a dominant integral weight such that 6()\) =
(1) FiLg(\) C Ly()\) and E;Lg()\) C Lo(N),
(2) Bo(2) is a basis of Lg(A)/qLe(N),
3) FBg(A) C By()), and E;By()) C By(\) U {0},
(4) F;E;(b) = bfor any b € By()\) such that E;b # 0, and E; ,Fy(b) = b for any b € By()\).
Moreover we conjecture that Vg(\) has a global crystal basis. Namely we have
Conjecture 4.4. (Ly()), Lo(N), Vo(A)'™) is balanced. Here Vp(A)s™ := =U; (8)ad.
The dual version is as follows. As in [Kas], we have

Lemma 4.5. Assume Conjecture 4.3. Then we have
(i) Lo(A) = {v € Vo(A) | (Le(N),v) C Aq},
(ii) Let (o, «)o be the C-valued symmetric bilinear form on Lg()\)/qLs(N) induced by
(e, ). Then By(}) is an orthonormal basis with respect to (e, +)o.
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Let us denote by V()i the dual space {v € Va(A) | (Vo(A)5",v) € A}. Then Conjec-
ture 4.4 is equivalent to the following conjecture.

Conjecture 4.6. (Lg()\),c(Lé()\)),%()\)“Ap) is balanced.

Here ¢ is a unique endomorphism of V() such that c(¢y) = ¢ and c(av) = ac(v),
c(Ew) = Eic(v) for any a € K and v € Vp(A). We have (c(v'),v) = (v/,7) for any
v,V € Vp(N).

Note that Vo(\) is the largest A-submodule M of V() such that M is invariant by
the E™’s and M N K¢y = Agy.

By Conjecture 4.6, Lo()) N c(Lg(A)) N Vo(0)* — Lg(X)/qLs(X) is an isomorphism. Let
Gy¥ be its inverse. Then {Gy¥(b) }ves,(x) is a basis of V5()), which we call the upper global
basis of V(). Note that {G3°(b)}sen,(» is the dual basis to {G§™ (b)}eep,(r) With respect
to the inner product of V().

5. SYMMETRIC CRYSTALS FOR gl

In this section, we consider the case g = gl,, and the Dynkin involution @ of I defined
by 0(z) = —ifor i € I = Zogq- _ .

[}

S\

‘4 —O

(o]

-5 -3 -1 1 3 5

[¢]

o — 0

O —— terens

We shall prove in this case Conjectures 4.3 and 4.4 for A = 0.
‘We set

7(0) = Bo(o)/ (5 Bol@) i + 5 Bo(a) (Fi — Foe) = Uy (8k)/ T Uy (81)(fs = foo):
Since Fiy = (fi + fo(i)) 9 = Fow) ¢y, we have an epimorphism
(51) | ¥(0) — V4(0).

It is in fact an isomorphism (see Theorem 5.9).
5.1. f-restricted multisegments.

" Definition 5.1. If a multisegment m has the form
m= Y my(ij),
B A

we call m a f-restricted multisegment. We denote by My the set of -restricted multiseg-
ments.

Definition 5.2. For a 0-restricted segment (i, j), we define its modified divided power by
' 1
;o\ (m) . oam . .
(i,9) —[m]!(z,J) (i #—4),

1—-1—171—[5-;](—.7',]')"" (i=-7).

v=1

(i, )™ =

Definition 5.3. For m € My, we define the elements Py(m) € U, (g) C By(g) by

Pom) = [] i)™,

(ij)em
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- .
Here the product ] is taken over the segments appearing in m from large to small with
respect to the PBW-ordering.

5.2. Crystal structure on M,.

Definition 5.4. Suppose k > 0. For a §-restricted multisegment m = Y. m;;(1,]), we
—J<igy

set
¢_,(m) = max {A§"°’(m) 163 —k} ,
where
Ag_k)(m) = Z(m—k,e — M_pioe42) for &>k,
o3
A,(c_k) (m) = Z(m_m - m_k+2,¢) + 2m_k,k -+ d(m_k.;.z,k s Odd),
0k
Ag"k) (m) = Z(m_k,e = M_gy0) + 2M_g g — 2M_ya 2 + Z My — Z i k2
o>k k4242 —k+2<i<H

, : for—k+2<j<k~-2.
i) Let ny be the smallest £ > —k + 2, with respect to the ordering --- > k+2 > k >
f
~k+2>---> k-2, such thal e_gx(m) = A§_k)(m). We define

m — (-k+2,n¢) + (—k,ns) ifng >k, _

m — (—k +2,k) + (~k, k) ifng =k and m_gax is odd,

m — g (~k+2,k—2) + (—k+2,k)  ifny =k and m_go4 is even,

m-—dnf#k_z(nf+2,k—2) + (n;+2,k) if —k+2 SNy < k—2.

