Syntheses of Polycyclic Aromatic Compounds with Heteroatom Junctions

via Tandem Hetero-Friedel–Crafts Reactions

Sigma Hashimoto

Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University

2013

Table of Contents

General Introduction	
Fused polycyclic aromatic and heteroaromatic compounds	1
Hetero-Friedel–Crafts reactions	
as a method for forming aromatic carbon-heteroatom bonds	4
Outline of the this thesis	12

Chapter 1: Synthesis of BN-fused Polycyclic Aromatic Compounds *via* a Tandem Bora-Friedel–Crafts Reaction

1-1. Introduction	14
1-2. Results and Discussion	
1-2-1. Optimization of the reaction conditions	17
1-2-2. X-ray single crystal structures	18
1-2-3. Chemical and physical properties of BN-fused compound 1:	
Comparison with the isoelectronic carbon analog 2	21
1-2-4. Evaluation of charge transport properties	23
1-2-5. Extension of π -conjugated framework	26
1-3. Conclusions	28
1-4. Experimental Section	29

Chapter 2: Synthesis of BN-fused Helical *π*-Conjugated Molecules

2-1. Introduction	44
2-2. Results and Discussion	
2-2-1. Synthesis and optical resolution of the BN-fused helicene	45
2-2-2. Optical characterization of the racemate and single enantiomer	47
2-2-3. Molecular packing of the single crystal	48
2-2-4. Evaluation of carrier-transport properties	51
2-3. Conclusions	54
2-4. Experimental Section	55

Table of Contents

Chapter 3: Synthesis of BN-fused Polycyclic Aromatic Compounds	
Containing Five-membered Heterocyclic Ring	
3-1. Introduction	68
3-2. Results and Discussion	
3-2-1. Development of oxidative cyclization	
and screening of reaction conditions	70
3-2-2. Molecular and electronic structures of 1	72
3-2-3. Photochemical properties of 1	73
3-2-4. Evaluation of charge transport properties	
on the basis of calculated electronic coupling elements	75
3-2-5. Synthesis of BN-fused polycyclic aromatic compounds	
including a pyrrole ring	77
3-2-6. Synthesis of BN-fused polycyclic aromatic compounds	
including a thiophene ring	81
3-2-7. Regioselectivity at thiophene ring	
in bora-Friedel–Crafts reaction	82
3-3. Conclusions	83
3-4. Experimental Section	84
Chanter 4: Tandem Phospha-Friedel–Crafts Reaction	

ad Polycyclic Aromatic Compounds Chapter 3: Synthesis of RN-fi

Chapter 4: 1 andem Phospha-Friedel–Crafts Reaction	
Producing Curved π -Conjugated Frameworks with a Phosphorus Ring .	Junction
4-1. Introduction	98
4-2. Results and Discussion	
4-2-1. Synthesis of phosphaperylene derivatives	
via a phospha-Friedel–Crafts reaction	100
4-2-2. Curved π -conjugated structures	101
4-2-3. Theoretical studies of phosphaperylene derivatives	103
4-2-4. Photophysical and electrochemical properties	104
4-2-5. Gold complex of 1b :	
Synthesis, electronic structure, and molecular structure	107
4-2-6. Modification of the phospha-Friedel–Crafts reaction:	
An excess-base–free method	108

Table of Contents

4-2-7. Synthesis of distorted bisphosphine	108
4-3. Conclusions	111
4-4. Experimental Section	112

Chapter 5: Mechanistic Study on Bora-Friedel–Crafts Reaction

and Its Application to Other Heteroatoms	
5-1. Introduction	138
5-2. Results and Discussion	
5-2-1. NMR and theoretical studies on the bora-Friedel-Crafts reaction	139
5-2-2. Synthesis of azaphosphadibenzochrysene derivatives	143
5-2-3. Synthesis of azasiladibenzochrysene	
and azagermadibenzochrysene derivatives	147
5-2-4. Range of applicability of hetero-Friedel–Crafts reactions	150
5-3. Conclusions	151
5-4. Experimental Section	152
List of Publications	165
Acknowledgments	167

Fused polycyclic aromatic and heteroaromatic compounds

Polycyclic aromatic compounds are an important class of materials for organic electronics, dyes, sensors, and liquid crystal displays.¹ Among them, ladder-type π -conjugated molecules with fully ring-fused polycyclic skeletons have been the subjects of extensive research.² For example, their rigid π -conjugated frameworks with no conformational disorder can provide attractive photophysical properties such as intense photoluminescence. In addition, their planar frameworks are suitable for achieving dense molecular packing in the condensed phase, which can induce desirable electronic properties such as high carrier mobility. Therefore, in the past few decades, significant effort has been devoted to developing various intriguing ladder-type π -conjugated molecules.

The introduction of heteroatoms in the fused-ring system has been one major approach to modifying the physical and chemical properties of ladder-type polycyclic aromatic compounds.³ These compounds also form π -stacking arrangements in the solid states and show relatively high charge carrier mobilities in comparison to their all-carbon parent congeners. These properties make polycyclic heteroaromatic compounds promising candidates for organic electronic materials (Figure 1).⁴ In co-workers reported that functionalized particular, in 2005, Ong and indolo[3,2-b]carbazole 1 exhibited a high mobility that is suitable for organic thin-film (OTFT) applications.^{4a} Yamaguchi and co-workers synthesized transistor benzoannulated fused oligoselenophene 2 and its derivatives and used the compounds as air-stable organic semiconductors for high-quality organic field-effect transistors (OFET).^{4b} They explained that the high mobility of the compound is due to its considerable Se-Se orbital interactions. Takimiya and co-worker developed organic semiconductors based on dinaphtho [2,3-b:2',3'-f] thiopheno [3,2-b] thiophene 3 and its analogs.^{4c} The extended π -framework of these molecules contributes to effective molecular overlap, which can lead to high carrier mobility in the thin-film transistor. Nakamura and co-workers synthesized bis(carbazolyl)benzodifuran 4, which exhibits high, well-balanced carrier mobilities for holes and electrons, both greater than 10^{-3} cm² $V^{-1} s^{-1} d^{4d}$

¹ Reviews: (a) Fabian, J.; Nakazumi, H.; Matsuoka, M. Chem. Rev. **1992**, 92, 1197–1226. (b) Scherf,

U. J. Mater. Chem. **1999**, *9*, 1853–1864. (c) Mitschke, U.; Bäuerle, P. J. Mater. Chem. **2000**, *10*, ² Anthony, J. E. Chem. Rev. **2006**, *106*, 5028–5048.

³ Fukazawa, A.; Yamaguchi, S. *Chem. Asian J.* **2009**, *4*, 1386–1400.

⁴ (a) Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. **2005**, 127, 614–618. (b) Yamada, K.; Okamoto, T.; Kudoh, K.; Wakamiya, A.; Yamaguchi, S.; Takeya, J. Appl. Phys. Lett. **2007**, 90,

^{072102-1–3. (}c) Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. **2007**, *129*, 2224–2225. (d) Tsuji, H.; Mitsui, C.; Sato, Y.; Nakamura, E. Adv. Mater. **2009**, *21*, 3776–3779.

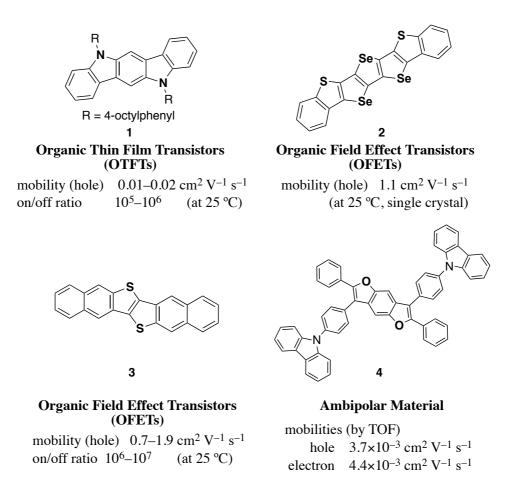


Figure 1. Ladder-type polycyclic heteroaromatic compounds as organic electronic materials.

One of the key factors responsible for high electronic performance is the solid-state packing structure. In general, strong electronic interactions between the π -electron-rich frameworks of adjacent molecules lead to high carrier mobilities. One promising arrangement for achieving strong electronic interactions is a cofacial π -stacking structure. One-dimensionally extended ladder-type compounds have strong interactions; however, in most cases they are only along one or two stacking axes. Therefore, compounds with a multidimensionally extended π -conjugated plane are desirable for obtaining good omnidirectional intermolecular interaction (Figure 2).

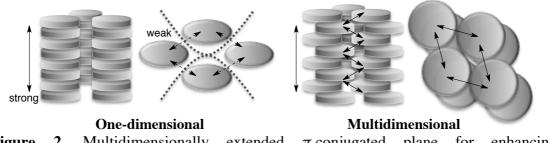
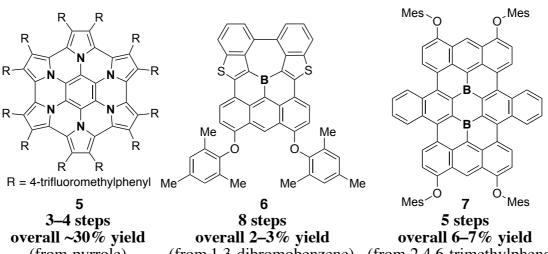


Figure 2. Multidimensionally extended π -conjugated plane for enhancing intermolecular interactions.

Multidimensionally extended, fully fused polycyclic aromatic compounds such as hexabenzocoronenes have also been extensively studied.⁵ However, despite numerous theoretical investigations ⁶ suggesting that such hetero- π -conjugated molecules could be fascinating substructures of heteroatom-embedded nanocarbons,⁷ only a few multidimensional polycyclic aromatic compounds incorporating heteroatoms have been synthesized to date.^{8,9} Recently, some researchers have succeeded in particularly difficult syntheses of this class of compounds (Figure 3). Müllen and co-workers synthesized fused hexapyrrolohexaazacoronene derivative 5 by performing cyclodehydrogenation of hexapyrrolylbenzene and subsequent neutralization.^{8b} In 2012, Yamaguchi and co-workers reported the synthesis of a new planarized triarylborane 6, in which a tri-coordinated B atom is embedded in the electron-donating polycyclic π -skeleton.⁸ The rigid and cyclic π -skeleton around the B atom of **6** retards a particular decomposition process that proceeds through the reaction with Lewis bases. They also succeeded in the bottom-up organic synthesis of a stable "B-doped nanographene" 7 as a single closed-shell compound.^{8g} These compounds show unique optical and electrical properties, but their overall yields are mostly low because of the multistep synthesis. Since practical applications require large-scale supplies of functional materials, the development of facile and scalable methods for constructing π -conjugated skeletons with heteroatom ring junctions has been eagerly anticipated.


⁵ (a) Watson, M. D.; Fechtenkötter, A.; Müllen, K. *Chem. Rev.* **2001**, *101*, 1267–1300. (b) Wu, J.; Pisula, W.; Müllen, K. *Chem. Rev.* **2007**, *107*, 718–747.

⁶ (a) Casanovas, J.; Ricart, J. M.; Rubio, J.; Illas, F.; Jimènez-Mateos, J. M. *J. Am. Chem. Soc.* **1996**, *118*, 8071–8076. (b) Kurita, N.; Endo, M. *Carbon* **2002**, *40*, 253–260. (c) Tran, F.; Alameddine, B.; Jenny, T. A.; Wesolowski, T. A. *J. Phys. Chem. A* **2004**, *108*, 9155–9160. (d) Hasegawa, T.; Suzuki, T.; Mukai, S. R.; Tamon, H. *Carbon* **2004**, *42*, 2195–2200. (e) Mandumpal, J.; Gemming, S.; Seifert, G. *Chem. Phys. Lett.* **2007**, *447*, 115–120.

⁷ Reviews: (a) Kawaguchi, M. *Adv. Mater.* **1997**, *9*, 615–625. (b) Terrones, M.; Jorio, A.; Endo, M.; Rao, A. M.; Kim, Y. A.; Hayashi, T.; Terrones, H.; Charlier, J.-C.; Dresselhaus, G.; Dresselhaus, M. S. *Mater. Today* **2004**, *7*, 30–45. (c) Vostrowsky, O.; Hirsch, A. *Chem. Rev.* **2006**, *106*, 5191–5207.

⁸ (a) Leupin, W.; Wirz, J. J. Am. Chem. Soc. **1980**, 102, 6068–6075. (b) Wu, D.; Zhi, L.; Bodwell, G.
J.; Cui, G.; Tsao, N.; Müllen, K. Angew. Chem., Int. Ed. **2007**, 46, 5417–5420. (c) Takase, M.;
Enkelmann, V.; Sebastiani, D.; Baumgarten, M.; Müllen, K. Angew. Chem., Int. Ed. **2007**, 46, 5524–5527. (d) Wharton, S. I.; Henry, J. B.; MacNab, H.; Mount, A. R. Chem. Eur. J. **2009**, 15, 5482–5490. (e) Saito, S.; Matsuo, K.; Yamaguchi, S. J. Am. Chem. Soc. **2012**, 134, 9130–9133. (f) Chen,
L.; Puniredd, S. R.; Tan, Y.-Z.; Baumgarten, M.; Zschieschang, U.; Enkelmann, V.; Pisula, W.;
Feng, X.; Klauk, H.; Müllen, K. J. Am. Chem. Soc. **2012**, 134, 17869–17872. (g) Dou, C.; Saito, S.;
Matsuo, K.; Hisaki, I.; Yamaguchi, S. Angew. Chem., Int. Ed. **2012**, 51, 12206–12210.

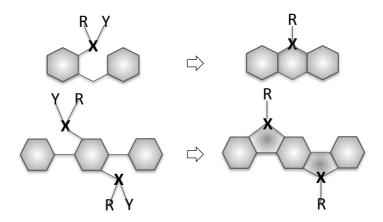
⁹ The substitution of B–N fragments for C–C fragments in aromatic hydrocarbons has been investigated extensively: Bosdet, M. J. D.; Piers, W. E. *Can. J. Chem.* **2008**, *86*, 8–29, Campbell, P. G.; Marwitz, A. J. V.; Liu, S.-Y. *Angew. Chem., Int. Ed.* **2012**, *51*, 6074–6092, and references cited therein.

(from pyrrole) (from 1,3-dibromobenzene) (from 2,4,6-trimethylphenol) **Figure 3.** Multidimensional polycyclic aromatic compounds incorporating heteroatom junctions.

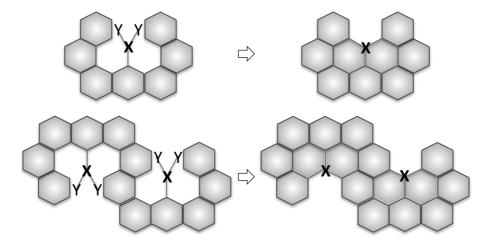
Hetero-Friedel–Crafts reactions as a method for forming aromatic carbon– heteroatom bonds

The Friedel–Crafts reaction is a typical electrophilic substitution reaction occurring in the aromatic nucleus. As such, it is a powerful tool for introducing carbon substituents to aromatic rings.^{10,11} Similarly, the *hetero-Friedel–Crafts reaction*, which introduces heteroatom substituents instead of carbon substituents (Scheme 1), is useful for incorporating heteroatoms into π -conjugated frameworks (Chart 1).¹² However, to the best of our knowledge, there are only a few applications of such a methodology to the construction of multidimensional polycyclic aromatic compounds incorporating heteroatoms (Chart 2). The following sections introduce various hetero-Friedel–Crafts reactions classified by element.

Scheme 1. Hetero-Friedel–Crafts reaction


 $R_n^1 X - Y +$ Lewis acid $R_n^1 X - Y +$ HY X = heteroatom, Y = leaving group

¹⁰ (a) Friedel, C.; Crafts, J. M. *Compt. Rend.* **1877**, *84*, 1392. (b) Friedel, C.; Crafts, J. M. *J. Chem. Soc.* **1877**, *32*, 725–791.


¹¹ Reviews: (a) Gore, P. H. *Chem. Rev.* **1955**, *55*, 229–281. (b) Olah, G. A. *Friedel–Crafts and Related Reactions*; Wiley: New York, **1963**. (c) Groves, J. K. *Chem. Soc. Rev.* **1972**, *1*, 73–97. (d) Eyley, S. C. *Comp. Org. Syn.* **1991**, *2*, 707–731. (e) Heaney, H. *Comp. Org. Syn.* **1991**, *2*, 733–752. (f) Rueping, M.; Nachtsheim, B. J. *Beilstein J. Org. Chem.* **2010**, *6*, 6-1–24.

¹² Olah, G. A. *Friedel–Crafts Chemistry*; Wiley: New York, **1973**.

Chart 1. Incorporation of a heteroatom into a ladder-type π -conjugated framework in the hetero-Friedel–Crafts reaction

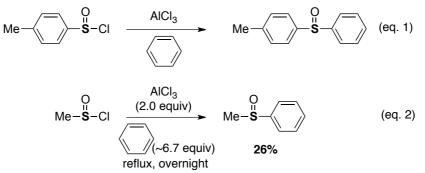
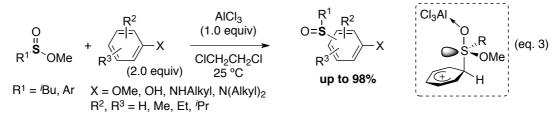


Chart 2. Incorporation of a heteroatom into a multidimensional π -conjugated framework in the hetero-Friedel–Crafts reaction

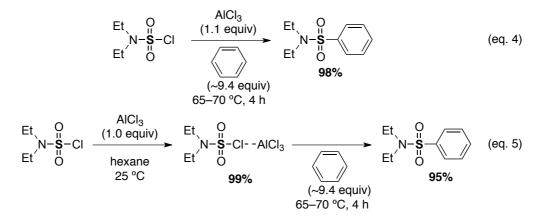


Sulfur

The Friedel–Crafts sulfinylation of aromatic compounds forms diaryl or alkyl aryl sulfoxides. In 1926, the first synthesis of phenyl p-tolyl sulfoxide from benzene and *p*-toluenesulfinyl chloride was reported (eq. 1).¹³ More than 30 years later, Douglas et al. reported the synthesis of methyl phenyl sulfoxide from the reaction of benzene with methanesulfinyl chloride in the presence of anhydrous aluminum chloride (eq. 2).¹⁴

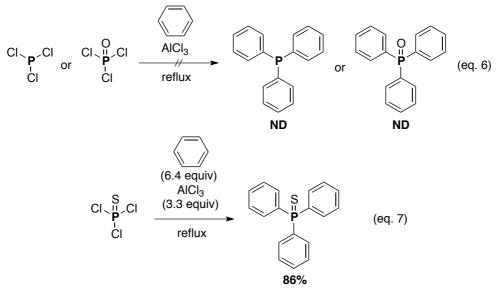
Yuste and co-workers reported that the Friedel-Crafts reaction of methyl alkyl- and arylsulfinates with aromatic systems activated by electron-donating substituents provides alkyl aryl and diaryl sulfoxides under mild conditions in moderate to good yields (eq. 3).¹⁵ They suggested that a Wheland intermediate having a trigonal bipyramidal structure provided the very high regioselectivity in these sulfinylation reactions.

Gupta reported the synthesis of aromatic N,N-dialkylsulfonamides via the reaction of dialkylsulfamyl chlorides with aromatic hydrocarbons in the presence of aluminum chloride (eq. 4).¹⁶ They also prepared the same products by reacting a novel sulfamyl chloride-aluminum chloride complex with hydrocarbons (eq. 5).


¹³ Schöberl, A.; Wagner, A. Houben-Weyl, Vol. IX, 4th ed.; Müller, E., Ed.; Thieme: Stuttgart, 1955, p. 217.

Douglas, J. B.; Farah, B. S. J. Org. Chem. 1958, 23, 805-807.

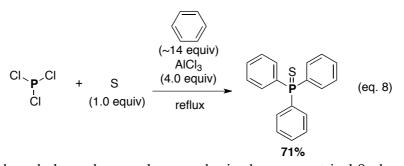
¹⁵ Yuste, F.; Linares, A. H.; Mastranzo, V. M.; Ortiz, B.; Sánchez-Obregón, R.; Fraile, A.; Ruano, J.


L. G. J. Org. Chem. 2011, 76, 4635-4644.

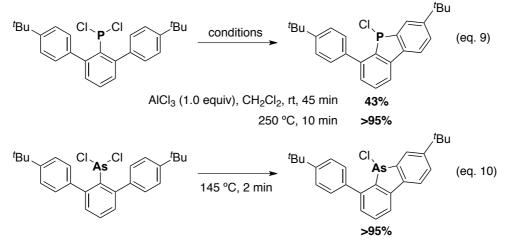
¹⁶ Gupta, S. K. Synthesis **1977**, 39–41.

Phosphorus and Arsenic

The reaction of phosphorus trichloride (PCl₃) with benzene under Friedel– Crafts conditions has been widely studied. However, only phenyldichlorophosphine and diphenylchlorophosphine have been obtained as products, and no conditions that yielded triphenylphosphine were found, probably owing to an unfavorable disproportionation equilibrium.¹⁷ Phosphorus oxychloride (POCl₃) also fails to give triphenylphosphine oxide (eq. 6). On the other hand, in 1964, Maier found that phosphorus sulfochloride (PSCl₃) yields triphenylphosphine sulfide upon reaction with benzene and excess aluminum chloride (eq. 7).¹⁸

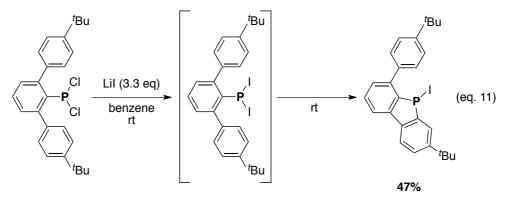


Olah and co-workers simplified this method to prepare triphenylphosphine sulfide in 71% yield directly from benzene by reacting it with sulfur, phosphorus trichloride, and aluminum chloride (eq. 8).¹⁹ Thus, sulfidation will be essential for the phospha-Friedel–Crafts reaction of diaryl phosphorus chlorides.

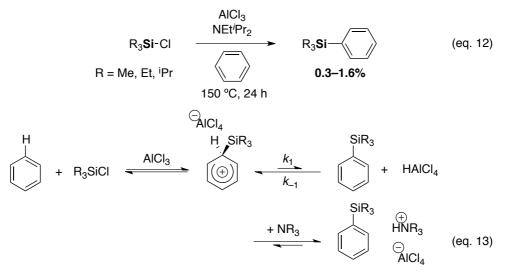

¹⁷ Kosoiapoff, G. M. *Friedel–Crafts and Related Reactions*, Vol. IV, Olah, G. A., Ed.; Wiley: New York, **1965**, pp. 213–226.

¹⁸ Maier, L. *Helv. Chim. Acta* **1964**, *47*, 120–132.

¹⁹ Olah, G. A.; Hehemann, D. J. Org. Chem. **1977**, 42, 2190.


Wehmschulte and co-workers synthesized unsymmetrical 9-phosphafluorenes using an AlCl₃-catalyzed Friedel–Crafts ring-closure reaction, but this method suffers from difficult workup procedures.²⁰ Alternatively, they also obtained the same products in close to quantitative yields by performing simple thermolysis of *m*-terphenyldichlorophosphines (eq. 9) and -arsines (eq. 10). The reaction temperatures were about 250 °C for the phosphine and 140 °C for the arsine, and the reactions were complete within 5 min.

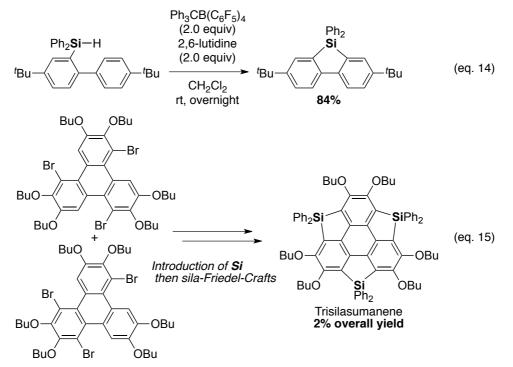
They also reported that the reaction temperature could be further reduced to room temperature if iodo precursors were employed (eq. 11).²¹ According to their quantum mechanical calculations, iodide substituents reduce the activation barrier by ca. 8 kcal/mol compared to chloride substituents.


²⁰ Diaz, A. A.; Young, J. D.; Khan, M. A.; Wehmschulte, R. J. *Inorg. Chem.* **2006**, *45*, 5568–5575.

²¹ Diaz, A. A.; Buster, B.; Schomisch, D.; Khan, M. A.; Baum, J. C.; Wehmschulte, R. J. *Inorg. Chem.* **2008**, *47*, 2858–2863.

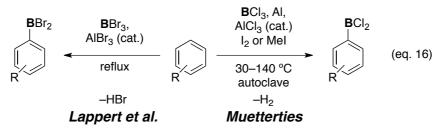
Silicon

Electrophilic silylation of aromatic compounds such as benzene and toluene under typical Friedel–Crafts alkylation conditions using halosilanes and a Lewis acid catalyst has never been observed, although this is possible for highly activated aromatics (ferrocene, pyrrole, etc.). The difficulty of this reaction is probably due to the great ease with which any arylsilane formed under the reaction conditions undergoes protodesilylation.²² In 1989, Olah and co-workers reported the direct silylation of benzene and toluene with a series of chlorotrialkylsilanes under Friedel–Crafts reaction conditions in the presence of Hunig bases (hindered tertiary amines) as proton acceptors (eq. 12).²³ Their strategy for achieving silylation of benzene or toluene was to slow down the rate of protodesilylation by trapping the proton eliminated in the silylation reaction with a suitable hindered base (eq. 13).


Recently, Kobayashi and co-workers developed an intramolecular sila-Friedel–Crafts reaction and applied it to the synthesis of dibenzosilole derivatives (eq. 14).²⁴ This reaction proceeds under mild conditions to afford the target in relatively high yield, indicating its versatility as a synthetic method. The synthesis of

²² (a) Bott, R. W.; Eaborn, C.; Greasley, P. M. J. Chem. Soc. **1964**, 4804–4806. (b) Szele, I. Helv. Chim. Acta **1981**, 64, 2733–2737.

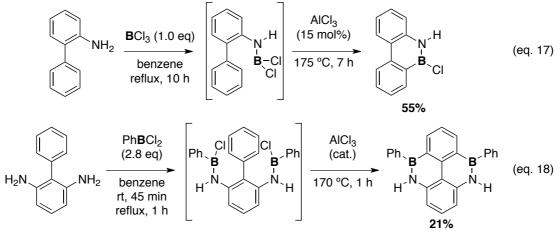
²³ Olah, G. A.; Bach, T.; Surya Prakash, G. K. J. Org. Chem. **1989**, *54*, 3770–3771.


²⁴ Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. **2009**, 131, 14192–14193.

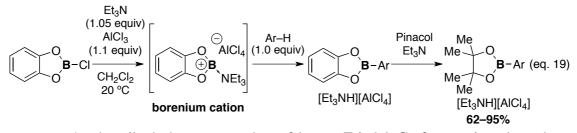
trisilasumanene, a silicon analog of sumanene, was also achieved using this reaction (eq. 15).

Boron

The direct electrophilic borylation of aromatic compounds dates back to as early as 1948,²⁵ when the borylation of benzene with diborane at high temperature was reported. Muetterties and Lappert independently reported a boron analog of the Friedel–Crafts reaction in which BX₃ (X = Cl, Br) activated by AlX₃ is used for the borylation of alkyl aromatics (eq. 16).²⁶ In both cases, the removal of the Brønsted acid byproduct of the electrophilic aromatic substitution (either as gaseous HBr or as H₂ from the reaction of HX with Al) was essential for preventing protodeboronation.


Dewar and co-workers reported that upon heating with aluminum chloride, 2-diphenylylaminoboron dichloride prepared from 2-aminodiphenyl and boron trichloride gives 10-chloro-9-aza-10-boraphenanthrene in moderate yield (eq. 17).²⁷

²⁵ Hurd, D. T. J. Am. Chem. Soc. **1948**, 70, 2053–2055.

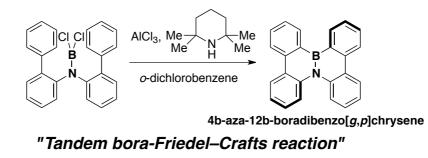

²⁶ (a) Muetterties, E. L. J. Am. Chem. Soc. 1959, 81, 2597. (b) Bujwid, Z. J.; Gerrard, W.; Lappert, M. F. Chem. Ind. 1959, 1091–1092.

²⁷ Dewar, M. J. S.; Kubba, V. P.; Petit, R. J. Chem. Soc. **1958**, 3073–3076.

They also succeeded in synthesizing bis-borazaro compounds using this intramolecular Friedel–Crafts cyclization (eq. 18).²⁸

Recently, Ingleson and co-workers reported an electrophilic borylation of aromatic compounds *via* catecholatoborenium cations (eq. 19).²⁹ Subsequent one-pot transesterification provides the synthetically useful pinacol boronate esters.

As described above, a number of hetero-Friedel–Crafts reactions have been developed so far. However, only a few synthetic applications of this reaction for synthesizing multidimensional polycyclic aromatic compounds have been reported. This author envisioned that the development of a tandem intramolecular hetero-Friedel–Crafts reaction could provide facile access to multidimensional π -conjugated frameworks with ring-junction heteroatoms, as shown in Chart 2.


²⁸ Chissick, S. S.; Dewar, M. J. S.; Maitlis, P. M. *Tetrahedron Lett.* **1960**, *1*, 8–10.

²⁹ Grosso, A. D.; Singleton, P. J.; Muryn, C. A.; Ingleson, M. J. Angew. Chem., Int. Ed. **2011**, 50, 2102–2106.

Outline of this thesis

This thesis is composed of Chapters 1-5 in addition to this general introduction. In Chapter 1, the synthesis of 4b-aza-12b-boradibenzochrysene derivatives via the tandem bora-Friedel–Crafts reaction is described. The compound adopts a twisted conformation that results in a tight stacking array in the solid state. Time-resolved microwave conductivity measurements prove that the intrinsic hole mobility (0.07 cm² V⁻¹ s⁻¹) is comparable to that of rubrene (0.05 cm² V⁻¹ s⁻¹), one of the most commonly used organic semiconductors, indicating that the replacement of the ring-fusing CC units of PAHs with the isoelectronic BN unit generates potential candidates for organic electronic materials. In Chapter 2, the synthesis and physical properties of azaboradibenzo[6]helicene, a new semiconductor material of helical chirality, are described. Unprecedented carrier inversion was observed between amorphous films of the racemate (p-type semiconductor) and those of a single enantiomer (n-type semiconductor). This carrier inversion is explained in terms of the different molecular packings in their crystal structures. Chapter 3 describes the synthesis of $14b^1$ -aza-14b-borabenzo[p]indeno[1,2,3,4-defg] chrysene via a tandem bora-Friedel-Crafts reaction and a subsequent cyclization reaction. The rigid planar structure gave rise to a tight single-dimensional stacking array, and an electronic coupling calculation based on the crystal structure suggests its potential as a good p-type semiconductor material. In photophysical measurements, the compound exhibited relatively high quantum yield. This chapter also includes discussion of the synthesis of BN-fused polycyclic aromatic compounds containing heterocyclic five-membered rings. Chapter 4 contains discussion of triaryl phosphine derivatives containing curved π -conjugated frameworks with a phosphorus ring junction synthesized via a tandem phospha-Friedel-Crafts reaction. Their rigid molecular frameworks enable these unprecedented phosphine compounds to hold extended π -conjugation spread over the whole molecule. Finally, Chapter 5 describes studies on the reaction mechanism of the bora-Friedel-Crafts reaction. Based on NMR experiments and DFT calculations, a reaction pathway without generation of four-fold coordinated species is suggested. Then, the feasibility and generality of the method are demonstrated by extending it to sila- and germa-Friedel-Crafts reactions.

Synthesis of BN-fused Polycyclic Aromatic Compounds via a Tandem Bora-Friedel–Crafts Reaction

Abstract: A tandem intramolecular bora-Friedel–Crafts reaction has been developed as a framework for the general synthesis of BN-fused polycyclic aromatic compounds including, as an illustrative example, 4b-aza-12b-boradibenzo[g,p]chrysene. This compound adopts a twisted conformation that results in a tight and offset face-to-face stacking array in the solid state. Time-resolved microwave conductivity measurements prove that the intrinsic hole mobility of the compound (0.07 cm² V⁻¹ s⁻¹) is comparable to that of rubrene (0.05 cm² V⁻¹ s⁻¹), one of the most commonly used organic semiconductors, indicating that BN-substituted polycyclic aromatic compounds are potential organic electronic materials.

1-1. Introduction

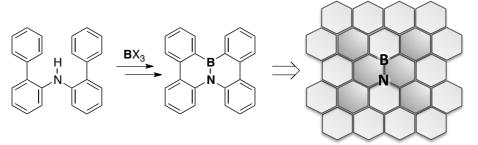
Polycyclic aromatic compounds are an important class of materials that are used to produce organic electronics, dyes, sensors, and liquid crystal displays.¹ Replacement of the C–C units in polycyclic aromatic compounds with isoelectronic B–N units affords novel hetero- π -conjugated molecules that are structurally similar to their all-carbon analogs but exhibit substantially different optical and electronic properties because of the local dipole moment and/or polarized frontier orbitals.² Following the pioneering work of Dewar,³ intensive efforts have been devoted to the synthesis of BN-substituted aromatic compounds. In particular, Piers,⁴ Ashe,⁵ and Liu⁶ have carried out extensive research in this direction in recent years.⁷ However, because of the lack of a suitable methodology, construction of polycyclic frameworks with B–N units requires multiple steps,⁴ and hence, BN-substituted polycyclic aromatic compounds have not yet been studied in detail.

¹ Reviews: (a) Fabian, J.; Nakazumi, H.; Matsuoka, M. *Chem. Rev.* **1992**, *92*, 1197–1226. (b) Scherf, U. *J. Mater. Chem.* **1999**, *9*, 1853–1864. (c) Mitschke, U.; Bäuerle, P. *J. Mater. Chem.* **2000**, *10*, 1471–1507. (d) Watson, M. D.; Fechtenkötter, A.; Müllen, K. *Chem. Rev.* **2001**, *101*, 1267–1300. (e) Bendikov, M.; Wudl, F.; Perepichka, D. F. *Chem. Rev.* **2004**, *104*, 4891–4946. (f) Klauk, H. *Organic Electronics*; Wiley-VCH: Weinheim, **2006**. (g) Anthony, J. E. *Chem. Rev.* **2006**, *106*, 5028–5048. (h) Sergeyev, S.; Pisula, W.; Geerts, Y. H. *Chem. Soc. Rev.* **2007**, *36*, 1902–1929.

² Reviews: (a) Liu, Z.; Marder, T. B. *Angew. Chem., Int. Ed.* **2008**, *47*, 242–244. (b) Bosdet, M. J. D.; Piers, W. E. *Can. J. Chem.* **2009**, *87*, 8–29. (c) Ashe, A. J., III *Organometallics* **2009**, *28*, 4236–4248.

³ (a) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. *J. Chem. Soc.* **1958**, 3073–3076. (b) Dewar, M. J. S.; Kaneko, C.; Bhattacharjee, M. K. *J. Am. Chem. Soc.* **1962**, *84*, 4884–4887. (c) Culling, G. C.; Dewar, M. J. S.; Marr, P. A. *J. Am. Chem. Soc.* **1964**, *86*, 1125–1127. (d) Davies, K. M.; Dewar, M. J. S.; Rona, P. *J. Am. Chem. Soc.* **1967**, *89*, 6294–6297.

⁴ (a) Emslie, D. J. H.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. **2003**, 42, 1252–1255. (b) Jaska, C. A.; Emslie, D. J. H.; Bosdet, M. J. D.; Piers, W. E.; Sorensen, T. S.; Parvez, M. J. Am. Chem. Soc. **2006**, 128, 10885–10896. (c) Bosdet, M. J. D.; Jaska, C. A.; Piers, W. E.; Sorensen, T. S.; Parvez, M. Org. Lett. **2007**, 9, 1395–1398. (d) Bosdet, M. J. D.; Piers, W. E.; Sorensen, T. S.; Parvez, M. Angew. Chem., Int. Ed. **2007**, 46, 4940–4943. (e) Bosdet, M. J. D.; Piers, W. E.; Sorensen, T. S.; Sorensen, T. S.; Parvez, M. Can. J. Chem. **2010**, 88, 426–433.


⁵ (a) Ashe, A. J., III; Fang, X. Org. Lett. 2000, 2, 2089–2091. (b) Ashe, A. J., III; Fang, X.; Kampf, J. W. Organometallics 2001, 20, 5413–5418. (c) Pan, J.; Kampf, J. W.; Ashe, A. J., III Organometallics 2004, 23, 5626–5629. (d) Fang, X.; Yang, H.; Kampf, J. W.; Banaszak Holl, M. M.; Ashe, A. J., III Organometallics 2006, 25, 513–518. (e) Pan, J.; Kampf, J. W.; Ashe, A. J., III Org. Lett. 2007, 9, 679–681.

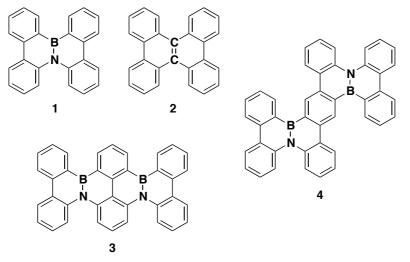
⁶ (a) Lamm, A. N.; Liu, S.-Y. *Mol. BioSyst.* **2009**, *5*, 1303–1305. (b) Marwitz, A. J. V.; Jenkins, H. T.; Zakharov, L. N.; Liu, S.-Y. Angew. Chem., Int. Ed. **2010**, *49*, 7444–7447. (c) Abbey, E. R.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. **2011**, *133*, 11508–11511.

⁷ Recent examples concerning aromatic compounds with boron and nitrogen substituents: (a) Proñ, A.; Zhou, G.; Norouzi-Arasi, H.; Baumgarten, M.; Müllen, K. Org. Lett. **2009**, *11*, 3550–3553. (b) Sachdev, H.; Zahn, N.; Huch, V. Z. Anorg. Allg. Chem. **2009**, *635*, 2112–2119. (c) Agou, T.; Sekine, M.; Kobayashi, J.; Kawashima, T. Chem. Eur. J. **2009**, *15*, 5056–5062. (d) Wakamiya, A.; Mori, K.; Araki, T.; Yamaguchi, S. J. Am. Chem. Soc. **2009**, *131*, 10850–10851. (e) Lorbach, A.; Bolte, M.; Lerner, H.-W.; Wagner, M. Chem. Commun. **2010**, 3592–3594. (f) Li, H.; Jäkle, F. Macromol. Rapid. Commun. **2010**, *31*, 915–920. (g) Taniguchi, T.; Yamaguchi, S. Organometallics **2010**, *29*, 5732–5735.

This author has envisioned that a tandem intramolecular bora-Friedel–Crafts reaction⁸ would be an efficient means of constructing extended π -conjugated frameworks with BN ring fusion (Scheme 1). Molecules with such frameworks are not only attractive functional materials but also potential starting compounds for the controlled synthesis of BN-embedded nanocarbon materials⁹ through surface-assisted coupling¹⁰ or amplification of sheet growth.

Scheme 1. Tandem intramolecular bora-Friedel–Crafts reaction for the synthesis of BN-fused polycyclic aromatic compounds

BN-embedded nanocarbon


⁸ Nontandem reactions: (a) Genaev, A. M.; Nagy, S. M.; Salnikov, G. E.; Shubin, V. G. *Chem. Commun.* **2000**, 1587–1588. (b) Vries, T. S. D.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. *J. Am. Chem. Soc.* **2009**, *131*, 14679–14687. See also reference 3. Tandem phospha-Friedel–Crafts reaction: (c) Hatakeyama, T.; Hashimoto, S.; Nakamura, M. *Org. Lett.* **2011**, *13*, 2130–2133.

⁹ (a) Kawaguchi, M. *Adv. Mater.* **1997**, *9*, 615–625. (b) Wang, W. L.; Bai, X. D.; Liu, K. H.; Xu, Z.; Golberg, D.; Bando, Y.; Wang, E. G. *J. Am. Chem. Soc.* **2006**, *128*, 6530–6531. (c) Kim, S. Y.; Park, J.; Choi, H. C.; Ahn, J. P.; Hou, J. Q.; Kang, H. S. *J. Am. Chem. Soc.* **2007**, *129*, 1705–1716. (d) Caretti, I.; Torres, R.; Gago, R.; Landa-Cánovas, A. R.; Jiménez, I. *Chem. Mater.* **2010**, *22*, 1949–1951.

¹⁰ Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Mouth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R. *Nature* **2010**, *466*, 470–473.

In this chapter, the development of bora-Friedel–Crafts reaction through careful screening of the conditions is described, along with a comparison of the chemical and physical properties of 4b-aza-12b-boradibenzo[g,p]chrysene **1** with those of its isoelectronic carbon analog, dibenzo[g,p]chrysene **2**. In addition, synthesis of extended π -conjugated compounds **3** and **4** with two ring-fusing BN units is described.

Chart 1. Dibenzochrysene derivatives and more extended π -conjugated molecules

1-2. Results and Discussion

1-2-1. Optimization of the reaction conditions

The synthetic route to 1 via the tandem intramolecular bora-Friedel–Crafts reaction is described in Scheme 2. Dichloroboraneamine 6, prepared *in situ* from bis(biphenyl-2-yl)amine 5, was treated with a variety of Lewis acids and base additives in *o*-dichlorobenzene (ODCB) at 150 °C for 12 h.

