Equivalent Circuit Modeling of DC and AC Ferrite Magnetic Properties Using H-input and B-input Play Models

S. Ito1, T. Mifune1, T. Matsuo1, Member IEEE, K. Watanabe2, H. Igarashi3, K. Kawano4, Y. Iijima5, M. Suzuki4, Y. Uehara6, A. Furuya6

1Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, JAPAN
2Mitsubishi Electric Corporation, 3Hokkaido University, 4Taiyo Yuden Co., Ltd., 5Oyama National College of Technology, 6Fujitsu Ltd.

An equivalent circuit model is proposed to represent ferrite magnetic properties under AC and DC fields phenomenologically, where H-input and B-input play models are used to handle hysteric property accurately and concisely. A slow magnetization component is extracted from measured AC and DC properties. Frequency dependence of the AC loss is represented by an equivalent resistance. The simulated AC and DC magnetic properties agree with the measured properties.

Index Terms—AC property, equivalent circuit, ferrite, play model.

I. INTRODUCTION

Ferrite [1] is widely used as a core material for high frequency use. For example, electric power circuits such as a DC-DC converter often have ferrite cored reactors, where the AC ferrite property needs to be evaluated under a DC biased field. However, its simulation is not easy because a minor hysteresis loop representation under the DC biased field is required. Accordingly, an accurate hysteresis model is required to describe both the AC and DC magnetic properties of a ferrite core.

Complex hysteresis properties including minor loops can be described by several hysteresis models such as the Preisach model [2], [3] the play model [4]-[7] and the stop model [4], [6]. The play model is a simple and accurate hysteresis model which property is equivalent to the classical Preisach model [5]. It is a convenient tool for processing hysteretic data because it can efficiently describe both hysteretic functions providing the output of the magnetic flux density B from the input of magnetic field H and the output H from the input B. However, the play model requires an additional dynamic term [9] to represent the rate-dependent hysteretic property because the play model is basically a static model.

This paper develops a phenomenological modeling method to derive an equivalent circuit from measured AC and DC hysteretic properties, where the H-input and B-input play models are used to handle the hysteretic property accurately and concisely.

II. EQUIVALENT CIRCUIT REPRESENTATION

NiZn ferrite has high resistivity of $\sim 10^7 \Omega \cdot \text{m}$ in general and yields little eddy-current field. Accordingly, the AC core loss consists of hysteresis loss and residual loss [11]. It has been said that the latter is mostly due to a domain wall damping. However, its origin has not been made clear in detail. This study develops a phenomenological model of rate-dependent property of NiZn ferrite.

DC and AC magnetic properties of a NiZn ferrite ring core are measured. The magnetic field H is obtained from the excitation current of the primary winding and the magnetic flux density B is given by the integration of voltage of the secondary winding. Since the DC component of B cannot be measured directly, the DC magnetic property is obtained from measurements at very low frequency.

Fig. 1(a) shows hysteretic properties of ferrite ring core under the condition of a sinusoidal magnetic flux density at 100-800 kHz. Fig. 2 plots the relationship between the coercive force H_c and ωB_a, where B_a is the amplitude of B and ω is the angular frequency. The coercive force increases in proportion to ωB_a. Accordingly, this AC magnetic field H_{AC} is approximated in this study as

$$H_{AC}(B) = h_{fast}(B) + (1/R_1) dB/dt$$

where $h_{fast}(B)$ represents the rate-independent hysteretic property and R_1 is a constant. After R_1 is determined from the frequency dependence of coercive force as in Fig. 2, $h_{fast}(B)$ is obtained by $H_{AC}(B) = (1/R_1) dB/dt$.

Fig. 1 Measured BH loops: (a) at 100-800 kHz, and (b) at DC.

Fig. 2 Relationship between the coercive force and ωB_a with $B_a = 100 \text{mT}$.
Fig. 1(b) plots measured DC property, where the DC magnetic field yields a higher \(B \) compared with \(h_{\text{tad}}(B) \). Accordingly, this paper assumes that the DC magnetization process is decomposed into fast and slow components as

\[
B_{\text{DC}} = b_{\text{slow}}(H) + b_{\text{tad}}(H)
\]

where the fast component \(b_{\text{tad}}(H) \) is represented by the inverse function of \(h_{\text{tad}}(B) \) and the slow component \(b_{\text{slow}}(H) \) does not respond to the high frequency field.

Nonlinear electric circuit simulations usually use magnetic fluxes as state variables. Assuming the correspondence of \(B \) to the magnetic flux \(\phi \) and \(H \) to the current \(I \), AC and DC properties, given by (1) and (2), are represented phenomenologically by the equivalent circuit shown in Fig. 3. The circuit equations are given by:

\[
\begin{align*}
I &= I_b + V_0/R_0 + I_{C0} = I_1 + V_1/R_1 + I_{C1} \\
V_0 &= d\phi_0/dt, \quad V_1 = d\phi_1/dt \\
I_{C0} &= C_0 dV_0/dt, \quad I_{C1} = C_1 dV_1/dt \\
I_0 &= h_{\text{tad}}(\phi_0), \quad I_1 = h_{\text{tad}}(\phi_1)
\end{align*}
\]

(3)

![Fig. 3 Equivalent circuit model where \(I \) corresponds to \(H \) and \(\phi_0/\phi_1 \) corresponds to \(B \).](image)

The resonance frequency \(f_0 \) of the left LCR circuit is lower than that of the right circuit. The left inductor represents the slow component where \(h_{\text{slow}} \) is the inverse function of \(b_{\text{slow}} \) and it does not work for frequencies higher than \(f_0 \). It is assumed that the right LCR circuit represents a domain-wall resonance. The hysteretic properties \(h_{\text{slow}} \) and \(h_{\text{tad}} \) in the circuit model are represented by the B-input play model whereas the H-input play model is used in the decomposition into slow and fast components. A brief explanation of the play model is given in the Appendix.

