Geometrical Formulation of 3D Space-Time Finite Integration Method

Jun Kawahara, Takeshi Mifune, and Tetsuji Matsuo, Member, IEEE
Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Abstract

A geometrical formulation of a space-time finite integration (FI) method is studied for application to electromagnetic wave propagation calculations. Based on the Hodge duality and Lorentzian metric, a modified relation is derived between the incidence matrices of space-time primal and dual grids. A systematic method to construct the Maxwell grid equations on the space-time primal and dual grids is developed. The geometrical formulation is implemented on a simple space-time grid, which is proven equivalent to an explicit time-marching scheme of the space-time FI method.

Index Terms-Finite integration method, graph theory, Hodge duality, space-time grid.

I. Introduction

THE finite integration (FI) method [1]-[5] has been studied to accomplish time-domain electromagnetic field computations using unstructured spatial grids. The FI method derives grid-based Maxwell equations using incidence matrices based on the dual computational-grid geometry. Graph theory enables a systematic construction of the spatial dual grid from the primal grid geometry. However, the geometry description is restricted to the spatial domain. Accordingly, similar to the FDTD method [6], the FI method uses a uniform time-step, which is restricted by the Courant-Friedrichs-Lewy condition [7] based on the smallest spatial grid size.

Previous work [8] introduced a space-time FI method that achieves non-uniform time-steps naturally on the three- dimensional (3D) space-time grid with 2D space. The Hodge dual grid was proposed in [9] to construct the 4D space-time grid for electromagnetic field computation. An application of space-time FI method to a photonic band computation was reported in [12]. However, it is not always a simple task to construct the Maxwell grid equations on these dual spacetime grids. To realize a systematic derivation of Maxwell grid equations, a graph-theory-based formulation for the space-time dual grids is required. This paper discusses a geometrical formulation of the 3D space-time FI method that is based on the Hodge duality and the Lorentzian metric but is not a straightforward extension of the conventional spatial FI formulation.

II. Finite Integration Method on a Space-Time GRID

A. Electromagnetics in Space-Time

The Maxwell equations are described in the differential form as

$$
\begin{equation*}
\mathrm{d} F=0, \quad \mathrm{~d} G=J \tag{1}
\end{equation*}
$$

Manuscript received October 31, 2012; revised December 27, 2012 (date on which paper was submitted for review). Corresponding author: T. Matsuo (email: tmatsuo@ kuee.kyoto-u.ac.jp).

Digital Object Identifier inserted by IEEE

In the coordinate system $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, x, y, z), F, G$ and J are written as

$$
\begin{align*}
F & =-\Sigma_{i=1}^{3} E_{i} \mathrm{~d} x^{0} \mathrm{~d} x^{i}+\Sigma_{j=1}^{3} B_{j} \mathrm{~d} x^{k} \mathrm{~d} x^{l}, \\
G & =\Sigma_{i=1}^{3} H_{i} \mathrm{~d} x^{0} \mathrm{~d} x^{i}+\Sigma_{j=1}^{3} D_{j} \mathrm{~d} x^{k} \mathrm{~d} x^{l}, \\
J & =c \rho \mathrm{~d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3}-\Sigma_{j=1}^{3} c J_{j} \mathrm{~d} x^{0} \mathrm{~d} x^{k} \mathrm{~d} x^{l} \tag{2}
\end{align*}
$$

where c is the speed of light, ρ is the electric charge density and (j, k, l) is a cyclic permutation of $(1,2,3)$. The integral form of (1) is given as

$$
\begin{equation*}
\oint_{\partial \Omega_{\mathrm{p}}} F=0, \quad \oint_{\partial \Omega_{\mathrm{d}}} G=\int_{\Omega_{\mathrm{d}}} J \tag{3}
\end{equation*}
$$

where Ω_{p} and Ω_{d} are hypersurfaces in space-time.
For simplicity, assuming the uniformity along the z direction, this paper discusses the FI formulation for the electromagnetic field $\left(B_{z}, E_{x}, E_{y}\right)$ in the (w, x, y)-3D free space-time [8], where $w=c t$. Accordingly, F and G are written as