Scheme 2. Synthesis of 1 via bora-Friedel–Crafts reaction

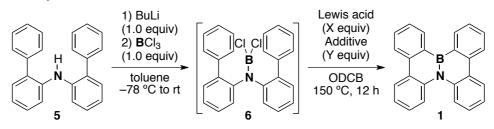


Table 1 summarizes the optimization of the bora-Friedel–Crafts reaction. During the initial screening of Lewis acids such as AlCl₃, AlBr₃, GaCl₃, and Zn(OTf)₂ (entries 1–4), the target compound 1 was not obtained and the starting amine 5 was recovered. After extensive screening, compound 1 was found to be obtained in 30% yield when a mixture of AlCl₃ (4.0 equiv) and NEt'Pr₂ (1.5 equiv) was used (entry 7). However, reactions with 0.5, 1.0, and 2.0 equiv of NEt'Pr₂ did not give the desired product (entries 5-8). Screening of the base additives (entries 9-14) indicated that the optimum product yield (67%) achieved when 1.5 was equiv of 2,2,6,6-tetramethylpiperidine (TMP) was used (entry 9). Thus, the AlCl₂/TMP stoichiometry plays an important role in enhancing the product yield (entries 15–19). The sluggish conversion in the presence of low and high concentrations of the base is possibly due to the decomposition of the product and the deactivation of AlCl₃, respectively. The other Lewis acids considered were not as effective as AlCl₃ (entries 20-24). Boron sources other than BCl₃, such as BF₃·Et₂O, BBr₃, and B(OMe)₃, did not afford the target compound 1 even under the optimized conditions.

	e		
Entry ^a	Lewis acid (X equiv)	Additive (Y equiv)	$\operatorname{Yield}^{b}(\%) \text{ of } 1$
1	AlCl ₃ (4.0)	none	0
2	$AlBr_3(4.0)$	none	0
3	$GaCl_{3}(4.0)$	none	0
4	$Zn(OTf)_{2}$ (4.0)	none	0
5	AlCl ₃ (4.0)	NEt'Pr ₂ (0.5)	0
6	$AlCl_{3}(4.0)$	$NEt^{i}Pr_{2}(1.0)$	0
7	$AlCl_{3}(4.0)$	$\operatorname{NEt}^{i}\operatorname{Pr}_{2}(1.5)$	30
8	$AlCl_{3}(4.0)$	$\operatorname{NEt}^{i}\operatorname{Pr}_{2}^{-}(2.0)$	0
9 ^c	AlCl ₃ (4.0)	2,2,6,6-tetramethylpiperidine (1.5)	67 ^d
10	$AlCl_{3}(4.0)$	1,2,2,6,6-pentamethylpiperidine (1.5)	27
11	$AlCl_3$ (4.0)	2,4,6-collidine (1.5)	27
12	$AlCl_{3}(4.0)$	proton sponge (1.5)	<1
13	AlCl ₃ (4.0)	$NCy_2Me (1.5)$	15
14	$AlCl_{3}(4.0)$	${}^{i}Bu_{3}N(1.5)$	16
15	$AlCl_{3}(4.0)$	2,2,6,6-tetramethylpiperidine (1.0)	0
16	$AlCl_3$ (4.0)	2,2,6,6-tetramethylpiperidine (2.0)	42
17	$AlCl_{3}(3.0)$	2,2,6,6-tetramethylpiperidine (1.5)	0
18	$AlCl_{3}(5.0)$	2,2,6,6-tetramethylpiperidine (1.5)	34
19	$AlCl_3(6.0)$	2,2,6,6-tetramethylpiperidine (2.25)	28
20	AlBr ₃ (4.0)	$NEt^{i}Pr_{2}(1.5)$	30
21	$AlBr_{3}(4.0)$	2,2,6,6-tetramethylpiperidine (1.5)	36
22	$GaCl_{3}^{2}$ (4.0)	$\operatorname{NEt}^{i}\operatorname{Pr}_{2}(1.5)$	38
23	$GaCl_{3}^{2}(4.0)$	2,2,6,6-tetramethylpiperidine (1.5)	6
24	$Zn(OTf)_2(4.0)$	$NEt^{i}Pr_{2}(1.5)$	0
	-	=	

Table 1. Screening of Lewis acids and Brønsted bases

^{*a*}Reactions were carried out on a 0.6 mmol scale. ^{*b*}The yield was determined from ¹H NMR measurements using 1,1,2,2-tetrachloroethane as the internal standard. ^{*c*}The reaction was carried out on a 15 mmol scale. ^{*d*}Isolated yield.

1-2-2. X-ray single crystal structures

The structure of **1** has been determined using X-ray crystallography (Figure 1a). The B–N bond length [1.426(3) Å] was found to be shorter than that in typical BN aromatic compounds (1.45-1.47 Å), which confirms the double bond character (1.37-1.40 Å).³⁻⁵ On the other hand, the B–C1, B–C2, N–C3, and N–C4 lengths in **1** are 1.535(3), 1.534(3), 1.442(3), and 1.448(3) Å, respectively, indicating that these are single bonds. The aforementioned observations reveal the low aromaticity of the BNC₄ rings and are consistent with the results of a nucleus-independent chemical shift (NICS) analysis discussed below. Because of the steric repulsion between the hydrogen atoms at the *ortho* position to the heteroatoms (dihedral angle: C5–C7–C6–C8, 38.87°), **1** adopts a twisted conformation and hence has a unique packing structure (Figure 1b). That is, the molecules are arranged in an offset face-to-face stacking array with a π - π distance of 3.3–3.6 Å; in this arrangement, the local dipole moments of the B–N bonds also offset each other. Each array includes an enantiomer with a left- or right-handed helical structure [*M*-helix (shown in pink) or *P*-helix (shown in blue), respectively] containing CH– π interactions (3.0–3.4 Å).

To investigate the effect of replacing the B–N unit with C–C, the structure of the isoelectronic carbon analog, dibenzo[g,p]chrysene **2**, was also determined using X-ray crystallography (Figure 1c, d). The central C1–C2 bond is highly olefinic [1.3882(16) Å] and much shorter than the four radial C–C bonds [1.4608(19)–1.4657(18) Å], indicating a large degree of bond alternation and low aromaticity of the central rings, as observed in **1**. The molecular arrangement of **2** in the solid state is almost identical to that of **1**, and surprisingly, the lattice constants are also nearly equal to those of **1**.

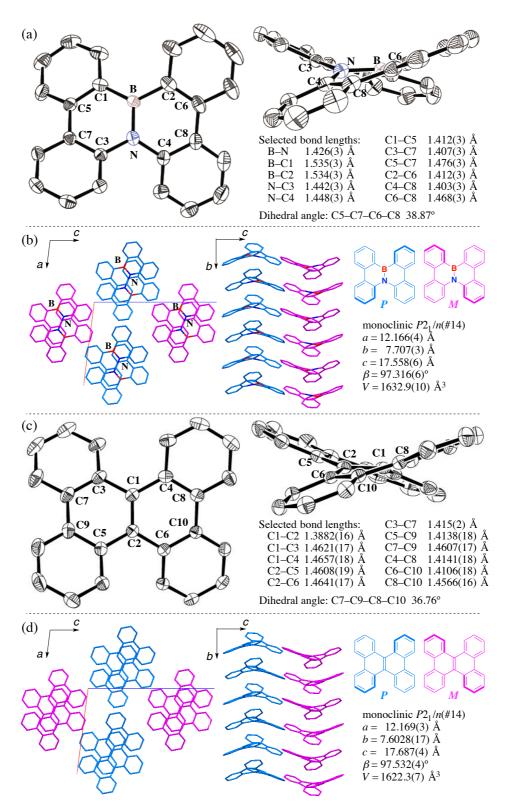
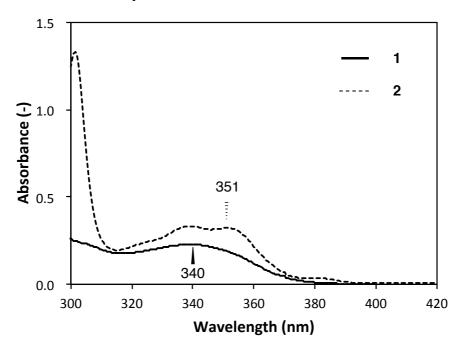



Figure 1. ORTEP drawings and packing structures of 1 (a, b) and 2 (c, d). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity. The P-enantiomer is shown in blue and M-enantiomer is shown in pink.

1-2-3. Chemical and physical properties of BN-fused compound 1: Comparison with the isoelectronic carbon analog 2

The introduction of the BN unit causes only a subtle change in the melting point (1, 227 °C; 2, 229 °C), but the solubility in polar organic solvents is significantly improved (solubility in Et₂O and AcOEt: 1, 4.4 and 7.7 mg/mL; 2, 2.5 and 5.0 mg/mL), probably because of its enhanced dipole moment.

In the UV-visible absorption spectrum, **1** has a relatively strong absorption band with a maximum at 340 nm ($\log \varepsilon = 4.06$) corresponding to a π - π^* transition (Figure 2), whereas **2** has an absorption maximum at 351 nm ($\log \varepsilon = 4.21$). BN replacement leads to a small blue shift in the UV-visible absorbance, because the low aromaticity of the BNC₄ rings (*vide infra*) could weaken the delocalization of the π -electrons in the dibenzochrysene framework.

Figure 2. UV-visible absorption spectra of **1** (solid line) and **2** (dotted line) in 2.0×10^{-5} M CH₂Cl₂.

Redox potentials were determined by performing cyclic voltammetry (CV) measurements in THF (E_{red}) or CH₂Cl₂ (E_{ox}) with 0.10 M *n*-Bu₄N⁺PF₆⁻ or *n*-Bu₄N⁺BPh₄⁻. The reversible oxidation and reduction waves with peak potentials at +0.76 V (+0.89 V) and -2.77 V (-2.65 V) vs. Fc/Fc⁺, respectively, are observed for **1** (**2**) (Figure 3). BN replacement leads to a negative shift in the redox potential, which could partially account for its improved hole mobility.

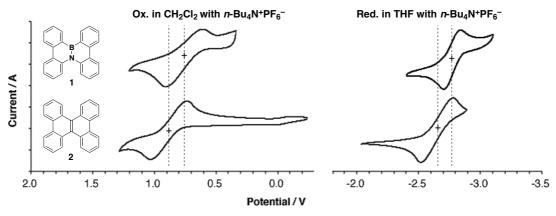


Figure 3. Cyclic voltammograms of 1 and 2.

The aromaticities of the six-membered rings in **1** and **2** were evaluated by performing a NICS analysis using the B3LYP hybrid functional with the 6-31G(d) basis set (Figure 4). Interestingly, the BNC₄ rings in **1** have low aromaticity, as suggested by their low NICS(1) value (-2.9; *cf.* 10a-aza-10b-borapyrene: -9.5^{4d}), whereas the corresponding C₆ rings in **2** have moderate aromaticity (-6.5). On the other hand, BN replacement does not significantly affect the aromaticity of the surrounding C₆ rings in **1** (-10.2 and -10.6; *cf.* benzene: -11.2¹¹). Despite the low aromaticity of the central BNC₄ rings, DFT calculations show that the π -conjugation in **1** extends over the entire molecule, and reasonable orbital distribution is observed.

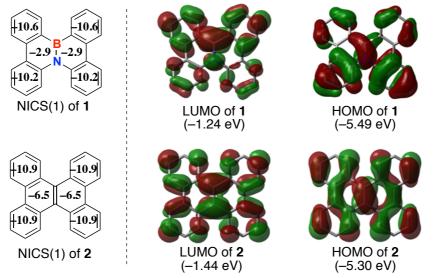
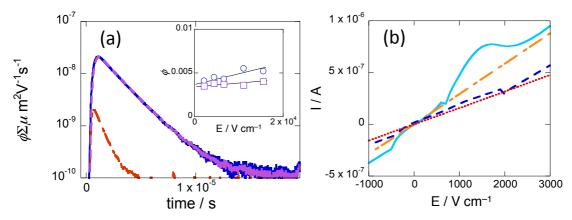



Figure 4. NICS(1) values of 1 and 2 (left) and the Kohn–Sham LUMO and HOMO of 1 and 2 (right) calculated at the B3LYP/6-31G(d) level.

¹¹ Moran, D.; Stahl, F.; Bettinger, H. F.; Schaefer, H. F., III; Schleyer, P. V. R. J. Am. Chem. Soc. **2003**, *125*, 6746–6752.

1-2-4. Evaluation of charge transport properties

The time-resolved microwave conductivity (TRMC) technique is known to be a facile method for measuring the charge carrier mobility.¹² Because it allows for the observation of the nanometer-scale oscillating motion of the charge carriers, this method is insusceptible to extrinsic factors (impurities, defect sites, etc.), as opposed to conventional direct-current methods such as the time of flight (TOF) and field-effect transistor (FET) techniques. As shown in Figure 5, TRMC measurements confirmed that **1** has a high intrinsic hole mobility (0.07 cm² V⁻¹ s⁻¹) that rivals that of rubrene (0.05 cm² V⁻¹ s⁻¹), one of the most popular organic semiconductors.^{12d} Interestingly, the hole mobility of **2** is only one-tenth of that of **1** (0.007 cm² V⁻¹ s⁻¹). The transient conductivity of **1** is not quenched even in a SF₆ environment, suggesting that the major charge carriers in **1** are positive charges (holes). The pseudo-first-order decay kinetics (Figure 5a) also indicate that the mobile holes are trapped rapidly by impurities or structural defects at the interfaces rather than through bulk recombination with negative charges *via* second-order reactions in the polycrystalline phases.

Figure 5. (a) Transient conductivity monitored for the polycrystalline phase of **1** in Ar (blue) and SF₆ (violet) environments. Identical traces were observed for both atmospheres. The kinetic trace for the transient conductivity was also observed for **2** (orange). Excitation was carried out at 355 nm using 13 mJ cm⁻² pulses for all transients. The inset shows the dependence of ϕ on the applied electric field strength between interdigitated Au electrodes with a 5 μ m gap. The values of ϕ were determined by performing photocurrent integration for thin films of **1** (120 nm thick) and **2** (80 nm thick) under illumination at 355 nm and 22 mJ cm⁻². The photocurrent under 355 nm illumination was also traced using identical samples; the I-V traces are illustrated in (b). Blue dashed and red dotted lines are the traces for **1** (dark and illuminated, respectively), and turquoise solid and orange dot-dashed lines are the traces for **2** (dark and illuminated, respectively).

¹² (a) Grozema, F. C.; Siebbeles, L. D. A.; Warman, J. M.; Seki, S.; Tagawa, S.; Scherf, U. Adv. Mater. 2002, 14, 228–231. (b) Acharya, A.; Seki, S.; Saeki, A.; Koizumi, Y.; Tagawa, S. Chem. Phys. Lett. 2005, 404, 35–39. (c) Acharya, A.; Seki, S.; Koizumi, Y.; Saeki, A.; Tagawa, S. J. Phys. Chem. B 2005, 109, 20174–20179. (d) Saeki, A.; Seki, S.; Takenobu, T.; Iwasa, Y.; Tagawa, S. Adv. Mater. 2008, 20, 920–923.

To provide detailed insight into the hole mobility, the electronic coupling V(meV) between neighboring molecules was calculated from the X-ray crystal structures of 1 and 2 (Figure 6).¹³ These electronic coupling V and reorganization energy λ calculations were performed using the PW91 or B3LYP hybrid functional with the DZP basis set of the ADF2010 program. The electronic hopping rate W is proportional to V^2 according to the Marcus-Hush equation.^{13c} Although the molecular packing is virtually the same in these compounds, the electronic coupling varies significantly. The V values along the *a*-axis in **1** [6.1 and 2.4 meV, (Figure 6a)] are ten times larger than the corresponding values in 2 [0.6 and 0.3 meV, (Figure 6c)], while those along the band c-axes are comparable to the corresponding values in 2 (Figures 6a–d). It is supposed that the partial localization of the frontier orbitals induced by the BN replacement increases the electronic coupling along the a-axis in 1, leading to an improvement in the total hole mobility. To evaluate this hypothesis, a single-point calculation for side-by-side molecules was performed for each crystal packing. An example in which adjacent HOMOs overlap along the a-axis in 1 and 2 is shown in Figure 7. The frontier orbitals of 2 have a node at the position of the overlap, whereas the partially localized orbitals of **1** overlap efficiently with the same phase. Therefore, the V value of 1 would be larger than that of 2 (6.1 vs. 0.6 meV). The reorganization energies λ of **1** and **2** are 0.21541 and 0.20413 eV, respectively.^{12,13} Such a small difference is unlikely to be a dominant factor affecting the different hole mobilities of these compounds.

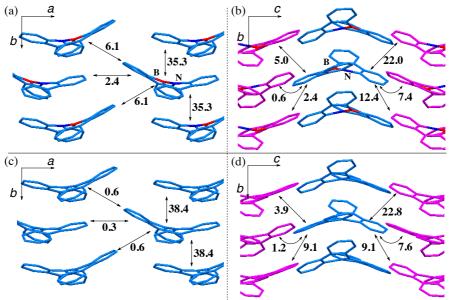


Figure 6. Electronic coupling V (meV) between neighboring molecules in the X-ray crystal structures of 1 (a, b) and 2 (c, d).

¹³ (a) Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Gisbergen, S. J. A. V.;
Snijders J. G.; Ziegler, T. *J. Comput. Chem.* **2001**, *22*, 931–967. (b) Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A. *J. Chem. Phys.* **2003**, *119*, 9809–9817. (c) Wen, S.-H.; Li, A.; Song, J.; Deng, W.-Q.; Han, K.-L.; Goddard, W. A., III *J. Phys. Chem. B* **2009**, *113*, 8813–8819.

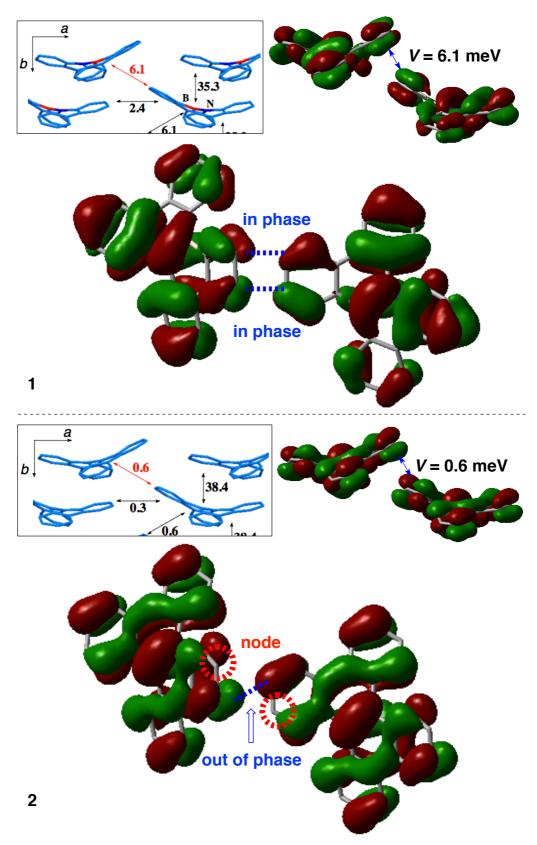
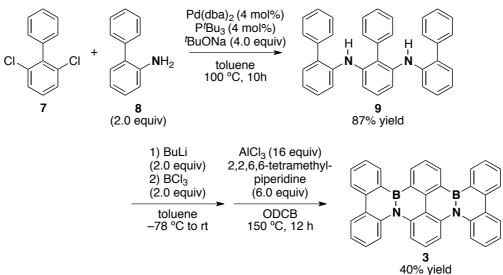
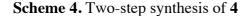
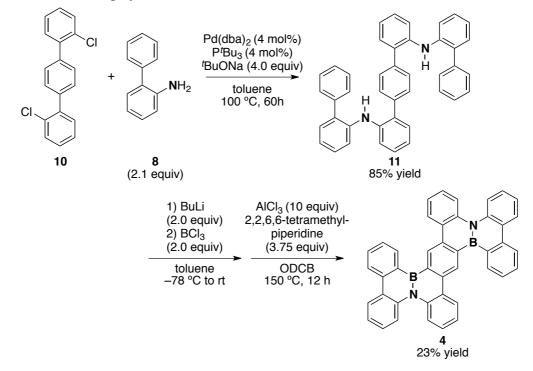



Figure 7. Overlapping adjacent HOMOs of 1 and 2.


1-2-5. Extension of π -conjugated framework


In a further application of the present synthetic strategy, an extended π -conjugated molecule containing two fused BN rings was synthesized in two steps available from commercially sources (Scheme 3). N,N'-bis(biphenyl-2-yl) biphenyl-2,6-diamine 9, which was prepared from 2,6-dichlorobiphenyl 7 and 2-aminobiphenyl in yield, was used for the synthesis of 8 87% 8b,11b-diaza-19b,22b-diborahexabenzo[a,c,fg,j,l,op]tetracene **3**.¹⁴ The introduction of boron substituents in 9 and subsequent tandem bora-Friedel-Crafts reaction afforded 3 in 40% yield. Moreover, the diagonally extended π -conjugated compound 4 was also prepared from 2,2"-dichloro-1,1':4',1"-terphenyl 10 and 2-aminobiphenyl 8 in a similar fashion (Scheme 4).

Scheme 3. Two-step synthesis of 3

¹⁴ The isoelectronic carbon analog has been investigated: Mochida, K.; Kawasumi, K.; Segawa, Y.; Itami, K. *J. Am. Chem. Soc.* **2011**, *133*, 10716–10719.

In the CV experiments, compound **3** showed an irreversible oxidation wave and a reversible reduction wave with peak potentials at +0.10 and -1.57 V, respectively (*vs.* Fc/Fc⁺). While the electrochemical HOMO-LUMO gap (1.67 eV) in **3** is smaller than that in pentacene [2.09 eV, ($E_{ox} = 0.22$ V, $E_{red} = -1.87$ V)],¹⁵ no obvious decomposition was observed even at the melting point (358 °C) in the ambient atmosphere. Despite its polycyclic aromatic structure, **3** is fairly soluble in organic solvents such as chlorobenzene (6.7 mg/mL) and *o*-dichlorobenzene (8.6 mg/mL), probably because of its flexible molecular framework and dipole moment. These advantageous physical properties of **3** make it suitable for use in organic electronics.

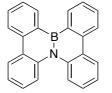
¹⁵ Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. J. *Am. Chem. Soc.* **2004**, *126*, 8138–8140.

1-3. Conclusions

This author has developed a tandem intramolecular bora-Friedel–Crafts reaction to synthesize BN-fused polycyclic aromatic compounds that adopt twisted geometries. TRMC measurements confirm that the replacement of the C–C units in dibenzo[g.p]chrysene with isoelectronic B–N units dramatically enhances its hole mobility because of the strong electronic coupling between neighboring molecules in the solid state. The strategy is simple and practical, and it can also be employed for the extension of π -conjugated frameworks. Thus, it forms the basis for pioneering research in materials science and will spur further development of bottom-up approaches toward BN-embedded nanocarbon materials.

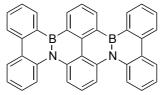
1-4. Experimental Section

General. All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under a positive pressure of argon. Air- and moisture-sensitive liquids and solutions were transferred *via* a syringe or a stainless steel cannula. Organic solutions were concentrated by rotary evaporation at *ca*. 30–400 mmHg. Gel permeation chromatography was performed on a JAIGEL-1H and 2H (20 mm i.d.) with an LC-9204 (Japan Analytical Industry Co., Ltd.).


Instrumentation. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on JEOL ECS400 (392 MHz) or BRUKER AVANCE III (600 MHz) NMR spectrometers. Proton chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the tetramethylsilane (δ 0). ¹³C NMR spectra were recorded at 98.5 or 151 MHz: carbon chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the carbon resonance of CDCl₃ (δ 77.0) and tetramethylsilane (δ 0). ¹¹B NMR spectra were recorded at 193 MHz: boron chemical shift values are reported in parts per million (ppm, δ scale) and are referenced to the external standard boron signal of BF₃·Et₂O (δ 0). Data are presented as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet and/or multiplet resonances, br = broad), coupling constant in hertz (Hz), signal area integration in natural numbers, and assignment (italic). IR spectra were recorded on an ATR-FTIR spectrometer (FT/IR-Spectrum One, PerkinElmer). Characteristic IR absorptions are reported in cm⁻¹. Melting points were recorded on a Yanaco MP-500V. High-resolution mass spectra (HRMS) were obtained using the electron impact (EI) method with JEOL JMS-700, JMS-SX102A. Cyclic voltammetry was conducted on a BAS Electrochemical Analyzer ALS 620C using a three-electrode cell with a glassy carbon working electrode, a platinum wire counter electrode, and an Ag/AgNO₃ reference electrode. Purity of isolated compounds was determined by GC analysis on Shimadzu GC-17A instrument equipped with an FID detector and a capillary column, InertCap 1MS (GL Sciences Inc., 30 m × 0.25 mm i.d., 0.25 μ m film thickness) and/or ¹H NMR analyses.

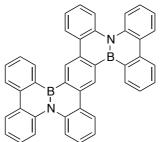
Solvent. Anhydrous tetrahydrofuran (THF) and toluene were purchased from Wako Pure Chemical Industries, Ltd. (Wako) and dried over Molecular Sieves 4A and degassed before use. Water content of the solvent was determined with a Karl Fischer Moisture Titrator (MKC-610, Kyoto Electronics Company) to be less than 15 ppm.

Materials. Dibenzo[g,p]chrysene was purchased from Tokyo Chemical Industry Co., Ltd. and was used after sublimation. Other materials were purchased from Wako, Tokyo Chemical Industry Co., Ltd., Aldrich Inc., Hokko Chemical Industry Co., Ltd., and


other commercial suppliers, and were used after appropriate purification, unless otherwise noted. Florisil[®] (100–200 mesh) and Celite[®] were purchased from Wako. Aryl halides and aryl amines were purified by distillation or recrystallization to be over 99.5% pure by GC analysis.

Synthesis of 4b-aza-12b-boradibenzo[g,p]chrysene (1)

A solution of butyllithium in hexane (9.35 mL, 1.60 M, 15 mmol) was added slowly to a solution of 5 (4.82 g, 15.0 mmol) in toluene (80 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of boron trichloride in heptane (15.0 mL, 1.0 M, 15 mmol) was added at -78 °C. After stirring at room temperature for 8 h, solvent was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (8.00 g, 60 mmol) and 2,2,6,6-tetramethylpiperidine (3.18 g, 22.5 mmol) in o-dichlorobenzene (100 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (6.73 g, 60 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (3.31 g, 67% yield) as white-yellow powder. IR (neat): cm⁻¹ 3056 (Ar-H), 1598, 1575, 1485, 1445, 1430, 1319, 1300, 1286, 1259, 1238, 1166, 1134, 1049, 935, 744, 723, 624, 587, 558; mp: 226.5-227.3 °C; ¹H NMR (CS₂/CD₂Cl₂=2/1, 600 MHz) δ 7.26-7.34 (m, 4H, NCCHCHCH), 7.55 (td, J = 1.2, 7.2 Hz, 2H, BCCHCH), 7.71 (td, J = 1.2, 7.2 Hz, 2H, BCCCHCH), 8.04 (dd, J = 1.8, 7.8 Hz, 2H, NCCH), 8.28 (dd, J = 1.8, 7.8 Hz, 2H, NCCCH), 8.33 (d, J = 7.8 Hz, 2H, BCCCH), 8.62 (dd, J = 1.2, 7.2 Hz, 2H, BCCH); ¹³C NMR (CS₂/CD₂Cl₂=2/1, 151 MHz) δ 121.3 (2C), 123.1 (2C), 123.2 (2C), 125.6 (2C), 126.9 (4C), 127.6 (2C), 131.1 (2C), 132.6 (br, 2C, CBC), 135.6 (2C), 137.1 (2C), 138.8 (2C); ¹¹B NMR (CS₂/CD₂Cl₂=2/1, 193 MHz) δ 35.6; HRMS(EI) m/z [M]⁺ calcd for C₂₄H₁₆NB 329.1376; observed 329.1380; Anal. calcd for C₂₄H₁₆NB C, 87.56; H, 4.90; N, 4.25. found C, 87.79; H, 5.14; N, 4.31.


Synthesis of 8b,19b-diaza-11b,12b-diborahexabenzo[*a,c,fg,j,l,op*]tetracene (3)

A solution of butyllithium in hexane (2.50 mL, 1.60 M, 4.0 mmol) was added slowly to a solution of **9** (0.977 g, 2.0 mmol) in toluene (20 mL) at -78 °C under argon. After 1 h, the solution was allowed to warm to 0 °C and stirred for 1 h, and then a solution of

boron trichloride in heptane (5.00 mL, 1.00 M, 5.0 mmol) was added to reaction mixture at -78 °C. After stirring at room temperature for 8 h, solvent was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (2.67 g, 20.0 mmol) and 2,2,6,6-tetramethylpiperidine (1.06 g, 7.5 mmol) in o-dichlorobenzene (25 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (2.24 g, 20.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed in vacuo, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.323 g, 32% yield) as white-yellow powder. IR (neat): cm⁻¹ 3058 (Ar-H), 2922, 1590, 1484, 1429, 1293, 1239, 1137, 1066, 1043, 820, 792, 743, 725, 677, 647, 615, 578, 558, 527; mp: 357.2–358.2 °C; ¹H NMR (CS₂/CD₂Cl₂=2/1, 600 MHz) δ 7.31–7.34 (m, 4H, NCCCHCH), 7.55 (t, J = 8.4 Hz, 1H, NCCHCHCHCN), 7.61 (td, J = 1.2, 7.2 Hz, 2H, BCCHCHCHCH), 7.78 (td, J = 1.2, 7.2 Hz, 2H, BCCHCHCHCH), 7.91 (t, J = 7.2 Hz, 1H, BCCHCHCHCB), 8.05 (d, J = 8.4 Hz, 2H, NCCHCHCHCN), 8.11-8.13 (m, 2H, NCCHCHCHCH), 8.32-8.35 (m, 2H, NCCCH), 8.40 (d, J = 7.2 Hz, 2H, BCCCH), 8.71 (d, J = 7.2 Hz, 2H, BCCHCHCHCH), 8.96 (d, J = 7.2 Hz, 2H, BCCHCHCHCB); ¹³C NMR (CS₂/CD₂Cl₂=2/1, 151 MHz) δ 114.3 (2C), 119.2, 121.8 (2C), 123.1 (2C), 123.4 (2C), 125.7, 125.8 (2C), 126.2, 126.7 (2C), 127.1 (2C), 128.1 (2C), 130.5 (br, 2C, CBCCCBC), 131.4 (2C), 133.0 (br, 2C, *CBCCCBC*), 135.8 (2C), 137.5 (4C), 137.6 (2C), 138.9, 139.0 (2C); ¹¹B NMR (CS₂/CD₂Cl₂=2/1, 193 MHz) & 36.5; Anal. calcd for C₃₆H₂₂N₂B₂ C, 85.76; H, 4.40; N, 5.56. found C, 85.85; H, 4.24; N, 5.66.

Synthesis of 4b,17b-diaza-9b,22b-diboratetrabenzo[a,c,f,m]phenanthro[9,10-k] tetraphene (4)

A solution of butyllithium in hexane (0.62 mL, 1.63 M, 1.0 mmol) was added slowly to a solution of **11** (0.977 g, 2.0 mmol) in toluene (20 mL) at -78 °C under argon. After 1 h, the solution was allowed to warm to 0 °C and stirred for 1 h, and then a solution of boron trichloride in heptane (1.00 mL, 1.00 M, 1.0 mmol) was added to reaction mixture at -78 °C. After stirring at room temperature for 8 h, solvent was removed *in vacuo*, and the reaction mixture was added to a solution of aluminum trichloride (2.13 g, 16.0 mmol) and 2,2,6,6-tetramethylpiperidine (1.06 g, 7.5 mmol) in *o*-dichlorobenzene (20 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (1.79 g, 16.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent:

toluene) to obtain the title compound (0.133 g, 23% yield) as white-yellow powder. IR (neat): cm⁻¹ 3056 (Ar-H), 1600, 1574, 1487, 1432, 1390, 1309, 1292, 1264, 1164, 1051, 942, 893, 865, 745, 725, 701, 678, 663, 618, 558, 527, 499, 471; mp: 411.6–412.5 °C; ¹H NMR (*o*-dichlorobenzene-d₄ at 100 °C, 600 MHz) δ 7.25–7.31 (m, 8H), 7.66 (t, *J* = 7.2 Hz, 2H, BCCHC*H*), 7.73 (td, *J* = 1.2, 7.2 Hz, 2H, BCCHC*HCH*), 8.05–8.67 (m, 2H), 8.10 [d, *J* = 7.8 Hz, 2H, NCC*H*(edge)], 8.30 [dd, *J* = 1.8, 7.2 Hz, 2H, NCCC*H*(edge)], 8.36 (d, *J* = 7.8 Hz, 2H, BCCCHCH), 8.58 [t, *J* = 4.2 Hz, 2H, NCCC*H*(center)], 8.96 (d, *J* = 7.2 Hz, 2H, BCCHCH), 9.70 (s, 2H, BCCHC); ¹³C NMR (*o*-dichlorobenzene-d₄ at 100 °C, 151 MHz) δ 121.1 (2C), 122.2 (2C), 123.0 (4C), 123.3 (2C), 125.4 (2C), 125.6 (2C), 126.6 (2C), 126.8 (2C), 127.6 (2C), 127.9 (2C), 130.0 (2C), 131.0 (2C), 132.3 (broad, 2C), 134.8 (broad, 2C), 135.4 (2C), 136.8 (2C), 137.1 (2C), 137.2 (2C), 139.1 (2C); ¹¹B NMR (CS₂/C₆D₆=2/1, 126 MHz) δ 35.7; HRMS(FAB) *m*/*z* [M]⁺ calcd for C₄₂H₂₄A₂B₂ 580.2282; observed 580.2296.

Crystallographic data collection and structure determination. Crystals of **1** and **2** were mounted on a Rigaku Saturn CCD diffractometer for data collection using graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Crystal data and data statistics are summarized in Figure 8. The structures were solved by direct methods with (SIR2008) ¹⁶ and refined by full-matrix least-squares techniques against F^2 (SHELXL-97)¹⁷. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions (C–H = 0.95 Å) and kept fixed. In the subsequent refinement, the function $\sum w(F_o^2 - F_c^2)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as R1 = $\sum (||F_o| - |F_c||)/\sum |F_o|$ and wR2 = $[\sum w(F_o^2 - F_c^2)^2 / \sum (wF_o^4)]^{1/2}$. All calculations were performed by using Crystal Structure 4.0, and illustrations were drawn by using ORTEP–3.

¹⁶ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; de Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. **2007**, *40*, 609-613.

¹⁷ Sheldrick, G. M. Program for the Solution of Crystal Structures; University of Göttingen, Germany, 1997.

61		Formula	C ₂₄ H ₁₆ BN	Abs. Coefficient, cm-1	0.076
		Formula Weight	329.21	F(000)	688.00
	K B R	Temperature, K	173	Crystal Size, mm ³	0.3, 0.15, 0.15
CS C5 C	C2	Wavelength, Å	0.71070	$2\theta_{\min}, 2\theta_{\max}, \deg$	6.1, 51.0
	C6	Crystal System	Monoclinic	Index Ranges	–14≤h≤14
	C8	Space Group	$P 2_1/n$ (No. 14)		–9≤k≤9
(4	a, Å	12.166(4)		–21≤l≤17
		b. Å	7.707(3)	Reflections (unique)	3034
(<i>c</i> , Å	17.558(6)	Reflections $(I > 2.0\sigma(I))$	2232
	1	α , deg	90	Parameters	299
C-1	Colored an olor	β , deg	97.316(6)	GOF on F^2	1.078
Selected bond lengths B–N 1.426(3) Å	Selected angles C1–B–C2 127.17(16)°	y, deg	90	<i>R</i> 1 (<i>I</i> >2.0σ(<i>I</i>))	0.0543
B-C1 1.535(3) Å	C1–B–N 116.23(16)°	Volume, Å	1632.9(10)	<i>R</i> , w <i>R</i> 2 (all data)	0.0805, 0.1372
B-C2 1.534(3) Å	C2-B-N 116.51(17)°	Z	4	Largest diff peak and hole, e, Å-3	3 0.23, -0.24
N-C3 1.442(3) Å	C3-N-C4 120.97(14)°	Density _{calcd} , g·cm ⁻³	1.339		
N-C4 1.448(3) Å	C3–N–B 120.01(16)° C4–N–B 119.00(15)°				
Dihedral angle C5–C7–C6–C8 38.87°	· · ·				
CJ-C/-C0-C8 58.8/					
		Formula	C ₂₆ H ₁₆	Abs. Coefficient, cm ⁻¹	0.076
		ronnula	$C_{26} I_{16}$	Abs. Coefficient, chi	0.070
(In)		Formula Weight	228 41	E(000)	688.00
		Formula Weight	328.41	F(000) Crystal Size mm ³	688.00 0 2 0 2 0 2
C7 C		Temperature, K	173	Crystal Size, mm ³	0.2, 0.2, 0.2
C7 C	P _{C1} C4	Temperature, K Wavelength, Å	173 0.71070	Crystal Size, mm ³ $2\theta_{min}$, $2\theta_{max}$, deg	0.2, 0.2, 0.2 6.1, 51.5
C9		Temperature, K Wavelength, Å Crystal System	173 0.71070 Monoclinic	Crystal Size, mm ³	0.2, 0.2, 0.2 6.1, 51.5 −14≤h≤13
		Temperature, K Wavelength, Å Crystal System Space Group	173 0.71070 Monoclinic <i>P</i> 2 ₁ /n (No. 14)	Crystal Size, mm ³ $2\theta_{min}$, $2\theta_{max}$, deg	0.2, 0.2, 0.2 6.1, 51.5 −14≤h≤13 −9≤k≤9
	C8	Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å	173 0.71070 Monoclinic <i>P</i> 2 ₁ /n (No. 14) 12.169(3)	Crystal Size, mm ³ $2\theta_{min}$, $2\theta_{max}$, deg Index Ranges	0.2, 0.2, 0.2 6.1, 51.5 -14≤h≤13 -9≤k≤9 -21≤l≤19
		Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å	173 0.71070 Monoclinic <i>P</i> 2 ₁ /n (No. 14) 12.169(3) 7.6028(17)	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique)	0.2, 0.2, 0.2 6.1, 51.5 -14≤h≤13 -9≤k≤9 -21≤l≤19 3056
		Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No.}\ 14)\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections (<i>I</i> >2.0 $\sigma(I)$)	0.2, 0.2, 0.2 6.1, 51.5 -14≤h≤13 -9≤k≤9 -21≤l≤19 3056 2367
		Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>α</i> , deg	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No.}\ 14)\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90 \end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters	0.2, 0.2, 0.2 6.1, 51.5 -14≤h≤13 -9≤k≤9 -21≤l≤19 3056 2367 299
		Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>c</i> , Å <i>α</i> , deg <i>β</i> , deg	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No.}\ 14)\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \leq h \leq 13\\ -9 \leq k \leq 9\\ -21 \leq l \leq 19\\ 3056\\ 2367\\ 299\\ 1.007\end{array}$
		Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg <i>β</i> , deg <i>y</i> , deg	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ \end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 Rl ($I > 2.0\sigma(I)$)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \leq h \leq 13\\ -9 \leq k \leq 9\\ -21 \leq l \leq 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395 \end{array}$
		Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>c</i> , Å <i>a</i> , deg <i>β</i> , deg <i>y</i> deg Volume, Å	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ 1622.3(7)\end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 <i>R</i> 1 ($I > 2.0\sigma(I)$) <i>R</i> , w <i>R</i> 2 (all data)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \le h \le 13\\ -9 \le k \le 9\\ -21 \le 1 \le 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395\\ 0.0566, 0.0953\\ \end{array}$
Selected bond lengths C1-C2 1.3882(16) Å C1-C3 1.4621(17) Å	C8 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C1	Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å a, deg β, deg γ, deg Volume, Å Z	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ 1622.3(7)\\ 4\end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 Rl ($I > 2.0\sigma(I)$)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \le h \le 13\\ -9 \le k \le 9\\ -21 \le 1 \le 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395\\ 0.0566, 0.0953\\ \end{array}$
Selected bond lengths C1-C2 1.3882(16) Å C1-C3 1.4621(17) Å C1-C4 1.4657(18) Å	C C C C C C C C	Temperature, K Wavelength, Å Crystal System Space Group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>c</i> , Å <i>a</i> , deg <i>β</i> , deg <i>y</i> deg Volume, Å	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ 1622.3(7)\end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 <i>R</i> 1 ($I > 2.0\sigma(I)$) <i>R</i> , w <i>R</i> 2 (all data)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \le h \le 13\\ -9 \le k \le 9\\ -21 \le 1 \le 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395\\ 0.0566, 0.0953\\ \end{array}$
Selected bond lengths C1-C2 1.3882(16) Å C1-C3 1.4621(17) Å C1-C4 1.4657(18) Å C2-C5 1.4608(19) Å	C8 C10 C4 C10 C2 C10 C3 -C1-C4 123.38(10)° C2-C1-C3 118.46(11)° C2-C1-C4 118.12(11)° C2-C1-C4 118.12(11)° C2-C1-C4 123.23(10)°	Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å a, deg β, deg γ, deg Volume, Å Z	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ 1622.3(7)\\ 4\end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 <i>R</i> 1 ($I > 2.0\sigma(I)$) <i>R</i> , w <i>R</i> 2 (all data)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \le h \le 13\\ -9 \le k \le 9\\ -21 \le 1 \le 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395\\ 0.0566, 0.0953\\ \end{array}$
Selected bond lengths C1-C2 1.3882(16) Å C1-C3 1.4621(17) Å C1-C4 1.4657(18) Å C2-C5 1.4608(19) Å C2-C6 1.4641(17) Å	C8 C10 C4 C10 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C4 C2 C1-C6 C2 C2 C2 C1-C6 C2 C2 C1 C3 C3 C1-C4 C1 C3 C1-C4 C1 C3 C1 C5 C2 C2 C1 C1 C1 C1 C1 C3 C2 C1 C1 C1 C3 C2 C1 C1 C3 C2 C1 C1 C1 C3 C2 C1 C1 C1 C1 C3 C2 C1 C1 C1 C1 C3 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å a, deg β, deg γ, deg Volume, Å Z	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ 1622.3(7)\\ 4\\ \end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 <i>R</i> 1 ($I > 2.0\sigma(I)$) <i>R</i> , w <i>R</i> 2 (all data)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \le h \le 13\\ -9 \le k \le 9\\ -21 \le 1 \le 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395\\ 0.0566, 0.0953\\ \end{array}$
Selected bond lengths C1-C2 1.3882(16) Å C1-C3 1.4621(17) Å C1-C4 1.4657(18) Å C2-C5 1.4608(19) Å	C8 C10 C10 C10 C10 C10 C20 C1-C4 123 38(10)° C2-C1-C3 118 46(11)° C2-C1-C4 118 12(11)° C2-C1-C4 118 12(11)° C5-C2-C6 122 32(10)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 84(11)° C5-C2-C1 118 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1	Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å a, deg β, deg γ, deg Volume, Å Z	$\begin{array}{c} 173\\ 0.71070\\ \text{Monoclinic}\\ P\ 2_1/n\ (\text{No. 14})\\ 12.169(3)\\ 7.6028(17)\\ 17.687(4)\\ 90\\ 97.532(4)\\ 90\\ 1622.3(7)\\ 4\\ \end{array}$	Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 <i>R</i> 1 ($I > 2.0\sigma(I)$) <i>R</i> , w <i>R</i> 2 (all data)	$\begin{array}{c} 0.2, 0.2, 0.2\\ 6.1, 51.5\\ -14 \le h \le 13\\ -9 \le k \le 9\\ -21 \le 1 \le 19\\ 3056\\ 2367\\ 299\\ 1.007\\ 0.0395\\ 0.0566, 0.0953\\ \end{array}$

Figure 8. X-ray crystal structures of 1 and 2 (left), and crystal data and structure refinement (right). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

Time-resolved microwave conductivity (TRMC) method. Nanosecond laser pulses from a Nd:YAG laser [Spectra Physics, INDY–HG, third harmonic generation (THG), 355 nm] with FWHM of 3-5 ns were used as excitation sources. The photon density of the laser was set at $1.8 \times 10^{15} - 2.3 \times 10^{16}$ photons cm⁻². A microwave frequency of 8.6–9.4 GHz was used for the TRMC measurement with a power of 3.0 mW in the microwave cavity, low enough to suppress the local heating of the materials loaded. The reflected microwave from the cavity was picked up by a diode (rise time < 1 ns), and monitored by a Tektronix TDS3032B digital oscilloscope. All the experiments were carried out at 25 °C. Microcrystals of the samples were mounted on a quartz substrate in random orientation. The transient change in the reflected microwave power ($\Delta P_r(t) / P_r$) was converted directly into the transient photoconductivity ($\Delta \sigma$) as follows:¹²

$$\langle \Delta \sigma \rangle = \frac{1}{A} \frac{\Delta P_r}{P_r}$$
 (1)

$$\Delta \sigma = e \sum \mu \phi N$$
 (2)

where A, e, ϕ , N, and $\Sigma\mu$ are a sensitivity factor, elementary charge of electron, photo carrier generation yield (quantum efficiency), the number of absorbed photons per unit volume, and sum of mobilities for negative and positive carriers, respectively. The number of photons absorbed by the sample was estimated based on the power loss of incident laser pulses averaged over 200 shots. The values of ϕ in the compounds were determined by conventional photo-current measurement in a vacuum chamber (< 10^{-5} Pa) using an inter-digitated Au electrodes on a quartz substrate with 5 mm gap under excitation at 355 nm with the photon density of 4.1×10^{16} photons/cm². Samples were deposited onto the substrates in a vacuum chamber (~ 10^{-6} Pa) at 80 ~ 12 nm thick. Transient current was predominantly observed under the applied bias of 0 - 2 V (~ $0 - 4.0 \times 10^3$ V cm⁻¹), and monitored by a Keithley 2612 source meter. The other details of the set of apparatus were described elsewhere.¹⁸

¹⁸ (a) Seki, S.; Yoshida, Y.; Tagawa, S.; Asai, K.; Ishigure, K.; Furukawa, K.; Fujiki, M.; Matsumoto, N. *Philos. Mag. B* **1999**, *79*, 1631–1645. (b) Sato, S.; Seki, S.; Honsho, Y.; Wang, L.; Nikawa, H.; Luo, G.; Lu, J.; Haranaka, M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. *J. Am. Chem. Soc.* **2011**, *133*, 2766–2771.