The flow of data processing is illustrated in Fig. 4. First, \(R_1 \) is determined from the measured AC data with a sinusoidal magnetic flux density. Since the measurement requires the control of \(B \), the B-input play model is conveniently identified from the measured AC data. After extracting \((1/R_1)dB/dt \) ([a1] in Fig. 4), the B-input play model is identified to represent the fast component as \(H = h_{\text{tad}}(B) \) ([A2]). The inverse relationship \(B = h_{\text{tad}}(H) \) is represented by the H-input play model ([A3]). The H-input play model is identified from the symmetric BH loops with the amplitudes of \(H_s = nH_s/N_p \) (\(n = 1, \ldots, N_p \)), where \(H_s \) is the saturation magnetic field and \(N_p \) is the number of play hysterons. When the waveform of \(H \) with amplitude \(H_s \) is given, the corresponding B-waveform is obtained by solving the nonlinear equation for \(B \) as:

\[
F(B) = H - h_{\text{tad}}(B) = 0.
\]

Equation (4) is solved using the Newton-Raphson method [10] to identify the H-input play model ([a2]). The slow component \(b_{\text{slow}}(H) = B_{\text{DC}}(H) - h_{\text{tad}}(H) \) is also represented by the H-input play model ([B3]). The B-input play model represents the inverted relationship \(h_{\text{slow}}(B) \) ([B4]), which is obtained in a similar way to the inversion procedure above.

III. SIMULATION OF DC AND AC PROPERTIES

From the relationship in Fig. 2, \(R_1 \) is given as \(1.25 \times 10^4 \, \Omega/m \). Fig. 5 portrays the BH-loops of the fast component that is given by \(H - R_1 \, dB/dt \) at 100 kHz.

Fig. 6 shows \(b_{\text{slow}}(H) \) that is given by \(B_{\text{DC}}(H) - b_{\text{tad}}(H) \) ([b2]), where BH curves have been smoothed for the Newton-Raphson procedure ([b3]).

![Fig. 4 Flow of data processing.](image)

![Fig. 5 Fast component.](image)

![Fig. 6 Slow component.](image)

This study does not focus on the physical origin of slow component. The circuit parameters for the slow component are \(C_0 = 8 \times 10^{-7} \, \text{F} \cdot \text{m} \) and \(R_0 = 20 \, \Omega/m \) so as for the resonance frequency \(f_0 \) to be sufficiently lower than the operation frequency around 1 MHz. The parameter \(C_1 \) is \(7 \times 10^{-14} \, \text{F} \cdot \text{m} \), which is determined so as for the domain-wall resonance frequency to be higher than 10 MHz.
The parameter L is set to 6×10^{-4} H/m by a parameter fitting. Fig. 10 portrays the BH loops given by the modified model. The modified model improves the representation accuracy at 2 MHz with a small influence on the simulated properties at low frequency. Fig. 11 shows the core loss per cycle given by the modified model, where the average discrepancies are 1.1 % at 400 kHz and 4.6 % at 2 MHz.

IV. SIMULATION OF DC BIASED PROPERTIES

The DC bias is supplied from the DC current source and circuitually added to the excitation current without interfering the AC power source. However, the DC bias component of B is not obtained from the secondary winding. This paper assumes that the point (H, B) is located on the normal magnetization curve when B is maximum as is shown in Fig. 12(a), where measured B-H loop is shifted along the B-direction to add an estimated DC component of B.

Fig. 13 shows simulated DC biased minor BH loops, which agree with measured loops. The corresponding core loss and average permeability are shown in Figs. 14 and 15. The average permeability is simply given by $(B_{\text{max}}-B_{\text{min}}) / (H(B_{\text{max}})-H(B_{\text{min}}))$ where B_{max} and B_{min} are the maximum and
minimum values of B as is shown in Fig. 12(b). The decrease in the average permeability with the increase in the DC bias is evident. The evaluation error of the core loss at 100 mT is 5.1 % and 10.6 % corresponding to Figs. 14(a) and (b). The discrepancy of permeability at 100 mT is 2.5 % and 2.7 % corresponding to Figs. 14(a) and (b). The input-dependent shape function [7] is required for the play model to achieve more accurate representation of the minor BH-loops.

The electric power circuit analysis combined with the proposed model will be reported on in the near future.

APPENDIX

The H-input play model is written as:

$$B(H) = \sum_{n=1}^{N_p} f_n(p_n(H))$$ \tag{8}

$$p_n(H) = \max (\min (p_n^0, H + \zeta_n), H - \zeta_n)$$ \tag{9}

where p_n is the play hysteron operator having width $\zeta_n = nH_0/N_p$, N_p is the number of hysterons, H_0 is the saturation magnetic field, and f_n is the shape function for p_n. The Newton-Raphson iteration requires the dB/dH that is obtained from (8) and (9) as:

$$\frac{dB}{dH} = \sum_{n=1}^{N_p} \frac{df_n}{dp_n} \frac{dp_n}{dH}$$ \tag{10}

$$\frac{dp_n}{dH} = \begin{cases} 0 & (p_n = p_n^0) \\ 1 & (p_n \neq p_n^0) \end{cases}$$ \tag{11}

The B-input play model is given in a similar way to the H-input model.

ACKNOWLEDGMENT

This work was supported in part by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D, Japan Science and Technology Agency.

REFERENCES