$$
\begin{align*}
& F=B_{z} \mathrm{~d} x \mathrm{~d} y+\mathcal{E}_{y} \mathrm{~d} y \mathrm{~d} w-\mathcal{E}_{x} \mathrm{~d} w \mathrm{~d} x, \\
& G=\mathcal{H}_{z} \mathrm{~d} w-D_{y} \mathrm{~d} x+D_{x} \mathrm{~d} y \tag{4}
\end{align*}
$$

where $\left(\mathcal{E}_{x}, \mathcal{E}_{y}\right)=\left(E_{x} / c, E_{y} / c\right), \mathcal{H}_{z}=H_{z} / c$. Defining 3D vectors \boldsymbol{F} and \boldsymbol{G} as

$$
\begin{equation*}
\boldsymbol{F}=\left(B_{z}, \mathcal{E}_{y},-\mathcal{E}_{x}\right), \quad \boldsymbol{G}=\left(\mathcal{H}_{z},-D_{y}, D_{x}\right) \tag{5}
\end{equation*}
$$

the integral form is written without source term as

$$
\begin{equation*}
\oint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \mathrm{~d} S=0, \quad \oint_{C} \boldsymbol{G} \cdot \boldsymbol{t} \mathrm{~d} s=0 \tag{6}
\end{equation*}
$$

where \boldsymbol{n} is the normal vector at each point on the closed surface S and \boldsymbol{t} the tangent vector at each point on the closed curve C. The Euclidean metric is used for the dot product operation.

The space-time FI method uses discretized variables as

$$
\begin{equation*}
f=\int_{p} \boldsymbol{F} \cdot \boldsymbol{n} \mathrm{~d} S, \quad g=\int_{\tilde{s}} \boldsymbol{G} \cdot \boldsymbol{t} \mathrm{~d} s \tag{7}
\end{equation*}
$$

where p is a face of a primal grid and \tilde{s} is an edge of a dual grid. To express the constitutive equation between f and g simply, \boldsymbol{n} and \boldsymbol{t} are given as [8]

$$
\begin{equation*}
\boldsymbol{n}=\left(n_{w}, n_{x}, n_{y}\right), \quad \boldsymbol{t}=\left(n_{w},-n_{x},-n_{y}\right) \tag{8}
\end{equation*}
$$

Fig. 1 illustrates the geometrical relation between \boldsymbol{n} and \boldsymbol{t}, where \tilde{s} is orthogonal to p in the Lorentzian 3D space-time. The relation between $\boldsymbol{F} \cdot \boldsymbol{n}$ and $\boldsymbol{G} \cdot \boldsymbol{t}$ is given as

$$
\begin{equation*}
\boldsymbol{F} \cdot \boldsymbol{n}=Z \boldsymbol{G} \cdot \boldsymbol{t} \tag{9}
\end{equation*}
$$

where Z is the impedance of the medium. Thus, f is related to g as

$$
\begin{align*}
& f=z g \tag{10}\\
& z=Z \frac{\Delta S}{\Delta l} \tag{11}
\end{align*}
$$

where ΔS is the area of p and Δl is the length of \tilde{s}.
Ref. [9] extended the dual-grid construction above to the 4D space-time, called the Hodge dual grid. It is based on the Hodge duality with the Lorentzian metric between F and G, where the metric is modified in materials depending on the speed of light.

Fig. 1: Relation of primal face and dual edge in space-time grid when (a) $\boldsymbol{n} \cdot \boldsymbol{t}>0$ and (b) $\boldsymbol{n} \cdot \boldsymbol{t}<0$.

Fig. 2: Edges and faces on (a) the primal grid and (b) the dual grid.

B. Explicit Time-Marching Scheme

Refs. [8] and [9] have shown explicit time-marching schemes for 3D and 4D space-time FI analyses of electromagnetic wave propagation. This subsection presents an explicit
time-marching scheme on a simple 2D space-time grid with 1D space to relate to the geometrical formulation described later.