Computational studies. Molecular orbital calculations and nucleus-independent chemical shift (NICS) calculations were performed with Gaussian 03¹⁹ and 09²⁰ packages. The DFT method was employed using the B3LYP hybrid functional.²¹ Structures were optimized with the 6-31G(d) basis set.²² Nucleus independent chemical shifts (NICS) were evaluated by using the gauge invariant atomic orbital²³ (GIAO) approach at the GIAO-B3LYP/6-31G(d) level. The reorganization energy calculations were performed using the B3LYP hybrid functional with the DZP basis set²⁴ in the ADF program.²⁵ The electronic coupling calculations of dimers were performed by the local density functional VWN in the conjunction with the PW91²⁶ gradient corrections with the DZP basis set, as implemented in the ADF program according to the literature.¹³

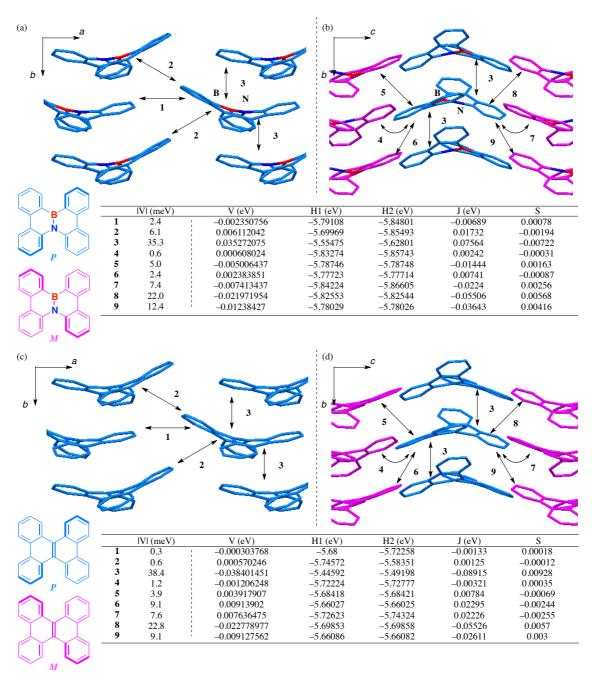
¹⁹ Gaussian 03, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

²⁰ Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

²¹ (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.

²² Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, **1986** and references cited therein.

²³ (a) Dichtfield, R. *Mol. Phys.* **1974**, *27*, 789–807. (b) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. **1990**, *112*, 8251–8260.


²⁴ van Lenthe, E.; Baerends, E. J. J. Comput. Chem. **2003**, 24, 1142–1156.

²⁵ ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.

²⁶ Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Sing, D. J.; Fiolhais,

C. Phys. Rev. B 1992, 46, 6671–6687.

Figure 9. Electron couplings V (meV) between neighboring molecules in the X-ray crystal structures of **1** (a, b) and **2** (c, d) at the PW91/DZP level on ADF2010 program. H atoms have been omitted for clarity. The *P*-enantiomer is shown in blue and *M*-enantiomer is shown in pink. $V (eV) = [J - 0.5S(H1 + H2)]/(1 - S^2)$, J (eV): charge transfer integral, H1 and H2 (eV): site energies, S: overlap integral.

Chapter 1

	1	2
Е	-321.82132	-323.88293
E*	-321.69273	-323.75055
E+	-314.54316	-316.78809
E+*	-314.45634	-316.71635
λ	0.21541	0.20413

Figure 10. Cohesive energies (eV) for neutral energy in neutral geometry (E), neutral energy in cation geometry (E*), cation energy in neutral geometry (E+), cation energy in cation geometry (E+*), and reorganization energies λ (eV) of **1** and **2** at the B3LYP/DZP level on ADF2010 program. $\lambda = (E^*-E)+(E^+-E^+)$.

Cartesian coordinates

Cartesian coordinates for reorganization energy

Cu	ne	siui		ues joi reoi	ganization e	nerg	y				
1 (neu	tra	l geometry	/)		29	1	0	-4.503322	-0.879323	0.763502
				· 		30	1	0	-0.093017	-2.997902	1.212390
Cer	nter		Atomic	Atomic (Coordinates	31	1	0	0.092936	-2.998712	-1.211130
Nu	mbe	r	Number	Туре 2	X Y Z	32	1	0	4.502993	-0.879095	-0.765197
						33	1	0	4.614670	0.558337	0.755708
1	7	0	0.000026	-0.634416	0.000127	34	1	0	0.572086	3.364476	0.931694
2	5	0	-0.000010	0.801018	0.000331	35	1	0	-2.715869	4.256708	-1.707520
3	6	0	-1.357792	1.462781	-0.307026	36	1	0	-4.744141	2.833738	-1.622570
4	6	0	-2.520136	0.661902	-0.257730	37	1	0	-4.326120	-3.091635	1.781044
5	6	0	-2.418498	-0.686961	0.303873	38	1	0	-2.087402	-4.145488	2.043954
6	6	0	-1.161584	-1.317696	0.416104	39	1	0	2.087102	-4.146607	-2.042205
7	6	0	1.161397	-1.317716	-0.416184	40	1	0	4.325797	-3.092018	-1.781238
8	6	0	2.418356	-0.686846	-0.304620	41	1	0	4.744750	2.833433	1.621466
9	6	0	2.520173	0.661991	0.256916	42	1	0	2.716340	4.256077	1.708595
10	6	0	1.357765	1.462726	0.307430						
11	6	0	-1.459522	2.757571	-0.836771						
12	6	0	-3.729418	1.174938	-0.741740	1 (cat	ion	geometry)	
13	6	0	-3.539796	-1.361890	0.804706						
14	6	0	-1.064826	-2.555181	1.061119	Cei	nter		Atomic	Atomic C	oordinates
15	6	0	1.064659	-2.555696	-1.060310	Nu	mbe	er	Number	Туре Х	X Y Z
16	6	0	3.539528	-1.361854	-0.805593						
17	6	0	3.729714	1.175015	0.740362	1	7	0	0.000111	-0.653423	-0.000348
18	6	0	1.459635	2.757214	0.837889	2	5	0	-0.000195	0.830046	-0.000216
19	6	0	-2.663661	3.259786	-1.293946	3	6	0	-1.343667	1.459578	-0.359702
20	6	0	-3.802578	2.459556	-1.246001	4	6	0	-2.505119	0.662520	-0.266070
21	6	0	-3.441957	-2.603566	1.397916	5	6	0	-2.396175	-0.658311	0.359243
22	6	0	-2.190040	-3.196621	1.537431	6	6	0	-1.131630	-1.309940	0.453654
23	6	0	2.189834	-3.197346	-1.536435	7	6	0	1.132066	-1.309427	-0.454283
24	6	0	3.441700	-2.603953	-1.397940	8	6	0	2.396430	-0.657372	-0.359525
25	6	0	3.802975	2.459301	1.245391	9	6	0	2.504766	0.663414	0.265887
26	6	0	2.663950	3.259338	1.294603	10	6	0	1.342997	1.460020	0.359570
27	1	0	-0.572058	3.365108	-0.929492	11	6	0	-1.439871	2.733398	-0.929193
28	1	0	-4.614147	0.557976	-0.758205	12	6	0	-3.714816	1.152403	-0.755182
						1					

13	6	0	-3.496701	-1.323018	0.892031	13	6	0	-2.390297	3.256749	-1.346210
14	6	0	-1.015331	-2.556438	1.101263	14	6	0	-3.633112	1.305839	-0.713269
15	6	0	1.016445	-2.556050	-1.101808	15	6	0	-1.228081	-2.660864	0.909042
16	6	0	3.497355	-1.321835	-0.891836	16	6	0	-3.606532	2.580292	-1.234793
17	6	0	3.714205	1.153676	0.755290	17	6	0	-3.632762	-1.306210	0.713598
18	6	0	1.438589	2.733623	0.929597	18	6	0	-2.389488	-3.257084	1.345853
19	6	0	-2.653038	3.217160	-1.398901	19	6	0	1.228418	-2.660846	-0.908839
20	6	0	-3.786415	2.421775	-1.313811	20	6	0	3.606130	-2.580387	-1.234941
21	6	0	-3.377625	-2.566203	1.493428	21	6	0	3.632889	-1.305731	-0.713962
22	6	0	-2.128371	-3.179900	1.608782	22	6	0	2.389907	3.256760	1.346558
23	6	0	2.129887	-3.179431	-1.608437	23	6	0	2.389911	-3.256989	-1.345544
24	6	0	3.378939	-2.565314	-1.492747	24	6	0	-3.605830	-2.580735	1.234913
25	6	0	3.785352	2.423156	1.313699	25	6	0	3.632979	1.306214	0.712993
26	6	0	2.651607	3.217979	1.399072	26	6	0	3.606242	2.580546	1.234759
27	1	0	-0.551914	3.336038	-1.048937	27	1	0	-0.288981	3.164641	-1.066561
28	1	0	-4.604617	0.542996	-0.734835	28	1	0	0.288544	3.164374	1.067088
29	1	0	-4.464422	-0.848191	0.870695	29	1	0	-2.351448	4.234708	-1.804282
30	1	0	-0.035421	-2.982964	1.251304	30	1	0	-4.567963	0.768402	-0.695658
31	1	0	0.036785	-2.983253	-1.251584	31	1	0	-0.288266	-3.164801	1.065246
32	1	0	4.465000	-0.846893	-0.869879	32	1	0	-4.518956	3.037532	-1.589800
33	1	0	4.604258	0.544649	0.734935	33	1	0	-4.567725	-0.768977	0.696175
34	1	0	0.550435	3.336055	1.049002	34	1	0	-2.350395	-4.235172	1.803631
35	1	0	-2.708325	4.196874	-1.850356	35	1	0	0.288692	-3.165056	-1.064635
36	1	0	-4.730059	2.781083	-1.698345	36	1	0	4.518491	-3.037903	-1.589725
37	1	0	-4.253812	-3.043304	1.908017	37	1	0	4.567823	-0.768442	-0.696537
38	1	0	-2.029397	-4.120089	2.130593	38	1	0	2.350977	4.234632	1.804788
39	1	0	2.031521	-4.120160	-2.129393	39	1	0	2.351010	-4.235338	-1.802774
40	1	0	4.255516	-3.042512	-1.906411	40	1	0	-4.518109	-3.038202	1.589977
41	1	0	4.728841	2.782820	1.698263	41	1	0	4.567889	0.768888	0.695284
42	1	0	2.706554	4.197802	1.850322	42	1	0	4.518626	3.037840	1.589755

2 (neutral geometry)

Cer	nter		Atomic	Atomic	Сс	ordina	tes	•
Nu	mbe	r	Number	Туре	Х	Y	Ζ]
1	6	0	-2.464189	0.677	636	-0.2	58575	-
2	6	0	-1.236069	1.376	803	-0.3	32156	2
3	6	0	1.235887	1.3769	918	0.33	2160	
4	6	0	0.000044	-0.6921	35	-0.000	0059	4
5	6	0	-1.228690	2.660	779	-0.90)9579	4
6	6	0	-0.000053	0.692	495	-0.00	00019	(
7	6	0	-2.464036	-0.677	711	0.2	58816	1
8	6	0	2.464107	0.6779	947	0.258	293	1
9	6	0	-1.235807	-1.376	664	0.3	32173	9
10	6	0	1.228342	2.6607	22	0.90	9915	
11	6	0	2.464098	-0.6773	62	-0.25	9165	
12	6	0	1.235958	-1.3765	05	-0.332	2287	

2 (cation geometry)

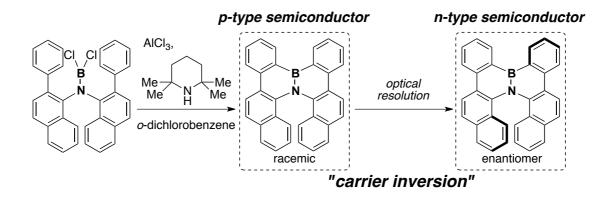
Cer	nter		Atomic	Atomic	Co	ordina	tes
Nu	nbe	r	Number	Туре	Гуре Х		Ζ
1	6	0	-2.441873	-0.6682	284	0.29	 94118
2	6	0	-1.212808	-1.373	311	0.3	80666
3	6	0	1.213613	-1.3726	91	-0.38	1139
4	6	0	-0.000188	0.710	950	-0.00	00405
5	6	0	-1.187211	-2.644	801	0.9	89638
6	6	0	0.000177	-0.7132	22	-0.00	0408
7	6	0	-2.441640	0.665	284	-0.2	97984
8	6	0	2.442260	-0.6669	46	-0.294	4510
9	6	0	-1.212915	1.371	009	-0.3	81454
10	6	0	1.188869	-2.6443	97	-0.98	9682
11	6	0	2.441245	0.6666	557	0.29	97491
12	6	0	1.212123	1.3716	578	0.38	30865

Chapter	1
---------	---

13	6	0	-2.345537	-3.223844	1.460475	30	1	0	-4.535275	-0.747788	0.756810
14	6	0	-3.594961	-1.275139	0.780285	31	1	0	-0.240962	3.138777	-1.140928
15	6	0	-1.186947	2.645098	-0.984749	32	1	0	-4.462062	-2.982962	1.729693
16	6	0	-3.553596	-2.541827	1.345500	33	1	0	-4.534665	0.745744	-0.762328
17	6	0	-3.594230	1.272935	-0.784296	34	1	0	-2.307563	4.190145	-1.938768
18	6	0	-2.344737	3.224705	-1.456200	35	1	0	0.238942	3.138300	1.141336
19	6	0	1.185307	2.645558	0.984542	36	1	0	4.458522	2.985012	1.731131
20	6	0	3.550789	2.542855	1.346433	37	1	0	4.533970	0.747807	0.763052
21	6	0	3.593407	1.274813	0.784199	38	1	0	2.311194	-4.186460	-1.946457
22	6	0	2.347633	-3.222912	-1.460100	39	1	0	2.304654	4.190368	1.940434
23	6	0	2.342622	3.225504	1.456780	40	1	0	-4.460663	2.983326	-1.729702
24	6	0	-3.552463	2.541211	-1.346084	41	1	0	4.535938	-0.745657	-0.756145
25	6	0	3.595818	-1.273347	-0.780102	42	1	0	4.464128	-2.981029	-1.728585
26	6	0	3.555286	-2.540191	-1.345010						
27	1	0	-0.241113	-3.136117	1.151907						
28	1	0	0.243108	-3.136382	-1.151922						
29	1	0	-2.308412	-4.187154	1.947254						
						•					

25 6 0 1.402176 2.838120

0.526428

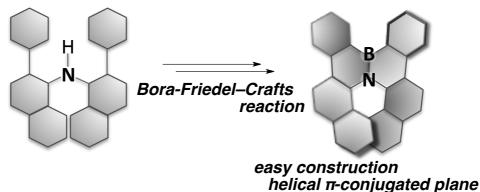

Cartesian coordinates at stationary points 1

1						25	0	0	1.102170	2.050120	0.520120
E(F	B3	LYI	P) = -1003	.87184967 har	tree	26	6	0	1.340317	1.461487	0.224136
			, 			27	1	0	-4.496597	-3.003250	1.783646
Cer	nter		Atomic	Atomic Co	oordinates	28	1	0	-4.575516	-0.911438	0.501007
Nu	mbe	r	Number	Type X	Y Z	29	1	0	-2.278214	-3.996246	2.382751
						30	1	0	-0.208878	-2.919403	1.619507
1	5	0	0.006012	0.733139	-0.074722	31	1	0	-4.584671	0.376511	-1.090668
2	7	0	0.009964	-0.697388	0.139328	32	1	0	-4.656433	2.544327	-2.231369
3	6	0	-3.574417	-2.546158	1.436569	33	1	0	0.242477	-3.253830	-0.626694
4	6	0	-3.614044	-1.374252	0.695816	34	1	0	-2.605972	3.954926	-2.380585
5	6	0	-2.335281	-3.104980	1.763977	35	1	0	2.318390	-4.495453	-1.043243
6	6	0	-1.164337	-2.503235	1.324295	36	1	0	-0.501266	3.158188	-1.378967
7	6	0	-1.194351	-1.340088	0.531067	37	1	0	4.530746	-3.358505	-0.762115
8	6	0	-2.445602	-0.737854	0.231354	38	1	0	4.597046	-0.982651	-0.147232
9	6	0	-2.505569	0.538330	-0.496643	39	1	0	4.597366	0.714371	0.998764
10	6	0	1.218323	-1.419937	-0.048325	40	1	0	4.656433	3.121506	1.454987
11	6	0	-3.691666	0.993103	-1.105057	41	1	0	2.598465	4.502884	1.185318
12	6	0	-1.331909	1.334763	-0.572647	42	1	0	0.499207	3.436646	0.461670
13	6	0	-3.731827	2.215500	-1.763840	43	0	0	-1.243561	-0.028183	-0.040390
14	6	0	1.195404	-2.764359	-0.466797	44	0	0	-1.311493	0.388596	0.865936
15	6	0	-2.581177	3.008179	-1.847656	45	0	0	-1.175583	-0.444977	-0.946700
16	6	0	2.370041	-3.461914	-0.712021	46	0	0	1.259796	0.001953	0.114334
17	6	0	-1.401016	2.562256	-1.264587	47	0	0	1.193298	-0.131760	1.102890
18	6	0	3.605820	-2.824966	-0.563278	48	0	0	1.326294	0.135666	-0.874344
19	6	0	3.638321	-1.487549	-0.197586	49	0	0	-2.540497	1.775375	-1.175079
20	6	0	2.465958	-0.749542	0.061340	50	0	0	-2.796051	2.235214	-0.324707
21	6	0	2.518295	0.684036	0.384094	51	0	0	-2.285049	1.315400	-2.025497
22	6	0	3.701233	1.303238	0.832291	52	0	0	2.545883	2.065613	0.670700
23	6	0	3.734161	2.665161	1.104492	53	0	0	2.291779	1.873428	1.618637
24	6	0	2.579315	3.441528	0.952942	54	0	0	2.800049	2.257767	-0.277069
						•					

5											
	0	0	-2.388031	-1.934433	0.997177	36	6	0	2.451767	-0.720779	-0.424057
5	0	0	-2.352081	-1.383606	1.831024	37	6	0	3.592911	-1.409485	-0.88864
7	0	0	-2.423965	-2.485245	0.163422	38	6	0	2.305756	-3.416107	-1.22647
	0	0	2.415634	-2.118027	-0.321091	39	1	0	0.221451	-3.281723	-0.80860
	0	0	2.453796	-2.400742	0.637238	40	1	0	4.533966	-0.879288	-0.98701
	0	0	2.377487	-1.835297	-1.279495	41	1	0	2.234085	-4.443253	-1.57362
						42	1	0	4.425507	-3.240967	-1.63281
						43	0	0	-1.239258	0.008316	6 0.1190
						44	0	0	-1.146536	0.328059	0 1.0619
(R	B3I		P) = -1000	.42954691 har	tree	45	0	0	-1.331980	-0.311407	-0.82392
						46	0	0	1.239258	-0.008316	-0.11903
en	ter		Atomic	Atomic Co	oordinates	47	0	0	1.331979	-0.193713	0.85924
	nbe	r	Number	Type X		48	0	0	1.146537	0.177061	-1.09731
uı	noe	1	Tumber	Type A	1 2	49	0	0	-2.517914	1.976868	-0.6291
	6	0	0.000000	0.697144	-0.048752	50	0	0	-2.547045	2.402184	
	6	0	0.000000	-0.697144	-0.048732 0.048752	51	0	0	-2.488794	1.551592	
	1	0	-2.234100	-0.097144 -4.181015	2.176651	52	0	0	2.517914	2.045197	0.34796
	1 6	0	-2.234100	-3.212189	2.176631 1.689941	53	0	0	2.488798	1.749934	1.30292
	0 1	0	-2.303736		1.257446	54	0	0	2.547051	2.340480	-0.60701
	1 6	0		-3.137253 -2.630280	1.257446	55	0	0	-2.378204	-1.943985	
	6 6		-1.172119			56	0	0	-2.171788	-1.520279	
	-	0	-3.592896	-1.272095	1.076126	57	0	0	-2.584641	-2.367722	
	6	0	-1.213791	-1.359375	0.523117	58	0	0	2.378220	-2.078079	-0.81825
	6	0	-3.532974 -2.451767	-2.535324	1.638718	59	0	0	2.584650	-2.374959	0.11409
<u>٦</u>	6	0	- 2/431/6/								0.1170/
				-0.654739	0.520248						
1	1	0	-4.425491	-2.982208	2.067963	60	0	0	2.171790	-1.781230	
0 1 2	1 1	0 0	-4.425491 -4.650253	-2.982208 0.795059	2.067963 -0.217575						
1 2 3	1 1 1	0 0 0	-4.425491 -4.650253 -4.533981	-2.982208 0.795059 -0.733383	2.067963 -0.217575 1.099762	60 					
1 2 3 4	1 1 1 6	0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964	-2.982208 0.795059 -0.733383 1.376083	2.067963 -0.217575 1.099762 -0.284256	60 3	0	0	2.171790	-1.781230	-1.75058
1 2 3 4 5	1 1 1 6 6	0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229	-2.982208 0.795059 -0.733383 1.376083 2.647110	2.067963 -0.217575 1.099762 -0.284256 -0.908035	60 3	0	0	2.171790		-1.75058
1 2 3 4 5 6	1 1 6 6 6	0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922	60 3 E(R	0 	0	2.171790 	-1.781230 	-1.750588
1 2 3 4 5 7	1 1 6 6 6 6	0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922 -1.224243	60 3 E(R 	0 (B3) (ter	0 LYI	2.171790 P) = -1544 Atomic	-1.781230 .44868597 ha Atomic	-1.75058
1 2 3 4 5 7 3	1 1 6 6 6 6 1	0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922 -1.224243 -1.196304	60 3 E(R	0 (B3) (ter	0 LYI	2.171790 	-1.781230 .44868597 ha Atomic	-1.750588
1 2 3 4 5 7 3 9	1 1 6 6 6 1 1	0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922 -1.224243 -1.196304 -1.716965	60 B E(R Cer Nun 	0 B3 nter nbe	0 LYI 	2.171790 P) = -1544 Atomic Number	-1.781230 .44868597 ha Atomic (Type 2	-1.75058 Intree Coordinates X Y Z
	1 1 6 6 6 6 1 1 6	0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922 -1.224243 -1.196304 -1.716965 -0.939529	60 B E(R Cer Nun 1	0 RB3 nter mbe	0 LYI r 0	2.171790 P) = -1544 Atomic Number -2.536026	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532	-1.75058 urtree Coordinates X Y Z 0.0089
	1 1 6 6 6 1 1 6 1	0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922 -1.224243 -1.196304 -1.716965 -0.939529 -1.191589	60 BE(R Cer Nun 1 2	0 2B3 nter mbe 5 7	0 LYH r 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719	-1.781230 .44868597 ha Atomic (Type 2 0.629532 -0.758300	-1.75058 urtree Coordinates X Y Z 2 0.0089 0.4053
	1 1 6 6 6 1 1 6 1 6	0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182	2.067963 -0.217575 1.099762 -0.284256 -0.908035 -0.044922 -1.224243 -1.196304 -1.716965 -0.939529 -1.191589 -0.374191	60 E(R Cer Nun 1 2 3	0 RB3 nter mbe 5 7 6	0 LYI r 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.18092
	1 1 6 6 6 1 1 6 1 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981	60 E(R Cer Nun 1 2 3 4	0 (B3) (ter 5 7 6 6	0 LYH r 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749	-1.75058 artree Coordinates X Y Z 2 0.0089 0.4053 2.1809 1.2752
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 6 \\ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755	60 S E(R Cer Nun 1 2 3 4 5	0 RB3 Inter 5 7 6 6 6 6	0 LYI r 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040	-1.75058 urtree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203
1 2 3 4 5 5 7 3 9 0 1 2 3 4 5	$ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270	60 E(R Cer Nun 1 2 3 4 5 6	0 RB3 nter 5 7 6 6 6 6 6	0 LYI r 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419	-1.781230 .44868597 ha Atomic (Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807	60 S E(R Cer Nun 1 2 3 4 5 6 7	0 IB3 Inter 5 7 6 6 6 6 6 6 6	0 LYH r 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650
12345573901234557	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773	60 3 E(R Cer Nun 1 2 3 4 5 6 7 8	0 RB31 Inter 5 7 6 6 6 6 6 6 6 6	0 LYI r 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916	-1.75058 urtree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807	60 S E(R Cer Nun 1 2 3 4 5 6 7	0 2B3 nter 5 7 6 6 6 6 6 6 6 6 6	0 LYH r 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916 0.269562	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548 2 -0.2361
L 2 3 4 5 5 7 3 9 0 L 2 3 4 5 5 7 3	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773	60 3 E(R Cer Nun 1 2 3 4 5 6 7 8	0 RB31 Inter 5 7 6 6 6 6 6 6 6 6	0 LYI r 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548 2 -0.2361
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297 3.714798	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545 1.360397	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773 0.186707	60 Cer Nun 1 2 3 4 5 6 7 8 9	0 2B3 nter 5 7 6 6 6 6 6 6 6 6 6	0 LYH r 0 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108 -5.051117	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916 0.269562	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.65548 2 -0.2361 0.2379
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297 3.714798 0.414963	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545 1.360397 3.277451	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773 0.186707 0.747467	60 Cer Nun 1 2 3 4 5 6 7 8 9 10	0 RB3] Inter mbe 5 7 6 6 6 6 6 6 6 6 6 6 6 6	0 LYH r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108 -5.051117 -1.217224	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916 0.269562 -1.455643	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548 2 -0.2361 0.2379 0 -0.8322
1 2 3 4 5 5 7 8 9 0 1 2 3	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297 3.714798 0.414963 2.551712	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545 1.360397 3.277451 4.411102	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773 0.186707 0.747467 1.113937	60 Cer Nun 1 2 3 4 5 6 7 8 9 10 11	0 2B3 inter mbe 5 7 6 6 6 6 6 6 6 6 6 6 6 6 6	0 LYI r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108 -5.051117 -1.217224 -6.287521	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916 0.269562 -1.455643 0.583420	-1.75058 artree Coordinates X Y Z 2 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548 2 -0.2361 0.2379 0 -0.8322 3 -0.4771
123455789012345578901	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297 3.714798 0.414963 2.551712 4.650238	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545 1.360397 3.277451 4.411102 0.817612	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773 0.186707 0.747467 1.113937 0.104828	60 Cer Nun 1 2 3 4 5 6 7 8 9 10 11 12	0 RB3 Inter 5 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 LYI r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108 -5.051117 -1.217224 -6.287521 -3.927704	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916 0.269562 -1.455643 0.583420 1.103928	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548 2 -0.2361 0.2379 0 -0.8322 3 -0.4771 0 -1.6355
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.425491 -4.650253 -4.533981 -1.272964 -1.334229 -2.497025 -2.542297 -0.414963 -2.551727 -3.746231 -4.698105 -3.714783 1.272964 3.746231 2.497025 1.334244 2.542297 3.714798 0.414963 2.551712 4.650238 4.698120	-2.982208 0.795059 -0.733383 1.376083 2.647110 0.687988 3.244751 3.141525 4.213165 2.584213 3.043488 1.321182 1.402237 2.689804 0.687531 2.747726 3.383545 1.360397 3.277451 4.411102 0.817612 3.179688	2.067963 - 0.217575 1.099762 - 0.284256 - 0.908035 - 0.044922 - 1.224243 - 1.196304 - 1.716965 - 0.939529 - 1.191589 - 0.374191 0.089981 0.570755 - 0.051270 0.530807 0.760773 0.186707 0.747467 1.113937 0.104828 0.756439	60 Cer Nun 1 2 3 4 5 6 7 8 9 10 11 12 13	0 BB3 Inter mbe 5 7 6 6 6 6 6 6 6 6 6 6 6 6 6	0 LYI r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.171790 P) = -1544 Atomic Number -2.536026 -2.442719 -5.856506 -5.994705 -4.574417 -3.460419 -3.591125 -4.886108 -5.051117 -1.217224 -6.287521 -3.927704 -6.425629	-1.781230 .44868597 ha Atomic 0 Type 2 0.629532 -0.758300 -2.539932 -1.498749 -2.982040 -2.404205 -1.384171 -0.888916 0.269562 -1.455643 0.583420 1.103928 1.708679	-1.75058 artree Coordinates X Y Z 0.0089 0.4053 2.1809 1.2752 2.5203 1.9270 0.9650 0.6548 2 -0.2361 0.2379 0 -0.8322 3 -0.4771 0 -1.6355 0.0703

17	6	0	-4.096436	2.229752	-1.309800	56	1	0	5.429428	2.943390	3.418625
18	6	0	1.205627	-2.831894	-0.119858	57	1	0	7.388031	1.548248	2.761810
19	6	0	1.217636	-1.431473	-0.067581	58	1	0	7.144028	-0.206802	1.067856
20	5	0	2.536316	0.592285	0.484665	59	1	0	2.471634	-2.374527	-2.232178
21	7	0	2.443024	-0.716476	-0.123962	60	1	0	4.439240	-3.234695	-3.418625
22	6	0	0.000153	-0.719635	0.142090	61	1	0	6.735229	-2.560150	-2.682907
23	6	0	0.000153	0.729523	0.256180	62	1	0	6.987793	-0.963165	-0.834396
24	6	0	1.223831	1.407318	0.504379	63	0	0	-3.739136	-0.171371	0.220154
25	6	0	1.193024	2.810013	0.593140	64	0	0	-3.776123	0.363556	1.064224
26	6	0	0.000046	3.521300	0.475983	65	0	0	-3.702103	-0.706360	-0.623871
27	6	0	-1.192825	2.837082	0.248900	66	0	0	-1.236526	-0.022766	0.194565
28	6	0	3.927933	0.984665	1.039200	67	0	0	-1.226563	-0.021194	1.194534
29	6	0	-1.223618	1.437820	0.117020	68	0	0	-1.246506	-0.024368	-0.805344
30	6	0	4.096527	1.966431	2.037796	69	0	0	1.236847	-0.023056	0.199280
31	6	0	5.326431	2.184555	2.647583	70	0	0	1.246857	-0.181061	1.186676
32	6	0	6.425735	1.400742	2.278229	71	0	0	1.226852	0.134903	-0.788055
33	6	0	6.287735	0.414856	1.308700	72	0	0	3.739410	-0.165802	0.150925
34	6	0	5.051346	0.198257	0.670837	73	0	0	3.702271	-0.826263	0.900864
35	6	0	4.886429	-0.806519	-0.390564	74	0	0	3.776566	0.494614	-0.599000
36	6	0	3.591507	-1.247131	-0.774582	75	0	0	-5.185791	1.405991	-1.061478
37	6	0	3.460922	-2.104111	-1.884247	76	0	0	-5.425827	1.956894	-0.262146
38	6	0	4.574936	-2.582108	-2.560608	77	0	0	-4.945755	0.855103	-1.860764
39	6	0	5.857025	-2.198563	-2.155945	78	0	0	0.000092	2.123856	0.365921
40	6	0	5.995132	-1.311813	-1.098480	79	0	0	-0.149994	2.042267	1.351227
41	1	0	-6.734619	-2.979584	2.644821	80	0	0	0.150192	2.205429	-0.619324
42	1	0	-6.987411	-1.113083	1.069046	81	0	0	5.185944	1.191574	1.663712
43	1	0	-4.438629	-3.760849	3.265762	82	0	0	4.945816	0.522461	2.367004
44	1	0	-2.471130	-2.725723	2.228271	83	0	0	5.426071	1.860703	0.960403
45	1	0	-7.143845	-0.068451	-0.691452	84	0	0	-4.727188	-1.949661	1.587250
46	1	0	-7.388031	1.930038	-2.090042	85	0	0	-4.679947	-1.274429	2.323318
47	1	0	-2.135818	-3.398956	0.057266	86	0	0	-4.774460	-2.624893	0.851166
48	1	0	-5.429428	3.410721	-2.520798	87	0	0	0.000229	-2.134552	0.030716
49	1	0	0.000351	-4.604828	-0.163712	88	0	0	0.102234	-2.199280	1.023407
50	1	0	-3.236725	2.849182	-1.544922	89	0	0	-0.101761	-2.069839	-0.961914
51	1	0	2.136429	-3.379013	-0.193329	90	0	0	4.727646	-1.708374	-1.477402
52	1	0	2.121048	3.356232	0.731613	91	0	0	4.774780	-2.490448	-0.855988
53	1	0	0.000046	4.604828	0.561279	92	0	0	4.680542	-0.926300	-2.098816
54	1	0	-2.120926	3.398148	0.197678						
55	1	0	3.236832	2.541504	2.366623	1					

Synthesis of BN-fused Helical π -Conjugated Molecules



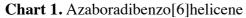
Abstract: Azaboradibenzo[6]helicene, a new semiconductor material possessing helical chirality, has been synthesized *via* a tandem bora-Friedel–Crafts reaction. The solutionand solid-phase structures of azaboradibenzo[6]helicene were characterized and its optical isomers were resolved. Thin films were prepared from the racemate and a single enantiomer, and investigated for their electronic properties. Unprecedented carrier inversion was observed between the racemate (displaying p-type semiconductivity) and the single enantiomer (displaying n-type semiconductivity), which can be explained by changes in the molecular packing induced by helical homochirality.

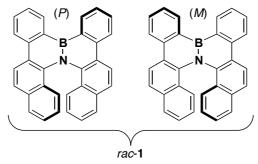
2-1. Introduction

Helicenes, nonplanar screw-shaped polycyclic aromatic compounds consisting of *ortho*-fused aromatic rings, have attracted considerable attention because of their inherent chirality.¹ Recently, the self-assembly of helicenes *via* unique π - π stacking interactions in solution, as well as in crystals, has been studied extensively because these aggregates display intriguing properties such as liquid crystallinity,² nonlinear optical susceptibility,³ and circularly polarized luminescence.⁴ So far, however, the electrical properties (such as charge mobility) of these aggregates have not been thoroughly investigated, even though the π - π stacking interactions are expected to facilitate charge transport. This author envisioned that the tandem intramolecular bora-Friedel–Crafts reaction described in Chapter 1 would be an efficient method for the construction of helical π -conjugated frameworks containing a B–N ring fusion (Scheme 1).

Scheme 1. Synthesis of helical BN-fused polycyclic aromatic compounds *via* a tandem intramolecular bora-Friedel–Crafts reaction

This chapter describes the synthesis of azaboradibenzo[6]helicene 1 *via* a tandem bora-Friedel–Crafts reaction. Determination of the solution- and solid-phase

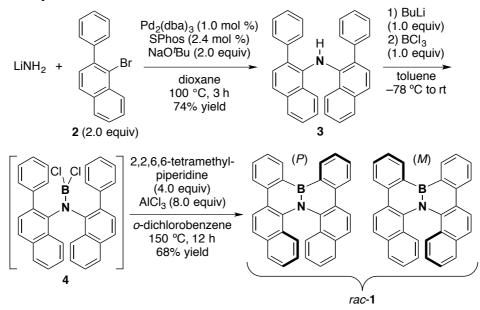

¹ Recent reviews: (a) Starý, I.; Stará, I. G.; Alexandrová, Z.; Sehnal, P.; Teplý, F.; Šaman, D.; Rulíšek L. *Pure Appl. Chem.* **2006**, 78, 495–499. (b) Collins, S. K.; Vachon, M. P. *Org. Biomol. Chem.* **2006**, 4, 2518–2524. (c) Rajca, A.; Rajca, S.; Pink, M.; Miyasaka, M. *Synlett* **2007**, 1799– 1822. (d) Amemiya, R.; Yamaguchi, M. *Chem. Rec.* **2008**, 8, 116–127. (e) Dumitrascu, F.; Dumitrescu, D. G.; Aron, I. *ARKIVOC* **2010**, 1–32. (f) Jørgensen, K. B. *Molecules* **2010**, *15*, 4334– 4358. (g) Shen, Y.; Chen, C.-F. *Chem. Rev.* **2012**, *112*, 1463–1535.


² (a) Nuckolls, C.; Katz, T. J. J. Am. Chem. Soc. **1998**, *120*, 9541–9544. (b) Vyklický, L.; Eichhorn, S. H.; Katz, T. J. Chem. Mater. **2003**, *15*, 3594-3601. (c) Shcherbina, M. A.; Zeng, X.-b. Tadjiev, T.; Ungar, G.; Eichhorn, S. H.; Phillips, K. E. S.; Katz, T. J. Angew. Chem., Int. Ed. **2009**, *48*, 7837–7840.

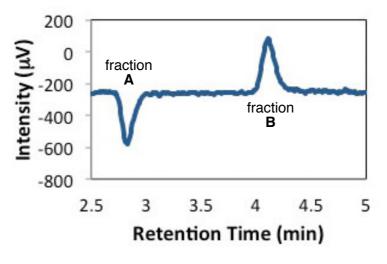
³ (a) Verbiest, T.; Elshocht, S. V.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. *Science* **1998**, *282*, 913–915. (b) Verbiest, T.; Elshocht, S. V.; Persoons, A.; Nuckolls, C.; Phillips, K. E.; Katz, T. J. *Langmuir* **2001**, *17*, 4685–4687. (c) Verbiest, T.; Sioncke, S.; Persoons, A.; Vyklický, L.; Katz, T. J. *Angew. Chem., Int. Ed.* **2002**, *41*, 3882–3884.

⁴ (a) Field, J. E.; Muller, G.; Riehl, J. P.; Venkataraman, D. J. Am. Chem. Soc. **2003**, *125*, 11808–11809. (b) Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M. Angew. Chem., Int. Ed. **2011**, *50*, 3684–3687.

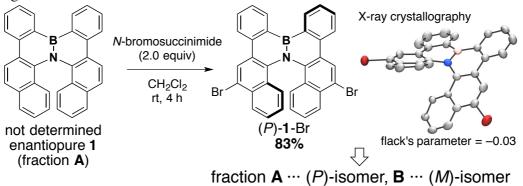
structures of 1, and chiral separation of each axial optical isomer are also discussed. In addition, investigation of the electronic properties of thin films fabricated from a racemic mixture and a single enantiomer of 1 are described. Charge mobility measurements of the thin films based on the time-of-flight (TOF) method suggest that the racemate and one of the enantiomers of 1 are p-type and n-type semiconductors, respectively. This unprecedented carrier inversion might be caused by changes in the packing structure of the respective hetero- and homochiral crystals of 1, as suggested by calculation of the electronic coupling.⁵


2-2. Results and Discussion

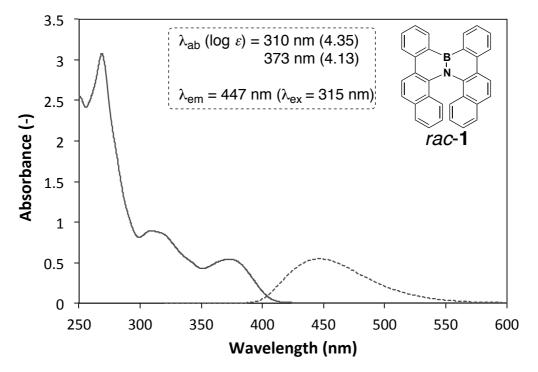
2-2-1. Synthesis and optical resolution of the BN-fused helicene


Scheme 1 summarizes the synthesis of 1. Coupling of 1-bromo-2-phenylnaphthalene 2, which was prepared in two steps from commercially available 1-bromonaphthalen-2-ol, with lithium amide in the presence of tris(dibenzylideneacetone)dipalladium(0) $[Pd_2(dba)_3]$ and 2-dicyclohexylphosphino -2', 6'-dimethoxybiphenyl (SPhos) gave diarylamine **3** in 74% yield. Borylation of **3** by treatment with BuLi and BCl₃, and the subsequent tandem bora-Friedel-Crafts reaction with AlCl₃ and 2,2,6,6-tetramethylpiperidine afforded the racemate of 1 (rac-1) in 68% yield.

