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Abstract. We introduce the height of a normal cyclic p-fold covering and show a cohomological
relation between the base and the total spaces of the covering in terms of the height. We also
interpret the height in terms of the category weight.

1. Statement of results

The purpose of this note is to show a cohomological property of a normal cyclic p-fold covering

with respect to a certain cup-length type invariant of the covering. Let p be a prime and let

E → B be a normal cyclic p-fold covering where B is path connected. Suppose p = 2. In [Ko],

Kozlov defined the height of the covering h(E) as the maximum n such that w1(E)n 6= 0, where

w1(E) is the first Stiefel-Whitney class of the covering. By a chain level consideration, he proved

Hh(E)(E; Z/2) 6= 0.

This also follows immediately from the Gysin sequence of the double covering E → B. We would

like to generalize this result to any prime p. Let p be an arbitrary prime. Let Cp be a cyclic group

of order p and let ρ : B → BCp be the classifying map of the covering E → B. The height of the

covering can be generalized as

h(E) = max{n | ρ∗ : Hn(BCp; Z/p) → Hn(B; Z/p) is non-trivial}.

We remark here that the height of a normal cyclic p-fold covering is closely related with the

ideal-valued cohomological index theory of Fadell and Husseini [FH1] and hence the Borsuk-Ulam

theorem. We will interpret the height in terms of the category weight introduced by Fadell and

Husseini [FH2] and studied further by Rudyak [Ru] and Strom [S]. The most difficult point in

generalizing the result of Kozlov is the non-existence of the Gysin sequence for the covering E → B

when p is odd. However, we define the corresponding spectral sequence by which we prove:

Theorem 1.1. Let E → B be a normal cyclic p-fold covering, where B is path-connected. Then

Hh(E)(E; Z/p) 6= 0.

As an immediate corollary, we have:
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Corollary 1.2. Let E → B be a normal cyclic p-fold covering, where B is path-connected. If

h(E) ≥ n and Hn(E; Z/p) = 0, it holds that h(E) ≥ n + 1.

In section 2, we construct a spectral sequence for a normal cyclic p-fold covering which calculate

the mod p cohomology of the total space from the base space whose differential is shown to be

given as a certain higher Massey product of Kraines [Kr]. Using this spectral sequence, we prove

Theorem 1.1. In section 3, we interpret the height of a normal cyclic p-fold covering in terms of

the category weight introduced by Fadell and Husseini [FH2] and elaborated by [Ru] and [S].

Acknowledgement. The authors are grateful to the referee for leading them to the proof using

the spectral sequence. In the first version of the paper, the proof is done in a quite elementary

but lengthy way using the Smith special cohomology. (cf. [B])

2. Proof of Theorem 1.1

Throughout this section, let p be an odd prime and the coefficient of cohomology is Z/p.

2.1. Spectral sequence. Let E → B be a normal p-fold covering where B is path-connected.

In this subsection, we introduce a spectral sequence which calculates the mod p cohomology of E

from B. Analogous spectral sequences were considered in [F] and [Re]. We first set notation. Let

ρ : B → BCp be the classifying map of the covering E → B. Recall that the mod p cohomology

of BCp is given as

H∗(BCp) = Λ(u) ⊗ Z/p[v], βu = v, |u| = 1,

where β is the Bockstein operation. We denote the cohomology classes ρ∗(u) and ρ∗(v) of B by ū

and v̄, respectively. Let R[Cp] denote the group ring of Cp over a ring R. Note that the singular

chain complex S∗(E) is a free Z[Cp]-module. We regard Z/p[Cp] and Z/p as Z[Cp]-modules by the

modulo p reduction and the trivial Cp-action, respectively. Then there are natural isomorphisms

(2.1) H∗(HomZ[Cp](S∗(E), Z/p[Cp])) ∼= H∗(E) and H∗(HomZ[Cp](S∗(E), Z/p)) ∼= H∗(B).

We now fix a generator g of Cp and put τ = 1−g ∈ Z/p[Cp]. Observe that Z/p[Cp] = Z/p[τ ]/(τ p).

Consider the filtration

0 ⊂ τ p−1Z/p[Cp] ⊂ τ p−2Z/p[Cp] ⊂ · · · ⊂ τZ/p[Cp] ⊂ Z/p[Cp].