(ii) Ife_x(m) =0, then E_x(m) = 0. If e_x(m) > 0, then let n, be the largest £ > —k+2,
with respect to the above ordering, such that e_r(m) = Ag_k)(m). We define

m — (—k,ne) + (—k + 2,n.) if ne > k,

m — (—k, k) + (—k + 2, k) : if ne =k and m_pia4 is even,

m — (<k+2,k) + Gep1(—k+2,k—2)  ifn.=k and m_p,o4 is odd,

m—(ne+2,k)+6ne¢k_2(ne+2,k—2) f—k+2<n.<k-2.

F(m) =

E~k(m) =

Remark 5.5. For 0 < k € I, the actions of E_j and f_k on m € My are described by

the following algorithm.

Step 1. Arrange segments in m of the form (—k, j) ( 2k), (~k+2,7) (j > k—2,0), (i, k)
(=k <4 <k), (5,k—2) (~k+2 <4< k—2) in the order

o=k k4 2), (~k+ 2,k +2), (—k, k), (—k+2,k), (~k + 2,k — 2),
(~k+4,k), (—k+4,k=2),- , (k—2,k), (k — 2,k — 2), (k).

Step 2. Write signatures for each segment appearing in m by the following rules.
(i) If a segment is not (—k + 2, k), then
o For (—k, k), write ——,
o For (—k, j) with 7 > k, write —,
o For (—k + 2,k — 2) with k > 1, write ++,
e For (—k + 2, ) with j > k, write +,
e For (j,k) if —k < j < k, write —,
o For (j,k—2) if —k+2 < j < k — 2, write +,
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o If otherwise, write no signature.
(ii) For segments m_p4ok(—k + 2, k), if m_g42, is even, then write no signature,
and if m_gyo is odd, then write a sequence —+.
Step 3. In the resulting sequence of + and —, delete a subsequence of the form +— and
keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form — — -+ — ++ - 4.

(1) e_x(m) is given as the total number of — in the resulting sequence.
(2) F_i(m) is given as follows:
(i) if the leftmost + corresponds to a segment (—k + 2,7) (4 > k), then replace the
segment with (—k, j),
(i) if the leftmost + corresponds to a segment (j,k — 2), then replace the segment
with (j, k),
. (iiil) f the leftmost -+ corresponds to segment (—k + 2, k)™ ****, then replace one of
the segments with (—k, k),
(iv) if no + exists, add a segment (k,k) to m.
(3) E_(m) is given as follows:
(i) if the rightmost — corresponds to a segment (—k, j), then replace the segment
with (—k + 2, 7),
(ii) if the rightmost — corresponds to a segment (j, k) (j # —k + 2), then replace the
segment with (j,k — 2),
(iii) if the rightmost — corresponds to segments m_42,{(—k + 2, k), then replace one
of the segment with S—k +2,k—2),
(iv) if no — exists, then E_;(m) =0

Definition 5.6. Fork € I, we define ﬁk, Ej, and ex, by the same rule as in Definition 2.15
for fi and €.

Theorem 5.7. By Fy,, Ey, e (k € I), Mg is a crystal, in the sense that, for any k € I,
we have

() FkMo C Mgy and E'kMo C Mgl {0}, 5

(i) FoEx(m) = m if Ex(m) # 0, and Eyo F, =id,

(iii) ex(m) = max {n 0] E“(m) # 0} < 00 for any m € My.

Example 5.8. (1) We shall write {a,b} for a(—1,1) +b(1). The following diagram is the
part of the crystal graph of Be(0) that concerns only the 1-arrows and the (—1)-arrows.

0,4y = {0,5} -
0.3=={ 57
¢${o,1} 1,{1,2}2_2{1,3%-
Loy == 7
{2,0} —= {2 1}--

Especially the part of (—1)-arrows is the following diagram.

-1

{0,2n} — {0,2n + 1}

{1,2n} —=> {1,2n + 1} —> {2, 20} —— -+
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(2) The following diagram is the part of the crystal graph of Bg(0) that concerns only the
—1)-arrows and the (—3)-arrows. This diagram is isomorphic as a graph to the crystal
graph of A,.