⁵ (a) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. *Theor. Chem. Acc.* **1998**, *99*, 391–403. (b) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders J. G.; Ziegler, T. *J. Comput. Chem.* **2001**, *22*, 931–967. (c) Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A. J. Chem. Phys. **2003**, *119*, 9809–9817. (d) Wen, S.-H.; Li, A.; Song, J.; Deng, W.-Q.; Han, K.-L.; Goddard, W. A., III *J. Phys. Chem. B* **2009**, *113*, 8813–8819.



Optical resolution of *ra*c-1 into enantiopure (*P*)-1 and (*M*)-1 was carried out by chiral HPLC on a DAICEL CHIRALPAK[®] IA-3 column (eluent: *n*-hexane/CH₂Cl₂) (Figure 1). The absolute configuration of enantiopure 1 in each fraction was determined by X-ray crystallographic analysis of the dibromo derivative of fraction **A**. Dibromination of 1 selectively occurred at the *para* position of the aniline moiety in the presence of 2 equivalents of *N*-bromosuccinimide (Scheme 3).


Figure 1. Chiral HPLC chromatogram of *rac*-**1** [CHIRALPAK[®] IA-3 column, 4.6 mm I.D., 150 mm L, 25 °C, 268 nm (CD), 1 mL/min, hexane/CH₂Cl₂ = 7:3].

Scheme 3. Dibromination of enantiopure 1 and determination of the absolute configuration

2-2-2. Optical characterization of the racemate and single enantiomer

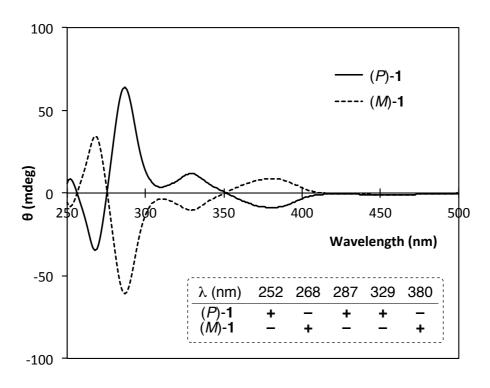
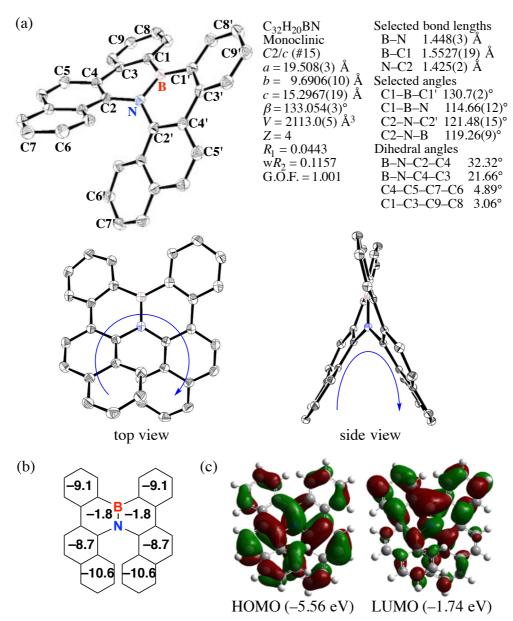

The UV-visible absorption spectrum of *rac*-1 has a relatively strong absorption band with a maximum (λ_{ab}) at 373 nm corresponding to a π - π^* transition. In the fluorescence spectrum, *rac*-1 exhibits a cyan fluorescence at 447 nm (Figure 2). The CD spectrum shows positive cotton effects at 287 nm and 329 nm, and a negative cotton effect at 380 nm for (*P*)-1. This trend is inverted relative to that of the known (*P*)-[6]helicene.⁶ The spectra of the two antipodes of 1 are almost exact mirror images, which are expected to correspond to enantiomers (Figure 3).

Figure 2. UV-visible absorption (solid line) and fluorescence (dotted line, excited at 315 nm) spectra of *rac*-1 in dichloromethane solution $(4.0 \times 10^{-5} \text{ M})$.

⁶ Nakai, Y.; Mori, T.; Inoue, Y. J. Phys. Chem. A 2012, 116, 7372–7385.

Figure 3. CD spectra of (*P*)-1 (solid line) and (*M*)-1 (dotted line) in dichloromethane solution $(4.0 \times 10^{-5} \text{ M})$.


2-2-3. Molecular packing of the single crystal

The helical structure of *rac*-1 was determined to be C₂ symmetric by X-ray crystallography (Figure 4a). The B–N bond length [1.448(3) Å] is similar to that in typical BN aromatics (1.45–1.47 Å).⁷ Furthermore, the B–C1(C1') and N–C2(C2') lengths are 1.5527(19) and 1.425(2), respectively, indicating that they are single bonds. These observations, together with the highly distorted BNC₄ ring structure [B–N–C4(C4')–C3(C3') dihedral angle = 21.66°], reveal the low aromaticity of the BNC₄ rings, which is consistent with the relatively positive nucleus-independent chemical shift [NICS(1)] value of -1.8 (Figure 4b). This value is more positive than reported for other BN-substituted aromatic compounds (–4.6 and –6.3).⁸ In contrast, the surrounding C₆ rings are nearly planar and show large NICS(1) values. Notably, molecular orbital (MO) calculations indicated that the π -conjugation is spread over the entire molecule despite the large distortion induced by the BNC₄ rings (Figure 4c).

⁷ Reviews: (a) Liu, Z.; Marder, T. B. Angew. Chem., Int. Ed. **2008**, 47, 242–244. (b) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. **2009**, 87, 8–29. (c) Ashe, A. J., III Organometallics **2009**, 28, 4236–4248. (d) Campbell, P. G.; Marwitz, A. J. V.; Liu, S.-Y. Angew. Chem., Int. Ed. **2012**, 51, 6074–6092.

⁸ Bosdet, M. J. D.; Jaska, C. A.; Piers, W. E.; Sorensen, T. S.; Parvez, M. Org. Lett. 2007, 9, 1395–1398.

Figure 4. (a) ORTEP drawing of *rac-***1** obtained by X-ray crystal analysis. Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity. (b) NICS(1) values, and (c) the Kohn–Sham highest occupied MO (HOMO) and lowest unoccupied MO (LUMO) of (*P*)-**1**. DFT calculations, including NICS analysis, were performed at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level.

The unique packing structure of the heterochiral crystal is shown in Figure 5. The molecules are stacked in a head-to-tail array with a CH– π distance of 2.9–3.3 Å. Each array is formed from a single enantiomer, resulting in alternating right-handed (*P*-helical, shown in blue) and left-handed (*M*-helical, shown in pink) configurations, which are arranged in a face-to-face fashion (π – π distance = 3.4–3.6 Å), while the local dipole moments of the B–N bonds cancel each other.

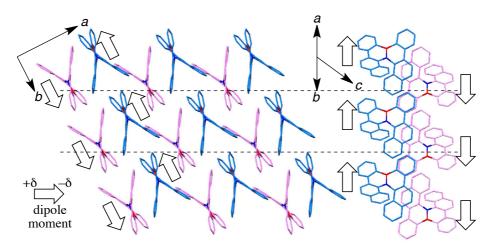
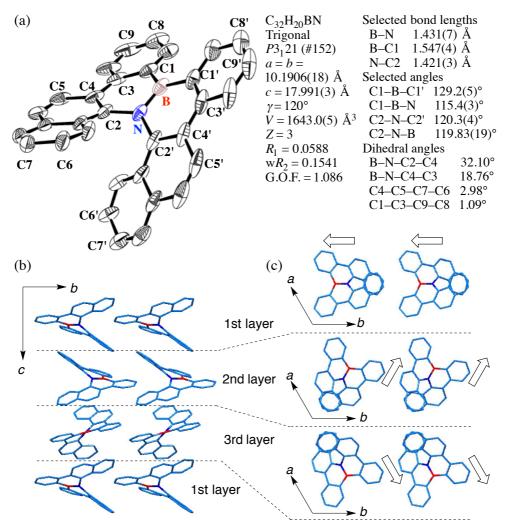
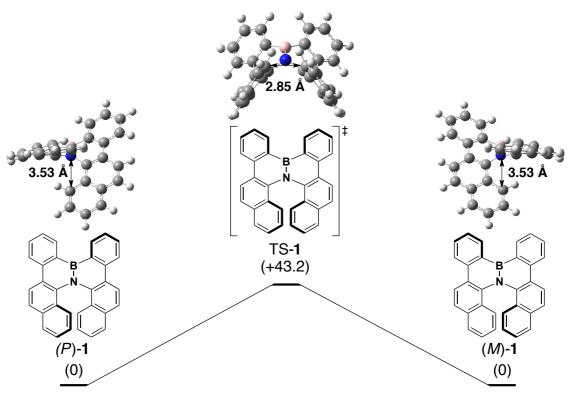



Figure 5. Packing structure of rac-1 obtained by X-ray crystal analysis. H atoms have been omitted for clarity. The P enantiomer is shown in blue and the M enantiomer is shown in pink.

The molecular structure of (*P*)-1 in the homochiral crystal (Figure 6a) is C_2 symmetric and the bond lengths and angles are almost identical to those found in the heterochiral crystal (Figure 4a). On the other hand, the packing structure of the homochiral crystal differs significantly from that of the heterochiral crystal and has a one-dimensional columnar alignment along the *c*-axis (Figure 6b).⁹ Interestingly, the molecules in neighboring columns are parallel to each other and show a rotation of 120° with each layer (Figure 6c). As a result, the local dipole moments, which run perpendicular to the *c*-axis, are offset at every third layer.

⁹ One-dimensional columnar alignment of helicenes: (a) Murguly, E.; McDonald, R.; Branda, N. R. *Org. Lett.* **2000**, *2*, 3169–3172. (b) Caronna, T.; Sinisi, R.; Catellani, M.; Malpezzi, L.; Meille, S. V.; Mele, A. *Chem. Commun.* **2000**, 1139–1140. (c) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. *J. Am. Chem. Soc.* **2005**, *127*, 13806–13807. (d) Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K. *Angew. Chem., Int. Ed.* **2012**, *51*, 695–699.


Figure 6. (a) ORTEP drawing and (b, c) packing structures of (*P*)-**1**. Thermal ellipsoids are shown at 30% probability and H atoms have been omitted for clarity.

2-2-4. Evaluation of carrier-transport properties

Since the enantiopurity of (*P*)-1 did not decrease upon heating (even at 275 °C), films of *rac*-1 and (*P*)-1 with thicknesses of 8.2 and 6.7 µm, respectively, were prepared by vacuum-deposition under 5.0×10^{-3} Pa for use in TOF measurements.⁸ Additionally, the calculated racemization barrier is 43.2 kcal mol⁻¹ [Figure 7, ΔG^{\ddagger} at the B3LYP/6-31G(d) level], which is consistent with the experimental results and is considerably higher than that of [6]helicene (35.2 kcal mol⁻¹).¹⁰

¹⁰ Grimme, S.; Peyerimhoff, S. D. Chem. Phys. **1996**, 204, 411–417.

Figure 7. Energy diagram for the isomerization pathway from (*P*)-1 to (*M*)-1. Gibbs free energies relative to (*P*)-1 [ΔG^{\ddagger} , B3LYP/6-31G(d)] are given in kcal mol⁻¹.

The carrier-transport properties of the films were then evaluated at room temperature and electric fields of 5.0×10^5 (*rac*-1) and 5.2×10^5 V cm⁻¹ [(*P*)-1], respectively. It was found that *rac*-1 showed high hole mobility ($\mu_{\rm h} = 4.6 \times 10^{-4}$ cm² V⁻¹ s⁻¹), but no transient photocurrent was detected in electron mobility measurements (Table 1). Interestingly, enantiopure (*P*)-1 showed higher electron mobility ($\mu_{\rm e} = 4.5 \times 10^{-3}$ cm² V⁻¹ s⁻¹) than hole mobility ($\mu_{\rm h} = 7.9 \times 10^{-4}$ cm² V⁻¹ s⁻¹). Since the corresponding physical properties of the vacuum-deposited films, such as ionization potential ($I_{\rm p}$) and electron affinity ($E_{\rm a}$), were almost identical, the carrier inversion must be caused by the distinct orientation of (*P*)-1 in the homochiral film.

Table 1. Electronic properties of amorphous films of rac-1 and (P)-1

	$\mu_{ m h}{}^a$	$\mu_{e}{}^{b}$	I _p ^c	E_{a}^{d}
<i>rac</i> -1	4.6×10^{-4}	e	5.54	2.55
(<i>P</i>)- 1	7.9×10^{-4}	4.5×10^{-3}	5.55	2.55

^{*a*}Hole-transport ability (cm² V⁻¹ s⁻¹). ^{*b*}Electron-transport ability (cm² V⁻¹ s⁻¹). ^{*c*}Ionization potential (eV) measured by photoelectron spectroscopy in air (PESA) using an AC-1 system (RIKEN KEIKI Co., Ltd.). ^{*d*}Electron affinity (eV) estimated from the ionization potentials and UV-visible absorption edge wavelengths. ^{*e*}Transient photocurrent was not detected.

To provide detailed insight into the carrier-transport properties, the electronic coupling, V (meV),⁵ between neighboring molecules in different stacks was calculated from the X-ray crystal structures of *rac*-1 and (*P*)-1 (Figure 8). In the heterochiral crystal of *rac*-1 (Figure 8a), the (*P*)- and (*M*)-enantiomers were arranged in a tightly offset face-to-face stacking array. The maximum coupling between the HOMOs of neighboring molecules (42.0 meV) was six times larger than that of the corresponding LUMOs (7.2 meV). In contrast, in the homochiral crystal of (*P*)-1 (Figure 8b), the maximum coupling of the HOMOs (30.1 meV) was only two-fifths of that of the LUMOs (73.2 meV). Because the electron-hopping rate (*W*) is proportional to V^2 on the basis of the Marcus–Hush theory,⁵ these values are in good agreement with the carrier mobility determined by the TOF method. These results are suggestive of the possibility that the molecular orientation in the amorphous films might be similar to that in the crystal.¹¹

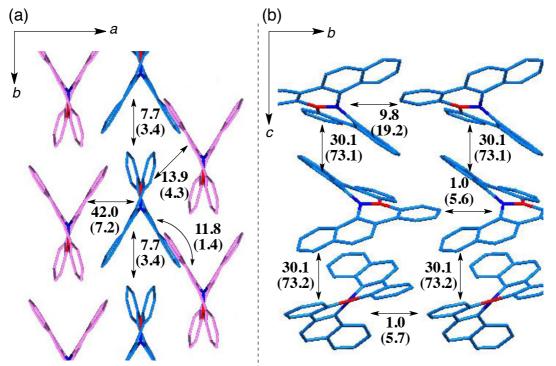


Figure 8. Electronic coupling, V (in meV), between HOMOs of neighboring molecules in the X-ray crystal structures of (a) *rac*-1 (*P* in blue, *M* in pink) and (b) (*P*)-1. The electronic coupling between LUMOs is shown in parentheses.

¹¹ Molecular orientation in vacuum-deposited amorphous film: Yokoyama, D. J. Mater. Chem. **2011**, *21*, 19187–19202 and citations therein.

2-3. Conclusions

In this chapter, the synthesis of azaboradibenzo[6]helicene 1 via a tandem bora-Friedel–Crafts reaction was described. In addition, the determination of the structures of 1 in solution and in the solid phase, and chiral separation of each axial optical isomer were detailed. Finally, electronic properties of thin films fabricated with a racemic mixture and a single enantiomer were investigated. Charge mobility measurements by the TOF method suggest that the racemate and single enantiomer of 1are good p-type and n-type semiconductors, respectively. The unprecedented carrier inversion might be caused by changes in the packing structures of hetero- and homochiral crystals of 1, as suggested by electronic coupling calculations. The results indicate that these chiral organic semiconductors have potential use in electronic applications such as bipolar junction transistors and morphology-controlled bulk-heterojunction solar cells.

2-4. Experimental Section

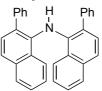
General. All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under a positive pressure of argon. Air- and moisture-sensitive liquids and solutions were transferred *via* a syringe or a stainless steel cannula. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck, #1.05715.0009). TLC plates were visualized by exposure to ultraviolet light (254 nm) and/or by immersion in an acidic staining solution of *p*-anisaldehyde followed by heating on a hot plate. Organic solutions were concentrated by rotary evaporation at *ca*. 30–400 mmHg. Flash column chromatography was performed on Merck silica gel 60 (spherical, neutral, 140–325 mesh) as described by Still et al.¹² Gel permeation chromatography was performed on a JAIGEL-1H and 2H (20 mm i.d.) with an LC-9204 (Japan Analytical Industry Co., Ltd.).

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on JEOL ECS400 (392 MHz) NMR spectrometers. Proton chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the tetramethylsilane (δ 0). ¹³C NMR spectra were recorded at 98.5 MHz: carbon chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the carbon resonance of $\text{CDCl}_3(\delta 77.0)$ and tetramethylsilane ($\delta 0$). ¹¹B NMR spectra were recorded at 131 MHz: boron chemical shift values are reported in parts per million (ppm, δ scale) and are referenced to the external standard boron signal of BF₃·Et₂O (δ 0). Data are presented as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet and/or multiplet resonances, br = broad), coupling constant in hertz (Hz), signal area integration in natural numbers, and assignment (italic). IR spectra were recorded on an ATR-FTIR spectrometer (FT/IR-Spectrum One, PerkinElmer). Characteristic IR absorptions are reported in cm⁻¹. Melting points were recorded on a Yanaco MP-500V. High-resolution mass spectra (HRMS) were obtained using the electron impact (EI) method with JEOL JMS-700, JMS-SX102A. UV-visible absorption spectra were measured by JASCO Ubest V-570. Fluorescence spectra were measured by HORIBA Scientific FluoroMax-4. Circular dichroism (CD) spectra were recorded on a JASCO J-820 spectropolarimeter. Purity of isolated compounds was determined by GC analysis on Shimadzu GC-2010 Plus instrument equipped with an FID detector and a capillary column, ZB-1MS (Phenomenex, 10 m × 0.10 mm i.d., 0.10 µm film thickness) and/or ¹H NMR analyses.

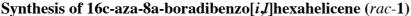
¹² Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923–2925.

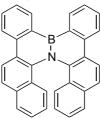
Solvent. *o*-Dichlorobenzene and anhydrous toluene were purchased from Wako Pure Chemical Industries, Ltd. (Wako) and dried over Molecular Sieves 4A and degassed before use. Water content of the solvent was determined with a Karl Fischer Moisture Titrator (MKC-610, Kyoto Electronics Company) to be less than 15 ppm.

Materials. Materials were purchased from Wako, Tokyo Chemical Industry Co., Ltd., Aldrich Inc., Hokko Chemical Industry Co., Ltd., and other commercial suppliers, and were used after appropriate purification, unless otherwise noted. Florisil[®] (100–200 mesh) and Celite[®] were purchased from Wako. Aryl halides and aryl amines were purified by distillation or recrystallization to be over 99.5% pure by GC analysis. Arylmagnesium bromides (ArMgBr) were prepared from the corresponding aryl bromides and magnesium (turnings) using a standard method and titrated before use.

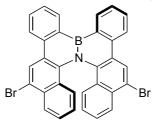

Synthesis of 1-bromo-2-phenylnaphthalene (2)

Pyridine (14.0 mL, 0.174 mol) was added to a mixture of 1-bromonaphthalen-2-ol (33.5 g, 0.150 mol) in dichloromethane (190 mL) at -15 °C with an ice/methanol cooling bath under argon. Triflic anhydride (28.0 mL, 0.166 mol) was added gradually to the reaction mixture. Upon completion of the addition, the reaction mixture was stirred for 30 min at -15 °C, and then allowed to warm to room temperature. After stirring at room temperature for 2 h, water (110 mL) was added to the mixture at -15 °C and the resulting two-phase mixture was stirred for 10 min. The layers were separated and the organic (lower) layer was washed with 1 N hydrochloric acid, water and brine (100 mL each). The final organic layer was filtered with a pad of silica gel. The filtrate was concentrated to give 1-bromonaphthalen-2-yl trifluoromethanesulfonate (52.9 g, 99% yield, 98% pure on GC analysis) as a yellow solid. IR(neat): cm⁻¹ 3067 (Ar-H), 1590, 1504, 1424, 1408, 1354, 1325, 1245, 1218, 1208, 1185, 1155, 1130, 978, 932, 872, 830, 813, 769, 756, 705, 658; mp: 29.9–31.6 °C; ¹H NMR (392 MHz, CDCl₃) δ 7.44 (d, J = 9.0 Hz, 1H, OCCH), 7.62 (ddd, J = 1.6, 6.7, 7.4 Hz, 1H, OCCHCHCCHCH), 7.70 (ddd, J = 1.6, 6.7, 7.4 Hz, 1H, OCCCCHCH), 7.90 [m(overlap), 2H, CHCHCHCH], 8.32 (d, J = 9.0 Hz, 1H, OCCHCH); ¹³C NMR (98.5 MHz, CDCl₃) δ 116.2, 118.7 (d, J_{C-F} = 320 Hz), 119.9, 127.7, 127.8, 128.3, 128.8, 129.7, 132.6, 133.0, 145.0; HRMS (FAB) m/z $[M]^+$ calcd for $C_{11}H_6BrF_3O_3S$ 353.9173; observed 353.9172. A solution of phenylmagnesium bromide in diethyl ether (170 mL, 1.00 M, 0.170 mol) was added to a mixture of 1-bromonaphthalen-2-yl trifluoromethanesulfonate (35.5 g, 0.100 mol) and (8.68) g, 0.100 mol) at 0 °C under lithium bromide argon. Then dichloro[1,3-bis(diphenylphosphino)propane]palladium(II) (1.77 g, 3.00 mmol) was added to the reaction mixture. After stirring at 0 °C for 18 h, saturated ammonium


chloride aqueous solution (200 mL) and water (300 mL) was added at 0 °C. After the organic layer was separated, the aqueous layer was extracted with ethyl acetate (300 mL \times 3). The combined organic layers were dried by magnesium sulfate. After filtration, the solvent was removed *in vacuo*, hexane (2.0 L) was added to the crude product, and then filtered with a pad of silica gel. After removal of the solvent *in vacuo*, the crude product was purified by GPC (eluent: CHCl₃) to obtain the titled compound (27.2 g, 96% yield, 99% pure on GC analysis) as a white solid. Analytical data for the titled compound have been reported.¹³

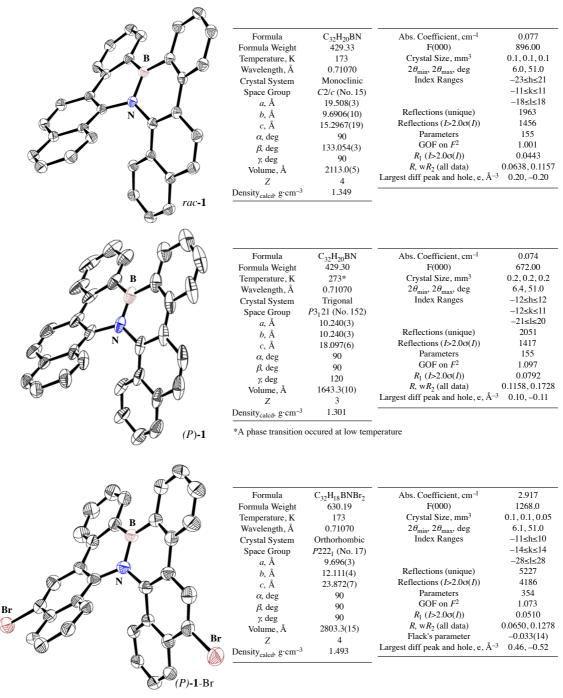

Synthesis of bis(2-phenylnaphthalen-1-yl)amine (3)

Compound 2 (19.8 g, 70.0 mmol) was added to a mixture of lithium amide (0.804 g, 35.0 mmol), tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct (0.362 g, 0.350 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.345 g, 0.840 mmol) and sodium *tert*-butoxide (6.73 g, 70.0 mmol) in dioxane (35 mL) at 0 °C under argon. After stirring at 100 °C for 3 h, the reaction mixture was cooled to room temperature, and then toluene (200 mL) was added. The reaction mixture was filtered with a pad of Florisil[®] and silica gel. After removal of the solvent *in vacuo*, hexane (200 mL) was added. The reaction mixture was filtered with a pad of silica gel. After the solvent was removed in vacuo, the title compound was obtained (10.9 g, 74% yield, >99% pure on GC analysis) as a pink solid. IR(neat): cm⁻¹ 3392 (N-H), 3052 (Ar-H), 1596, 1561, 1494, 1475, 1440, 1423, 1382, 1347, 1312, 1281, 1162, 1115, 1074, 1030, 957, 919, 861, 815, 806, 761, 740, 701, 671; mp: 137.7–138.8 °C; ¹H NMR (392 MHz, CDCl₃) δ 6.76 (s, 1H, NH), 7.09–7.19 (m, 12H), 7.24 (ddd, J = 1.3, 7.4, 8.5 Hz, 2H, NCCCHCHCH), 7.37 (ddd, J = 1.3, 7.4, 8.1 Hz, 2H, NCCCHCHCH), 7.39 (d, J = 8.5 Hz, 2H, NCCCHCHC), 7.72 (d, J = 8.1 Hz, 2H, NCCCHCHCHCH), 7.84 (d, J = 8.5 Hz, 2H, NCCCHCHCH); ¹³C NMR (98.5 MHz, CDCl₃) δ 121.9 (2C), 123.4 (2C), 125.3 (2C), 125.6 (2C), 126.5 (2C), 127.4 (2C), 127.9 (4C), 128.1 (2C), 128.5 (2C), 128.8 (6C), 134.0 (2C), 137.0 (2C), 140.1 (2C); HRMS (EI) m/z [M]⁺ calcd for C₃₂H₂₃N 421.1834; observed 421.1830.


¹³ Isogai, Y.; Menggenbateer, F.; Khan, N.; Asao, N. *Tetrahedron* **2009**, *65*, 9575–9582.

A solution of butyllithium in hexane (8.75 mL, 1.60 M, 14.0 mmol) was added slowly to a solution of **3** (5.91 g, 14.0 mmol) in toluene (70 mL) at -78 °C under argon. After 5 min, the reaction mixture was allowed to warm to 0 °C and stirred for 2.5 h. To the reaction mixture was added trichloroborane in heptane (14.0 mL, 1.00 M, 14.0 mmol) at -78 °C. After 30 min, the reaction mixture was allowed to warm to room temperature and stirred overnight. After removal of the solvent in vacuo, o-dichlorobenzene (84.0 mL) was added. The reaction mixture was added to a mixture of aluminum trichloride (14.9 g, 0.112 mol) and 2,2,6,6-tetramethylpiperidine (9.53 mL, 56.0 mmol) in o-dichlorobenzene (86.0 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (12.6 g, 0.112 mol) was added. The reaction mixture was filtered with a pad of Celite[®]. After removal of the solvent in vacuo, the crude product was washed with hexane (300 mL) by using a sonicator two times, and purified by GPC (eluent: toluene) to obtain the titled compound (4.27 g, 68% yield, 99% pure on GC analysis) as a white-yellow powder. rac-1 can be separated into enantiopure (P)-1 and (M)-1 by HPLC with a DAICEL CHIRALPAK[®] IA-3 column (4.6 mm \times 150 mm) [$t_{\rm R}$ = 2.8 min for (P)-1 and 4.1 min for (M)-1 (flow rate: 1.0 mL/min; solvent: hexane/CH₂Cl₂ = 70/30]. IR(neat): cm⁻¹ 3061 (Ar-H), 1599, 1568, 1509, 1479, 1463, 1443, 1424, 1367, 1342, 1316, 1290, 1247, 1157, 1144, 1098, 1024, 952, 942, 932, 889, 872, 856, 813, 787, 756, 731, 683; mp: 309.2–310.0 °C (rac-1), 332.1–333.2 °C [(P)-1]; sublimation temp: 180 °C (*rac*-1, 4.4 × 10⁻³ Pa), 210 °C [(*P*)-1, 5.0 × 10⁻³ Pa]; ¹H NMR (392 MHz, 7.2 Hz, 2H, NCCCHCHCH), 7.17 (d, J = 8.1 Hz, 2H, NCCCHCHCH), 7.67 (ddd, 0.9, 7.6, 8.0 Hz, 2H, BCCHCH), 7.70 (d, J = 8.1 Hz, 2H, NCCCHCHCHCH), 7.80 (d, J = 8.5 Hz, 2H, NCCCHCHC), 7.87 (ddd, J = 0.9, 7.6, 8.1 Hz, 2H, BCCHCHCH), 8.49 (d, *J* = 8.5 Hz, 2H, NCCCHCHC), 8.61 (d, *J* = 8.1 Hz, 2H, BCCCH), 8.85 (d, *J* = 8.0 Hz, 2H, BCCH); ¹³C NMR (98.5 MHz, CDCl₃) δ 122.6 (2C), 122.7 (2C), 123.4 (2C), 124.1 (2C), 124.3 (2C), 124.4 (2C), 125.6 (2C), 126.4 (2C), 126.8 (2C), 127.9 (2C), 131.3 (2C), 133.0 (2C), 133.6 (br, 2C, CBC), 135.5 (2C), 136.1 (2C), 139.6 (2C); ¹¹B NMR (131 MHz, CDCl₃) δ 37.8; HRMS (EI) m/z [M]⁺ calcd for C₃₂H₂₀BN 429.1694; observed 429.1698.; Anal. calcd for C₃₂H₂₀BN C, 89.52; H, 4.79; N, 3.26. found C, 89.40; H, 4.64; N, 3.21.

Synthesis of 5,12-dibromo-16c-aza-8a-boradibenzo[*i*,*l*]hexahelicene [(*P*)-1-Br]


N-Bromosuccinimide (8.9 mg, 0.050 mmol) was added to a solution of (*P*)-1 (21.5 mg, 0.050 mmol) in dichloromethane (1.0 mL). After the mixture was stirred for 2 h at room temperature, *N*-bromosuccinimide (8.9 mg, 0.050 mmol) was added and stirred for 2 h. Subsequently the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (24.3 mg, 83% yield, 98% pure on GC analysis) as a white yellow powder. IR(neat): cm⁻¹ 3058 (Ar-H), 1596, 1475, 1401, 1357, 1312, 1292, 1138, 942, 914, 901, 864, 785, 753, 729, 687, 653, 637, 626; mp: 179.0–179.9 °C; ¹H NMR (392 MHz, CDCl₃) δ 6.76 (ddd, *J* = 1.3, 7.2, 8.5 Hz, 2H, NCCCHC*H*), 7.16–7.25 (m, 4H), 7.69 (t, *J* = 7.2 Hz, 2H, BCCH*CH*), 7.88 (ddd, *J* = 1.3, 7.2, 8.1 Hz, 2H, BCCHCH*CH*), 8.11 (d, *J* = 8.1 Hz, 2H, BCC*H*); ¹³C NMR (98.5 MHz, CDCl₃) δ 118.2 (2C), 123.4 (2C), 123.5 (2C), 124.2 (2C), 125.4 (2C), 126.7 (2C), 127.0 (2C), 127.3 (4C), 127.5 (2C), 130.8 (2C), 131.7 (2C), 133.3 (br, 2C, *CBC*), 135.6 (2C), 135.7 (2C), 138.4 (2C); ¹¹B NMR (131 MHz, CDCl₃) δ 36.7; HRMS (EI) *m*/z [M]⁺ calcd for C₃₂H₁₈Br₂NB 586.9887; observed 586.9885.

Crystallographic data collection and structure determination. Crystals of *rac*-1, (*P*)-1 and (*P*)-1-Br were mounted on a Rigaku Saturn CCD diffractometer for data collection using graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Crystal data and data statistics are summarized in Figure 9. The structures were solved by direct methods with SIR2008¹⁴ or SIR2004¹⁵ and refined by full-matrix least-squares techniques against F^2 (SHELXL-97)¹⁶. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions (C–H = 0.95 Å) and kept fixed. In the subsequent refinement, the function $\sum w(F_o^2 - F_c^2)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as $R_1 = \sum (||F_o| - |F_c||)/\sum |F_o|$ and $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum (wF_o^4)]^{1/2}$. All calculations were performed by using Crystal Structure 4.0 or Yadokari-XG 2009 and illustrations were drawn by using ORTEP–3.

¹⁴ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. **2007**, *40*, 609–613.

¹⁵ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. **2005**, *38*, 381–388.

¹⁶ Sheldrick, G. M. Program for the Solution of Crystal Structures; University of Göttingen, Germany, 1997.

Figure 9. X-ray crystal structures of *rac*-1, (*P*)-1 and (*P*)-1-Br (left), and crystal data and structure refinement (right). Thermal ellipsoids are shown at 50% [*rac*-1, (*P*)-1-Br] or 30% [(*P*)-1] probability and H atoms have been omitted for clarity.

Charge mobility measurement by time of flight (TOF) method. Purchased glasses (Nippon Sheet Glass Co. Ltd.) were used as a transparent substrate. These glasses were cleaned in a detergent solution for 5 minutes and then in distilled water for 10 minutes by ultrasonication. After predrying by a jet spin washer, they were dried finally for 5 minutes in 150 °C oven. Aluminum and 16c-aza-8a-boradibenzo[*i*,*l*]hexahelicene (1) were vacuum deposited sequentially on the glasses to fabricate a photocell with an Al/1/Al structure. The pressure of the vacuum system was 5.0×10^{-3} Pa during deposition. Firstly, to fabricate the under translucent electrode, a 10 nm aluminum electrode layer was deposited at a rate of 0.1-0.5 nm/s through a 2.0 mm metal shadow mask on the cleaned glasses. Then $6.0-10 \mu m$ thin films of 1 were evaporated at a rate of 3.0-10 nm/s on the Al layer through a larger metal shadow mask than 2.0 mm. Finally, 50 nm aluminum top electrode layer was deposited at a rate of 0.1-0.5 nm/s through a 2.0 mm shadow mask, resulting in a active area of 4.0 mm². The thickness of every layer was controlled with a calibrated quartz crystal microbalance during deposition. TOF measurements were performed using a commercial TOF-401 system (Sumitomo Heavy Industries Advanced Machinery Co., Ltd.) at room temperature under various electric fields. First, a dye laser (USHO, Pulsed Dye Laser KEC-160) with a wavelength of 365 nm was used to form the carriers by illuminating from the glass side. Voltage pulses and transient current were recorded by a digitizing oscilloscope (Tektronix TDS 3052B). The normalized light intensity versus frequency curve was used to determine the transit time and mobility. The details of the TOF analysis can be found in page 69-70 of "Organic Electroluminescence Materials and Displays" (CMC Co., Ltd.).

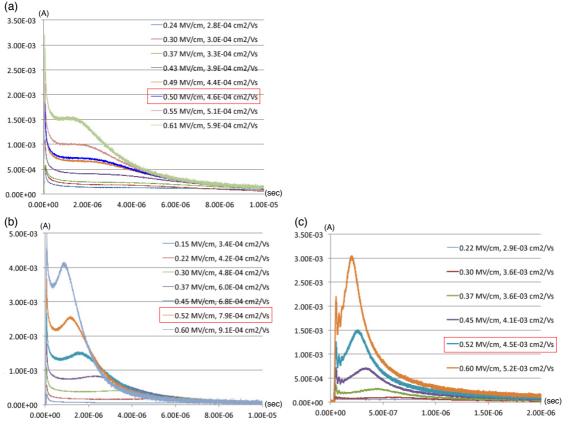


Figure 10. Transient photocurrent of (a) rac-1 (hole), (b) (P)-1 (hole), and (c) (P)-1 (electron).

Ionization potential measurement by photoelectron spectroscopy in air (PESA). Glass structures coated with indium-tin-oxide (ITO) were cleaned in a detergent solution for 5 minutes and then in distilled water 10 minutes by ultrasonication. After predrying by a jet spin washer, they were dried finally for 5 minutes in 150 °C oven. A 60–80 nm thin films of *rac*-1 and (*P*)-1 were vacuum deposited at a rate of 0.5–1.0 nm/s on the cleaned glasses. The pressure of the vacuum system was 5.0×10^{-3} Pa, and the film thickness was controlled with a calibrated quartz crystal microbalance during deposition. Ionization potential (IP) of the thin films were measured by photoelectron spectroscopy in air (PSAE) using an AC-1 (RIKEN KEIKI Co., Ltd.) system at room temperature. Electron affinities were estimated from the ionization potentials and UV-visible absorption edge wavelengths of the thin films prepared side by side.

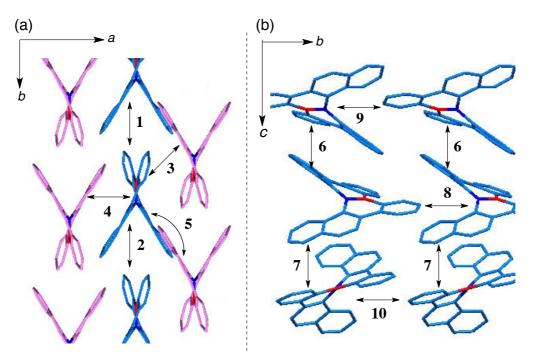
Computational studies. Molecular orbital calculations and nucleus-independent chemical shift (NICS) calculations were performed with Gaussian 09¹⁷ packages. The DFT method was employed using the B3LYP hybrid functional.¹⁸ Structures were optimized with the 6-31G(d) basis set.¹⁹ Nucleus independent chemical shifts (NICS) were evaluated by using the gauge invariant atomic orbital²⁰ (GIAO) approach at the GIAO-B3LYP/6-311+G(d,p) level. The reorganization energy calculations were performed using the B3LYP hybrid functional with the DZP basis set²¹ in the ADF program.²² The electronic coupling calculations of dimers were performed by the local density functional VWN in the conjunction with the PW91²³ gradient corrections with the DZP basis set, as implemented in the ADF program according to the literature.⁵

¹⁷ Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

¹⁸ (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. *Rev. B* **1988**, *37*, 785–789.

¹⁹ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, **1986** and references cited therein.

²⁰ (a) Dichtfield, R. *Mol. Phys.* **1974**, *27*, 789–807. (b) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. **1990**, *112*, 8251–8260.


²¹ van Lenthe, E.; Baerends, E. J. J. Comput. Chem. **2003**, 24, 1142–1156.

²² ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.

²³ Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Sing, D. J.; Fiolhais,

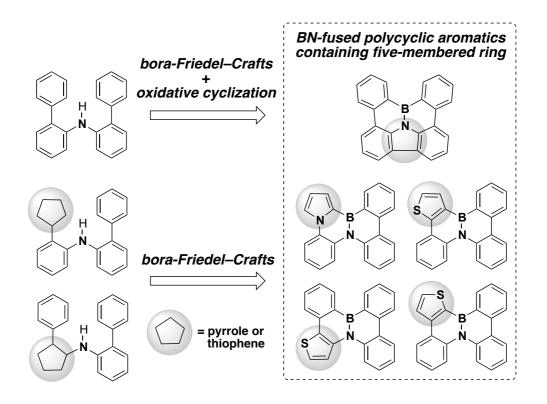
C. Phys. Rev. B 1992, 46, 6671–6687.

Electron couplings V (meV) between HOMOs of neighboring molecules

	IVI (meV)	V (eV)	H1 (eV)	H2 (eV)	J (eV)	S
1	7.7	0.007656739	-5.48909	-5.51842	0.01982	-0.00221
2	7.7	0.007656739	-5.51842	-5.48909	0.01982	-0.00221
3	13.9	0.013859982	-5.47693	-5.47686	0.03396	-0.00367
4	42	-0.041952101	-5.35567	-5.35566	-0.0894	0.00886
5	11.8	0.011754524	-5.52237	-5.52237	0.03042	-0.00338
6	30.1	0.030082597	-5.34375	-5.34399	0.06316	-0.00619
7	30.1	-0.030072535	-5.34398	-5.34378	-0.06315	0.00619
8	1.0	0.001047774	-5.56279	-5.54834	0.00327	-0.0004
9	9.8	0.009842044	-5.52712	-5.54843	0.02568	-0.00286
10	1.0	0.001007762	-5.56288	-5.54831	0.00323	-0.0004

Electron couplings V (meV) between LUMOs of neighboring molecules

	V (meV)	V (eV)	H1 (eV)	H2 (eV)	J (eV)	S
1	3.4	0.003426833	-2.75576	-2.79058	0.0062	-0.001
2	3.4	0.003426833	-2.79058	-2.75576	0.0062	-0.001
3	4.3	-0.00428792	-2.72346	-2.7234	-0.00023	-0.00149
4	7.2	0.007153884	-2.70812	-2.70813	0.00886	-0.00063
5	1.4	0.001368556	-2.80412	-2.80413	0.00235	-0.00035
6	73.1	-0.073136621	-2.57352	-2.57244	-0.10755	0.01338
7	73.2	0.073156825	-2.57244	-2.57349	0.10757	-0.01338
8	5.6	-0.005605295	-2.79743	-2.77966	-0.00884	0.00116
9	19.7	0.019711493	-2.75786	-2.77758	0.03164	-0.00431
10	5.7	-0.005665348	-2.7972	-2.7798	-0.0089	0.00116


Figure 11. Electron couplings V (meV) of neighboring molecules in the X-ray crystal structures of *rac*-1 (a) and (*P*)-1 (b) at the PW91/DZP level on ADF2010 program. H atoms have been omitted for clarity. The *P* enantiomer is shown in blue and the *M* enantiomer is shown in pink. V (eV) = $[J - 0.5S(H1 + H2)]/(1 - S^2)$, J (eV): charge transfer integral, H1 and H2 (eV): site energies, S: overlap integral.