Fig. 2 illustrates 2D space-time primal and dual grids that have temporal step sizes Δw and $\Delta w / 2$ and spatial step size Δx along the x - and y - directions.

Based on (5) and (7), the variables in Fig. 2 have the following meaning; b : magnetic flux, e : electromotive force, f : the composition of b and e, h : magnetomotive force, d : electric flux, and g : the composition of h and d. The arrow directions in Fig. 2 are based on (7) and (9) using the definition (5) and (8). Note that the arrow direction of d is opposite to that of e. These do not correspond directly to the directions of \boldsymbol{E} and D in the Euclidean space.
The explicit time-marching scheme is given as follows. According to a numerical examination in [10], the scheme is stable when $\left(l_{a}-1\right)^{2}+(\Delta w)^{2} / 2<1$.

Variables $d_{2 i-1}^{n+1 / 4}$ and $e_{2 i-1}^{n+1 / 4}$ are given as

$$
\begin{align*}
d_{2 i-1}^{n+1 / 4} & =d_{2 i-1}^{n-1 / 4}-\left(h_{2 i}^{n}-h_{2 i-1}^{n}\right) \tag{12}\\
e_{2 i-1}^{n+1 / 4} & =z_{e 1} d_{2 i-1}^{n+1 / 4}, \quad z_{e 1}=Z \frac{\Delta w \Delta x}{2 l_{a}} \tag{13}
\end{align*}
$$

On the primal grid, $f_{2 i-1}^{n+1 / 4}, f_{2 i}^{n+1 / 4}$ and consequently $g_{2 i-1}^{n+1 / 4}$, $g_{2 i}^{n+1 / 4}$ are given as

$$
\begin{align*}
f_{2 i-1}^{n+1 / 4} & =-e_{2 i-1}^{n+1 / 4}+b_{2 i-1}^{n} \\
f_{2 i}^{n+1 / 4} & =e_{2 i-1}^{n+1 / 4}+b_{2 i}^{n} \tag{14}\\
g_{k}^{n+1 / 4}=\frac{1}{z_{f}} f_{k}^{n+1 / 4}(k & =2 i-1,2 i), z_{f}=Z \frac{4 \Delta x^{2}}{\Delta w} \tag{15}
\end{align*}
$$

On the dual grid, $d_{2 i}$ and $e_{2 i}$ are updated using

$$
\begin{align*}
d_{2 i}^{n+1 / 2}= & d_{2 i}^{n-1 / 2}+h_{2 i}^{n}-h_{2 i+1}^{n} \\
& +g_{2 i}^{n-1 / 4}-g_{2 i+1}^{n-1 / 4}+g_{2 i}^{n+1 / 4}-g_{2 i+1}^{n+1 / 4} \tag{16}\\
e_{2 i}^{n+1 / 2}= & z_{e 2} d_{2 i}^{n+1 / 2}, z_{e 2}=Z \frac{\Delta w \Delta x}{2-l_{a}+(\Delta w)^{2} / 4} . \tag{17}
\end{align*}
$$

Similarly, $f_{2 i-1}^{n+3 / 4}, f_{2 i}^{n+3 / 4}$ and $g_{2 i-1}^{n+3 / 4}, g_{2 i}^{n+3 / 4}$ are given as

$$
\begin{align*}
f_{2 i-1}^{n+3 / 4} & =f_{2 i-1}^{n+1 / 4}+e_{2 i-2}^{n+1 / 2} \\
f_{2 i}^{n+3 / 4} & =f_{2 i}^{n+1 / 4}-e_{2 i}^{n+1 / 2} \tag{18}\\
g_{k}^{n+3 / 4} & =\frac{1}{z_{f}} f_{k}^{n+3 / 4}(k=2 i-1,2 i) . \tag{19}
\end{align*}
$$