-1 2(—1,1)
LT+ )
R I 1,3+ (1)
R Y e

S = E ()
. (1,3) .
L@+ (LY+()

@+(-L1 "

¢ /:3/7 (=1,3) + (3)
| (1,3)+(3)
. I L3 423
.<3>+<1\
P > 2(3) +(~1,1)
(3) e
T S5+ (1)
-\3>3<3> ~1

T

(3) Here is the part of the crystal.graph of By(0) that concerns only the n-arrows and the
(—n)-arrows for an odd integer n > 3:

n n n n

¢ T {n) — 2(n) — 3(n) — 4ny---

5.3. Main Theorem. We write ¢ for the generator ¢, of V;(0), for short.
Theorem 5.9. (i) The morphism

Va(0) = Uy (8)/ > Uy (8)(fi = f-&) — V&(0)

kel
s an isomorphism.
(it) {Ps(m)¢}mem, is a basis of the K-vector space V(0).
(iil) Set

Lg(0) := 2 AF, - F¢cC Vs(0),
€201, igel
Bg(O) = {F‘u o Et¢m0qu9(0) | I O,il, ... ,ie € I} .

Then, By(0) is a basis of Lg(0)/qLe(0) and (Le(0), B4(0)) is a crystal basis of V(0),
and the crystal structure coincide with the one of M.
(iv) More precisely, we have
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(8) Lo(0) = X ment, AoPo(m)d,
(b) Ba(0) = {Py(m)pmod ¢L4(0) | m € Mo},
(c) for any k € I and m € My, we have
(1) FiPy(m)p = Py(Fym)$ mod qLy(0),
(2) @ch(m)qﬁ Ps(Exm)¢ mod qLg(0), where we understand Py(0) = 0,
(3) ErPy(m)¢ € qLo(0) if and only if n > ex(m).
5.3.1. Global Basis of V3(0). Recall that A = Q[g,¢™"], and Vo(0)a = Uy (gleo)a¢-
Lemma 5.10. (i) Ve(O)A = @ AP,(m)o.
meMg
(ii) Form € M,
Py(m)¢ € Py(m)p+ Y APy(n)g.
| g
By the above lemma, we obtain the following theorem.

Theorem 5.11. (i) (L(0), L(0), Vs(0)a) is balanced.

(i) For anym € My, there exists a unique G¥™ (m) € Lg(0)NV5(0) s such that Gs¥(m) =
G¥¥(m) and G¥*(m) = Py(m)¢ mod qLg(0).
(ii) G%"w(m) € Py(m)p + 3, 1 9Clg| Po(n)¢ for any m € M.

6. REPRESENTATION THEORY OF HZ AND LLTA TyYPE CONJECTURES
6.1. The affine Hecke algebra of type B.

Definition 6.1. For py, p1 € C*, the affine Hecke algebra HE of type B is a C-algebra
generated by

To,Tl, N n—1>XiH, : ’X-r:::l
satisfying the following defining relatzons.
(i) XiX; =X;X; forany1<i,j<n
(ii) [The braid relations of type B]
oI ToTh = ThToThTo,
TTinT;=TinTiTi (1<i<n—2),
T,T; = T;T; (Iz——3|>1)
(iii) [The Hecke relations]
(To—po)(To+p;") =0, (Ti—p)(Ti+pi')=0 (1<i<n-1).
(iv) [The Bernstein-Lusztig relations]
ToXl— lTo = X,
TXT,=Xin (1<i<n-1),
TX;=XTi (J#4,i+1)
Note that the subalgebra generated by T; (1 < ¢ < n — 1) and X;H Q1<j<gn)is
isomorphic to the affine Hecke algebra HZ.
We assume thdt pg, p; € C* satisfy

£ pi# L

Let us denote by Pol, the Laurent polynoinial ring C[XFE, ..., X*!], and by Pol, its
quotient field C(Xj,...,X,). Then HZ is isomorphic to the tensor product of Pol, and
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the subalgebra generated by thé T}’s that is isomorphfc to the Hecke algebra of type B,.
We have Ca—sa
Tia = (s0)Ti + (pi — Pfl)f:Ti@/

Here p; =p1 (1 <i<n),and X~ = X72 (i =0) and X~ = X;X;;} (1 <i<n). The
si’s are the Weyl group action on Pol,: (s;a)(X3,...,X5) = a(X7, Xa,...,X,) for i =0
and (s;a0)(X1,...,X,) = a(Xy,..., Xit1, Xy ..., Xp) for 1 i < m.

Note that HZ = C for n = 0.

The algebra HZ acts faithfully on HZ/ 31 HE(T; — p;) ~ Pol,,. Set

pi=(1-X~)T; — (p; — p;’") € HE

for a € Pol,,.

and y ~
@ = (7' — piX %) p; € Pol, ®pay, HE.
Then the action of @; on Pol,, coincides with s;. They are called intertwiners.