Cartesian coordinates

(<i>P</i>)			ii coor uint			42	6	0	-4.263887				31210	
						43 44	6 6	0	-3.765533				52361 46995	
Cen					oordinates	44 45	0 1	0	-2.136288				46995 07516	
Nur	nber		Number	Туре Х	Y Z	43 46	1	0 0	2.167788	-4.5820			72522	
1	5	0	-1.796902	-0.000032	-0.000121	40 47	1	0	1.523509	0.94584			6797	
2	5 7	0	-0.345854		0.000032	47	1	0	4.834679	-1.2351			83100	
2	6	0	-0.278296			48 49	1	0	-3.809675				98544	
4	6	0	1.532265	1.169304	1.155989	49 50	1	0	3.567567	0.89552			4715	
5	6	0	2.218707	2.401072	1.410859	51	1	0	3.933280	-3.33849		-2.97		
6	6	0	0.323497	1.199682	0.363298	52	1	0	-5.277564				21732	
7	6	0	0.426180	3.631495	0.351407	53	1	0	-4.391153		-0.510592		0.929988	
8	6	0	-1.626052			54	1	0	-1.508478	-4.521246		1.268458		
9	6	0	1.648275	3.622900	0.963862	54	1	0	-1.500470	- 4 . <i>3212</i>	40	1.2	00+00	
10	6	0	2.051312	-0.007705	1.763780									
11	6	0	3.916982	1.226903	2.701435	TS	1							
12	6	0	-2.453115			1.5	-1							
12	6	0	-3.438986			Cen	tor		Atomic	Atomic	 Сс	ordinat		
13	6	0	3.206268	0.020778	2.516173	Nur		r	Number	Туре	X	Y	Z	
15	6	0	3.421494	2.392960	2.164001					турс		1	<i>L</i>	
16	6	0	-4.263801			1	5	0	-1.654750	0.0006	64	-0.7	76700	
17	6	0	-3.765455			2	7	0	-0.223387				47077	
18	6	0	-2.136223			$\frac{2}{3}$	6	0	-0.475844			0.710586		
19	1	0	-0.033120			4	6	0	1.719902	-1.65096		-0.20		
20	1	0	2.167929	4.554530	1.172227	5	6	0	2.313756	-2.53280			6783	
20	1	0	1.523529	-0.945886	1.656907	6	6	0	0.354524	-1.22819		-0.01		
21	1	0	4.834592	1.235184	3.283297	7	6	0	0.131374	-2.96863			53462	
22	1	0	-3.809630			8	6	0	-1.897671	-2.218901			51895	
23 24	1	0	3.567441	-0.895490	2.975006	9	6	0	1.489127	-3.09630			6789	
25	1	0	3.933363	3.338439	2.327333	10	6	0	2.446051	-1.42785		-1.40		
26	1	0	-5.277484			11	6	0	4.375134	-2.60542		-0.53		
20	1	0	-4.391090				6	0	-2.430000				27724	
28	1	0	-1.508427			13	6	0	-3.935075				75573	
29	6	0	-0.278348		-0.047405	14	6	0	3.730344			-1.57		
30	6	0	1.532236	-1.169365		15	6	0	3.667665	-2.92671			4074	
31	6	0	2.218632	-2.401146		16	6	0	-4.438403				41875	
32	6	0	0.323494	-1.199749		17	6	0	-3.696244				56618	
33	6	0	0.426073	-3.631573		18	6	0	-2.679458				12378	
34	6	0	-1.626146		0.539040	19	1	0	-0.508089				44387	
35	6	0	1.648161	-3.622984		20	1	0	1.934100	-3.72075			6899	
36	6	0	2.051327	0.007669	-1.763680	21	1	0	1.937522	-0.95924		-2.23		
37	6	0	3.917018	-1.226916		22	1	0	5.400949	-2.94170		-0.65		
38	6	0	-2.453213		0.441966	23	1	0	-4.514054				32317	
39	6	0	-3.439061		1.629462	23	1	0	4.242631	-1.74401		-2.51		
40	6	0	3.206329	-0.020779	-2.516007	25	1	0	4.115222	-3.54754			6554	
40 41	6	0	3.421447	-2.393003	-2.164040	26	1	0	-5.406019				38377	
71	0	0	5.72177/	2.575005	2.107070		1	0	2.100017	2.2127	**	1.10		

27	1	0	-4.109742	-1.001271	-1.944075	12	6	0	2.453254	-1.328172	0.442028
28	1	0	-2.288421	-3.983776	1.556949	13	6	0	3.439287	-3.684797	1.629778
29	6	0	-0.474028	2.096155	0.710028	14	6	0	-3.206318	-0.021157	-2.516060
30	6	0	1.720780	1.650604	-0.210877	15	6	0	-3.421149	-2.393412	-2.164149
31	6	0	2.315864	2.533144	0.753067	16	6	0	4.264045	-2.558457	1.531333
32	6	0	0.355378	1.228727	-0.018965	17	6	0	3.765610	-1.396924	0.952347
33	6	0	0.134481	2.970399	1.661530	18	6	0	2.136502	-3.644468	1.147323
34	6	0	-1.896316	2.219996	0.353104	19	1	0	0.033913	-4.582698	-0.107724
35	6	0	1.492365	3.097913	1.763262	20	1	0	-2.167166	-4.554890	-1.172835
36	6	0	2.446124	1.425290	-1.409055	21	1	0	-1.523665	0.945679	-1.656764
37	6	0	4.376569	2.602551	-0.538652	22	1	0	-4.834487	-1.235741	-3.283250
38	6	0	-2.429742	1.341976	-0.626140	23	1	0	3.809971	-4.592623	2.098980
39	6	0	-3.934259	3.549158	0.280155	24	1	0	-3.567616	0.895116	-2.974787
40	6	0	3.730798	1.897781	-1.577369	25	1	0	-3.932843	-3.338971	-2.327580
41	6	0	3.669900	2.926047	0.598998	26	1	0	5.277747	-2.585855	1.921802
42	6	0	-4.438832	2.730389	-0.736797	27	1	0	4.391221	-0.510238	0.929840
43	6	0	-3.696959	1.635231	-1.162938	28	1	0	1.508721	-4.520975	1.268903
44	6	0	-2.677827	3.299964	0.815093	29	6	0	0.278028	2.429504	0.047178
45	1	0	-0.504030	3.521799	2.342757	30	6	0	-1.532381	1.169271	1.156019
46	1	0	1.938271	3.722951	2.532350	31	6	0	-2.218885	2.401014	1.410870
47	1	0	1.936726	0.956003	-2.238576	32	6	0	-0.323661	1.199693	0.363245
48	1	0	5.402582	2.937866	-0.662677	33	6	0	-0.426516	3.631497	0.351240
49	1	0	-4.513001	4.396751	0.638083	34	6	0	1.625811	2.481032	-0.539269
50	1	0	4.242531	1.738084	-2.522541	35	6	0	-1.648564	3.622845	0.963785
51	1	0	4.118322	3.547589	1.370409	36	6	0	-2.051342	-0.007720	1.763903
52	1	0	-5.407221	2.942837	-1.181737	37	6	0	-3.917044	1.226837	2.701593
53	1	0	-4.111603	1.002206	-1.939671	38	6	0	2.452966	1.328536	-0.442147
54	1	0	-2.286075	3.984225	1.559473	39	6	0	3.438733	3.685435	-1.629518
						40	6	0	-3.206275	0.020733	2.516326
						41	6	0	-3.421626	2.392887	2.164099
(<i>M</i>)-1					42	6	0	4.263646	2.559184	-1.531210
						43	6	0	3.765344	1.397526	-0.952398
Cer	ter		Atomic A	Atomic Coo	ordinates	44	6	0	2.135936	3.644872	-1.147151
Nui	nbei	:	Number 7	Гуре Х	Y Z	45	1	0	0.032689	4.582640	0.107049
						46	1	0	-2.168239	4.554460	1.172176
1	5	0	1.796830	0.000138	-0.000039	47	1	0	-1.523472	-0.945871	1.657102
2	7	0	0.345762	-0.000017	0.000098	48	1	0	-4.834635	1.235074	3.283483
3	6	0	0.278524	-2.429516	-0.047317	49	1	0	3.809339	4.593390	-2.098534
4	6	0	-1.532132	-1.169550	-1.155983	50	1	0	-3.567395	-0.895547	2.975177
5	6	0	-2.218353	-2.401418	-1.411005	51	1	0	-3.933500	3.338370	2.327400
6	6	0	-0.323425	-1.199811	-0.363242	52	1	0	5.277362	2.586818	-1.921625
7	6	0	-0.425645	-3.631658	-0.351655	53	1	0	4.391034	0.510896	-0.929945
8	6	0	1.626286	-2.480800	0.539228	54	1	0	1.508092	4.521347	-1.268609
9	6	0	-1.647708	-3.623211	-0.964201						
10	6	0	-2.051358	0.007427	-1.763679						
11	6	0	-3.916849	-1.227382	-2.701436						

Synthesis of BN-fused Polycyclic Aromatic Compounds Containing Five-membered Heterocyclic Ring

Abstract: $14b^1$ -Aza-14b-borabenzo[*p*]indeno[1,2,3,4-*defg*]chrysene has been synthesized from bis(biphenyl-2-yl)amine *via* intramolecular oxidative cyclization and tandem bora-Friedel–Crafts reaction. Further, BN-fused polycyclic aromatic compounds including a thiophene or pyrrole ring have been synthesized *via* the bora-Friedel–Crafts reaction from the corresponding diarylamines. As compared with 4b-aza-12b-boradibenzo[*g*,*p*]chrysene, the benzoindenochrysene derivative shows a higher quantum yield, and the pyrrole-fused derivative shows higher charge mobility, as suggested by electron coupling calculations. The proposed synthetic methodologies can provide facile access to various BN-fused polycyclic aromatic compounds containing a five-membered heterocyclic ring.

3-1. Introduction

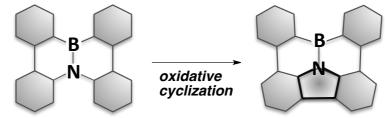
Polycyclic heteroaromatic compounds, in which one or more carbocyclic rings are replaced by a five-membered heterocyclic rings, constitute one of the most important classes of small-molecule semiconducting materials.¹ In particular, one-dimensionally extended ladder-type heteroaromatic compounds including sulfur or nitrogen atoms have been extensively studied.^{2,3,4} The planar π -conjugated system of these compounds increases the effective conjugation length,⁵ and their rigid structure can suppress conformational disorder and hence decrease the reorganization energy, thus enhancing the intrinsic charge mobility. On the other hand, in polycyclic heteroaromatic compounds containing two-dimensionally extended π -conjugated framework induces a solid-state packing arrangement that in turn may facilitate multichannel interactions.⁶ However, because of the lack of a suitable synthetic

¹ (a) Anthony, J. E. *Chem. Rev.* **2006**, *106*, 5028–5048. (b) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. *Chem. Rev.* **2012**, *112*, 2208–2267.

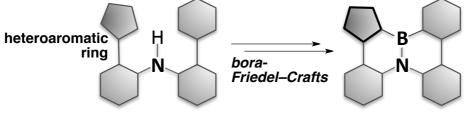
² Sulfur: Review; (a) Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Adv. Mater. 2011, 23, 4347–4370. Selected examples; (b) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J. Am. Chem. Soc. 1998, 120, 664–672. (c) Xiao, K.; Liu, Y.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.; Qiu, W.; Ma, Y.; Cui, G.; Chen, S.; Zhan, X.; Yu, G.; Qin, J.; Hu, W.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 13281–13286. (d) Wex, B.; Kaafarani, B. R.; Schroeder, R.; Majewski, L. A.; Burckel, P.; Grell, M.; Neckers, D. C. J. Mater. Chem. 2006, 16, 1121–1124. (e) Tang, M. L.; Okamoto, T.; Bao, Z. N. J. Am. Chem. Soc. 2006, 128, 16002–16003. (f) Valiyev, F.; Hu, W. S.; Chen, H. Y.; Kuo, M. Y.; Chao, I.; Tao, Y. T. Chem. Mater. 2007, 19, 3018–3026. (g) Gao, J.; Li, R.; Li, L.; Meng, Q.; Jiang, H.; Li, H.; Hu, W. Adv. Mater. 2007, 19, 3008–3011. (h) Yamada, K.; Okamoto, T.; Kudoh, K.; Wakamiya, A.; Yamaguchi, S.; Takeya, J. Appl. Phys. Lett. 2007, 90, 072102-1–3. (i) Chen, Y.; Chang, H.; Tian, H.; Bao, C.; Li, W.; Yan, D.; Geng, Y.; Wang, F. Org. Electron. 2012, 13, 3268–3275. (j) Huang, J.; Luo, H.; Wang, L.; Guo, Y.; Zhang, W.; Chen, H.; Zhu, M.; Liu, Y.; Yu, G. Org. Lett. 2012, 14, 3300–3303.

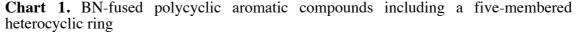
³ Nitrogen: Reviews; (a) Bunz, U. H. F. Chem. Eur. J. 2009, 15, 6780–6789. (b) Richards, G. J.;
Hill, J. P.; Mori, T.; Ariga, K. Org. Biomol. Chem. 2011, 9, 5005–5017. Selected examples; (c) Miao,
Q.; Nguyen, T.-Q.; Someya, T.; Blanchet, G. B.; Nuckolls, C. J. Am. Chem. Soc. 2003, 125, 10284–10287. (d) Wakim, S.; Bouchard, J.; Simard, M.; Drolet, N.; Tao, Y.; Leclerc, M. Chem. Mater.
2004, 16, 4386–4388. (e) Ma, Y.; Sun, Y.; Liu, Y.; Gao, J.; Chen, S.; Sun, X.; Qiu, W.; Yu, G.; Cui,
G.; Hu, W.; Zhu, D. J. Mater. Chem. 2005, 15, 4894–4898. (f) Wu, Y.; Li, Y.; Gardner, S.; Ong, B.
S. J. Am. Chem. Soc. 2005, 127, 614–618. (g) Kawaguchi, K.; Nakano, K.; Nozaki, K. J. Org. Chem.
2007, 72, 5119–5128. (h) Ahmed, E.; Briseno, A. L.; Xia, Y.; Jenekhe, S. A. J. Am. Chem. Soc. 2008, 130, 1118–1119. (i) Pho, T. V.; Yuen, J. D.; Kurzman, J. A.; Smith, B. G.; Miao, M.; Walker, W. T. Seshadri, R.; Wudl, F. J. Am. Chem. Soc. 2012, 134, 18185–18188.

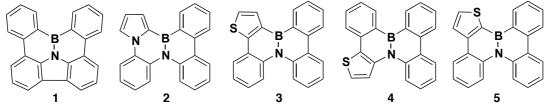
⁴ S,N-hybridized: (a) Qi, T.; Guo, Y.; Liu, Y.; Xi, H.; Zhang, H.; Gao, X.; Liu, Y.; Lu, K.; Du, C.; Yu, G.; Zhu, D. *Chem. Commun.* **2008**, 6227–6229. (b) Gao, P.; Cho, D.; Yang, X.; Enkelmann, V.; Baumgarten, M.; Müllen, K. *Chem. Eur. J.* **2010**, *16*, 5119–5128. (c) Wu, J.-S.; Cheng, Y.-J.; Lin, T.-Y.; Shih, P.-I.; Hsu, C.-S. Adv. Funct. Mater. **2012**, *22*, 1711–1722. (d) Kato, S.-i.; Furuya, T.; Kobayashi, A.; Nitani, M.; Ie, Y.; Aso, Y.; Yoshihara, T.; Tobita, S.; Nakamura, Y. J. Org. Chem. **2012**, *77*, 7595–7606.


⁵ (a) Patil, S. A.; Scherf, U.; Kadashchuk, A. *Adv. Funct. Mater.* **2003**, *13*, 609–614. (b) Mishra, A. K.; Graf, M.; Grasse, F.; Jacob, J.; List, E. J. W.; Müllen, K. *Chem. Mater.* **2006**, *18*, 2879–2885.

⁶ (a) Sun, Y. M.; Tan, L.; Jiang, S. D.; Qian, H. L.; Wang, Z. H.; Yan, D. W.; Di, C. G.; Wang, Y.; Wu, W. P.; Yu, G.; Yan, S. K.; Wang, C. R.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. *J. Am. Chem. Soc.*


methodology, two-dimensional polycyclic heteroaromatic compounds have not been studied in detail. Because the synthetic method of BN-fused two-dimensional polycyclic aromatic compounds has been established by using tandem bora-Friedel–Crafts reaction in Chapter 1, this author envisioned that two strategies for construction of BN-fused two-dimensional polycyclic aromatic compounds including heterocyclic five-membered ring would worth studying for the synthesis of two-dimensionally extended polycyclic heteroaromatic compounds: 1) formation of a five-membered ring *via* intramolecular oxidative cyclization of BN-fused polycyclic aromatic compounds and 2) introduction of a five-membered heteroaromatic ring and subsequent bora-Friedel–Crafts reaction (Scheme 1). This chapter describes the syntheses of $14b^1$ -aza-14b-borabenzo[*p*]indeno[1,2,3,4-*defg*]chrysene **1** and BN-fused polycyclic aromatic compounds including nitrogen (**2**) or sulfur (**3**, **4**, **5**) heterocycles.


Scheme 1. Synthesis of BN-fused polycyclic aromatic compounds including a five-membered heterocyclic ring


1) Formation of a five-membered ring *via* intramolecular oxidative cyclization of BN-fused polycyclic aromatic compounds

2) Introduction of a five-membered heteroaromatic ring and subsequent bora-Friedel–Crafts reaction

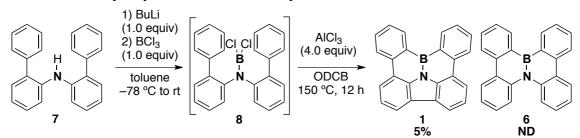
²⁰⁰⁷, *129*, 1882–1883. (b) Wang, J.-Y.; Zhou, Y.; Yan, J.; Ding, L.; Ma, Y.; Cao, Y.; Wang, J.; Pei, J. *Chem. Mater*. **2009**, *21*, 2595–2597.

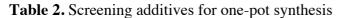
3-2. Results and Discussion

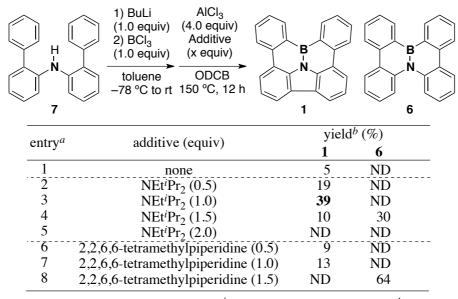
3-2-1. Development of oxidative cyclization and screening of reaction conditions

To investigate the feasibility of intramolecular oxidative cyclization,⁷ 4b-aza-12b-boradibenzo[g.p]chrysene **6** was treated with various Lewis acids (Table 1). The target compound, 14b¹-aza-14b-borabenzo[p]indeno[1,2,3,4-*defg*]chrysene **1**, was obtained in 40% yield when 2 equiv of AlCl₃ was used (entry 1). However, reactions with FeCl₃, CoF₃, MoCl₅, and SbCl₅ did not afford the desired product (entries 2–5). The yield increased when the reaction was carried out using 0.25 equiv of N,N-diisopropylethylamine (NEt'Pr₂); however, the reaction was terminated upon the addition of excess (0.50 equiv) NEt'Pr₂ (entries 6–7). This result suggested that the reaction would proceed only under acidic conditions.

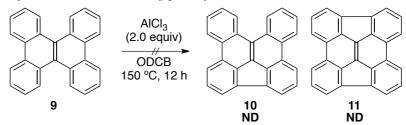
Table 1. Oxidative cyclization of BN-fused precursor 6


			wis acid base DDCB °C, 12 h	
	entry ^a	Lewis acid (equiv)	base (equiv)	yield ^b of $1(\%)$
_	1	AlCl ₃ (2.0)	none	40
	2	FeCl ₃ (2.0)	none	ND
	3	$CoF_{3}(2.0)$	none	ND
	4	$MoCl_{5}(2.0)$	none	ND
	5	$SbCl_{5}(2.0)$	none	ND
• -	6	$AlCl_{3}(2.0)$	$NEt^{i}Pr_{2}(0.25)$	70
	7	$AlCl_{3}(2.0)$	$NEt^{i}Pr_{2}(0.50)$	ND


^a Reactions were carried out on a 0.1 mmol scale.^b The yield was determined by ¹H NMR.


The desired compound **1** was also obtained in a cascade manner, albeit in very low (5%) yield, when aminoboron dichloride **8**, which was prepared *in situ* from bis(biphenyl-2-yl)amine **7**, was treated with AlCl₃ in *o*-dichlorobenzene at 150 °C for 12 h (Scheme 2). Compound **6** was not obtained because of the possible decomposition under acidic conditions (see Chapter 1). Table 2 summarizes the results of screening for the one-pot synthesis of **1**. A mixture of AlCl₃ (4 equiv) and NEt'Pr₂ (1 equiv) afforded **1** in moderate yield (39%, entry 3), but the product yield decreased when using 0.5, 1.5, and 2.0 equiv of NEt'Pr₂ (entries 2, 4, 5), indicating that the AlCl₃/NEt'Pr₂ stoichiometry plays an important role in enhancing the product yield and promoting the bora-Friedel– Crafts reaction. However, 2,2,6,6-tetramethylpiperidine was not as effective as NEt'Pr₂ in the reaction (entries 6–8).

⁷ Formation of carbazole moiety *via* oxidative cyclization: (a) El-Zohry, M. F. *Indian J. Chem. B* **1993**, *32*, 275–280. (b) Fox, M. A.; Dulay, M. T.; Krosley, K. J. Am. Chem. Soc. **1994**, *116*, 10992– 10999. (c) Yamamoto, M.; Matsubara, S. *Chem. Lett.* **2007**, *36*, 172–173.



^a Reactions were carried out on a 0.6 mmol scale.^b The yield was determined by ¹H NMR.

The treatment of dibenzo[$g_{,p}$]chrysene **9** with AlCl₃ did not give the cyclized product **10** or **11** (Scheme 3), implying that replacement of the C–C unit by a B–N unit would play an important role in the cyclization. That is, the introduction of a B–N moiety to various PAH frameworks would enable the stepwise construction of a carbazole substructure in BN-fused aromatic compounds.

Scheme 3. Cyclization of dibenzo[g,p]chrysene 9

3-2-2. Molecular and electronic structures of 1

The highly planar structure of **1** was confirmed by X-ray crystallography (Figure 1). The B–N bond length [1.409(2) Å] in **1** was shorter than that in typical BN aromatic compounds (1.45–1.47 Å), confirming the double-bond character. Moreover, the B–C1, B–C2, C5–C7, and C6–C8 lengths in **1** were 1.584(3), 1.575(3), 1.473(2), and 1.473(2) Å, respectively, indicating that these are single bonds. The N–C3, N–C4, C3–C7, and C4–C8 lengths, on the other hand, were 1.392(2), 1.392(2), 1.391(1), and 1.393(2) Å, respectively, indicating that these are one-and-a-half bonds. These observations suggested that the carbazole moiety in **1** is isolated from the π -conjugated system.

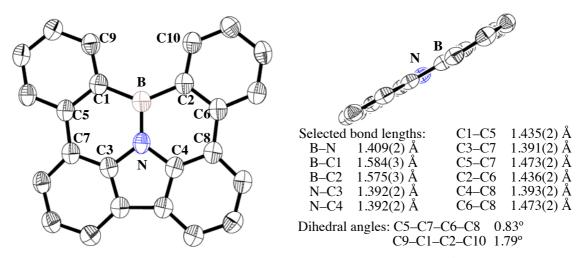


Figure 1. ORTEP drawing of 1. Thermal ellipsoids are shown at 50% probability. H atoms have been omitted for clarity.

The aromaticities of the five- and six-membered rings in **1** and **6** were evaluated by a nucleus-independent chemical shift (NICS) analysis (Figure 2). Because of the formation of the highly aromatic carbazole ring, the BNC₄ rings in **1** have less aromaticity than those of **6** [-2.3 vs. -2.9 in NICS(1)].

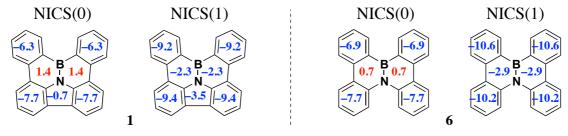


Figure 2. NICS values calculated at the B3LYP/6–311+G(d) level.

Because of the weak steric repulsion between the hydrogen atoms at the *ortho* position to boron, **1** adopts a slightly twisted structure (C9–C1–C2–C10 dihedral angle = 1.79°) and hence has an axis of helical chirality, which allows for the formation of

racemic co-crystals. The molecules are arranged in a herringbone stacking array with a π - π distance of 3.4–3.6 Å and a CH– π distance of 2.7–3.0 Å (Figure 3a). In this arrangement, the local dipole moments of the B–N bonds partially offset each other despite the alternate arrangement in **6**, because the dipole moment of **1** is smaller than that of **6** according to the calculated values at the B3LYP/6-31G(d) level (Figures 3b–c, 0.06 vs. 0.37 Debye).

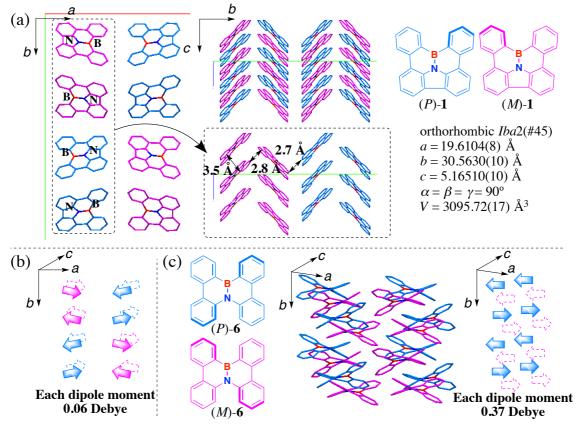
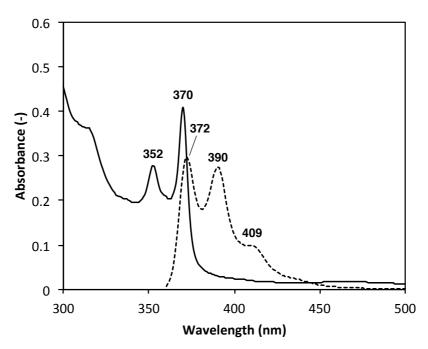



Figure 3. (a) Packing structure of 1. (b, c) Molecular orientations of 1 and 6 defined by individual dipole moments. H atoms have been omitted for clarity. The P-enantiomer is shown in blue, and the M-enantiomer is shown in pink.

3-2-3. Photochemical properties of 1

To reveal the photochemical properties of **1**, UV-visible absorption and photoluminescence spectra were measured in dichloromethane solution (Figure 4). Compound **1** exhibited a relatively strong absorption band with a maximum (λ_{abs}) at 370 nm (corresponding to a π - π^* transition) and a shoulder at 352 nm. The photoluminescence emission demonstrated a first maximum at 372 nm and vibronic fine structures at 390 and 409 nm. The small Stokes shift of ca. 0.02 eV indicated that the geometry of the excited state of **1** is similar to that of the ground state, probably because of the rigid geometry as well as the small dipole moment (0.06 Debye).

Chapter 3

Figure 4. UV-visible absorption (solid line) and fluorescence (dotted line, excited at 350 nm) spectra of **1** in CH_2Cl_2 solution (2.0 × 10⁻⁵ M).

Table 3 summarizes the photophysical data of **1** and its precursor **6**. Because of the extended effective conjugation length, the longest absorption maximum for **1** is longer than that of **6**. In contrast, the Stokes shift of **1** is smaller than that of **6** (2 nm *vs*. 70 nm), which is due to the flexibility and relatively large dipole moment (0.37 Debye) of the latter. It is noteworthy that the quantum yield of **1** ($\Phi_f = 0.35$) exceeds that of **6** ($\Phi_f = 0.10$). Thus, the aforementioned cyclization-based transformation may be an efficient means of inducing photoluminescence in BN-fused polycyclic aromatic compounds.

Compound	$\lambda_{ab}^{[a]}$ (nm)	$\begin{array}{c} \log \epsilon \\ (M^{-1} cm^{-1}) \end{array}$	$\lambda_{em}^{[b]}$ (nm)	$\Phi_{\rm f}^{[c]}$	HOMO _{calc} ^[d] (eV)	LUMO _{calc} ^[d] (eV)
1	370	4.38	372	0.35	-5.73	-1.64
6	340	4.06	410	0.10	-5.49	-1.24

 Table 3. Summary of photophysical data for 1 and 6

^{*a*} Only the longest absorption maxima are shown. ^{*b*} Emission maxima upon excitation at 350 nm (1) and 340 nm (6). ^{*c*} Absolute fluorescence quantum yields determined by a calibrated integrating sphere system with $\leq 3\%$ error. ^{*d*} Calculated at the B3LYP/6-31G(d) level.

3-2-4. Evaluation of charge transport properties on the basis of calculated electronic coupling elements

The electronic coupling V (meV) between neighboring molecules was calculated from the X-ray crystal structure of **1** by using the PW91 hybrid functional with the DZP basis set of the ADF2010 program (Figure 5). The V values between lowest-unoccupied molecular orbitals (LUMOs) were relatively larger than the corresponding values between the highest-occupied molecular orbitals (HOMOs). Notably, there was a significant difference between the values along the *c*-axis for different isomers (15.7 vs. 0.5 meV, Figure 5b).

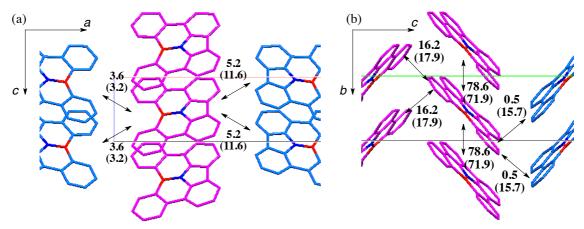


Figure 5. Electronic coupling, V (in meV), between HOMOs of neighboring molecules in the X-ray crystal structure of 1 (P in blue, M in pink). The electronic coupling between the LUMOs is shown in parentheses.

To understand this difference better, a single-point calculation for adjacent molecules was performed. The overlapping adjacent HOMOs and LUMOs along the c-axis are visualized in Figure 6. The HOMOs overlap in the antibonding position (Figure 6a), whereas the LUMOs show efficient same-phase overlap (Figure 6b), and this feature results in different V values in the two cases. Thus, **1** is a potential candidate for an electron transport material.

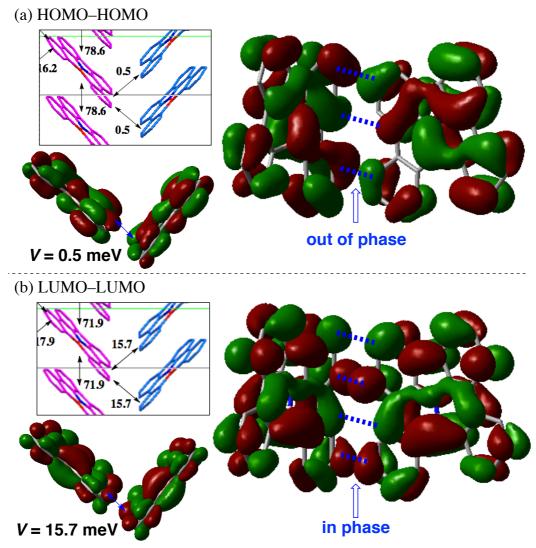
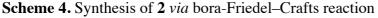
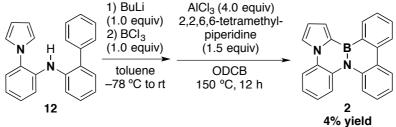




Figure 6. Overlapping adjacent HOMOs and LUMOs of 1.

3-2-5. Synthesis of BN-fused polycyclic aromatic compounds including a pyrrole ring

Compound 2, which includes a pyrrole ring, was designed with the aim of investigating non-planar BN-fused polycyclic aromatic compounds having a five-membered heterocyclic ring. Borylation of diaryl amine 12 by treatment with BuLi and BCl₃ and subsequent tandem bora-Friedel–Crafts reaction with AlCl₃ and 2,2,6,6-tetramethylpiperidine afforded 2 in very low (4%) yield (Scheme 4), although the starting amine 12 was consumed. The poor yield could be attributed to the formation of oligomeric by-products resulting from dimerization or other side reactions, which were initiated by electrophilic attack on the pyrrole ring under the harsh reaction conditions adopted.

The structure of **2** was determined using X-ray crystallography; its molecular structure is shown in Figure 7. The B–N length [1.441(2) Å] in **2** was similar to that in typical BN aromatic compounds (1.45-1.47 Å).^{3–5} On the other hand, the B–C1, B–C2, N1–C3, and N1–C4 lengths were 1.527(2), 1.536(2), 1.429(2), and 1.4218(19) Å, respectively, indicating that these are single bonds. Because of steric repulsion between the hydrogen atoms at the *ortho* position to the heteroatoms (C5–C1–C2–C6 dihedral angle = 32.41°), **2** adopts a twisted conformation, similar to **6**,⁸ and hence has a similar packing structure (Figure 7b). In this arrangement, the pyrrole rings are located on the opposite faces of adjacent molecules so that the local dipole moments offset each other.

⁸ X-ray crystal structure and parameters of **6** are mentioned in chapter 1-2-2.

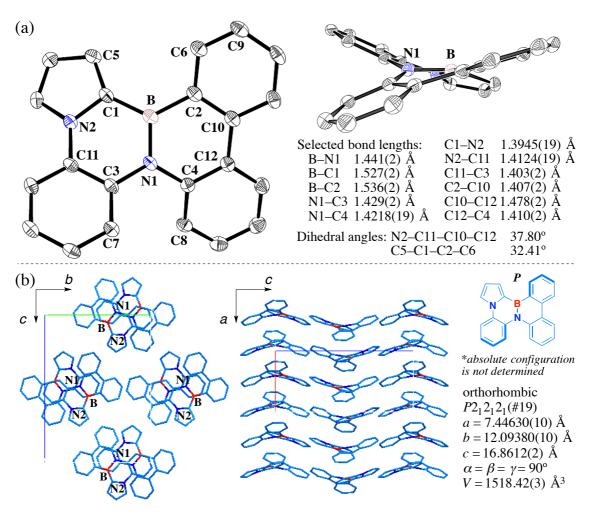


Figure 7. ORTEP drawing and packing structure of (P)-2 (absolute configuration is not determined). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

The electronic coupling V (meV) was calculated from the X-ray crystal structure of **2** (Figures 8a–b). Although the molecular packing is virtually the same in **2** and **6**, the electronic coupling varies significantly. The V values between the HOMOs along the *c*-axis in **2** [11.1, 2.0, and 13.0 meV, (Figure 8b)] are larger than the corresponding values in **6** [2.4, 0.6, and 5.0 meV, (Figure 8d)], while those along the *a*-and *b*-axes are comparable to each other (Figures 8a–d).

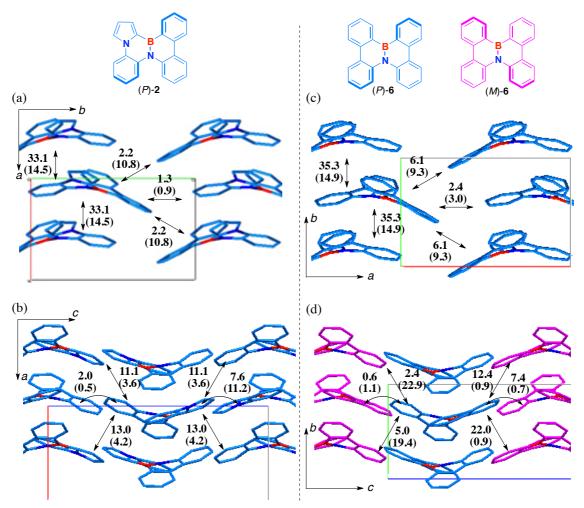


Figure 8. Electronic coupling, V (in meV) between HOMOs of neighboring molecules in the X-ray crystal structures of (a, b) 2 and (c, d) 6 (*P* in blue, *M* in pink). The electronic coupling between LUMOs is shown in parentheses.

The Kohn–Sham frontier orbitals and overlapping adjacent HOMOs of 2 and 6 are visualized in Figure 9. The orbitals of 2 are more polarized than those of 6 because of the introduction of the electron-rich pyrrole ring (Figures 9a–b), and hence, the HOMOs of 2 can show efficient same-phase overlap (Figure 9c); however, the HOMOs of 6 overlap in the antibonding position (Figure 9d). Thus, 2 is a potential candidate for a hole transport material.

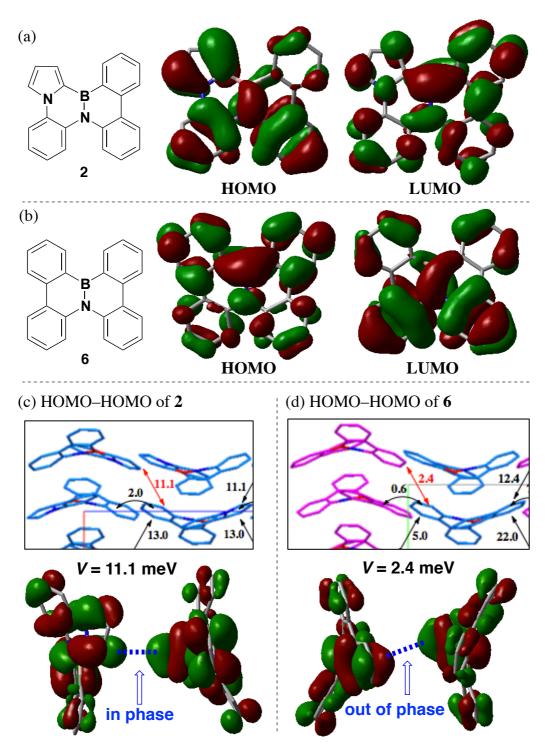
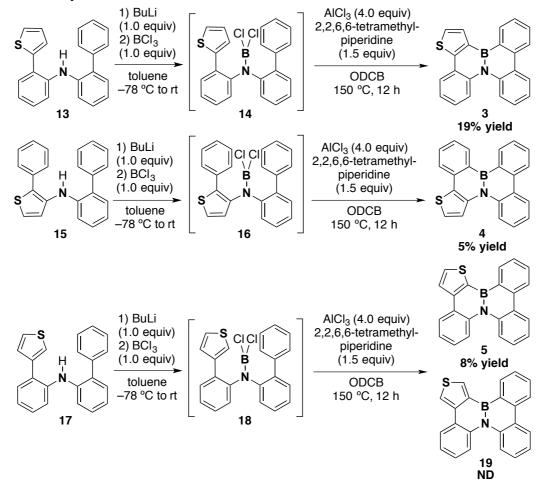



Figure 9. The Kohn–Sham HOMO and LUMO of (a) 2 and (b) 6, and overlapping adjacent HOMOs of (c) 2 and (d) 6 calculated at the B3LYP/6-31G(d) level.

3-2-6. Synthesis of BN-fused polycyclic aromatic compounds including a thiophene ring

In a further application for the introduction of another heterocyclic unit, BN-fused polycyclic aromatic compounds including a thiophene ring (3, 4, and 5) were synthesized *via* the bora-Friedel–Crafts reaction (Scheme 5). Borylation of diaryl amines (13 and 15) by treatment with BuLi and BCl₃ and subsequent tandem bora-Friedel–Crafts reaction with AlCl₃ and 2,2,6,6-tetramethylpiperidine afforded 3 and 4 in 19% and 5% yields, respectively. In the same manner, 17 gave BN-fused product 5 in 8% yield, while another conceivable cyclization product 19 was not generated under these conditions. The product yields were relatively lower in the case of the substrate with a thiophene ring than in the case of substrates without a thiophene moiety. Because the starting amines (13, 15, 17) were not recovered from the corresponding crude products, the low yield could be attributed to the formation of unidentified higher-molecular-weight by-products generated by oligomerization following the decomposition of the thiophene ring *via* desulfurization.⁹

Scheme 5. Synthesis of 3–5 *via* bora-Friedel–Crafts reaction

⁹ Miki, Y.; Sugimoto, Y.; Yamadaya, S. Sekiyu Gakkaishi 1992, 35, 332–338.

3-2-7. Regioselectivity at thiophene ring in bora-Friedel-Crafts reaction

To gain a detailed insight into the regioselectivity at the thiophene ring of **18**, the Fukui function [f(r)] and molecular orbital values were calculated by the DFT method (Figure 10). Parr and Young reported that sites with the largest Fukui function values show the highest reactivity.^{10,11} The condensed Fukui function f'(r) for nucleophilicity is defined below:

$$f^{-}(r) = \left(\frac{\partial \rho(r)}{\partial N}\right)_{\nu}^{-} = \rho_{N}(r) - \rho_{N-1}(r) \qquad (\text{eq. 1})$$

where $\rho(r)$ is the electronic density (evaluated from natural population analysis), N is the number of electrons, and r is the external potential exerted by the nucleus. A molecule is susceptible to electrophilic attack at the sites where f(r) is large. According to the calculation results for **18**, C1 has a larger value of f(r) than does C3 (0.277 vs. 0.022), and hence, the reaction might occur at the C1 position. This result is in good agreement with the selectivity at other thiophene rings for electrophilic aromatic substitution reactions.¹²

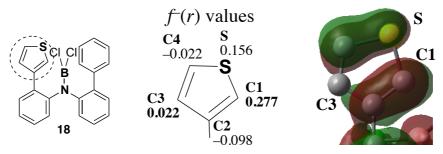


Figure 10. Condensed Fukui function f'(r) values for nucleophilicity and Kohn–Sham HOMO of 18 calculated at the B3LYP/6-31G(d) level.

¹⁰ (a) Parr, R. G.; Yang, W. J. Am. Chem. Soc. **1984**, 106, 4049–4050. (b) Parr, R. G.; Yang, W. Functional Theory of Atoms and Molecules, Oxford University Press, New York, **1989**.