Then there is a spectral sequence (Er, dr) associated with the induced filtration of the cochain

complex HomZ[Cp](S∗(E), Z/p[Cp]). By (2.1), we have

(2.2) Es,t
1

∼=

{
H t(B) 0 ≤ s ≤ p − 1

0 otherwise
⇒ H∗(E)

and the degree of the differential dr is (−r, 1), where the total degree of Es,t
r is t. Let us identify

the differential of this spectral sequence. To this end, we calculate the induced coboundary map
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δ̄ of the associated graded cochain complex

p−1⊕
i=0

HomZ[Cp](S∗(E), τ iZ/p[Cp]/τ
i−1Z/p[Cp]) ∼=

p−1⊕
i=0

τ iHomZ(S∗(B), Z/p).

In the special case of the universal bundle ECp → BCp, we may put

δ̄(1) = τu1 + · · · + τ p−1up−1, ui ∈ HomZ(S1(B), Z/p)

for 1 ∈ HomZ(S0(B), Z/p). Consider the map E
ρ̃×π−−→ ECp ×B, where ρ̃ is a lift of ρ and π is the

projection. Then we see that

(2.3) δ̄x = δx + τρ∗(u1)x + · · · + τ p−1ρ∗(up−1)x.

for any x ∈ HomZ(S∗(B), Z/p) in general. If [u1] = 0, 1 ∈ E1,0 becomes a permanent cycle

in the spectral sequence (2.2) for the universal bundle ECp → BCp, which contradicts to the

contractibility of ECp. Then by normalizing u if necessary, we may assume

(2.4) [u1] = u.

Applying (2.3) in turn to u1, . . . , up−1, we inductively see from the equality δ̄2 = 0 that

(2.5) δui = −
∑
j<i

ujui−j for i ≥ 2.

Let 〈x1, . . . , xn〉n stand for the n-fold Massey product in the sense of Kraines [Kr], where 〈x1, x2〉 =

±x1x2. Then by (2.3), (2.4) and (2.5), we obtain that drx is represented by an element of

±〈ū, . . . , ū, x〉r+1 whose defining system {xij}1≤i≤j≤r+1 satisfies xij = ρ∗(uj−i+1) for j ≤ r, where

xi,r+1 can be an arbitrary cochain satisfying the condition of defining systems. Hence by [Kr],

{xij}1≤i≤j≤r is the pullback of a defining system for

(2.6) 〈u, . . . , u〉k =

{
{0} k < p

{v} k = p.

Recall the following associativity formula of higher Massey products [May]. Suppose a defining

system for 〈x1, . . . , xn−1〉n−1 extends to those of 〈xk+1, . . . , xn〉n−k. Put {x′
ij}1≤i≤j≤k+1

(2.7) x′
ij = ±xij for j ≤ k and x′

i,k+1 =
n−1∑

l=k+1

±xilxln for 2 ≤ i ≤ k + 1.

Then {x′
ij}1≤i≤j≤k+1 is a defining system for 〈x1, . . . , xk, 〈xk+1, . . . , xn〉n−k〉k+1 and the resulting

element x satisfies

x = ±yxn

for some y ∈ 〈x1, . . . , xn−1〉n−1. Consider the defining system of 〈ū, . . . , ū〉r+r′ given by ρ∗(ui) for

r + r′ ≤ p. By the above observation on dr′x, we can extend this defining system to that for
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〈ū, . . . , ū, x〉r′+1 as (2.7) so that the resulting element x′ represents dr′x. Moreover, by (2.6) and

the above associativity formula, we have

(2.8) drx
′ =

{
0 r + r′ < p

±v̄x r + r′ = p.

2.2. Proof of Theorem 1.1. We prove the result by calculating the spectral sequence (2.2). We

first consider the case h(E) = 2m + 1. We can easily see that in the spectral sequence for the

universal bundle ECp → BCp, it holds that dp−1,2m+1
r uvm = 0 and avm+1 according as r < p − 1

and r = p − 1, where a ∈ (Z/p)×. Then it follows from naturality of the spectral sequence that

dp−1,2m+1
r ūv̄m = ρ∗(dp−1,2m+1

r uvm) =

{
0 r < p − 1

ρ∗(avm+1) = 0 r = p − 1,

implying that H2m+1(E) 6= 0.

We next consider the case h(E) = 2m. Let r be the maximum integer such that v̄m ∈ Es,2m
1

survives at the Er-term for all 0 ≤ s ≤ p− 1. Suppose that ds,2m
r v̄m 6= 0 for some s. Then we have

(2.9) dr,2m
r v̄m 6= 0.