On the dual grid, $d_{2 i-1}^{n+3 / 4}$ and $e_{2 i-1}^{n+3 / 4}$ are obtained from

$$
\begin{align*}
d_{2 i-1}^{n+3 / 4}= & d_{2 i-1}^{n+1 / 4}+g_{2 i-1}^{n+1 / 4}-g_{2 i}^{n+1 / 4} \\
& +g_{2 i-1}^{n+3 / 4}-g_{2 i}^{n+3 / 4} \tag{20}\\
e_{2 i-1}^{n+3 / 4}= & z_{e 1} d_{2 i-1}^{n+3 / 4} \tag{21}
\end{align*}
$$

Hence, $b_{2 i-1}^{n+1}, b_{2 i}^{n+1}$ and $h_{2 i-1}^{n+1}, h_{2 i}^{n+1}$ are given by

$$
\begin{align*}
b_{2 i-1}^{n+1} & =f_{2 i-1}^{n+3 / 4}-e_{2 i-1}^{n+3 / 4} \\
b_{2 i}^{n+1} & =f_{2 i}^{n+3 / 4}+e_{2 i-1}^{n+3 / 4} \tag{22}\\
h_{k}^{n}=\frac{1}{z_{b}} b_{k}^{n}(k & =2 i-1,2 i), \quad z_{b}=Z \frac{2 \Delta x^{2}}{\Delta w} . \tag{23}
\end{align*}
$$

C. Incidence Matrices on 3D Euclidean Space

The FI method is generally formulated with the Maxwell grid equations using the incidence matrices from graph theory.

Let arrays $\{n\},\{s\},\{p\}$ and $\{v\}$ denote the sets of nodes, edges, faces, and volumes in the primal grid, respectively. These are related by incidence matrices $[G],[C]$ and $[D][1]$, [2], [11] as

$$
\begin{equation*}
\partial\{s\}=[G]\{n\}, \partial\{p\}=[C]\{s\}, \partial\{v\}=[D]\{p\} \tag{24}
\end{equation*}
$$

where ∂ denotes restriction to the boundary. Similarly, the sets of nodes, edges, faces and volumes in the dual grid are related as

$$
\begin{equation*}
\partial\{\tilde{s}\}=[\tilde{G}]\{\tilde{n}\}, \partial\{\tilde{p}\}=[\tilde{C}]\{\tilde{s}\}, \partial\{\tilde{v}\}=[\tilde{D}]\{\tilde{p}\} . \tag{25}
\end{equation*}
$$

In the Euclidean space, the dual grid is generally constructed so the incidence matrices satisfy

$$
\begin{equation*}
[\tilde{C}]=[C]^{\mathrm{T}},[\tilde{D}]=-[G]^{\mathrm{T}},[\tilde{G}]=-[D]^{\mathrm{T}} \tag{26}
\end{equation*}
$$

The relation above derives the Maxwell grid equations systematically from the primal grid geometry.

The space-time primal and dual grids based on (8) have a similar property to that described by (26), which gives the one-to-one correspondence between the faces $\{p\}$ on the primal grid and the edges $\{\tilde{s}\}$ on the dual grid. However, the directional relation between $\{p\}$ and $\{\tilde{s}\}$ determined by (8) differs from that given by (26). The following subsection derives the matrix relation for the space-time primal and dual grids based on (8).

D. Incidence Matrices on 3D Space-Time

A simple space-time primal grid illustrated in Fig. 3 is examined. Assuming spatial periodicity in the grid geometry, the edges s_{i} and faces p_{i} are periodically numbered for notational simplicity. Moreover, the edges and faces perpendicular to the y-axis is omitted. The direction of edges $s_{1}, s_{2}, s_{3}, s_{1}^{\prime}$, s_{2}^{\prime} is along the $+y$-direction. The edge \tilde{s}_{i} on the dual grid corresponds to the face p_{i} on the primal grid, where their directions satisfy (8).

Fig. 3: Edges and faces on (a) the primal grid and (b) the dual grid.