¹¹ Selected examples: (a) Olah, J.; Van Alsenoy, C.; Sannigrahi, A. B. *J. Phys. Chem. A* **2002**, *106*, 3885–3890. (b) Càrdenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. *J. Phys. Chem. A* **2009**, *113*, 8660–8667. (c) Mendoza-Huizar, L. H.; Rios-Reyes, C. H. *J. Mex. Chem. Soc.* **2011**, *55*, 142–147. (d) Ghomuri, A.; Mechelleche, S. M. *J. Theor. Comput. Chem.* **2011**, *10*, 435–445.

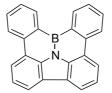
¹² Belen'kii, L. I.; Suslov, I. A.; Chuvylkin, N. D. Chem. Heterocycl. Compd. 2003, 39, 36–48.

3-3. Conclusions

of In this chapter, the synthesis highly planar 14b¹-aza-14b-borabenzo[*p*]indeno[1,2,3,4-*defg*]chrysene **1** *via* intramolecular oxidative cyclization of 4b-aza-12b-boradibenzo[g,p]chrysene **6** is described. Photophysical measurements revealed that the quantum yield of 1 is higher than that of 6, and electronic coupling calculations suggested that 1 has potential applications as an efficient n-type semiconductor material. The results indicated that the proposed cyclization methodology might be an efficient means of improving physical properties such as quantum yield or charge mobility, relative to those of the cyclization precursors. Further, BN-fused polycyclic aromatic compounds including a five-membered ring were synthesized by the bora-Friedel-Crafts reaction from the corresponding diarylamines containing a heteroaromatic ring instead of the phenyl group. In particular, pyrrole-fused derivative 2 showed crystal packing and twisted geometry similar to 6, whereas the calculation result suggested that hole mobility may be increased by changes in the electronic polarization. The proposed synthetic methodologies would allow for the easy introduction of five-membered heteroaromatic rings into various BN-fused polycyclic aromatic compounds and aid in the development of optoelectronic functionalized BN-embedded nanocarbon materials.

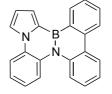
3-4. Experimental Section

General. All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under a positive pressure of argon. Air- and moisture-sensitive liquids and solutions were transferred *via* a syringe or a stainless steel cannula. Organic solutions were concentrated by rotary evaporation at *ca*. 30–400 mmHg. Gel permeation chromatography was performed on a JAIGEL-1H and 2H (20 mm i.d.) with an LC-9204 (Japan Analytical Industry Co., Ltd.).


Instrumentation. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on JEOL ECS400 (392 MHz) or BRUKER AVANCE III (600 MHz) NMR spectrometers. Proton chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the tetramethylsilane (δ 0). ¹³C NMR spectra were recorded at 98.5 or 151 MHz: carbon chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the carbon resonance of CD₂Cl₂ (δ 53.8), C₆D₆ (δ 128.0) and tetramethylsilane (δ 0). ¹¹B NMR spectra were recorded at 131 MHz: boron chemical shift values are reported in parts per million (ppm, δ scale) and are referenced to the external standard boron signal of BF₃·Et₂O (δ 0). Data are presented as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet and/or multiplet resonances, br = broad), coupling constant in hertz (Hz), signal area integration in natural numbers, and assignment (italic). IR spectra were recorded on an ATR-FTIR spectrometer (FT/IR-Spectrum One, PerkinElmer). Characteristic IR absorptions are reported in cm⁻¹. Melting points were recorded on a Yanaco MP-500V. High-resolution mass spectra (HRMS) were obtained using the electron impact (EI) method with JEOL JMS-700, JMS-SX102A. UV-visible absorption spectra were measured by JASCO Ubest V-570. Fluorescence spectra were measured by HORIBA Scientific FluoroMax-4. Absolute quantum yields were recorded on a Hamamatsu Photonics C9920-02 Absolute PL Quantum Yield Measurement System. Purity of isolated compounds was determined by GC analysis on Shimadzu GC-2010 Plus instrument equipped with an FID detector and a capillary column, ZB-1MS (Phenomenex, 10 m × 0.10 mm i.d., 0.10 µm film thickness) and/or ¹H NMR analyses.

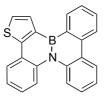
Solvent. *o*-Dichlorobenzene and anhydrous toluene were purchased from Wako Pure Chemical Industries, Ltd. (Wako) and dried over Molecular Sieves 4A and degassed before use. Water content of the solvent was determined with a Karl Fischer Moisture Titrator (MKC-610, Kyoto Electronics Company) to be less than 15 ppm.

Materials. Materials were purchased from Wako, Tokyo Chemical Industry Co., Ltd., Aldrich Inc., Hokko Chemical Industry Co., Ltd., and other commercial suppliers, and

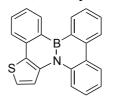

were used after appropriate purification, unless otherwise noted. Florisil[®] (100–200 mesh) and Celite[®] were purchased from Wako. Aryl halides and aryl amines were purified by distillation or recrystallization to be over 99.5% pure by GC analysis.

Synthesis of 14b¹-aza-14b-borabenzo[*p*]indeno[1,2,3,4-*defg*]chrysene (1)

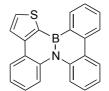
A solution of butyllithium in hexane (1.25 mL, 1.60 M, 2.0 mmol) was added slowly to a solution of 7 (0.643 g, 2.0 mmol) in toluene (10 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of boron trichloride in heptane (2.0 mL, 1.0 M, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 12 h, solvent was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (1.07 g, 8.0 mmol) and NEt'Pr₂ (0.258 g, 2.0 mmol) in o-dichlorobenzene (20 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (0.896 g, 8.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.255 g, 39% yield) as white-yellow powder. IR (neat): cm⁻¹ 3025 (Ar-H), 1613, 1596, 1545, 1505, 1488, 1464, 1450, 1416, 1351, 1321, 1300, 1281, 1206, 1160, 1144, 1048, 1002, 942, 870, 801, 766, 754, 741, 642, 630, 615, 568; mp: 348.0–349.0 °C; ¹H NMR (CS₂/CD₂Cl₂=2/1, 600 MHz) δ 7.73–7.77 (m, 4H), 7.89 (td, J = 1.2, 8.2 Hz, 2H, BCCCHCH), 8.26 (dd, J = 0.6, 7.8 Hz, 2H, NCCCH), 8.48 (dt, J = 0.6, 7.8 Hz, 2H, BCCCH), 9.23 (dd, J = 1.2, 7.8 Hz, 2H, BCCH); ¹³C NMR (CS₂/CD₂Cl₂=2/1, 151 MHz) δ 127.7 (2C), 121.8 (2C), 122.5 (2C), 124.3 (2C), 124.7 (2C), 127.3 (2C), 127.4 (2C), 131.1 (2C), 133.4 (broad, 2C, CBC), 136.4 (2C), 136.9 (2C), 139.2 (2C); HRMS (EI) m/z [M]⁺ calcd for C₂₄H₁₄NB 327.1219; observed 327.1215; Anal. calcd for C₂₄H₁₄NB C, 88.10; H, 4.31; N, 4.28. found C, 88.20; H, 4.57; N, 4.37.


Synthesis of 12b-aza-4b-boradibenzo[*l*,*k*]pyrrolo[1,2-*f*]phenanthridine (2)

A solution of butyllithium in hexane (1.25 mL, 1.60 M, 2.0 mmol) was added slowly to a solution of **12** (0.621 g, 2.0 mmol) in toluene (10 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of boron trichloride in heptane (2.0 mL, 1.0 M, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 12 h, solvent was removed *in vacuo*, and the reaction mixture was added to a solution of


aluminum trichloride (1.07 g, 8.0 mmol) and 2,2,6,6-tetramethylpiperidine (0.424 g, 3.0 mmol) in o-dichlorobenzene (20 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (0.896 g, 8.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed in vacuo, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.025 g, 4% yield) as white-yellow powder. IR (neat): cm⁻¹ 3058 (Ar-H), 1597, 1576, 1523, 1504, 1486, 1434, 1413, 1349, 1306, 1276, 1247, 1214, 1174, 1135, 1114, 1097, 1052, 1032, 929, 857, 784, 742, 723, 689, 657, 638, 604, 561, 522, 513, 492; mp: 334.2–335.0 °C; ¹H NMR (C₆D₆, 392 MHz) δ 6.72–6.73 (m, 1H, BCNCHCHCH), 6.76–6.81 (m, 1H, BCNCCHCH), 6.88 (td, J = 1.4, 7.2 Hz, 1H, BCNCCCHCH), 7.01–7.09 (m, 2H), 7.28 (dd, *J* = 1.3, 8.5 Hz, 1H, BCNCCCH), 7.35–7.39 (m, 1H, NCBCCHCH), 7.46–7.51 (m, 2H), 7.55 (dd, J = 1.3, 8.5 Hz, 1H, BCNCH), 7.80 (dd, J = 1.3, 8.5 Hz, 1H, BCNCCH), 7.86–7.89 (m, 1H, NCBNCCH), 8.09–8.13 (m, 2H), 8.71 (dd, J = 1.3, 8.5 Hz, 1H, NCBCCH); ¹³C NMR (C₆D₆, 98.5 MHz) δ 113.5, 117.6, 118.1, 120.0, 121.0, 122.6, 122.8, 122.9(2C), 123.9, 125.9, 126.7, 127.0, 127.8, 130.5, 130.6, 131.5, 135.5, 137.6, 139.0; HRMS (EI) m/z [M]⁺ calcd for C₂₄H₁₄NB 318.1328; observed 318.1324.

Synthesis of 11b-aza-3b-borabenzo[11,12]chryseno[6,5-b]thiophene (3)


A solution of butyllithium in hexane (1.25 mL, 1.60 M, 2.0 mmol) was added slowly to a solution of 13 (0.655 g, 2.0 mmol) in toluene (10 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of boron trichloride in heptane (2.0 mL, 1.0 M, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 24 h, solvent was removed *in vacuo*, and the reaction mixture was added to a solution of aluminum trichloride (1.07 g, 8.0 mmol) and 2,2,6,6-tetramethylpiperidine (0.424 g, 3.0 mmol) in o-dichlorobenzene (10 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (0.897 g, 8.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed in vacuo, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.128 g, 19% yield) as white-yellow powder. IR (neat): cm⁻¹ 3053 (Ar-H), 1601, 1571, 1514, 1496, 1484, 1452, 1435, 1411, 1330, 1306, 1284, 1237, 1162, 1144, 1110, 1048, 932, 893, 852, 815, 770, 743, 716, 641, 616, 591, 558, 516, 485; mp: 167.0–167.9 °C; ¹H NMR (C₆D₆, 392 MHz) δ 6.92–7.11 (m, 5H), 7.39 (td, J = 0.9, 7.6 Hz, 1H, BCCHCHCH), 7.50 (td, J =1.8, 7.6 Hz, 1H, BCCCHCH), 7.91–8.00 (m, 4H), 8.11–8.16 (m, 2H), 8.63 (dd, J = 0.9, 7.6 Hz, 1H, BCCH); ¹³C NMR (C₆D₆, 98.5 MHz) δ 122.1, 122.7, 122.8, 123.2, 123.4, 124.8, 125.0, 126.0, 126.2, 126.5, 126.9, 127.9, 128.1, 131.3, 132.1, 135.4, 137.3, 138.0, 138.7, 151.2; HRMS (EI) m/z [M]⁺ calcd for C₂₂H₁₄NBS 335.0940; observed 335.0926.

Synthesis of 3b-aza-11b-borabenzo[11,12]chryseno[6,5-b]thiophene (4)

A solution of butyllithium in hexane (1.25 mL, 1.60 M, 2.0 mmol) was added slowly to a solution of 15 (0.655 g, 2.0 mmol) in toluene (10 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of boron trichloride in heptane (2.0 mL, 1.0 M, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 24 h, solvent was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (1.07 g, 8.0 mmol) and 2,2,6,6-tetramethylpiperidine (0.424 g, 3.0 mmol) in o-dichlorobenzene (10 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (0.897 g, 8.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed in vacuo, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.034 g, 5% yield) as white-yellow powder. IR (neat): cm⁻¹ 3050 (Ar-H), 1600, 1560, 1484, 1443, 1388, 1322, 1284, 1099, 1053, 1014, 852, 816, 744, 732, 709, 667, 616, 591, 565, 525; mp: 207.2–208.0 °C; ¹H NMR (C_6D_6 , 392 MHz) δ 6.76 (d, J = 5.8 Hz, 1H, NCCHCHS), 7.10–7.21 (m, 2H), 7.30 (td, J = 0.9, 7.6 Hz, 1H, SCCCHCHCH), 7.35–7.45 (m, 3H), 7.51 (td, J = 0.9, 7.6 Hz, 1H, SCCCBCCCHCH), 7.90–7.95 (m, 2H), 8.19–8.22 (m, 2H), 8.74 (d, J = 7.6 Hz, 2H, BCCH); ¹³C NMR (C₆D₆, 98.5 MHz) δ 120.9, 122.4, 122.5, 123.1, 123.3, 123.4, 125.7, 125.8, 126.9, 127.1, 127.2, 127.9, 130.8, 131.3, 136.3, 136.5, 137.6, 137.8, 138.1, 138.7; ¹¹B NMR (C₆D₆, 131 MHz) δ 34.5; HRMS (EI) *m*/*z* [M]⁺ calcd for C₂₂H₁₄NBS 335.0940; observed 335.0929.

Synthesis of 11b-aza-3b-borabenzo[11,12]chryseno[5,6-b]thiophene (5)

A solution of butyllithium in hexane (1.25 mL, 1.60 M, 2.0 mmol) was added slowly to a solution of **17** (0.655 g, 2.0 mmol) in toluene (10 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of boron trichloride in heptane (2.0 mL, 1.0 M, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 24 h, solvent was removed *in vacuo*, and the reaction mixture was added to a solution of aluminum trichloride (1.07 g, 8.0 mmol) and 2,2,6,6-tetramethylpiperidine (0.424 g, 3.0 mmol) in *o*-dichlorobenzene (10 mL) at 0 °C. After stirring at 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (0.897 g, 8.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.054 g, 8% yield)

as white-yellow powder. IR (neat): cm⁻¹ 3054 (Ar-H), 1601, 1571, 1514, 1485, 1435, 1329, 1306, 1284, 1251, 1161, 1110, 1049, 932, 893, 875, 815, 742, 717, 609, 591, 559, 515, 485, 466; mp: 164.1–165.1 °C; ¹H NMR (C₆D₆, 392 MHz) δ 7.00–7.05 (m, 2H), 7.07–7.12 (m, 2H), 7.40–7.50 (m, 3H), 7.63 (d, *J* = 4.9 Hz, 1H, BCCCHS), 7.94 (dd, *J* = 1.8, 8.1 Hz, 1H, SCHCCNCCH), 8.03 (dd, *J* = 1.3, 8.5 Hz, 1H, SCHCCCCH), 8.08–8.15 (m, 3H), 8.95 (dd, *J* = 1.4, 7.6 Hz, 1H, BCCHCH); ¹³C NMR (C₆D₆, 98.5 MHz) δ 122.4, 122.7, 122.8, 123.1, 123.4 (2C), 125.5, 125.7, 125.9, 126.0, 126.4, 127.2, 127.9, 131.5, 134.2, 135.5, 138.1, 138.3, 138.7, 147.0; HRMS (EI) *m/z* [M]⁺ calcd for C₂₂H₁₄NBS 335.0940; observed 335.0943.

Crystallographic data collection and structure determination. Crystals of 1 was mounted on a Rigaku Saturn CCD diffractometer for data collection using graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Synchrotron X-ray microcrystallographic data was recorded for 2 at 100 K on beamline BL38B2 at SPring-8 ($\lambda = 0.75000$ Å). Crystal data and data statistics are summarized in Figure 11. The structures were solved by direct methods with SIR2008¹³ or SIR2004¹⁴ and refined by full-matrix least-squares techniques against F^2 (SHELXL-97)¹⁵. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions (C–H = 0.95 Å) and kept fixed. In the subsequent refinement, the function $\sum w(F_o^2 - F_c^2)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as R₁ = $\sum (||F_o| - |F_c||)/\sum |F_o|$ and wR₂ = $[\sum w(F_o^2 - F_c^2)^2 / \sum (wF_o^4)]^{1/2}$. All calculations were promed by using Crystal Structure 4.0 or Yadokari-XG 2009 and illustrations were drawn by using ORTEP–3.

¹³ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. **2007**, *40*, 609–613.

¹⁴ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. **2005**, *38*, 381–388.

¹⁵ Sheldrick, G. M. Program for the Solution of Crystal Structures; University of Göttingen, Germany, 1997.

0.080 C₂₄H₁₄BN Abs. Coefficient, cm-1 Formula 327.17 103(2) 1360.00 Formula Weight F(000) Crystal Size, mm3 0.2, 0.2, 0.02 Temperature, K 0.71075 4.9, 51.0 Wavelength, Å $2\theta_{\min}, 2\theta_{\max}, \deg$ Crystal System Orthorhombic Index Ranges -23≤h≤23 Iba2 (No. 45) –36≤k≤36 Space Group B 19.6104(8) –6≤l≤6 *a*. Å *b*, Å *c*, Å 30.5630(10) 2806 Reflections (unique) 5.16510(10) Reflections (I>2.0o(I)) 2647 α , deg 235 90 Parameters GOF on F^2 90 1.097 β , deg 90 $R_1 (I > 2.0\sigma(I))$ 0.0355 γ, deg R, w R_2 (all data) 3095.72(17) 0.0386, 0.0892 Volume, Å 1 Largest diff peak and hole, e, Å-3 0.170, -0.131 Ζ 8 Density_{calcd}, g·cm⁻³ 1.404 $\substack{C_{22}H_{15}BN_2\\318.17}$ Formula Abs. Coefficient, cm-1 0.081 Formula Weight F(000) 664.00 0.1, 0.1, 0.05 Temperature, K 100(2) Crystal Size, mm3 Wavelength, Å 0.75000 $2\theta_{\min}, 2\theta_{\max}, \deg$ 6.2, 53.0 Crystal System Orthorhombic Index Ranges –8≤h≤8 *P*2₁2₁2₁ (No. 19) 7.44630(3) B Space Group –14≤k≤14 *a*, Å –20≤l≤20 *b*, Å 12.09380(2) Reflections (unique) 2671 N *c*, Å 16.8612(2) Reflections (I>2.0o(I)) 2580 226 α , deg 90 Parameters 1.096 β , deg 90 GOF on F^2 γ, deg 90 $R_1 (I > 2.0\sigma(I))$ 0.0334 0.0350, 0.0881 Volume, Å 1518.42(3) R, w R_2 (all data) Largest diff peak and hole, e, $Å^{-3}$ 0.152, -0.219 Ζ 4 2 $Density_{calcd}, g \cdot cm^{-3}$ 1.392

Figure 11. X-ray crystal structures of 1 and 2 (left), and crystal data and structure refinement (right). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

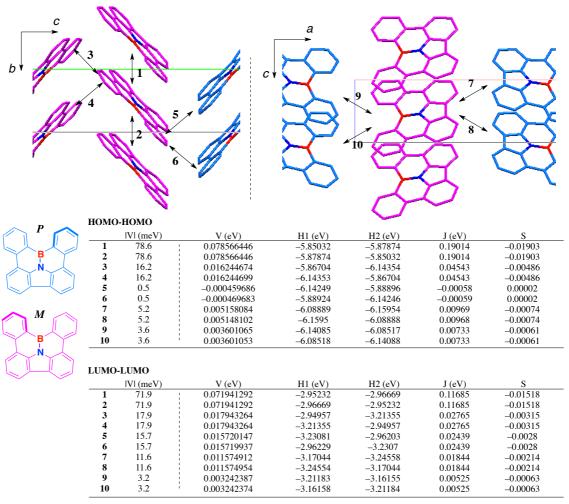
Computational studies. Molecular orbital calculations and nucleus-independent chemical shift (NICS) calculations were performed with Gaussian 09¹⁶ packages. The DFT method was employed using the B3LYP hybrid functional.¹⁷ Structures were optimized with the 6-31G(d) basis set.¹⁸ Nucleus independent chemical shifts (NICS) were evaluated by using the gauge invariant atomic orbital¹⁹ (GIAO) approach at the GIAO-B3LYP/6-31G(d) level. The reorganization energy calculations were performed using the B3LYP hybrid functional with the DZP basis set²⁰ in the ADF program.²¹ The electronic coupling calculations of dimers were performed by the local density functional VWN in the conjunction with the PW91²² gradient corrections with the DZP basis set, as implemented in the ADF program according to the literature.⁵

¹⁶ Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

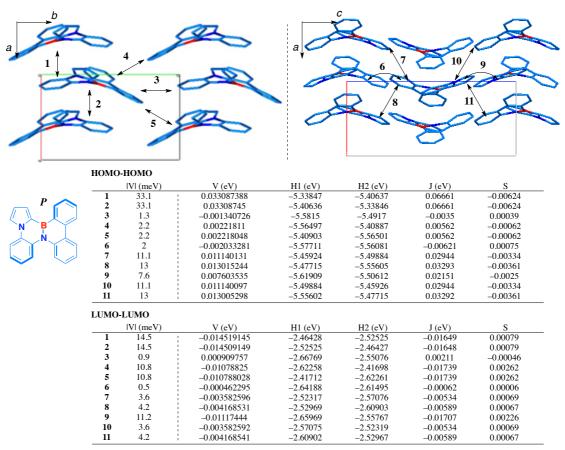
¹⁷ (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.

¹⁸ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, **1986** and references cited therein.

¹⁹ (a) Dichtfield, R. *Mol. Phys.* **1974**, *27*, 789–807. (b) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. **1990**, *112*, 8251–8260.


²⁰ van Lenthe, E.; Baerends, E. J. J. Comput. Chem. **2003**, 24, 1142–1156.

²¹ ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.


²² Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Sing, D. J.; Fiolhais,

C. Phys. Rev. B 1992, 46, 6671–6687.

Figure 12. Electron couplings V (meV) between neighboring molecules in the X-ray crystal structures of **1** at the PW91/DZP level on ADF2010 program. H atoms have been omitted for clarity. The *P*-enantiomer is shown in blue and *M*-enantiomer is shown in pink. $V (eV) = [J - 0.5S(H1 + H2)]/(1 - S^2)$, J (eV): charge transfer integral, H1 and H2 (eV): site energies, S: overlap integral.

Figure 13. Electron couplings V (meV) between neighboring molecules in the X-ray crystal structures of **2** at the PW91/DZP level on ADF2010 program. H atoms have been omitted for clarity. $V (eV) = [J - 0.5S(H1 + H2)]/(1 - S^2)$, J (eV): charge transfer integral, H1 and H2 (eV): site energies, S: overlap integral.

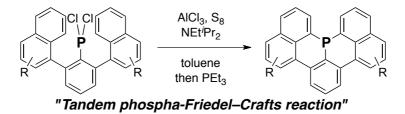
Cartesian coordinates

Ca 1	rtes	sia	n coordinat	es								
E(R	B3L	.YI	P = -1002.69	9628075 hartr	ee							
Cen	ter		Atomic A	tomic Co	ordinates	2	זרח	vī	0.0017	02477021	1 4	
Center Number		•		ype X	Y Z	E(F	CB31	_ Y I	P) = -981.7	93477931	hartr	·ee
						Cer	nter		Atomic	Atomic	Co	ordinates
1	6	0	-1.750196	3.566132	-0.063116	Nu	mbeı	r	Number	Туре	Х	Y Z
2	6	0	-3.079728	3.116513	-0.105982							
3 4	6	0	-0.733306	2.613490	-0.023492	1	6	0	-1.88651			0.498920
4 5	6 7	0 0	-1.113979	1.252400	-0.029598	2	6	0	-1.53526			0.174260
			0.000004	0.436464	0.000189	3	6	0	-2.53570			0.233689
6 7	6 6	0 0	-2.415324 -2.594865	0.760097 -0.703052	-0.063169	4	6	0	-3.83901			0.636363
8	5	0	-0.000017	-0.990218	-0.022713 0.000204	5	6	0	-4.15830			0.944134
o 9	5 6	0	-1.454609	-0.990218	0.036350	6	6	0	-3.18132			0.870951
	6	0	-3.412609			7	6	0	-0.82338			-0.290159
10	6			1.756850	-0.105093	8	6	0	-2.18309			
11 12	6	0	-3.892673	-1.248736	-0.011955	9	6	0	-0.52895			
	6	0	-1.722330	-2.963696	0.148156	10	6	0	-1.53648			
13 14	6	0	1.114024	1.252357	0.029818	11	6	0	-2.87563			
	6	0	-3.010687	-3.483734	0.166817	12	6	0	-3.17864			
15		0	0.733409	2.613463	0.023503	13	6	0	1.123191			-0.377640
16	6	0	-4.104197	-2.617417	0.074609	14	6	0	2.628778			0.104915
17	6	0	1.750339	3.566072	0.062946	15	6	0	1.528619			0.322999
18	6	0	3.079849	3.116409	0.105882	16	6	0	3.922601			0.459704
19	6	0	3.412676	1.756731	0.105152	17	6	0	4.148434			1.045621
20	6	0	2.415360	0.760012	0.063316	18	6	0	3.064066			1.325400
21	6	0	2.594847	-0.703139	0.022740	19	6	0	1.776183			0.981087
22	6	0	3.892637	-1.248848	0.011565	20	6	0	1.285994	-3.119)98	-0.849665
23	6	0	4.104097	-2.617539	-0.075054	21	6	0	2.650044	-3.312	909	-1.169865
24	6	0	3.010541	-3.483828	-0.166888	22	1	0	3.104276	-4.205	873	-1.578070
25	6	0	1.722200	-2.963757	-0.147898	23	1	0	3.214866	3.486	969	1.829723
26	6	0	1.454549	-1.582399	-0.036052	24	1	0	5.158693	1.997	547	1.313253
27	1	0	-1.532461	4.630482	-0.062382	25	1	0	-3.67294	9 3.93	6531	-1.211483
28	1	0	-3.881710	3.848745	-0.138663	26	1	0	-1.27392	1 4.57	6836	-1.536949
29	1	0	-4.462531	1.483600	-0.134592	27	1	0	0.938302	2.779	758	1.236009
30	1	0	-4.752525	-0.588355	-0.063231	28	1	0	4.752255	-0.217	393	0.305699
31	1	0	-0.896198	-3.657533	0.244677	29	1	0	-5.16981	2 -2.259	9557	1.25580
32	1	0	-3.165097	-4.555727	0.255297	30	1	0	-4.60803	8 0.064	638	0.732774
33	1	0	-5.118111	-3.009015	0.082182	31	1	0	-3.43014	2 -4.039	9686	1.121613
34	1	0	1.532650	4.630431	0.061902	32	1	0	0.489673	-3.8352	255	-0.996986
35	1	0	3.881858	3.848612	0.138556	33	1	0	-4.22012	5 1.67	5206	-0.434403
36	1	0	4.462582	1.483440	0.134871	34	1	0	0.502625	2.979	665	-0.991186
37	1	0	4.752527	-0.588488	0.062473	35	1	0	-1.11761	5 -3.438	8578	0.49185
38	1	0	5.118002	-3.009156	-0.083005	36	6	0	3.314141	-2.134	871	-0.885900
39	1	0	3.164899	-4.555833	-0.255321	37	1	0	4.355658	-1.878	746	-1.004921
40	1	0	0.896026	-3.657577	-0.244167	38	7	0	2.396617	-1.228	600	-0.413609

39	7	0	0.212747	0.500127	-0.005540				
40	5	0	-0.073529	-0.920170	-0.075848				

Center Atomic Atomic Coordinates Number Number Type X Y Z

18 (neutral geometry)


39	7	0	0.212747	0.500127	-0.005540	38	1	0	-5.577589	-2.315750	-0.093950
40	5	0	-0.073529	-0.920170	-0.075848	39	1	0	-3.547180	-0.396359	-3.364085
						40	1	0	-5.277203	-1.987510	-2.544677
						41	5	0	-0.043643	-1.093487	-0.286211
18 (neutral geometry) E(RB3LYP) = -2246.24804726 hartree						42	17	0	0.577799	-1.751129	-1.815467
						43	17	0	-0.674373	-2.253262	0.902030

18 (cation geometry)

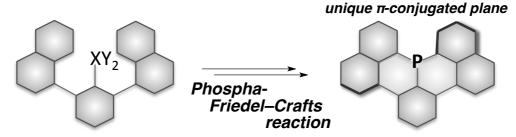
1	6	0	0.288728	2.296648	-1.397814	E(RB3LYP) = -2246.32641654 hartree						
2	6	0	0.851082	1.200391	-0.732309	Cen	tor		Atomic	Atomic Co	oordinates	
3	6	0	2.253719	1.015782	-0.736259		nber			Туре X	Y Z	
4	6	0	3.029729	1.935822	-1.465498			1			1 <i>L</i>	
5	6	0	2.462637	3.010886	-2.143409	1	6	0	-0.06944	0 2.75293	7 -0.26703	
6	6	0	1.081300	3.199221	-2.101145	2	6	0	0.653076			
7	1	0	-0.785232	2.443300	-1.351255	3	6	0	2.017162		-0.534943	
8	1	0	4.108632	1.812587	-1.466973	4	6	0	2.531280			
9	1	0	3.097968	3.704789	-2.686492	5	6	0	1.788225	3.796615	-1.420553	
10	1	0	0.620298	4.039398	-2.612505	6	6	0	0.481268	3.851408	-0.927341	
11	6	0	2.965152	-0.077814	-0.026717	7	1	0	-1.08928	9 2.81677	0.095139	
12	6	0	2.721304	-0.516800	1.255257	8	1	0	3.563585	2.604504	-1.554001	
13	1	0	1.965228	-0.176203	1.947500	9	1	0	2.225814	4.646465	-1.939369	
14	6	0	4.637291	-1.704106	0.219555	10	1	0	-0.12152	9 4.747890	-1.05813	
15	1	0	5.463589	-2.372166	0.017739	11	6	0	2.835227	0.362360	-0.262190	
16	16	0	3.823144	-1.755831	1.748746	12	6	0	2.361607	-0.610149	0.781210	
17	6	0	4.078639	-0.777846	-0.612173	13	1	0	2.456456	-0.157078	1.781114	
18	1	0	4.417855	-0.607177	-1.627755	14	6	0	4.570460	-1.204514	-0.425816	
19	7	0	-0.031187	0.299203	-0.025964	15	1	0	5.469123	-1.683784	-0.796223	
20	6	0	-0.860482	0.915883	0.983184	16	16	0	3.571590	-2.017751	0.761388	
21	6	0	-2.267340	0.764748	0.995093	17	6	0	4.051530	-0.001185	-0.860557	
22	6	0	-0.233593	1.706125	1.956864	18	1	0	4.533294	0.580031	-1.642425	
23	6	0	-2.979216	1.398715	2.030646	19	7	0	0.059927	0.437034	0.525282	
24	6	0	-0.965251	2.330522	2.962416	20	6	0	-1.18800	9 0.64206	3 1.198298	
25	1	0	0.843279	1.834598	1.913041	21	6	0	-2.44149	5 0.26138	0.665633	
26	6	0	-2.350016	2.169070	3.004162	22	6	0	-1.14259	5 1.23018	3 2.472900	
27	1	0	-4.060815	1.302074	2.041619	23	6	0	-3.58989	9 0.466468	3 1.456662	
28	1	0	-0.454467	2.935826	3.705883	24	6	0	-2.28955	2 1.43677	3.232144	
29	1	0	-2.939432	2.651572	3.778662	25	1	0	-0.16726	1 1.50281	1 2.864254	
30	6	0	-3.051487	-0.015519	-0.007596	26	6	0	-3.52766	1 1.04388	3 2.720791	
31	6	0	-4.034779	-0.916247	0.438330	27	1	0	-4.55447	3 0.182980) 1.043284	
32	6	0	-2.892184	0.155086	-1.392859	28	1	0	-2.21519			
33	6	0	-4.830310	-1.619348	-0.464967	29	1	0	-4.43826			
34	1	0	-4.157583	-1.080839	1.504992	30	6	0	-2.64311			
35	6	0	-3.687846	-0.548790	-2.297428	31	6	0	-3.43654			
36	1	0	-2.149425	0.847540		32	6	0	-2.13600			
37	6	0	-4.660399	-1.438217	-1.838681	33	6	0	-3.71759	9 -2.005572	-2.09308	

34	1	0	-3.810947	-1.975593	0.057429	40	1	0	-3.427528	-1.798386	-4.222870
35	6	0	-2.421621	-0.245508	-3.108304	41	5	0	0.780687	-0.932882	0.587738
36	1	0	-1.517979	1.165422	-1.764058	42	17	0	0.490031	-1.969731	-0.993360
37	6	0	-3.213555	-1.387819	-3.238520	43	17	0	0.164435	-1.946669	2.085968
38	1	0	-4.321762	-2.906264	-2.177756						
39	1	0	-2.014762	0.239582	-3.992459						

Tandem Phospha-Friedel–Crafts Reaction Producing Curved π -Conjugated Frameworks with a Phosphorus Ring Junction

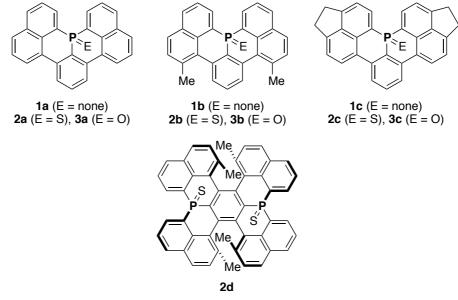
Abstract: Triaryl phosphine derivatives containing curved π -conjugated frameworks with a phosphorus ring junction have been synthesized from dichloro(*m*-teraryl)phosphines *via* a tandem phospha-Friedel–Crafts reaction. The rigid molecular frameworks enable these unprecedented phosphine compounds to form extended π -conjugation systems spreading over the whole molecule. This simple and practical strategy is suitable for further extension of π -conjugated frameworks as well as for the introduction of multiple phosphorus atoms.

4-1. Introduction


Polycyclic aromatic compounds are an important class of materials for organic electronics, dyes, sensors, and liquid crystals.¹ Incorporation of heteroatoms into a π -conjugated skeleton is a promising way to modulate their physical properties and, thus, intensive efforts have been devoted to the construction of new hetero- π -conjugated frameworks.² However, because there have not been many suitable synthetic methodologies for producing π -conjugated molecules with heteroatom junctions, the various BN-fused polycyclic aromatic compounds reported previously have been synthesized using the tandem intramolecular bora-Friedel-Crafts reaction described in Chapters 1–3. This author envisioned that this synthetic strategy could be applicable to another heteroatom such as phosphorus and that the development of a tandem phospha-Friedel–Crafts reaction³ could provide facile access to π -conjugated frameworks with phosphorus ring junctions, as shown in Scheme 1. These triarylphosphines are expected to have unique characteristics because of the phosphorus atom located in the π -conjugated ring-fusion position. To gain insight into these characteristics based on actual measurements, investigations aiming toward the establishment of this synthetic method have been started.

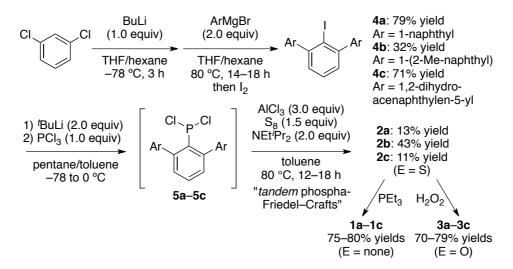
¹ Reviews: (a) Fabian, J.; Nakazumi, H.; Matsuoka, M. *Chem. Rev.* **1992**, *92*, 1197–1226. (b) Scherf, U. *J. Mater. Chem.* **1999**, *9*, 1853–1864. (c) Mitschke, U.; Bäuerle, P. *J. Mater. Chem.* **2000**, *10*, 1471–1507. (d) Watson, M. D.; Fechtenkötter, A.; Müllen, K. *Chem. Rev.* **2001**, *101*, 1267–1300. (e) Bendikov, M.; Wudl, F.; Perepichka, D. F. *Chem. Rev.* **2004**, *104*, 4891–4945. (f) Klauk, H. *Organic Electronics*, Wiley-VCH, Weinheim, **2006**. (g) Anthony, J. E. *Chem. Rev.* **2006**, *106*, 5028–5048. (h) Sergeyev, S.; Pisula, W.; Geerts, Y. H. *Chem. Soc. Rev.* **2007**, *36*, 1902–1929. (i) Wu, J.; Pisula, W.; Müllen, K. *Chem. Rev.* **2007**, *107*, 718–747.

² Reviews: (a) Yamaguchi, S.; Xu, C.; Okamoto, T. *Pure Appl. Chem.* **2006**, *78*, 721–730. (b) Yamaguchi, S.; Wakamiya, A. *Pure Appl. Chem.* **2006**, *78*, 1413–1324. (c) Baumgartner, T.; Réau, R. *Chem. Rev.* **2006**, *106*, 4681–4727. (d) Loudet, A.; Burgess, K. *Chem. Rev.* **2007**, *107*, 4891–4932. (e) Fukazawa, A.; Yamaguchi, S. *Chem. Asian J.* **2009**, *4*, 1386–1400. (f) Matano, Y.; Imahori, H. *Org. Biomol. Chem.* **2009**, *7*, 1258–1271.


³ Nontandem reactions have been reported. Phosphorus: (a) Olah, G. A.; Hehemann, D. J. Org. Chem. 1977, 42, 2190. (b) Wang, Z.-W.; Wang, L.-S. Green Chem. 2003, 5, 737–739. (c) Diaz, A. A.; Young, J. D.; Khan, M. A.; Wehmschulte, R. J. Inorg. Chem. 2006, 45, 5568–5575. (d) Diaz, A. A.; Buster, B.; Schomich, D.; Khan, M. A.; Baum, J. C.; Wehmschulte, R. J. Inorg. Chem. 2008, 47, 2858–2863. Silicon: (e) Olah, G. A.; Bach, T.; Prakash, G. K. S. J. Org. Chem. 1989, 54, 3770–3771. (f) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. 2009, 131, 14192–14193. Boron: (g) Genaev, A. M.; Nagy, S. M.; Salnikov, G. E.; Shubin, V. G. Chem. Commun. 2000, 1587–1588. (h) Vries, T. S. D.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679–14687.

Scheme 1. Tandem phospha-Friedel–Crafts reaction producing a π -conjugated framework with a phosphorus ring junction

To avoid the undesirable five-membered-ring formation occurring in heterole synthesis,^{3c, 3d, 3f-h} careful screening of additives, reaction conditions, and starting substrates has been performed. Ultimately, phosphaperylenes **1** were obtained from the *tandem* phospha-Friedel–Crafts reaction of dichloro(*m*-teraryl)phosphine ($XY_2 = PCl_2$) *via* selective 6,6-ring-closure under particular conditions. In this chapter, the experimental details of the synthesis, crystal structures, and physical properties of the phosphaperylenes **1** and their derivatives are described.



4-2. Results and Discussion

4-2-1. Synthesis of phosphaperylene derivatives *via* a phospha-Friedel–Crafts reaction

The synthetic route to *m*-terarylphosphine dichlorides 5a-5c via the phospha-Friedel-Crafts reaction is described in Scheme 2. Selective lithiation at the 2-position of 1,3-dichlorobenzene and subsequent treatment with two equivalents of aryl Grignard reagents gave *m*-teraryl iodides 4a-4c in 32%-79% yields upon iodination quenching.⁴ Lithium-halogen exchange of **4a–4c** and subsequent trapping of the resulting aryllithiums with trichlorophosphine gave *m*-terarylphosphine dichlorides 5a-5c. After the careful screening of the additives and reaction conditions, the tandem phospha-Friedel–Crafts reaction of 5a-5c was achieved through the combined use of S_8 , AlCl₃, and NEt[']Pr₂. Because the electrophilicity of arylphosphine dichloride is smaller than that of arylthiophosphine dichloride, the reaction did not proceed at all in the absence of S_8 . The reaction gave several byproducts in the absence of NEt'Pr₂. Notably, the tandem reaction selectively gave 6,6-ring-closure products, phosphine sulfides 2a-**2c** (E = S), in 11%-43% yields, and no formation of 5,5- or 5,6-ring-closure products was observed under these reaction conditions. Desulfurization of 2a-2c with triethylphosphine gave the target phosphines, 15b-phosphanaphtho[1,8-ab]perylene 1a, 6,10-dimethyl-15b-phosphanaphtho[1,8-ab]perylene **1b**. and 15b-phospha-3,4,12,13-tetrahydroacenaphtho[5,6-ab]cyclopenta[lm]perylene 1c, in 75%–80% yields. Similarly, oxidation with H_2O_2 gave the corresponding phosphine oxides **3a–3c** in 70%–79% yields.

Scheme 2. Synthesis of 1–3

⁴ (a) Du, C.-J. F.; Hart, H.; Ng, K.-K. D. *J. Org. Chem.* **1986**, *51*, 3162–3165. (b) Saednya, A.; Hart, H. *Synthesis* **1996**, 1455–1458.

4-2-2. Curved *π*-conjugated structures

The structures of phosphine sulfides 2a-2c were determined using X-ray crystallography (Figure 1). The phosphorus centers adopt a distorted tetrahedral geometry with C–P–C bond angles of $100.56(12)^{\circ}-113.31(11)^{\circ}$, $100.92(6)^{\circ}-114.41(7)^{\circ}$, and $102.4(3)^{\circ}-114.1(3)^{\circ}$, respectively. Because of the tetrahedral geometry of the phosphorus centers as well as the steric repulsion between the hydrogen atoms at the β -position of the phosphorus atom, 2a adopts a helical structure (the *M*-enantiomer is shown). On the other hand, 2b adopts a bowl-shaped structure because of steric repulsion between the methyl groups and the phenyl group. Interestingly, 2c adopts a planar structure rather than a helical structure. The structure of 1b was determined by performing Rietveld refinement on the X-ray powder diffraction data. It should be noted that the phosphine 1b and phosphine oxide 3b have structures analogous to that of the phosphine sulfide 2b.