If v̄m ∈ Er−1,2m
1 survives at the Er′-term for r ≤ r′ and satisfies dr+r′−1,2m−1

r′ x = v̄m for some x,

we have

dr,2m
r v̄m ∈ ±〈ū, . . . , ū, v̄m〉r+1, v̄m ∈ ±〈ū, . . . , ū, x〉r′+1 and r + r′ ≤ p,

where defining systems for both higher Massey products are described above. Then it follows from

(2.8) that

dr,2m
r v̄m =

{
0 r + r′ < p

±v̄x r + r′ = p

in the Er-term. The upper case contradicts to (2.9). Let us consider the lower case. If r′ = 1,

ūx = v̄ and then β(ūx) = 0. If r′ ≥ 2, ūx = 0 and so β(ūx) = 0. Then in both cases, we have

v̄x = ū(βx), and so v̄x turns out to be trivial in the Er-term, which contradicts to (2.9). Therefore

we obtain that v̄m ∈ Er−1,2m
1 is a permanent cycle, implying that H2m(E) 6= 0. Suppose next that

ds,2m−1
r x = v̄m for some s. Then for any r + r′ ≤ p, we can choose a representative of dr+1,2m

r′ v̄m

as above, and hence by an argument similar to the above case, we see that v̄m ∈ Er+1,2m
1 is a

permanent cycle, implying that H2m(E) 6= 0. Therefore the proof of Theorem 1.1 is completed.

3. Height and category weight

In this section, we interpret the height of a normal cyclic p-fold covering in terms of the category

weight introduced by Fadell and Husseini [FH2] and studied further by Rudyak [Ru] and Strom

[S]. As a consequence, the relation between the height of a normal cyclic p-fold covering and the

Lusternik-Schnirelmann (L-S, for short) category of the classifying map of the covering becomes

clear. Recall that the L-S category of a space X, denoted by cat(X), is the minimum n such that

there is a cover of X by (n + 1)-open sets each of which is contractible in X. In [BG], the L-S
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category of a space was generalized to a map: The L-S category of a map f : X → Y , denoted by

cat(f), is the minimum integer n such that there exists an open cover X = U0 ∪ · · · ∪ Un where

the restriction of f to Ui is null-homotopic for all i. Observe that

cat(f) ≤ cat(1X) = cat(X).

It is useful to evaluate cat(f) by the so-called Ganea spaces. Let Gn(Y ) be the nth Ganea space of

Y and let πn : Gn(Y ) → Y be the projection. See [CLOT] for definition. We know that cat(f) ≤ n

if and only if there is a map g : X → Gn(Y ) satisfying πn ◦g ' f . The homotopy invariant version

of the category weight of a space X due to Rudyak [Ru] and Strom [S] is a lower bound for the L-S

category of X which refines the cup-length. As in [?], cohomologically, the idea of the homotopy

invariant version of the category weight due to Rudyak and Strom is summarized as

wgt(X; R) = max{n |π∗
n : H

∗
(X; R) → H

∗
(Gn(X); R) is injective},

where R is a ring and H
∗

denotes the reduced cohomology. By definition, wgt(X; R) is bounded

above by cat(X). Given a map f : X → Y , we can easily generalize the above definition for a

space to a map as

wgt(f ; R) = max{n | there exists y ∈ H
∗
(Y ; R) satisfying f∗(y) 6= 0,

and π∗
n(z) 6= 0 whenever f∗(z) 6= 0 for z ∈ H

∗
(Y ; R)}.

Notice that wgt(1X ; R) = wgt(X; R) analogously to the L-S category. Obviously, we have

cat(f) ≥ wgt(f ; R).

Let us consider the relation between the height of a normal cyclic covering and the category

weight. Suppose a space Y is path-connected. In general, since the homotopy fiber of the pro-

jection πn : Gn(Y ) → Y has the homotopy type of the join of (n + 1)-copies of ΩY which is

n-connected, the induced map π∗
n : Hk(Y ; R) → Hk(Gn(Y ); R) is an isomorphism for k < n and

is injective for k = n. See [CLOT]. We specialize to the case Y = BCp. Recall that Gn(BCp) has

the homotopy type of the quotient of the join of the (n + 1)-copies of Cp by the diagonal free Cp-

action, implying that Gn(BCp) has the homotopy type of an n-dimensional CW-complex. Then

the induced map π∗
n : Hk(BCp; R) → Hk(Gn(BCp); R) is the zero map for k > n. Summarizing,

the induced map π∗
n : Hk(BCp; Z/p) → Hk(Gn(BCp); Z/p) is injective for k ≤ n and is the zero

map for k > n, and hence for a map f : X → BCp, we have

wgt(f ; Z/p) = min{n | f∗ : Hn(BCp; Z/p) → Hn(X; Z/p) is non-trivial}.

Therefore we obtain:

Proposition 3.1. Let E → B be a normal cyclic p-fold covering with the classifying map ρ : B →
BCp, where B is path-connected. Then

h(E) = wgt(ρ; Z/p) ≤ cat(ρ) ≤ cat(B).
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