6.2. Block decomposition of HE - mod®. For n,m = 0, set

Fom:= C[Xlﬂ, ceey X,,'ﬁm, D'l],
where
D= J] (X=-piX;)(X:—pr2X,)(Xi = 22X (X — p72X50) (X — X;) (Xi — X
IKign<ig<n+m

Then we can embed 43 into HE 1 @Polysm Frym by
Tom@n o1 Tofr @y, TimTyn (1<i<m), Xi Xipn (10K m).
Its image commute with %7 C HE, . Hence HZ,,, ®po,,,. Frm is a right H3 @ HE-
module. Note that (H7 ® HE) ®pol,sm Frm = Fm ®pol,, (HE @ HE) is an algebra.
Lemma 6.2. H#"'mngg H’gﬂf ® HE) ®bolnym Frm——HE, . ®pol,,.. Frm.
Proof. Let W;! and WP be the finite Weyl group of type 4 and B. Note that WA..| -
(W2|-[WE|/(IWA|-|W2A|) = |W2,.|. Hence the both sides are free modules of rank (WE.,
over F.‘":‘m' We prove that the map is surjective.
For short, we denote the image of Hz,, . @ A(’Hf ® HE) ®potpym Fam by HI, C
HE@MH, '

H‘lBt+m ®1P01n+m Fn,m' Note that ‘ﬁi ter 557& € Hﬁ,‘+m ®Poln+m Fn,m for1 <4 <n

First, we have @n -+ $1To @1+ Gn € HE Qpal, Fom. Since (Gn--- @) =@ @, €
Ha m ®pot, Frm, We have Ty Gy -+ - Gy, € Hee .

Second, note that

Ti= (Bioi" — piXi Xiwr) — (s = P7) X7 Xia) (1= X7 X)) T (1< i < ).

K TpTy - Tia Bio o« G € HES, then TyTy - Th Gy -+~ G € S, for 1 < i < n. Indeed,
we have

To- Tigip- @ = Tor Tiea @i @n (07" — PiX; Xnp1) (1 = X1 X p1) ™!

—0i = )To Tica Gigr -+ B X7 Xpa (1 — X X))
and
To- T @it Pn=Gisa- GnTo- - Tjy € HE, . FomHE.

Therefore ToTy -+ - T, € H,2%,. Hence TyTy -+ T; € Hys, (1 <4 <n+m). Indeed, if i < n,
then TyTy -+ T; € M. If n < i, then TyTy -+ Ty, € HS, and Toyy -+ T € HE.
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Finally, we prove the surjeétivity by the induction on m. Note that

n+m n+m—1 .
B B .
Hn+‘m —_ Z f[*'i,I‘H-l v Tn+m—1Hn+m—1 + Z ﬂ ce T1T0T1 e Tn+m_1Hn+m_1
=1 i=0

and TiTit1 - Tnym-1 € HA,,,_;. Furthermore, 52, C H25, 1 by the induction hy-
pothesis. Thus it is sufficient to prove that To’l-t,‘;lf,?1 C 'H}:ﬁn. Here, Hff,?, is the subalgebra
~of Hﬁ+m generated by T1,. .., Tnym—1. This follows from

n+m—1
HAE Z (T, Tngme) W+ T
=0
and ToTy"ﬂGHiZ%t. O

Definition 6.3. For a finite-dimensional HZ-module M, let

M= P M

a€(C*)™
be the generalized eigenspace decomposition with respect to X, ..., Xn:
Ma:={u€M|(Xi—a,-)Nu=0fo'rany1 <ign andN>>0}
fora = (a,...,an) € (C)*. .
(1) We say that M is of type J if all the eigenvalues of X, ..., Xn belong to J C C*. Put

K2 =P K7,

n20

Here K fn is the Grothendieck group of the abelian category of finite-dimensional HE-
modules of type J.
(2) The semi-direct product group Z X Zy = Z x {1,~1} acts on C* by (n,€): a > ap?.
(3) Let Jy and Jo be Z x Zy-invariant subsets of C* such that JiNJy =0. Then for an
HE-module N of type Ji and an HE-module M of type Ja, the action of Poluim on
N ®@ M extends to an action of Fp . We set

N ¢ M = (Hf-{—m ®P°1n+ﬂ Fn7m) ®(H1‘?®H1§1)®Poln+an,m (N ® M)’

. A
By the lemma above, N ¢ M is isomorphic to Ind;i{?g;{ 4 (N ® M) as an H4,,,-module.