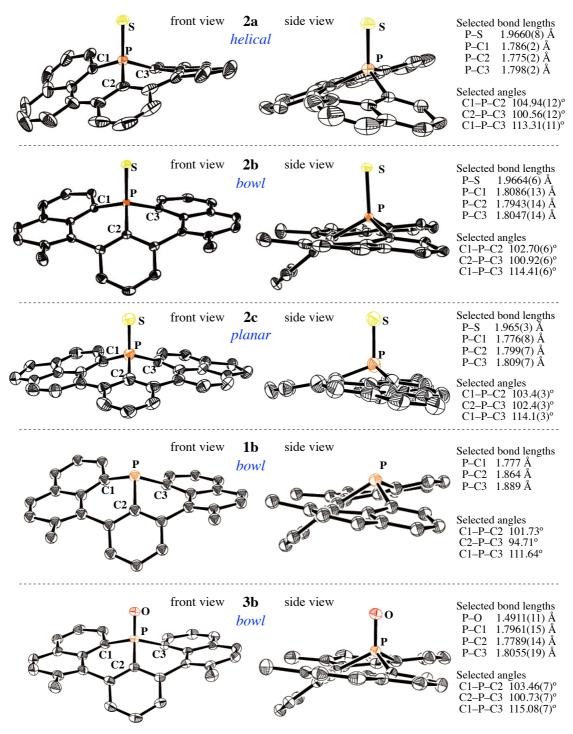
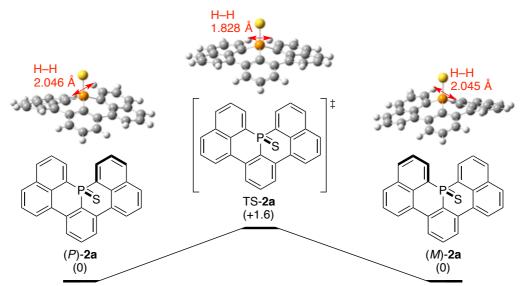



Figure 1. ORTEP drawings of 2a–2c, 1b, and 3b (*M*-enantiomers). Thermal ellipsoids show 50% probability and H atoms have been omitted for clarity.

All of these derivatives have helical chirality to some degree and formed racemic crystals; NMR analysis indicates rapid isomerization between enantiomers in the solution phase. The isomerization barrier between the *M*- and *P*-enantiomers of **2a** was estimated to be +1.6 kcal mol⁻¹ using DFT calculations (ΔG^{\ddagger} , Figure 2). The present π -conjugated frameworks are thermally stable: none of the derivatives decomposes below 600 K.

Figure 2. Energy diagram for the isomerization pathway from (*P*)-**2a** to (*M*)-**2a**. Gibbs free energies relative to (*P*)-**2a** [ΔG^{\ddagger} , B3LYP/6-31G(d)] are given in kcal mol⁻¹.

4-2-3. Theoretical studies of phosphaperylene derivatives

To reveal the differences among the electronic state distributions of the phosphines and their derivatives, DFT calculations were performed using the B3LYP hybrid functional. The results of the molecular orbital calculations indicate efficient π -conjugation over the whole molecule despite the molecules' curved structures. In particular, the HOMO and LUMO of **1a**, **2a**, and **3a** are delocalized over the whole molecular surface (Figure 3). The HOMO–LUMO gaps of **1a** (3.60 eV), **2a** (3.47 eV), and **3a** (3.68 eV) are smaller than that of the corresponding carbon analogue (3.92 eV, X = C–H instead of P in Scheme 1) and comparable to that of anthracene (3.59 eV). The HOMO of **1a** consists of the p-orbital of the phosphorus atom and the aromatic π -orbitals. In case of **2a**, the p-orbital of the sulfur atom is mostly localized on the atom. The HOMO and LUMO energies of **2a** and **3a** are lower than those of **1a** (by –0.32 and –0.45 eV, respectively, for **2a** and by –0.51 and –0.43 eV, respectively, for **3a**) because of the electron withdrawing nature of the P=S and P=O groups.

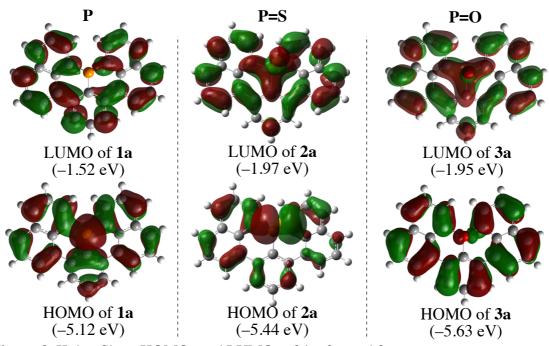
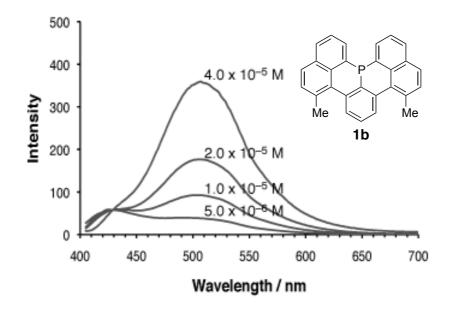


Figure 3. Kohn–Sham HOMOs and LUMOs of 1a, 2a, and 3a.

4-2-4. Photophysical and electrochemical properties


To reveal the photophysical and electrochemical properties of these phosphine derivatives, their UV-visible absorption and fluorescence spectra, absolute fluorescence quantum yields, fluorescence lifetimes, and cyclic voltammograms were measured. Table 1 summarizes the results for phosphines 1a and 1b and phosphine oxides 3a-3c. In the UV-visible absorption spectra, the phosphines and phosphine oxides have a strong absorption band with a maximum (λ_{ab}) at 379–412 nm that is assignable to the HOMO-LUMO transition, as shown by the TD-DFT calculations at the B3LYP/6-311+G(d,p) level based on the structures optimized at the B3LYP/6-31G(d)level. The fact that the absorption coefficients of phosphines 1a and 1b (log $\varepsilon = 3.63$ and 3.20, respectively) are smaller than those of phosphine oxides 3a and 3b (log $\varepsilon =$ 4.13 and 4.11, respectively) is consistent with the fact that the oscillator strengths for the HOMO-LUMO transition obtained from the TD-DFT calculations are also smaller. This difference in oscillator strengths can be explained by the substantial contribution of the atomic p-orbital of the phosphorus atom to the HOMO but not to the LUMO, as shown in Figure 3. Phosphine 1a exhibits strong green fluorescence with two peaks, one at 436 nm and a broader excimer-type emission at 540 nm. Similar excimer-type emission was also observed in the fluorescence spectrum of phosphine 1b. The intensity of the emission at 505 nm relative to the emission at 428 nm increases in proportion to the concentration of 1b. This linear correlation suggests that an excimer produces the emission at 505 nm (Figure 4). Phosphine oxides 3a, 3b, and 3c exhibit strong blue and cyan fluorescence with maximums (λ_{em}) at 418, 415, and 468 nm, respectively. In contrast, phosphine sulfide 2b did not exhibit any significant fluorescent intensity,

potentially because the lone electron pair of the sulfur atom could quench the excited state. The quantum yield of **3b** ($\Phi_f = 0.83$) is larger than that of **3a** ($\Phi_f = 0.68$). Comparable radiative rate constants for **3b** and **3a** ($k_r = 3.0 \times 10^8$ and 4.0×10^8 s⁻¹, respectively) and a smaller nonradiative rate constant for **3b** ($k_{nr} = 6.2 \times 10^9 vs. 1.9 \times 10^8$ s⁻¹) indicate that the methyl substituents make the conformation more rigid and suppress the nonradiative decay process. On the other hand, **3c** shows lower fluorescence efficiency ($\Phi_f = 0.20$) than **3a** as well as a smaller radiative rate constant ($k_r = 3.9 \times 10^7$ s⁻¹) and a comparable nonradiative rate constant ($k_{nr} = 1.6 \times 10^8 s^{-1}$).

Compd	λ_{ab}^{c} (nm)	$\log \epsilon$ (M ⁻¹ cm ⁻¹)	$\lambda_{\rm em}^{\ \ d}$ (nm)	Φ_{f}^{e}	τ_{s}^{f} (ns)	$\frac{k_{\rm r}/k_{\rm nr}^{g}}{(10^8 {\rm s}^{-1})}$	E_{ox}^{h} (V)	E_{red1}^{h} (V)	E_{red2}^{h} (V)
<u>1a</u>	407	3.63	436	i		_	+0.38	-2.47	
			540 428	_ i			+0.37		
1b	400	3.20		_ '	_	_	+0.37		_
			505					(-2.53)	
3a	388	4.13	418	0.68	1.72	4.0/1.9	_	-2.05	-2.50
						1		(-2.02)	(-2.44)
3 b	379	4.11	415	0.83	2.74	3.0/0.62	_	-2.17	-2.59
						1		(-2.14)	(-2.50)
3 c	412	3.90	468	0.20	5.11	0.39/1.6	_	-2.01	-2.46
								(-1.98)	(-2.43)

Table 1. Photophysical^{*a*} and electrochemical^{*b*} data.

^{*a*} UV-visible absorption and fluorescence measurements were made in CH₂Cl₂ (0.02 and 0.01 mM, respectively). ^{*b*} Redox potentials were determined by performing cyclic voltammetry in MeCN with 0.10 M *n*-Bu₄N⁺PF₆⁻. ^{*c*} Only the longest-wavelength absorption maxima are shown. ^{*d*} Emission maxima upon excitation at the 360 nm (**3a–3c**) and 400 nm (**1a** and **1b**). ^{*e*} Absolute fluorescence quantum yields determined using a calibrated integrating sphere system with $\leq 3\%$ errors. ^{*f*} Fluorescence lifetime. ^{*g*} The radiative rate constant (k_r) and non-radiative rate constant (k_{nr}) were calculated from Φ_f and τ_s using the formulas $k_r = \Phi_f/\tau_s$ and $k_{nr} = (1 - \Phi_f)/\tau_s$. ^{*h*} Oxidation (E_{ox}) and reduction (E_{red1}, E_{red2}) potentials are given in V versus the ferrocene/ferrocenium couple. For reversible processes, the corresponding half-redox potentials (E_{1/2}) are given in parentheses. ^{*i*} The Φ_f of **1a** and **1b** have not been determined because partial *in situ* P-oxidation during the measurements introduces errors.

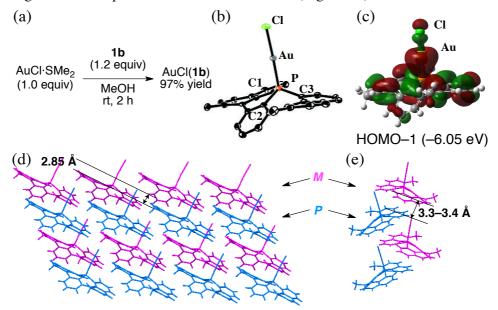
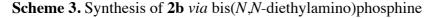


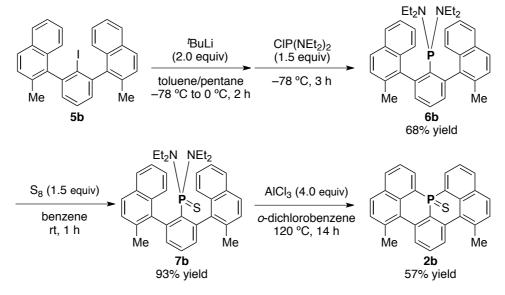
Figure 4. Fluorescence spectra of 0.5, 1.0, 2.0, and 4.0×10^{-5} M solutions of **1b** in CH₂Cl₂ normalized at 428 nm.

In the cyclic voltammetry measurements of the redox potential, phosphines **1a** and **1b** show oxidation and reduction waves with peak potentials at +0.38 and -2.47 and at +0.37 and -2.57 V, respectively (vs. ferrocene/ferrocenium). P-oxidation leads to a positive shift in the redox potential: phosphine oxides **3a** and **3b** show no oxidation wave but two reversible reduction waves with peak potentials at -2.05 and -2.50 and at -2.17 and -2.59 V, respectively. The positive shift of the reduction wave from **1a** to **3a** (0.42 V) is consistent with that estimated in the DFT calculations (0.43 eV). The methyl substituents lead to small negative shifts ($\Delta E = 0.01-0.12$ V), albeit with substantial changes in the molecular conformation. Phosphine oxide **3c** also shows two reversible reduction waves with peak potentials at -2.06 V.

4-2-5. Gold complex of 1b: Synthesis, electronic structure, and molecular structure

The ability of **1b** to coordinate with metals has been demonstrated by the efficient formation (97% yield) of a 1:1 complex with AuCl (Figure 5a). The X-ray crystal structure shows a P–Au distance of 2.2343(12) Å (Figure 5b), which is comparable with those of AuCl(PPh₃) and AuCl(P'Bu₃) (2.233 and 2.253 Å, respectively).⁵ Molecular orbital calculations indicate efficient conjugation between the atomic orbitals of the gold center and the aromatic π -orbitals of **1b** (Figure 5c). These observations suggest that the novel π -conjugated phosphines could offer potential utility not only as organic electronics materials but also as ligands for transition metal catalysis. The AuCl(**1b**) complex has a unique packing structure owing to the bowl-shaped conformation of **1b**: the complexes are arranged in an offset face-to-face stacking array with a CH– π distance of 2.85 Å (Figure 5d). Each array consists of a one-handed helical enantiomer (*P*, blue; *M*, pink) and adopts a herringbone-like arrangement with partial π -stacking and an interplanar distance of 3.3–3.4 Å (Figure 5e).

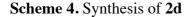


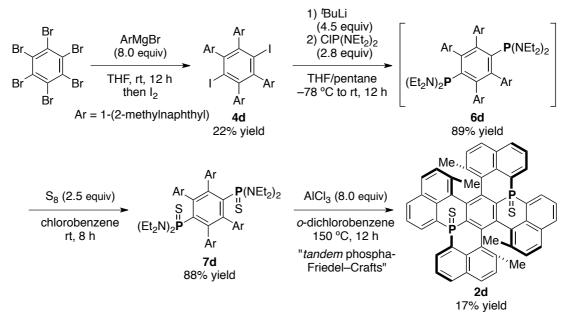

Figure 5. (a) Preparation, (b) ORTEP drawing, (c) Kohn–Sham HOMO–1, and (d) front view and (e) side view of the packing structure (*P*-enantiomer, blue; *M*-enantiomer, pink) of AuCl(**1b**). Selected bond lengths (Å) and angles (deg): Au–Cl = 2.2945(12), Au–P = 2.2343(12), P–C1 = 1.805(6), P–C2 = 1.786(5), P–C3 = 1.815(6), and P–Au–Cl = 175.13(6).

⁵ (a) Banditelli, G.; Bandini, A. L.; Minghetti, G.; Bonati, F. *Can. J. Chem.* 1981, 59, 1241–1246.
(b) Schmidbaur, H.; Brachthäuser, B.; Steigelmann, O.; Beruda, H. *Chem. Ber.* 1992, *125*, 2705–2710.

4-2-6. Modification of the phospha-Friedel–Crafts reaction: An excess-base–free method

Compound **2b** was also synthesized *via* bis(N,N-diethylamino) phosphine, as shown in Scheme 3. Lithium-halogen exchange in 4b and subsequent trapping of the aryllithium bis(N,N-diethylamino)chlorophosphine resulting with gave *m*-terarylbis(N,N-diethylamino)phosphine **6b**. After sulfurization of **6b** by S₈, **2b** was obtained via the tandem phospha-Friedel–Crafts reaction of **7b** with AlCl₃. NEtⁱPr₂ is not necessary for this reaction because of the absence of any acidic side product. This method has several advantages over the method shown in Scheme 2: isolation of intermediate 7b and fine-tuning of the reaction conditions of the phospha-Friedel-Crafts reaction are possible. The lack of acidic side products suppresses undesired side reactions and eliminates the necessity of excess amounts of base additives. These features are practical advantages for the synthesis of molecules containing extended π -conjugation systems or multiple phosphorus atoms, such as the bisphosphine compounds described in the next section.





4-2-7. Synthesis of distorted bisphosphine

The synthesis of a double-helical bis(thiophospha)pentacene derivative 2d demonstrates that multiple phosphorus atoms can be introduced into a π -conjugated framework using this synthetic strategy (Scheme 4). In this synthesis, hexabromobenzene was treated with eight equivalents of aryl Grignard reagents, which gave 2,3,5,6-tetraaryl-1,4-diiodobenzene 4d in 22% yield upon iodination quenching. Lithium-halogen exchange in 4d and subsequent trapping of the resulting aryllithium with bis(*N*,*N*-diethylamino)chlorophosphine gave 2,3,5,6-tetraaryl-1,4-bisphophine 6d in 89% yield. After sulfurization of 6d by S₈, 2d was obtained *via* the tandem phospha-Friedel–Crafts reaction of 7d with AlCl₃ in 3% overall yield from

hexabromobenzene. The tandem reaction of the corresponding p-phenylenebis(dichlorophosphine) did not give the target compound **2d** with or without NEt^{*i*}Pr₂.

The unexpected double-helical structure⁶ of **2d** was confirmed by the X-ray crystallography (Figure 6). The molecule **2d** possesses C_2 symmetry with a *cis* arrangement of the two sulfur atoms (S–S' distance: 6.402 Å). The two [5]helicene-like fragments of the same helicity (the *M*, *M*'-isomer is shown in Figure 6a) share the central benzene ring and two phosphorus atoms. In the [5]helicene fragment, the torsion angles for each ring are 14.55° for C10–C12–C8–C6, 32.11° for C6–C8–C4–C2, 25.48° for C2–C4–C5'–C2', 28.14° for C2'–C5'–C9'–C7', and 11.56° for C7'–C9'–C13'–C11'. Because of the opposite torsion strains introduced by the two independent helicities, the central benzene ring has a large bending angle (23.0°, Figure 6b) that is comparable to that of [1.1]paracyclophane⁷ (24.3°), one of the most distorted aromatic compounds. The aromaticities of the six-membered ring in **2d** were evaluated by performing a NICS(0) analysis (Figure 7). The relatively small value of –4.4 in the center of the benzene ring indicates a decrease in aromaticity because of the torsion (planar benzene: –8.0).⁸ Despite the highly distorted structure, **2d** was found to be stable even at 600 K under an air atmosphere.

⁶ Selected papers: (a) Shiraishi, K.; Rajca, A.; Pink, M.; Rajca, S. J. Am. Chem. Soc. **2005**, *127*, 9312–9313. (b) Wang, Z.; Shi, J.; Wang, J.; Li, C.; Tian, Z.; Cheng, Y.; Wang, H. Org. Lett. **2010**, *12*, 456–459.

⁷ Kawai, H.; Suzuki, T.; Ohkita, M.; Tsuji, T. Angew. Chem., Int. Ed. **1998**, 37, 817–819.

⁸ Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. *Chem. Rev.* **2005**, *105*, 3842–3888.

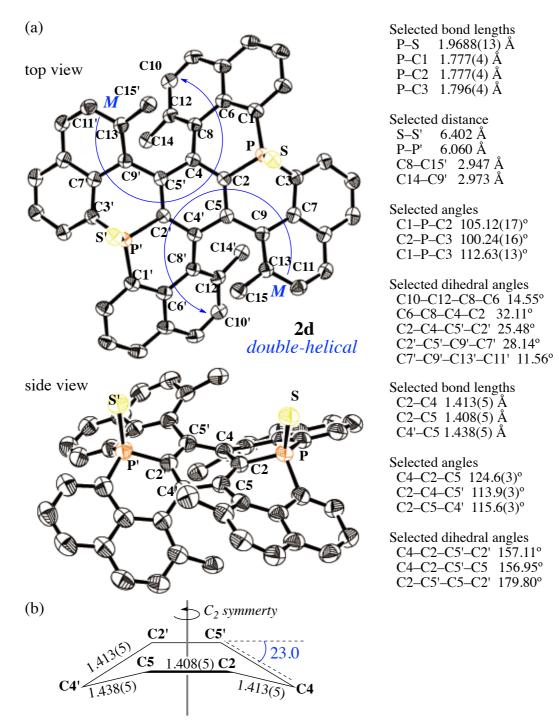
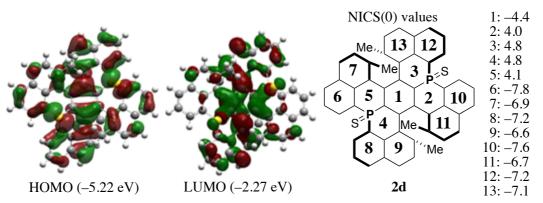



Figure 6. (a) ORTEP drawing of (M, M')-2d and (b) geometric details of the central benzene ring. Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

Figure 7. Kohn–Sham MOs of **2d** calculated at the B3LYP/6-31G(d) level (left) and NICS(0) values calculated at the GIAO/B3LYP/6–311+G(d, p) level (right).

4-3. Conclusions

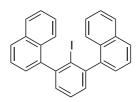
Novel tandem intramolecular phospha-Friedel-Crafts reactions have been developed, and a series of curved π -conjugated molecules with phosphorus ring junctions have been synthesized based on the newly developed C-P bond formation reaction. In this cyclization reaction, additions of NEt'Pr₂ and sulfur play important roles in improving the selectivity and enhancing the electrophilic reaction activity, respectively. Three types of triarylphosphines containing phosphaperylene frameworks (1a-c) and their chalcogenides (2a-c, 3a-c) have been synthesized and characterized. Because of the tetrahedral geometry of the phosphorus centers as well as steric interactions of the substituents, these π -conjugated molecules adopt diverse structures such as helical, bowed, and planar shapes. The rigid molecular frameworks enable these unprecedented phosphine compounds to form π -conjugation systems spread over the whole molecule. Differences between the physical properties of the phosphines and their chalcogenides were also revealed. In particular, the absorption coefficients of the phosphines 1a were smaller than those of phosphine oxides 3a because of the substantial contribution of the atomic p-orbital of the phosphorus atom to the HOMO but not to the LUMO. Phosphines (1a-b) and phosphine oxides (3a-c) exhibit strong fluorescence; however, phosphine sulfide did not exhibit any significant fluorescent intensity, potentially because the lone electron pair of the sulfur atom could quench the excited state.

The double-helical bis(thiophospha)pentacene derivative 2d has also been synthesized using this synthetic strategy. Although it possesses a distorted structure, thermal decomposition was not observed even at 600 K. The simple and practical synthetic method is suitable for further extension of π -conjugated frameworks as well as the introduction of multiple phosphorus atoms, and it may spur a bottom-up approach to phosphorus-embedded nanocarbons. The synthesized molecules are potentially useful for various applications such as construction of supramolecular metal complexes.

4-4. Experimental Section

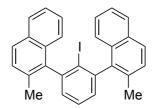
General. All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under a positive pressure of argon or nitrogen. Air- and moisture-sensitive liquids and solutions were transferred *via* a syringe or a stainless steel cannula. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck, #1.05715.0009). TLC plates were visualized by exposure to ultraviolet light (254 nm) and/or by immersion in an acidic staining solution of *p*-anisaldehyde followed by heating on a hot plate. Organic solutions were concentrated by rotary evaporation at *ca*. 30–400 mmHg. Flash column chromatography was performed on Merck silica gel 60 (spherical, neutral, 140–325 mesh) as described by Still et al.⁹ Gel permeation chromatography was performed on a JAIGEL-1H and 2H (20 mm i.d.) with an LC-918 (Japan Analytical Industry Co., Ltd.).

Instrumentation. Proton nuclear magnetic resonance (¹H NMR), carbon nuclear magnetic resonance (¹³C NMR), phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded on JEOL ECS400 (392 MHz) or BRUKER AVANCE III (600 MHz) NMR spectrometers. Proton chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane. ¹³C NMR spectra were recorded at 98.5 or 151 MHz: carbon chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of CD₂Cl₂ (δ 53.8). ³¹P NMR spectra were recorded at 158.6 MHz: Phosphorus chemical shift values are reported in parts per million (ppm, δ scale) and are referenced to the external standard phosphorus signal of $(PhO)_3P=O(CDCl_3, \delta-16.4)$ or PPh₃ (CD₂Cl₂, δ –6.0). Data are presented as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m =multiplet and/or multiplet resonances, br = broad), coupling constant in hertz (Hz), signal area integration in natural numbers, and assignment (italic). IR spectra were recorded on an ATR-FTIR spectrometer (FT/IR-Spectrum One, PerkinElmer). Characteristic IR absorptions are reported in cm⁻¹. Melting points were recorded on a Yanaco MP-500D. High-resolution mass spectra (HRMS) were obtained using the electron impact (EI) method or fast atom bombardment (FAB) method with JEOL JMS-700, JMS-HX110A and JMS-SX102A. UV-visible spectra were measured by JASCO Ubest V-570. Fluorescence spectra and absolute quantum yields were recorded on a Hamamatsu Photonics C9920-02 Absolute PL Quantum Yield Measurement System. Fluorescence lifetimes were recorded on a HORIBA FluoroCube 1000-U. Cyclic voltammetry was conducted on a BAS Electrochemical Analyzer ALS 620C using a three-electrode cell with a glassy carbon working electrode, a platinum wire counter electrode, and an Ag/AgNO₃ reference electrode. Purity of isolated compounds


⁹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.

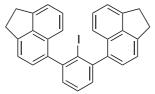
was determined by GC analysis on Shimadzu GC-17A instrument equipped with an FID detector and a capillary column, InertCap 1MS (GL Sciences Inc., 30 m × 0.25 mm i.d., 0.25 μ m film thickness) and/or ¹H NMR analyses.

Solvent. Anhydrous tetrahydrofuran (THF) and toluene were purchased from Wako Pure Chemical Industries, Ltd. (Wako) and dried over Molecular Sieves 4A and degassed before use. Water content of the solvent was determined with a Karl Fischer Moisture Titrator (MKC-210, Kyoto Electronics Company) to be less than 15 ppm.


Materials. Materials were purchased from Wako, Tokyo Chemical Industry Co., Ltd., Aldrich Inc., and other commercial suppliers, and were used after appropriate purification, unless otherwise noted. Florisil[®] (100–200 mesh) was purchased from Wako. Arylmagnesium bromides (ArMgBr) were prepared from the corresponding aryl bromides and magnesium (turnings) using a standard method and titrated before use. Aryl halides were purified by distillation or recrystallization to be over 99.5% pure by GC analysis.

Synthesis of 1,1'-(2-iodo-1,3-phenylene)dinaphthalene (4a)

A solution of butyllithium in hexane (30.7 mL, 1.63 M, 50 mmol) was added slowly to a solution of 1,3-dichlorobenzene (7.35 g, 50 mmol) in THF (80 mL) at -78 °C under argon. After 2 h, reaction mixture was added to a suspension of 1-naphthylmagnesium bromide in THF (100 mL, 1.00 M, 0.10 mol) at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was allowed to warm to 80 °C and stirred for 18 h. Iodine (19.0 g, 75 mmol) was added to the reaction mixture at 0 °C. After stirring at room temperature for 30 min, a saturated aqueous solution of Na₂SO₃ (150 mL) was added. The aqueous layer was separated and extracted with diethyl ether (100 mL, three times). The organic layers were combined and washed with a saturated aqueous solution of NaCl (200 mL). The organic layer was dried over MgSO₄ and condensed *in vacuo*. The resultant yellow residue was triturated with hexane by using a sonicator to give the title compound as a white-yellow solid (18.1 g, 79% yield, > 98% pure on GC analysis). IR (neat): cm⁻¹ 3049 (Ar-H), 1506, 1380, 1011, 799, 775, 733, 699; mp: 205.6–206.4 °C; ¹H NMR (CD₂Cl₂, 400 MHz) δ 7.39–7.61 (m, 13H), 7.90–7.96 (m, 4H); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 106.9–107.2 (two peaks derived from axial diastereomers), 125.6 (2C), 126.2, 126.3, 126.4, 126.5, 126.6, 127.3, 127.5, 128.1, 128.2, 128.4 (2C), 128.5, 128.6, 130.1 (2C), 131.9 (2C), 133.9 (2C), 143.5, 143.6, 146.8, 146.9; HRMS (FAB) m/z [M]⁺ calcd for C₂₆H₁₇I 456.0375; observed 456.0379.

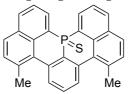

Synthesis of 1,1'-(2-iodo-1,3-phenylene)bis(2-methylnaphthalene) (4b)

A solution of butyllithium in hexane (18.3 mL, 1.64 M, 30 mmol) was added slowly to a solution of 1,3-dichlorobenzene (4.41 g, 30 mmol) in THF (40 mL) at -78 °C under argon. After 2 h, a solution of (2-methylnaphthalen-1-yl)magnesium bromide in THF (69.8 mL, 0.86 M, 60 mmol) was added at 0 °C. After stirring at room temperature for 1 h, the reaction mixture stirred at 80 °C for 14 h. Iodine (8.38 g, 33 mmol) was added to the reaction mixture at 0 °C. After stirring at room temperature for 30 min, a saturated aqueous solution of Na₂SO₃ (100 mL) was added. The aqueous layer was separated and extracted with diethyl ether (100 mL, three times). The organic layers were combined and washed with a saturated aqueous solution of NaCl (200 mL). The organic layer was dried over MgSO₄ and condensed *in vacuo*. The resultant yellow residue was triturated

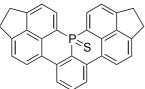
with hexane by using a sonicator to give the title compound as a white-yellow solid (4.65 g, 32% yield, > 98% pure on GC analysis). IR (neat): cm⁻¹ 3837, 3735, 3045 (Ar-H), 1595, 1508, 1451, 1375, 1213, 1026, 1013, 866, 856, 809, 797, 781, 744, 691, 673; mp: 169.9–170.9 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 2.25–2.29 (two peaks derived from axial diastereomers, 6H, *CH*₃), 7.24–7.45 (m, 10H), 7.66 (t, *J* = 7.3 Hz, 1H, CCHCHCHC), 7.83–7.88 (m, 4H); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 20.5 (2C), 107.8, 125.3 (2C), 125.6, 125.7 (2C), 126.5 (2C), 128.0, 128.1 (2C), 128.2, 129.0 (2C), 129.2 (2C), 129.7 (2C), 132.4 (2C), 133.7 (2C), 141.3 (2C), 146.3 (2C); HRMS (FAB) *m/z* [M]⁺ calcd for C₂₈H₂₁I 484.0688; observed 484.0686.

Synthesis of 5,5'-(2-iodo-1,3-phenylene)bis(1,2-dihydroacenaphthylene) (4c)

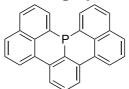
The reaction was carried out according to the synthetic procedure for **4b** described above on a 0.20 mol scale by using a solution of butyllithium in hexane (122.7 mL, 1.63 M, 0.20 mol), 1,3-dichlorobenzene (29.4 g, 0.20 mol) in THF (300 mL), a solution of (1,2-dihydroacenaphthylen-5-yl)magnesium bromide in THF (400 mL, 1.00 M, 0.40 mol) and iodine (101.5 g, 0.40 mol). Conditions: 0 °C, 2 h then 80 °C, 14 h. The title compound (72.6 g, 71% yield, > 99% pure on GC analysis) was obtained as a white-yellow solid after trituration with hexane, methanol and acetonitrile. IR (neat): cm⁻¹ 3837, 3734, 3030 (Ar-H), 1604, 1574, 1499, 1444, 1422, 1398, 1367, 1268, 1216, 1112, 1009, 893, 838, 798, 772, 745, 731; mp: 266.7–267.6 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 3.43–3.46 (m, 8H, CH₂), 7.26–7.48 (m, 12H), 7.53 (dt, *J* = 2.8, 7.6 Hz, 1H, ICCCHC*H*); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 30.5 (2C), 30.9 (2C), 107.2–107.4 (two peaks derived from axial diastereomers), 119.1, 119.8 (2C), 121.2, 121.3, 128.0, 128.1, 128.3, 128.4, 129.0, 129.2, 130.0 (2C), 130.2, 130.3, 139.2 (2C), 139.5 (2C), 146.5 (2C), 146.6 (2C), 146.7, 146.8; HRMS (FAB) *m*/*z* [M]⁺ calcd for C₃₀H₂₁I 508.0688; observed 508.0680.


Synthesis of 15b-(thiophospha)naphtho[1,8-ab]perylene (2a)

A solution of tertiary butyllithium in pentane (2.58 mL, 1.55 M, 4.0 mmol) was added slowly to a solution of **4a** (0.913 g, 2.0 mmol) in toluene (20 mL) at -78 °C under argon. After 1 h, the solution was allowed to warm to 0 °C and stirred for 1 h,

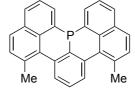

trichlorophosphine (0.275 g, 2.0 mmol) was added to reaction mixture at -78 °C. After stirring at room temperature for 2 h, pentane was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (0.800 g, 6.0 mmol), sulfur powder (96.0 mg, 3.0 mmol) and NEt'Pr₂ (0.517 g, 4.0 mmol) in toluene (10 mL) at 0 °C. After stirring at 80 °C for 14 h, 1,4-diazabicyclo[2.2.2]octane (0.673 g, 6.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®] and Florisil[®]. After the solvent was removed in vacuo, the crude product was purified by chromatography on silica gel (20%, 50% dichloromethane in toluene) to obtain the title compound (0.102 g, 13% yield, > 99% pure on GC analysis) as yellow solid. IR (neat): cm⁻¹ 3045 (Ar-H), 1565, 1442, 1354, 1257, 1212, 1192, 1147, 1084, 924, 831, 796, 767, 713, 649, 628, 585; mp: 348.8–349.5 °C; ¹H NMR (392 MHz, CD₂Cl₂) δ 7.77–7.87 (m, 5H), 8.07 (d, J = 8.2 Hz, 2H, PCCHCHCH), 8.18 (d, J = 8.2 Hz, 2H, PCCHCHCHCCH), 8.22 (dd, J = 4.1, 8.2 Hz, 2H, PCCCH), 8.57 (d, J = 7.8 Hz, 2H, PCCCCH), 8.62 (dd, J = 7.3, 14.2 Hz, 2H, PCCH); ¹³C NMR (CD₂Cl₂, 151 MHz) δ 123.6, 124.1, 125.8, 126.5, 126.6, 126.7, 126.8, 127.4 (2C), 127.6, 128.2, 128.6 (2C), 130.0, 130.1, 131.1 (2C), 131.8 (2C), 131.9, 132.9, 133.0, 134.3, 134.4, 137.7, 137.8; ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ -7.59; HRMS (FAB) m/z [M+H]⁺ calcd for C₂₆H₁₆PS 391.0710; observed 391.0712.

Synthesis of 6,10-dimethyl-15b-(thiophospha)naphtho[1,8-ab]perylene(2b)

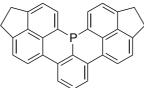

The reaction was carried out according to a procedure similar to that described for the synthesis of 2a on a 2.0 mmol scale by using a solution of tertiary butyllithium in pentane (2.58 mL, 1.55 M, 4.0 mmol), a solution of 4b (0.969 g, 2.0 mmol) in toluene (20 mL), trichlorophosphine (0.275 g, 2.0 mmol), a solution of aluminum trichloride (0.800 g, 6.0 mmol), sulfur powder (96.0 mg, 3.0 mmol) and NEtⁱPr₂ (0.517 g, 4.0 mmol) in toluene (10 mL). Conditions: 0 °C, 1 h; room temperature, 2 h; then 80 °C, 12 h. The title compound (0.363 g, 43% yield, > 99\% pure on GC analysis) was obtained as a white-yellow solid after silica gel chromatography (20%, 50% dichloromethane in toluene). IR (neat): cm⁻¹ 3735, 3050 (Ar-H), 2943, 1593, 1572, 1499, 1443, 1360, 1328, 1227, 1147, 1134, 1075, 924, 899, 831, 815, 731, 664, 637, 580; mp: decomposes 380 °C; ¹H NMR (392 MHz, CD₂Cl₂) δ 2.99 (s, 6H, CH₃), 7.57 (t, J = 8.2 Hz, 1H, PCCCHCH), 7.66 (d, J = 8.7 Hz, 2H, CH₃CH), 7.70–7.75 (m, 4H), 7.89 (d, J = 8.7 Hz, 2H, CH₃CHCH), 8.06 (d, J = 8.2 Hz, 2H, PCCHCHCH), 8.58 (dd, J = 7.3, 13.7 Hz, 2H, PCCH); ¹³C NMR (CD₂Cl₂, 98.5 MHz) & 24.2 (2C), 125.6, 125.8, 127.6, 128.5, 129.0 (2C), 129.7, 130.3 (2C), 130.4 (2C), 130.9 (2C), 131.0, 131.1, 131.8 (2C), 132.1 (2C), 132.2 (3C), 136.6 (2C), 138.6 (2C); ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ -8.04; HRMS (EI) m/z [M]⁺ calcd for C₂₈H₁₉PS 418.0945; observed 418.0946.

Synthesis of 15b-thiophospha-3,4,12,13-tetrahydroacenaphtho[5,6-*ab*]cyclopenta [*lm*]perylene (2c)

The reaction was carried out according to a procedure similar to that described for the synthesis of 2a on a 2.0 mmol scale by using a solution of tertiary butyllithium in pentane (2.52 mL, 1.59 M, 4.0 mmol), a solution of 4c (1.02 g, 2.0 mmol) in toluene (12 mL), trichlorophosphine (0.275 g, 2.0 mmol) and a solution of aluminum trichloride (0.800 g, 6.0 mmol), sulfur powder (96.0 mg, 3.0 mmol) and NEtⁱPr₂ (0.517 g, 4.0 mmol) in toluene (10 mL). Conditions: 0 °C, 1 h; room temperature, 2 h; then 80 °C, 18 h. The title compound (0.097 g, 11% yield) was obtained as a yellow solid after purification by GPC (eluent: CHCl₃). IR (neat): cm⁻¹ 3036 (Ar-H), 2914, 2827, 1598, 1559, 1442, 1412, 1366, 1304, 1252, 1205, 1190, 1091, 850, 834, 788, 708, 648, 630, 590, 570; mp: decomposes 420 °C; ¹H NMR (392 MHz, CD₂Cl₂) δ 3.47–3.64 (m, 8H, CH₂), 7.59 (d, J = 7.4 Hz, 2H, PCCCCHCH), 7.68 (d, J = 7.8 Hz, 2H, PCCHCH), 7.74 (t, J = 8.2 Hz, 1H, CHCHCH), 8.26 (dd, J = 4.1, 8.2 Hz, 2H, CHCHCH), 8.52 (d, J = 7.4 Hz, 2H, PCCCCH), 8.61 (dd, J = 7.8, 13.8 Hz, 2H, PCCH); ¹³C NMR (CD₂Cl₂, 151) MHz) & 30.6 (2C), 31.5 (2C), 121.2, 121.3 (3C), 125.1 (2C), 125.6, 125.8, 126.7 (2C), 128.3 (2C), 128.5 (2C), 129.3 (2C), 130.9, 131.3, 132.6 (2C), 132.7 (2C), 133.6 (2C), 149.6, 150.2; ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ -8.07; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₃₀H₂₀PS 443.1023; observed 443.1034. Anal. calcd for C₃₀H₁₉PS C, 81.43; H, 4.33, found C, 81.16; H, 4.46.

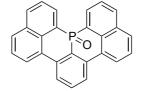

Synthesis of 15b-phosphanaphtho[1,8-ab]perylene (1a)

Triethylphosphine (20.0 mg, 0.17 mmol) was added to a solution of **2a** (59.0 mg, 0.15 mmol) in chlorobenzene (1.0 mL) at 0 °C under argon. After stirring at 120 °C for 12 h, the solution was condensed *in vacuo*, and triturated with hexane by using a sonicator to give the title compound as a yellow solid (40.0 mg, 75% yield, > 99% pure on GC analysis). IR (neat): cm⁻¹ 3045 (Ar-H), 1562, 1491, 1438, 1401, 1354, 1317, 1188, 1150, 1082, 969, 822, 790, 763, 753, 697, 578; mp: 171.0–171.7 °C; ¹H NMR (C₆D₆, 392 MHz) δ 7.14 (t, *J* = 8.2 Hz, 1H, PCCCHC*H*), 7.24 (dd, *J* = 6.9, 7.8 Hz, 2H, PCCHC*H*), 7.25 (dd, *J* = 8.2, 8.7 Hz, 2H, PCCCCH*CH*), 7.57 (dd, *J* = 8.2 Hz, 2H, PCCCHC*H*), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H, PCCCCH*C*), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H, PCCCCH*C*), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H, PCCCCH*C*), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H, PCCCC*H*), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H, PCCCC*H*), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H, PCCCCCH), 7.57 (dd, *J* = 2.3, 8.2 Hz, 2H), PCCCCCH), 7.57 (

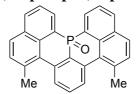

PCCC*H*), 7.87 (d, *J* = 7.8 Hz, 2H, PCCHCHC*H*), 7.92 (dd, *J* = 6.9, 6.9 Hz, 2H, PCC*H*); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 122.9, 125.9 (2C), 126.1, 126.2, 127.0, 127.2 (2C), 127.4, 128.2, 129.2, 129.6, 129.7, 129.9, 130.1, 131.0, 132.3, 133.5 (2C), 133.6, 135.0 (2C), 136.3, 136.4 (2C), 138.7; ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ –41.53 (–39.74 in CDCl₃); HRMS(EI) *m*/*z* [M]⁺ calcd for C₂₆H₁₅P 358.0911; observed 358.0912.

Synthesis of 6,10-dimethyl-15b-phosphanaphtho[1,8-ab]perylene (1b)

The reaction was carried out according to a procedure similar to that described for the synthesis of **1a** on a 0.40 mmol scale by using triethylphosphine (52.0 mg, 0.44 mmol), **2b** (0.167 g, 0.40 mmol) and chlorobenzene (2.0 mL). Conditions: 120 °C, 12 h. The title compound (0.115 g, 80% yield, > 99% pure on GC analysis) was obtained as a yellow solid after triturated with hexane. IR (neat): cm⁻¹ 3045 (Ar-H), 2977, 2942, 1592, 1571, 1548, 1500, 1444, 1357, 1340, 1320, 1179, 1148, 1083, 1070, 999, 878, 825, 805, 760, 746, 736, 659, 575, 541; mp: 219.1–220.0 °C; ¹H NMR (CD₂Cl₂, 392 MHz) & 2.86 (s, 6H, CH₃), 7.40 (t, *J* = 7.8 Hz, 1H, PCCCHC*H*), 7.47 (m, 2H, PCCHC*H*), 7.53–7.58 (m, 4H), 7.77 (d, *J* = 8.7 Hz, 2H, CH₃CHC*H*), 7.78 (d, *J* = 8.2 Hz, 2H, PCCHCHC*H*), 8.23 (t, *J* = 7.3 Hz, 2H, PCC*H*); ¹³C NMR (CD₂Cl₂, 98.5 MHz) & 23.5 (2C), 125.2, 125.3, 127.2, 127.3 (2C), 127.4, 127.8, 128.5 (2C), 129.8 (2C), 130.1, 130.5, 130.7, 131.5 (2C), 132.8 (2C), 133.5 (2C), 133.6 (2C), 134.0, 134.1, 135.4, 135.5; ³¹P NMR (CD₂Cl₂, 158.6 MHz) & -44.60 (-42.76 in CDCl₃); HRMS (EI) *m*/*z* [M]⁺ calcd for C₂₈H₁₉P 386.1224; observed 386.1222.