The geometrical relation between edges and faces on the primal grid is represented by the following equations.

$$
\begin{align*}
& \partial p_{1}=s_{1}-s_{2}, \partial p_{2}=-s_{1}+s_{2}, \partial p_{3}=s_{1}-s_{3} \\
& \partial p_{4}=-s_{2}+s_{3}, \partial p_{5}=s_{2}-s_{3}, \partial p_{6}=s_{2}-s_{2}^{\prime} \\
& \partial p_{7}=s_{3}-s_{2}^{\prime}, \partial p_{8}=-s_{3}+s_{2}^{\prime}, \partial p_{9}=s_{3}-s_{1}^{\prime} \tag{27}
\end{align*}
$$

To examine the relation between $[C]$ and $[\tilde{C}]$, a subset of $\{s\}$ and a subset of $\{p\}$ are defined as

$$
\{s\}_{\mathrm{sb}}=\left[\begin{array}{lll}
s_{1} & s_{2} & s_{3}
\end{array}\right]^{\mathrm{T}},\{p\}_{\mathrm{sb}}=\left[\begin{array}{lll}
p_{1} & p_{2} \cdots p_{9} \tag{28}
\end{array}\right]^{\mathrm{T}}
$$

Omitting $s_{1}^{\prime}, s_{2}^{\prime}$, relation (27) is written $\{p\}_{\mathrm{sb}}=[C]_{\mathrm{sb}}\{s\}_{\mathrm{sb}}$ where $[C]_{\mathrm{sb}}$ is a submatrix of $[C]$ and given as

$$
[C]_{\mathrm{sb}}^{\mathrm{T}}=\left[\begin{array}{ccccccccc}
1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{29}\\
-1 & 1 & 0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & -1 & 0 & 1 & -1 & 1
\end{array}\right]
$$

On the dual grid, the relation between edges and faces is found to be:

$$
\begin{align*}
\partial \tilde{p}_{1} & =\tilde{s}_{1}-\tilde{s}_{2}-\tilde{s}_{3}+\tilde{s}_{9}^{\prime} \\
\partial \tilde{p}_{2} & =-\tilde{s}_{1}+\tilde{s}_{2}-\tilde{s}_{4}+\tilde{s}_{5}-\tilde{s}_{6}+\tilde{s}_{6}^{\prime}-\tilde{s}_{7}^{\prime}+\tilde{s}_{8}^{\prime} \\
\partial \tilde{p}_{3} & =\tilde{s}_{3}+\tilde{s}_{4}-\tilde{s}_{5}+\tilde{s}_{7}-\tilde{s}_{8}-\tilde{s}_{9} . \tag{30}
\end{align*}
$$

Corresponding to $\{s\}_{\mathrm{sb}}$ and $\{p\}_{\mathrm{sb}}$, subsets of $\{\tilde{p}\}$ and $\{\tilde{s}\}$ are defined as

$$
\{\tilde{p}\}_{\mathrm{sb}}=\left[\begin{array}{ccc}
\tilde{p}_{1} & \tilde{p}_{2} & \tilde{p}_{3}
\end{array}\right]^{\mathrm{T}},\{\tilde{s}\}_{\mathrm{sb}}=\left[\begin{array}{cc}
\tilde{s}_{1} & \tilde{s}_{2} \cdots \tilde{s}_{9} \tag{31}
\end{array}\right]^{\mathrm{T}}
$$

Omitting $\tilde{s}_{6}^{\prime}, \tilde{s}_{7}^{\prime}, \tilde{s}_{8}^{\prime}, \tilde{s}_{9}^{\prime}$, relation (30) is written as $\{\tilde{p}\}_{\mathrm{sb}}=$ $\{\mathrm{C}\}_{\mathrm{sb}}\{\tilde{s}\}_{\mathrm{sb}}$ where $\{\tilde{C}\}_{\mathrm{sb}}$ is a submatrix of $[\tilde{C}]$ and given as

$$
[\tilde{C}]_{\mathrm{sb}}=\left[\begin{array}{ccccccccc}
1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{32}\\
-1 & 1 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & 0 & 1 & -1 & -1
\end{array}\right]
$$