Proposition 6.4. Let J, and Jo be Z x Zy-invariant subsets of C* such that J;N Jy = 0.

(1) Let N be an irreducible HZ-module of type Ji and M an irreducible HE -module of type
Jo. Then N o M is an irreducible HZ,,,-module of type J1 U Ja.

(2) Conversely if L is an irreducible HE-module of type J1UJy, then there exist an integer m
(0 < m < ), an irreducible HE-module N of type J, and an irreducible HZ_,,-module
M of type Jo such that L~ N oM. ’

(3) Assume that a Z x Zy-orbit J decomposes into J = J,. LI J_ where Jx are Z-orbits and
J_ = (Jy)t. Assume that £1,%po & J. Then for any irreducible HE-module L of

type J, there exists an irreducible Ha-module M suchv that L ~ Ind:'g M.

Proof. (1) Let (No M), 4, be the generalized eigenspace, where the eigenvalues of X; 1<
i < n) are in J; and the eigenvalues of X; (n < j < n+m) are in J;. Then (NoM)y 3, =
N®M by J;nJ, = 0 by the above lemma and the shuffle lemma (e.g. [G, Lemma
5.5]). Suppose there exists non-zero Hz, -submodule S in N o M. Then Sy, #0
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as an HZ ® HE-module. Hence Sy, 5, = N ® M by the irreducibility of N ® M as an
HEZ ® HE-module. We obtain S = N ¢ M.

(2) For an irreducible HZ-module L, the HZ ® HZ_,-module Ly, ;, does not vanish
for some m. Take an irreducible HZ ® H2Z_ -submodule S in L. Then there exist an
irreducible H2-module N of type J; and an irreducible HE _,,-module M of type J, such
that S = N®M. Hence there exists a surjective homomorphism Ind(N® M )=NoM — L.
Since N o M is irreducible, this is an isomorphism. '

(3) See [M, Section 6]. . O

Hence in order to study HZ-modules, it is enough to study irreducible modules of type
J for a Z x Zy-orbit J in C* such that J is a Z-orbit or J contains one of +1, £pg.
6.3. The a-restriction and a-induction.

Definition 6.5. For a € C* and a finite-dimensional HE-module M, let us define the
functors

Ey: My -mod™ — HE | -mod®, F,:HE-mod® — HB,, -mod®
by: EoM is the generalized a-eigenspace of M with respect to the action of X, and

Hy
F,M = Indukgqxﬂl] M Q (a),

where {(a) is the 1-dimensional representation of C[XZ!,] defined by X,rq — a.

Define :
: E.M :=socE,M, F,M :=cosocF,M
fora e C*. '

Theorem 6.6 (Miemietz [M]). Suppose M is irreducible. Then F,M is irreducible and
EM is irreducible or O for any a € C*\{£1}.

6.4. LLTA type conjectures for type B. Now we take the case
J = {p} | k'€ Zoaa} .
Assume that any of 1 and £po is not contained in J. For short, we shall write E;, Ei, F;
and F; for By, Ey, Fj and Fy, respectively. -
Conjecture 6.7. (1) There are complete representatives
{Ls | b € By(0)}
of the finite-dimensional irreducible HB-modules of type J such that
EiLy=Lg, FL,=Lg,
for any ¢ € I := Zogq.

(2) For any i € Zoag, let us define E;py, iy € Clg, g!] by the coefficients of the following
expansions: '

EGP0)= Y EuyGPW), FGP(b) = D FuyGiRe).
'€ Bo(0) b'€Bs(0)
Then ' _
[EiLy : Ly] = Eipple=1, [FiLy: Ly] = Fypp|e=1.
Here [M : N] is the composition multiplicity of N in M on K2,
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Remark 6.8. There is a one-to-one correspondence between the above index set By(0)
and Syu Kato’s parametrization ([Kat]) of irreducible representations of HZ of type J.

Remark 6.9. (i) For conjectures for other Z x Zy-orbits J, see [EK1].

(ii) Similar conjectures for type D are presented by the second author and Vanessa
Miemietz ([KM]). :

Errata to “Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad., 82,
no. 8, 2006, 131-136” :

(i) In Conjecture 3.8, A = Ay, + A1 should be read as A = > A,, where A =
a€A
{po, 25", —po, —p5 ' }. We thank S. Ariki who informed us that the original conjecture
is false.

(ii) In the two diagrams of Bp(\) at the end of §2, A should be 0.
(iii) Throughout the paper, A" should be read as A{",.
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