Comparing $[\tilde{C}]_{\mathrm{sb}}$ with $[C]_{\mathrm{sb}}^{\mathrm{T}}$ shows that the elements of $[\tilde{C}]_{\mathrm{sb}}$ at the 3rd, 6th, and 9th columns have opposite signs to the corresponding elements of $[C]_{\mathrm{sb}}^{\mathrm{T}}$. This sign inversion caused by (8) is illustrated in Fig. 1. If \boldsymbol{n} and \boldsymbol{t} given by (8) satisfy $\boldsymbol{n} \cdot \boldsymbol{t}<0$, the direction of the edge is opposite to the direction of the face as depicted in Fig. 1(b).

Consequently, the incidence matrix $[\tilde{C}]$ of dual grid based on (8) is given as

$$
\begin{equation*}
[\tilde{C}]=[C]^{* \mathrm{~T}} \tag{33}
\end{equation*}
$$

where the operator $* \mathrm{~T}$ is determined by the mapping

$$
\tilde{c}_{i j}= \begin{cases}c_{j i}, & \left(c_{j i} \neq 0 \text { and } \boldsymbol{n} \cdot \boldsymbol{t}>0\right) \tag{34}\\ -c_{j i}, & \left(c_{j i} \neq 0 \text { and } \boldsymbol{n} \cdot \boldsymbol{t}<0\right) . \\ 0, & \left(c_{j i}=0\right)\end{cases}
$$

This relation is a consequence of the Hodge duality between \boldsymbol{F} and \boldsymbol{G} based on the Lorentzian metric in the 3D space-time. Using $\boldsymbol{n} \cdot \boldsymbol{t}=n_{w}^{2}-n_{x}^{2}-n_{y}^{2}$, the matrix $[C]^{* T}$ can be obtained without the need for the dual grid.

Using $[\tilde{C}]$, the electromagnetic field equations on the dual grid such as (12), (16) and (20) are expressed as

$$
\begin{equation*}
[\tilde{C}]\{g\}=0 \tag{35}
\end{equation*}
$$

where $\{g\}$ consists of the variables defined by the second equation of (7) on the edges corresponding to $\{\tilde{s}\}$.

The relation between faces and volumes on the primal grid is represented similarly. For instance, the volume surrounded by p_{1}, p_{3}, and p_{4} is written:

$$
\begin{equation*}
\partial v_{1}=-p_{1}+p_{3}+p_{4} \tag{36}
\end{equation*}
$$

These relations are represented by matrix $[D]$ in the form given by the third equation of (24). Using $[D]$, the electromagnetic field equations on the primal grid such as (14), (18) and (22) are expressed as

$$
\begin{equation*}
[D]\{f\}=0 \tag{37}
\end{equation*}
$$

where $\{f\}$ consists of the variables defined by the first equation of (7) on the faces corresponding to $\{p\}$.

Fig. 4 summarizes the geometric relation above. In the 3D Euclidean space, \boldsymbol{E} and \boldsymbol{B} are assigned separately to the edges and faces, respectively whereas these are unified into \boldsymbol{F} and assigned to the faces in the 3D space-time.

(a) 3D Euclidean space

(b) 3D space-time

Fig. 4: Duality and matrix relations.

E. Maxwell Grid Equations

From (10), $\{g\}$ is related to $\{f\}$ as

$$
\begin{equation*}
\{f\}=[z]\{g\} \tag{38}
\end{equation*}
$$

where $[z]$ is a diagonal matrix of which elements are given by (11).

Equations (33), (35), (37), and (38) derive the space-time Maxwell grid equations systematically

$$
\left[\begin{array}{c}
{[D]} \tag{39}\\
{[C]^{* \mathrm{~T}}[z]^{-1}}
\end{array}\right]\{f\}=0
$$

By modifying the impedance matrix, another formulation is possible, where relation $[\tilde{C}]=[C]^{\mathrm{T}}$ holds. The modified impedance matrix $\left[z^{*}\right]$ is defined by replacing the elements of $[z]$ by $-Z \Delta S / \Delta l$ when $n \cdot \boldsymbol{t}<0$. Thereby, $[C]^{* \mathrm{~T}}[z]^{-1}=$ $[C]^{T}\left[z^{*}\right]^{-1}$ holds.

F. Application Example in 2D Space-Time Grid

The FI method formulated by (39) is implemented and compared with the FI scheme explained in Subsection II.B. The propagation of an electromagnetic wave with components (E_{y}, B_{z}) is computed on the periodic 2D space-time grid shown in Fig. 2 with $\Delta x=1, i=1, \cdots, 50, \Delta w=0.5, n=$ $0, \cdots, 80$, and $l_{a}=1$. The initial condition at $w=0$ is given as $B_{z}=\exp \left(-x^{2} / 25\right)$ and $E_{y}=0$. The impedance matrix $[z]$ consists of $z_{e 1}, z_{e 2}, z_{f}$, and z_{b} that are given as (13), (15),

Fig. 5: Magnetic flux distribution at $w=40$.
(17) and (23). The spatially periodic boundary condition is imposed where $e_{0}^{n}=e_{80}^{n}$ and $h_{81}^{n}=h_{1}^{n}$.

Fig. 5 shows the distribution of B_{z} at $w=80 \Delta w$, where the simulation result given by the FDTD method is also shown for comparison. The FI formulation (39) is equivalent to the FI scheme given in II.B.

III. Concluding Remarks

A geometrical formulation of the 3D space-time FI method was presented that provides a systematic method to construct the Maxwell grid equations on the space-time primal and dual grids. The relation between the incidence matrices of these space-time grids was derived based on the Hodge duality with Lorentzian metric.

Practically, the systematic formulation is used to derive or confirm the explicit time-marching scheme. The extension to the 4 D space-time and its practical application will be addressed in the near future.

References

[1] T. Weiland, "Time domain electromagnetic field computation with finite difference methods," Int. J. Numer. Model., vol. 9, pp. 295-319, 1996.
[2] A. Bossavit and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," Int. J. Numer. Model. vol. 12, pp. 129-142, 1999.
[3] I. E. Lager, E. Tonti, A.T. de Hoop, G. Mur, and M. Marrone, "Finite formulation and domain-integrated field relations in electromagnetics - a synthesis," IEEE Trans. Magn., vol. 39, pp. 1199-1202, May 2003.
[4] P. Alotto, A. De Cian, and G. Molinari, "A time-domain 3-D full-Maxwell solver based on the cell method," IEEE Trans. Magn., vol. 44, pp. 799802, Apr. 2006.
[5] L. Codecasa and M. Politi, "Explicit, consistent, and conditionally stable extension of FD-TD to tetrahedral grids by FIT," IEEE Trans. Magn., vol. 44, pp. 1258-1261, June 2008.
[6] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966.
[7] A. Talfove and S. C. Hagness, Computational Electromagnetics, The Finite Difference in Time Domain Method, 3rd Ed., Artech House, Boston, 2005.
[8] T. Matsuo, "Electromagnetic field computation using space-time grid and finite integration method," IEEE Trans. Magn., vol. 46, pp. 3241-3244, Aug. 2010.
[9] T. Matsuo, "Space-time finite integration method for electromagnetic field computation," IEEE Trans. Magn., vol. 47, pp. 1530-1533, Apr. 2011.
[10] S. Shimizu, T. Mifune, and, T. Matsuo, "Space-time grids for electromagnetic field computation using finite integration method," APS-URSI Spokane, pp. 2346-2349, 2011.
[11] A. Bossavit, Computational Electromagnetism, Academic Press, 1998.
[12] T. Shimoi, T. Mifune, T. Matsuo, and Y. Tanaka, "Finite integration method using local fine grid for explicit electromagnetic field computation," in Digests 15th CEFC Oita, TP2-4, p. 201, 2012.