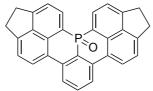

Synthesis of 15b-phospha-3,4,12,13-tetrahydroacenaphtho[5,6-*ab*]cyclopenta[*lm*] perylene (1c)

The reaction was carried out according to a procedure similar to that described for the synthesis of **1a** on a 0.10 mmol scale by using triethylphosphine (13.0 mg, 0.11 mmol), **2c** (44.3 mg, 0.10 mmol) and chlorobenzene (1.0 mL). Conditions: 120 °C, 12 h. The title compound (31.3 mg, 76% yield) was obtained as a yellow solid after triturated with hexane. IR (neat): cm⁻¹ 3036 (Ar-H), 2913, 2828, 1598, 1559, 1442, 1412, 1366, 1243, 1190, 1091, 919, 849, 833, 787, 707, 648, 630, 584; mp: decomposes 361 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 3.40–3.44 (m, 8H, CH₂), 7.37–7.40 (m, 3H), 7.43 (d, *J* = 6.9 Hz, 2H, PCCHCH), 7.91 (dd, *J* = 2.8, 8.2 Hz, 2H, PCCCHCH), 8.03 (dd, *J* = 6.9, 6.9 Hz,

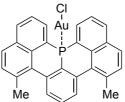

2H, PCC*H*), 8.11 (d, J = 7.3 Hz, 2H, PCCCCHC*H*); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 30.6 (2C), 30.9 (2C), 120.7 (2C), 120.8 (2C), 123.4 (2C), 124.3 (2C), 128.1 (2C), 128.3 (2C), 128.6, 129.9, 134.2 (2C), 136.6 (2C), 136.7 (2C), 140.2 (2C), 146.0 (2C), 148.1 (2C); ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ –38.38; HRMS (FAB) *m*/*z* [M]⁺ calcd for C₃₀H₁₉P 410.1224; observed 410.1218.

Synthesis of 15b-(oxophospha)naphtho[1,8-*ab*]perylene (3a)

Hydrogen peroxide (30%, 1.5 mL) was added to a solution of **2a** (58.6 mg, 0.15 mmol) in dichloromethane (50 mL) at room temperature. After 6 h, the combined organic extracts were purified by silica gel column chromatography (dichloromethane, ethyl acetate) to obtain the title compound as a yellow solid (44.4 mg, 79% yield, > 99% pure on GC analysis). IR (neat): cm⁻¹ 3058 (Ar-H), 1571, 1496, 1442, 1354, 1322, 1260, 1178 (P=O), 1120, 1092, 924, 831, 795, 758, 715, 654; mp: 304.1–305.0 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 7.77–7.87 (m, 5H), 8.08 (d, *J* = 8.2 Hz, 2H, PCCHCHCH), 8.23 (d, *J* = 8.7 Hz, 2H, PCCHCHCHCCCH), 8.26 (dd, *J* = 4.1, 8.2 Hz, 2H, PCCCH), 8.60 (d, *J* = 7.8 Hz, 2H, PCCHCHCHCCHCHCH), 8.64 (dd, *J* = 7.3, 12.8 Hz, 2H, PCCH); ¹³C NMR (CD₂Cl₂, 151 MHz) δ 123.9, 124.6, 126.0, 126.1, 126.2, 126.3 (3C), 126.7, 127.3 (2C), 129.6, 129.7, 130.1, 130.2, 131.0 (2C), 132.3, 132.4 (2C), 133.6 (2C), 134.3 (2C), 138.7, 138.8; ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ –12.24; HRMS (EI) *m/z* [M]⁺ calcd for C₂₆H₁₅PO .374.0861; observed 374.0862.

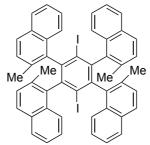

Synthesis of 6,10-dimethyl-15b-(oxophospha)naphtho[1,8-ab]perylene (3b)

The reaction was carried out according to a procedure similar to that described for the synthesis of **3a** on a 0.20 mmol scale by using hydrogen peroxide (30%, 2.0 mL), **2b** (77.0 mg, 0.20 mmol) and dichloromethane (20 mL). Conditions: room temperature, 6 h. The title compound (57.0 mg, 71% yield, > 99% pure on GC analysis) was obtained as a yellow solid after silica gel column chromatography (dichloromethane, ethyl acetate). IR (neat): cm⁻¹ 3050 (Ar-H), 1591, 1568, 1498, 1450, 1360, 1324, 1230, 1176 (P=O), 1149, 1124, 1082, 931, 851, 826, 810, 746, 715, 670, 662, 592, 557; mp: decomposes 360 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 2.99 (s, 6H, CH₃), 7.62 (t, *J* = 8.2 Hz, 1H, PCCCHCH), 7.66 (d, *J* = 8.7 Hz, 2H, CH₃CH), 7.71–7.76 (m, 4H), 7.91 (dd, *J* = 1.4, 8.7 Hz, 2H, CH₃CHCH), 8.64 (dd, *J* = 6.7,

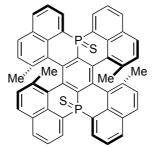

12.4 Hz, 2H, PCC*H*); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 24.3 (2C), 125.3, 125.4, 128.9 (2C), 130.1, 130.3, 130.4 (2C), 130.8, 130.9, 131.4 (3C), 131.5, 131.6, 132.1 (2C), 132.2 (3C), 132.7 (2C), 137.0 (2C), 140.0, 140.1; ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ – 10.56; HRMS (EI) *m*/*z* [M+H]⁺ calcd for C₂₈H₂₀PO 403.1252; observed 403.1245.

Synthesis of 15b-oxophospha-3,4,12,13-tetrahydroacenaphtho[5,6-*ab*]cyclopenta [*lm*]perylene (3c)

The reaction was carried out according to a procedure similar to that described for the synthesis of **3a** on a 0.22 mmol scale by using hydrogen peroxide (30%, 2.2 mL), **2c** (96.0 mg, 0.22 mmol), dichloromethane (220 mL). Conditions: room temperature, 6 h. The title compound (0.066 g, 70% yield) was obtained as a yellow solid after GPC (eluent: CHCl₃). IR (neat): cm⁻¹ 3028 (Ar-H), 2921, 1775, 1716, 1598, 1580, 1563, 1445, 1414, 1368, 1256, 1191, 1159 (P=O), 1138, 1107, 1058, 1042, 856, 838, 791, 723, 690, 621, 594; mp: decomposes 360 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 3.52–3.62 (m, 8H, *CH*₂), 7.60 (d, *J* = 7.8 Hz, 2H, PCCCCH*CH*), 7.68 (d, *J* = 7.3 Hz, 2H, PCCH*CH*), 7.78 (t, *J* = 8.2 Hz, 1H, CHC*H*CH), 8.31 (dd, *J* = 4.1, 8.2 Hz, 2H, *CH*CH*C*H), 8.55 (d, *J* = 7.8 Hz, 2H, PCCCC*H*), 8.66 (dd, *J* = 7.3, 12.4 Hz, 2H, PCC*H*); ¹³C NMR (CD₂Cl₂, 151 MHz) δ 30.6 (2C), 31.6 (2C), 120.7, 120.8, 121.2 (2C), 124.5 (2C), 126.2, 126.3, 127.0 (2C), 127.8 (2C), 127.9, 131.8, 133.2, 133.3, 138.2, 138.3, 139.5 (2C), 149.5, 151.8, 152.6, 152.7 (2C), 155.2; ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ –12.61; HRMS (EI) *m*/*z* [M+H]⁺ calcd for C₃₀H₂₀PO 427.1252; observed 427.1244.

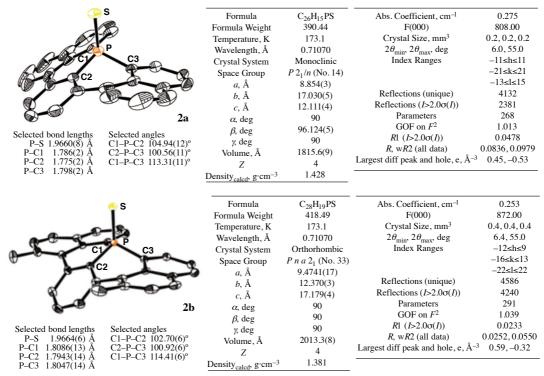

Synthesis of chloro[6,10-dimethyl-15b-phosphanaphtho[1,8-*ab*]perylene-κP-15b] gold(I)

AuCl·SMe₂ (29.4 mg, 0.10 mmol) was added to a suspension of **1b** (38.6 mg, 0.10 mmol) in methanol (2.0 mL) at 0 °C under argon. After stirring at room temperature for 2 h, the solution was condensed *in vacuo*, and purified by chromatography on silica gel (dichloromethane, ethyl acetate) to obtain the title compound as a colorless solid (60.0 mg, 97% yield). IR (neat): cm⁻¹ 3746, 3059 (Ar-H), 2982, 1608, 1593, 1573, 1498, 1447, 1361, 1330, 1228, 1148, 1076, 1020, 931, 895, 834, 809, 780, 742, 708, 657, 577, 545; mp: decomposes 340 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 2.96 (s, 6H, CH₃), 7.58 (t, *J* = 8.2 Hz, 1H, PCCCHCH), 7.63–7.74 (m, 6H), 7.90 (dd, *J* = 1.4, 8.7 Hz, 2H,


PCCHCHC*H*), 8.04 (d, J = 8.2 Hz, 2H, CH₃CCHC*H*), 8.44 (dd, J = 7.4, 13.8 Hz, 2H, PCC*H*); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 23.9 (2C), 125.4, 125.6, 129.4 (2C), 130.4 (2C), 130.5, 130.6, 130.7 (2C), 130.8, 130.9, 131.0, 131.1, 131.2 (2C), 131.6, 131.7, 132.4, 132.5 (2C), 132.6, 136.7 (2C), 137.9 (2C); ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ – 28.38; HRMS (FAB) m/z [M-Cl]⁺ calcd for C₂₈H₁₉PAu 583.0890; observed 583.0887.

Synthesis of 1,1',1'',1'''-(3,6-diiodobenzene-1,2,4,5-tetrayl)tetrakis(2-methyl naphthalene) (4d)

A solution of 1-(2-methylnaphthyl) magnesium bromide in THF (200 mL, 1.20 M, 240 mmol) was added to hexabromobenzene (16.5 g, 30 mmol) at 0 °C. After stirring at room temperature for 1 h, the reaction mixture stirred at 80 °C for 14 h. Iodine (60.9 g, 240 mmol) was added to the reaction mixture at 0 °C. After stirring at room temperature for 30 min, a saturated aqueous solution of Na₂SO₃ (300 mL) was added. The aqueous layer was separated and extracted with dichrolomethane (100 mL, three times). The organic layer was dried over MgSO₄ and condensed *in vacuo*. The resultant brown residue was triturated with hexane by using a sonicator to give the title compound as a white-yellow solid (5.10 g, 19% yield). ¹H NMR (CD₂Cl₂, 392 MHz) δ 2.19–2.49 (s, 12H, seven peaks of methyl substitutes derived three stereoisomers), 6.87–7.83 (m, 24H, aromatic peaks of stereoisomers); HRMS (FAB) *m*/*z* [M]⁺ calcd for C₅₀H₃₆I₂ 890.0906; observed 890.0887.


Synthesis of 3b,15b-bis(thiophospha)-9,10,21,22-tetramethyldibenzo[*de,op*]di phenaleno[3,2,1-*hi*:3',2',1'-*st*]pentacene (2d)

A solution of tertiary butyllithium in pentane (14.5 mL, 1.55 M, 22.5 mmol) was added slowly to a solution of **4d** (4.45 g, 5.0 mmol) in THF (50 mL) at -78 °C under argon. After 1 h, the solution was allowed to warm to 0 °C and stirred for 1 h, bis(diethylamino)chlorophosphine (2.95 g, 14.0 mmol) was added to reaction mixture at

-78 °C. After stirring at room temperature for 1 h, solvent was removed *in vacuo*. The resultant yellow residue was triturated with methanol by using a sonicator to give 6d as a yellow solid (3.50 g). Then chlorobenzene (10 mL) was poured to sulfur powder (0.280 g, 8.8 mmol) and 6d. After stirring at room temperature for 8 h, solvent was removed *in vacuo*. The resultant yellow residue was triturated with methanol by using a sonicator to give 7d as a yellow solid (4.10 g). A solution of 7d in 1,2-dichlorobenzene (20 mL) was added to aluminum trichloride (3.20 g, 24.0 mmol) in 1,2-dichlorobenzene (10 mL) at 0 °C. After stirring at room temperature for 8 h, then 150 °C for 12 h, 1,4-diazabicyclo[2.2.2]octane (3.14 g, 28.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®] and Florisil[®]. After the solvent was removed in vacuo, the crude product was purified by chromatography on silica gel (50%, 100%) dichloromethane in toluene) to obtain the title compound (0.387 g, 10% yield) as an orange solid. IR (neat): cm⁻¹ 3052 (Ar-H), 1604, 1493, 1445, 1358, 1299, 1234, 1148, 1180, 908, 827, 785, 744, 731, 693, 660, 629, 614, 516; mp: >500 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 0.74 [s, 6H, CH₃(upper)], 1.96 [s, 6H, CH₃(downer)], 6.86 [d, J = 8.7 Hz, 2H, CH₃CH(upper)], 7.16 (d, J = 8.2 Hz, 2H, CH₃CH(downer)), 7.51 [td, J = 2.3, 8.2 Hz, 2H, PCCHCH(upper)], 7.69 [dd, J = 2.3, 8.7 Hz, 2H, CH₃CHCH(upper)], 7.76–7.81 (m, 4H), 7.86 [td, J = 2.3, 8.7 Hz, 2H, PCCHCH(downer)], 7.94 [d, J = 8.2 Hz, 2H, PCCHCHCH(upper)], 8.16 [d, J = 8.2 Hz, 2H, PCCHCHCH(downer)], 8.70 [dd, J = 8.7, 14.7 Hz, 2H, PCCH(downer)]; ¹³C NMR (CD₂Cl₂, 151 MHz) δ 21.8 (2C), 23.4 (2C), 122.5 (2C), 123.1 (2C), 125.4 (2C), 125.6 (2C), 128.3 (2C), 128.5 (2C), 128.7 (2C), 129.2 (2C), 129.4 (2C), 129.5 (2C), 129.9 (2C), 131.1 (2C), 131.2 (2C), 131.3 (2C), 131.4 (2C), 132.7 (2C), 133.0 (2C), 133.8 (2C), 134.1 (2C), 135.2 (2C), 136.2 (2C), 137.4 (2C), 139.7 (2C); ³¹P NMR (CD₂Cl₂, 158.6 MHz) δ -0.29; HRMS (FAB) m/z $[M]^+$ calcd for C₅₀H₃₂P₂S₂ 758.1421; observed 758.1422.

Crystallographic data collection and structure determination. Crystals of **2a**, **2b**, **2c**, **3b**, **AuCl(1b)**, and **2d** were mounted on a Rigaku Saturn CCD diffractometer for data collection using graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Crystal data and data statistics are summarized in Figure 8 and 9. These structures were solved by direct methods (SHELXS-97)¹⁰, and expanded using Fourier techniques (DIRDIF-99)¹¹. The positional parameters and thermal parameters of non-hydrogen atoms were refined using a full-matrix least-squares method. Hydrogen atoms were placed at calculated positions (C–H = 0.95 Å) and kept fixed. All non-hydrogen atoms were anisotropically refined. In the subsequent refinement, the function $\sum w(F_o^2 - F_c^2)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as R1 = $\sum (||F_o| - ||F_c||)/\sum |F_o|$ and wR2 = $[\sum w(F_o^2 - F_c^2)^2 / \sum (wF_o^4)]^{1/2}$. All calculations were performed by using the Crystal Structure crystallographic software packages and illustrations were drawn by using ORTEP–3.

Figure 8. X-ray crystal structures of **2a** and **2b** (left), and crystal data and structure refinement (right). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

¹⁰ Sheldrick, G. M. Program for the Solution of Crystal Structures; University of Göttingen, Germany, 1997.

¹¹ Beurskens, P. T.; Beuskens, G.; de Gelder, R.; Garcîa-Grana, S.; Gould, R. O.; Israel, R.; Smits, J. M. M. The DIRDIF-99 Program System; Technical Report of the Crystallography Laboratory; University of Nijmegen, Nijmegen, The Netherlands, 1999.

		Formula	C30H19PS	Abs. Coefficient, cm-1	0.262
	S	Formula Weight	442.48	F(000)	920
		Temperature, K	103(2)	Crystal Size, mm ³	0.10, 0.10, 0.05
	D _	Wavelength, Å	0.71075	$2\theta_{\min}, 2\theta_{\max}, \deg$	4.0, 50.0
C1	C3	Crystal System	Triclinic	Index Ranges	_9≤h≤9
	A-C-A	Space Group	P-1 (No. 2)	5	–14≤k≤14
	-	a, Å	8.1709(8)		–24≤l≤24
		<i>b</i> , Å	11.9296(8)	Reflections (unique)	6854
		<i>c</i> , Å	20.3704(18)	Reflections $(I > 2.0\sigma(I))$	3896
	<u> </u>	α , deg	90.222(3)	Parameters	577
Selected bond lengths	Selected angles	β , deg	93.980(5)	GOF on F^2	1.078
P–S 1.965(3) Å	C1-P-C2 110.7(2)°	y, deg	91.528(8)	$R1 (I > 2.0\sigma(I))$	0.0937
P-C1 1.776(8) Å	C2-P-C3 103.4(3)°	Volume, Å	1980.1(3)	<i>R</i> , w <i>R</i> 2 (all data)	0.1658, 0.2419
P-C2 1.799(7) Å	C1-P-C3 114.1(3)°	Z	4	Largest diff peak and hole, e, A	Å ⁻³ 0.77, –0.34
P-C3 1.809(7) Å		Density _{calcd} , g·cm ⁻³			
	@ 0	Formula	$C_{28}H_{19}PO$	Abs. Coefficient, cm ⁻¹	0.169
		Formula Weight	402.42	F(000)	872.00
		Temperature, K	173.1	Crystal Size, mm ³	0.5, 0.5, 0.5
	C3	Wavelength, Å	0.71070	$2\theta_{\min}, 2\theta_{\max}, \deg$	6.6, 55.0
		Crystal System	Monoclinic	Index Ranges	–9≤h≤9
		Space Group	$P 2_1/n$ (No. 14)		-22≤k≤26
		a, Å	7.2044(15)		–17≤l≤15
a 1		<i>b</i> , Å	20.622(4)	Reflections (unique)	4321
X _	3b	<i>c</i> , Å	13.225(3)	Reflections $(I > 2.0\sigma(I))$	3580
	50	α , deg	90	Parameters	290
Selected bond lengths	Selected angles	β , deg	102.745(3)	GOF on F^2	1.006
P–O 1.4911(11) Å	C1-P-C2 103.46(7)°	y, deg	90	$R1 \ (I > 2.0\sigma(I))$	0.0473
P-C1 1.7961(15) Å	C2-P-C3 100.73(7)°	Volume, Å	1916.4(7)	R, w $R2$ (all data)	0.0559, 0.1429
P–C2 1.7789(14) Å P–C3 1.8055(19) Å	C1–P–C3 115.08(7)°	Z Density _{calcd} , g·cm ^{−3}	4 1.395	Largest diff peak and hole, e, Å	-3 0.77, -0.34
		Density _{caled} , g em	1675	-	
CI	•	Formula	C28H19AuClP	Abs. Coefficient, cm-1	7.199
		Formula Weight	618.85	F(000)	1192.00
		Temperature, K	173.1	Crystal Size, mm ³	0.2, 0.2, 0.2
	1	Wavelength, Å	0.71070	$2\theta_{\min}, 2\theta_{\max}, \deg$	6.0, 55.0
Au	T	Crystal System	Monoclinic	Index Ranges	-8≤h≤12
		Space Group	$P 2_1/c$ (No. 14)	6	–19≤k≤29
2 P		a, Å	9.705(4)		–13≤l≤13
		<i>b</i> , Å	23.070(9)	Reflections (unique)	4789
C1	C3	c, Å	10.283(4)	Reflections $(I > 2.0\sigma(I))$	3432
the last		α , deg	90	Parameters	281
	2 🖤 😁	-	113.342(4)	GOF on F^2	0.997
1		β , deg	90	R1 (<i>I</i> >2.0σ(<i>I</i>))	0.0341
~		γ, deg Volume Å	2114.1(14)	R, w $R2$ (all data)	0.0471, 0.0711
	AuCl(1b)	Volume, Å Z	4	Largest diff peak and hole, e, Å-	
Selected bond lengths	Selected angles	Z Density _{calcd} , g⋅cm ⁻³	4 1.994		
P-Au 2.2343(12) Å P-C1 1.805(6) Å	C1–P–C2 103.0(2)° C2–P–C3 101.4(2)°	Density caled, g en			
P–C2 1.786(5) Å	C1-P-C3 114.4(2)°				
P-C3 1.815(6) Å	Cl-Au-P 175.13(6)°				
Au-Cl 2.2945(12) Å					
	<mark>⊜</mark> S'	Formula	$C_{50}H_{32}P_2S_2$,	Abs. Coefficient, cm ⁻¹	0.230
	I		$2H_2O, C_7H_8$	F(000)	3680
0	P	Formula Weight	882.95	Crystal Size, mm ³	0.2, 0.2, 0.2
S		Temperature, K	173	$2\theta_{\min}, 2\theta_{\max}, \deg$	4.3, 51.0
	Re Roland	Wavelength, Å	0.71070	Index Ranges	–19≤h≤19
/ N-0#	- B-ma-ards	Crystal System	Tetragonal		-20≤k≤20
		Space Group	<i>I</i> 4 ₁ / <i>a</i> (No. 88)		-40≤l≤40
		<i>a</i> , Å	16.5125(5)	Reflections (unique)	4253
C3 Ci		<i>b</i> , Å	16.5125(5)	Reflections $(I > 2.0\sigma(I))$	2877
		<i>c</i> , Å	33.4968(12)	Parameters	281
	2d	α , deg	90	GOF on F^2	0.997
7	 	β , deg	90	$R1 \ (I > 2.0\sigma(I))$	0.0694
Selected bond lengths	Selected angles	γ, deg	90	R, wR2 (all data)	0.1012, 0.2420
P-S 1.9691(13) Å	C1-P-C2 105.12(17)°	Volume, Å	9133.3(5)	Largest diff peak and hole, e, Å-	-3 0.654, -0.519
P–C1 1.777(4) Å P–C2 1.777(4) Å		Z	8		
P-C2 1.777(4) A P-C3 1.796(4) Å		Density _{calcd} , g·cm ⁻³	1.994		
· · · · · · · · · · · · · · · · · · ·		J calco, S			

Figure 9. X-ray crystal structures of 2c, 3b, AuCl(1b), 2d (left), and crystal data and structure refinement (right). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

Synchrotron X-ray powder diffraction measurement and structure determination. Synchrotron X-ray powder diffraction data were recorded for **1b** at 80 K on beamline BL19B2 at SPring-8 (Debye-Scherer camera equipped with a curved Imaging Plate detector) with wavelength 1.30 Å (0.3 mm diameter borosilicate glass capillary, with sample spinning during measurement; data collection time 60 min). The diffraction patterns were indexed by using DICVOL91¹² to obtain lattice parameters that were subsequently refined in a Pawley fit¹³. Z-Matrixes describing the molecular topology of the fragments in the compound were generated automatically by DASH¹⁴. Ten runs with 10⁷ simulated annealing (SA) moves per run were performed for structure solution. A final Rietveld refinement was performed by using the RIETAN-FP¹⁵ program.

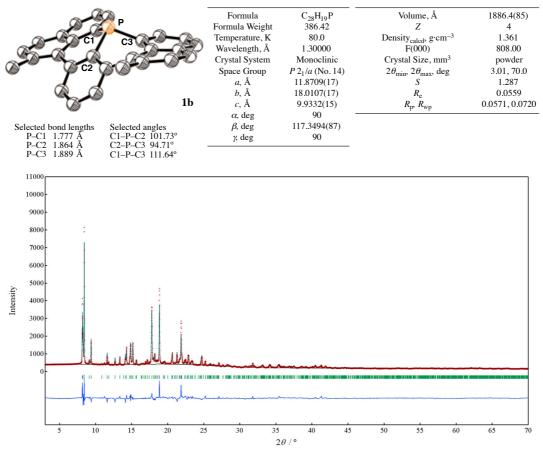
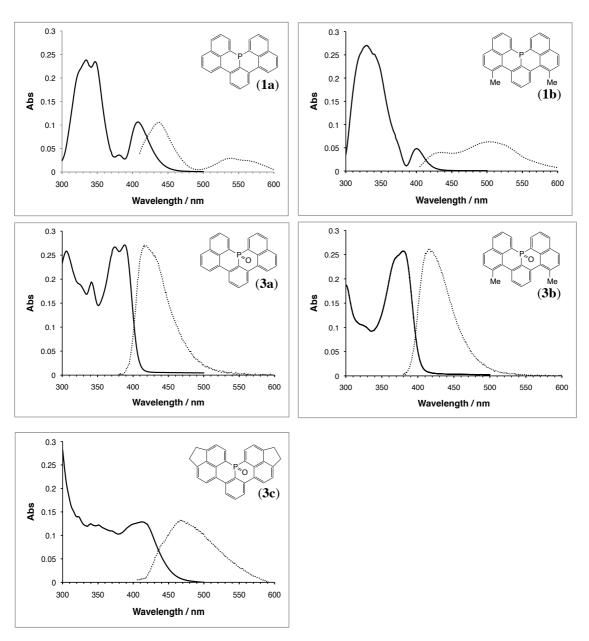
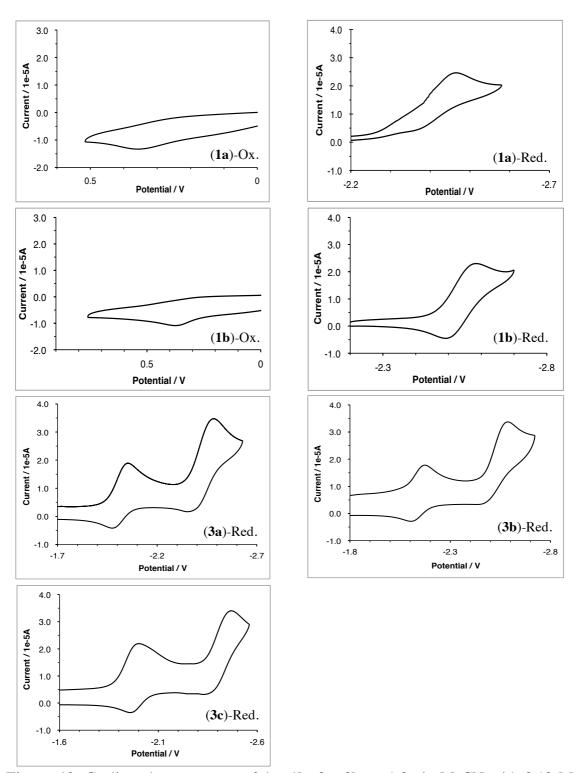


Figure 10. Structural data and result of Rietveld refinement of 1b. H atoms have been omitted for clarity.


¹² Boultif, A.; Lour, D. J. Appl. Crystallogr. 1991, 24, 987–993.

¹³ Pawley, G. S. J. Appl. Crystallogr. **1981**, 14, 357–361.


¹⁴ DASH (3.01), David, W. I. F.; Shankland, K. Cambridge Crystallographic Data Centre, Cambridge, 2004.

¹⁵ (a) Izumi, F.; Ikeda, T. *Mater. Sci. Forum* **2000**, *198*, 321–324. (b) Izumi, F.; Momma, K. *Solid State Phenom.* **2007**, *130*, 15–20.

Figure 11. UV-visible (solid line, 0.02 mM in CH_2Cl_2) and fluorescence (dotted line, 0.01 mM in CH_2Cl_2) spectra of **1a**, **1b**, **3a**, **3b**, and **3c**.

Chapter 4

Figure 12. Cyclic voltammograms of 1a, 1b, 3a, 3b, and 3c in MeCN with 0.10 M n-Bu₄N⁺PF₆⁻. Redox potentials are given in V vs. Fc/Fc⁺ couple.

Computational studies. All calculations were performed with Gaussian 03¹⁶ packages. The DFT method was employed using the B3LYP hybrid functional.¹⁷ Structures were optimized with the SDD basis set consisting of the Stuttgart/Dresden effective core potential (ECP) for Au¹⁸ and 6-31G(d) for the rest (denoted as 631SDD).¹⁹ Each stationary point was adequately characterized by normal coordinate analysis (no imaginary frequencies for an equilibrium structure and one imaginary frequency for a transition structure) using the same method as for the geometry optimization. Intrinsic reaction coordinate (IRC) analyses²⁰ were carried out throughout the reaction pathways to confirm that all stationary points are smoothly connected to each other using the same method as for the geometry optimizational theory (TD-DFT) calculation²¹ was conducted at the B3LYP/6-311+G (d, p) level after the geometry optimization at the B3LYP/6-31G (d) level.

¹⁶ Gaussian 03, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

¹⁷ (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.

¹⁸ Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. **1987**, 86, 866–872.

¹⁹ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, **1986** and references cited therein.

²⁰ (a) Fukui, K. Acc. Chem. Res. **1981**, *14*, 363–368. (b) Gonzalez, C.; Schlegel, H. B. J. Chem. *Phys.* **1989**, *90*, 2154–2161. (c) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. **1990**, *94*, 5523–5527.

²¹ (a) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439-

^{4449. (}b) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218-8224.

		cal	culation		exp	eriment
Compd	λ_{ex} (nm)	energy gap (eV)	ocillator strength f	HOMO-LUMO coefficient	λ_{ab} (nm)	$\frac{\log\epsilon}{(M^{-1}cm^{-1})}$
1 a	417	2.97	0.1621	0.67366	407	3.63
1b	397	3.12	0.1564	0.67167	400	3.20
3a	392	3.16	0.2443	0.66917	388	4.13
3b	387	3.21	0.2624	0.67265	379	4.11
3c	410	3.03	0.2708	0.67246	412	3.90

Table 2. The lowest-energy transition of 1a-b, 3a-c calculated by the TD-DFT method at the B3LYP/6-311+G(d, p) level and UV-visible absorption in CH_2Cl_2 (0.02 mM).

Cartesian Coordinates

			n Coordin		1 1							
	e isa)- 2a		erization t	oarrier co	alcule	ation of 2a	32	1	0	-5.113473	-2.641483	-0.617526
· · ·)- ⊿a RB3L		(1720) = 1720	.37542252	houte		33	1	0	2.817996	-3.989620	-1.585933
E(F	(D)L	. 1 F	(-1/39) = -1/39	.37342232	nartro	ee	34	1	0	0.652223	-3.067449	-0.846972
			· · ·	 			35	1	0	5.903430	1.697235	0.318928
-	nter		Atomic	Atomic		ordinates	36	1	0	3.722890	2.787940	0.630949
Nu	mbei	•	Number	Туре	Х	Y Z	37	1	0	0.130863	4.932614	-0.829484
							38	1	0	6.022665	-0.627339	-0.551041
1	6	0	1.26504	5 1.831	054	0.012242	39	1	0	4.894801	-2.671091	-1.274718
2	6	0	1.28465		2877	-0.324305	40	1	0	-0.989555	-3.205517	0.365866
3	6	0	0.09867			-0.548828	41	1	0	-2.015642		-0.754290
4	6	0	-1.12417		8735	-0.483020	42	1	0	2.229275	3.702973	-0.474441
5	6	0	-1.20641		7047	-0.133097	43	-	0	0.245671	-0.825367	2.611064
6	6	0	0.00671			0.129794						
7	15	0	0.01525			0.670209						
8	6	0	1.44267	1 -1.152	969	-0.288972	тс	-2a				
9	6	0	-1.57289		5640	0.058898				1720.2	7427227 1	
10	6	0	1.53382			-0.784887	E(F	(B)		() = -1/39.3	7437237 hartr	ee
11	6	0	2.77552			-1.191410						
12	6	0	3.92592) -2.243	073	-1.029546		nter				ordinates
13	6	0	3.87659			-0.542930	Nu	mbe	r	Number T	ype X	Y Z
14	6	0	2.60583			-0.244394						
15	6	0	5.06404			-0.343232	1	6	0	1.234461	1.836267	-0.107667
16	6	0	4.99595			0.125795	2	6	0	1.205045	3.191391	-0.480638
17	6	0	3.74309	3 1.750)844	0.313041	3	6	0	-0.000107	3.861180	-0.648157
18	6	0	2.54768	4 1.080)794	0.085311	4	6	0	-1.205237	3.191230	-0.480752
19	6	0	-2.65754	-0.25	8876	-0.171875	5	6	0	-1.234481	1.836191	-0.107608
20	6	0	-3.96222	-0.83	1091	-0.380426	6	6	0	0.000026	1.172078	0.075218
21	6	0	-4.11969	-2.24	0265	-0.434772	7	15	0	0.000018	-0.555564	0.610517
22	6	0	-3.05578	-3.082	2218	-0.215901	8	6	0	1.539663	-1.181097	-0.164318
23	6	0	-1.79040	-2.53	5423	0.072778	9	6	0	-1.539674	-1.181101	-0.164192
24	6	0	-2.52690	8 1.17	7399	-0.141021	10	6	0	1.734584	-2.530474	-0.409871
25	6	0	-3.69287	4 1.93	5135	-0.178342	11	6	0	3.007559	-3.052907	-0.718164
26	6	0	-4.96906		7048	-0.352479	12	6	0	4.104905	-2.227437	-0.693488
27	6	0	-5.10053	0.00	7421	-0.489229	13	6	0	3.966646	-0.843901	-0.410851
28	1	0	-5.84037	1 2.01	4716	-0.386548	14	6	0	2.658731	-0.283512	-0.207308
29	1	0	-3.63706	6 3.01	1270	-0.068898	15	6	0	5.117478	-0.021812	-0.302528
30	1	0	-3.18964			-0.224114	16	6	0	4.989502	1.308651	0.015317
31	1	0	-6.07429	-0.44	8899	-0.647097						

17	6	0	3.708106	1.878388	0.141183	6	6	0	-0.006664	1.193067	0.129598
18	6	0	2.542632	1.138017	-0.022057	7	15	0	-0.015218	-0.527248	0.669920
19	6	0	-2.658761	-0.283589	-0.207343	8	6	0	1.572828	-1.165739	0.058166
20	6	0	-3.966664	-0.843960	-0.410879	9	6	0	-1.442973	-1.152979	-0.288877
21	6	0	-4.104900	-2.227519	-0.693329	10	6	0	1.790296	-2.535533	0.071397
22	6	0	-3.007524	-3.052983	-0.717868	11	6	0	3.055735	-3.082232	-0.217258
23	6	0	-1.734557	-2.530528	-0.409635	12	6	0	4.119760	-2.240227	-0.435349
24	6	0	-2.542641	1.137932	-0.021986	13	6	0	3.962330	-0.831069	-0.380343
25	6	0	-3.708068	1.878382	0.141212	14	6	0	2.657597	-0.258939	-0.171976
26	6	0	-4.989483	1.308673	0.015172	15	6	0	5.100681	0.007497	-0.488306
27	6	0	-5.117472	-0.021788	-0.302625	16	6	0	4.969176	1.367072	-0.350937
28	1	0	-5.867796	1.933894	0.147254	17	6	0	3.692912	1.935094	-0.177130
29	1	0	-3.640680	2.936138	0.369292	18	6	0	2.526965	1.177303	-0.140695
30	1	0	-3.115673	-4.113511	-0.925606	19	6	0	-2.606030	-0.317313	-0.244196
31	1	0	-6.096537	-0.470949	-0.448188	20	6	0	-3.876934	-0.909020	-0.542336
32	1	0	-5.101505	-2.624220	-0.870279	21	6	0	-3.926554	-2.242911	-1.028676
33	1	0	3.115675	-4.113381	-0.926187	22	6	0	-2.776288	-2.978507	-1.190638
34	1	0	0.914194	-3.229433	-0.322760	23	6	0	-1.534434	-2.441018	-0.784502
35	1	0	5.867815	1.933813	0.147663	24	6	0	-2.547646	1.080975	0.085257
36	1	0	3.640828	2.936130	0.369330	25	6	0	-3.742919	1.751243	0.313091
37	1	0	-0.000147	4.903129	-0.956070	26	6	0	-4.995889	1.132903	0.126214
38	1	0	6.096537	-0.471013	-0.448009	27	6	0	-5.064244	-0.158399	-0.342532
39	1	0	5.101534	-2.624057	-0.870489	28	1	0	-5.903257	1.697928	0.319404
40	1	0	-0.914116	-3.229457	-0.322591	29	1	0	-3.722495	2.788399	0.630794
41	1	0	-2.128915	3.714572	-0.696851	30	1	0	-2.818974	-3.989714	-1.584951
42	1	0	2.128614	3.714937	-0.696691	31	1	0	-6.022972	-0.626810	-0.550043
43	16	0	0.000081	-0.849860	2.565712	32	1	0	-4.895547	-2.670841	-1.273552
						33	1	0	3.189535	-4.159947	-0.225994
						34	1	0	0.989399	-3.205761	0.364015
(M)-2:	a				35	1	0	5.840512	2.014738	-0.384299
·	/	LYP	P = -173937	7542252 hartro	ee	36	1	0	3.636970	3.011182	-0.067232
D(I	(1)51) - 1757.57	5 12252 hurti		37	1	0	-0.130554	4.932312	-0.830732
Cer			Atomic A	tomic Coo	ordinates	38	1	0	6.074501	-0.448751	-0.646020
						39	1	0	5.113583	-2.641388	-0.617993
INUI	mbe	r	Number T	ype X	Y Z	40	1	0	-0.652963	-3.067707	-0.846681
						41	1	0	-2.229043	3.702912	-0.475225
1	6	0	1.206486	1.866905	-0.133265	42	1	0	2.015958	3.779739	-0.755066
2	6	0	1.124386	3.228470	-0.483639	43	16	0	-0.245063	-0.825625	2.610827
3	6	0	-0.098423	3.883252	-0.549722						
4	6	0	-1.284446	3.192799	-0.324986						

4 6 0 -1.284446 3.192799 -0.324986 5 6 0 -1.264937 1.831049 0.011898

Cartesian coordinates at stationary points

Ca	rtesia	n coordinates a	et stationary p	points						
1a					5	6	0	-1.281270	1.762257	0.127392
E(R	B3LY	P) = -1341.1640	16 hartree		6	6	0	-0.025644	1.129162	0.279691
		·			7	15	0	-0.033225	-0.554962	0.953098
Cer	nter	Atomic Atom	nic Coordin	ates	8	6	0	1.549087	-1.218498	0.320342
	nber	Number Type			9	6	0	-1.460183	-1.229854	0.000768
INUI	noei	Number Type		L	10	6	0	1.775548	-2.587691	0.371772
1		1 101 407			11	6	0	3.042932	-3.140535	0.099296
1	6 ()25739	12	6	0	4.109197	-2.308282	-0.140190
2	6 (180430	13	6	0	3.947937	-0.897943	-0.126554
3	6 (600367	14	6	0	2.640369	-0.323382	0.059502
4	6 (-1.308624	3.093689 -0.	315831	15	6	0	5.084315	-0.057261	-0.248880

						3a					
42	1	0	1.989650	3.650897	-0.793431						
41	1	0	-2.258059	3.585099	-0.497012						
40	1	0	-0.687492	-3.170011	-0.490072	43	16	0	-0.245072	-0.825462	2.610808
39	1	0	5.103977	-2.714044	-0.306469	42	1	0	2.015925	3.779875	-0.754863
38	1	0	6.061671	-0.514916	-0.379234	41	1	0	-2.229058	3.702918	-0.475325
37	1	0	-0.163139	4.793292	-0.963933	40	1	0	-0.652926	-3.067702	-0.846745
36	1	0	3.603680	2.956566	0.048531	39	1	0	5.113588	-2.641439	-0.617816
35	1	0	5.819051	1.953381	-0.197998	38	1	0	6.074511	-0.448838	-0.645971
34	1	0	0.974771	-3.256925	0.668844	37	1	0	-0.130560	4.932358	-0.830644
33	1	0	3.175111	-4.218779	0.118567	36	1	0	3.637059	3.011154	-0.067421
32	1	0	-4.940197	-2.788524	-0.857943	35	1	0	5.840543	2.014679	-0.384429
31	1	0	-6.049700	-0.705171	-0.201380	34	1	0	0.989380	-3.205775	0.364048
30	1	0	-2.865487	-4.117757	-1.145975	33	1	0	3.189534	-4.159968	-0.225820
29	1	0	-3.718670	2.757378	0.770908	32	1	0	-4.895539	-2.670916	-1.273463
28	1	0	-5.909956	1.653067	0.563172	31	1	0	-6.022971	-0.626917	-0.549929
27	6	0	-5.085598	-0.230790	-0.035524	30	1	Õ	-2.818959	-3.989736	-1.584974
26	6	0	-5.006242	1.079407	0.376750	29	1	0	-3.722522	2.788371	0.630731
25	6	0	-3.749706	1.704459	0.509815	28	1	0	-5.903273	1.697857	0.319472
24	6	0	-2.561766	1.019834	0.284934	27	6	0	-5.064251	-0.158470	-0.342464
$\frac{22}{23}$	6	0	-1.566945	-2.538695	-0.434565	26	6	0	-4.995905	1.132844	0.126248
$\frac{21}{22}$	6	0	-2.817593	-3.089893	-0.796456	25	6	0	-3.742937	1.751208	0.313057
20 21	6	0	-3.966940	-2.349930	-0.652265	23	6	0	-2.547655	1.080965	0.085208
20	6	0	-3.905221	-0.394832	-0.228640	22	6	0	-1.534420	-2.978332	-0.784546
18 19	6	0	-2.626655	-0.394832	0.030907	$\frac{21}{22}$	6	0	-3.920343	-2.242939	-1.190654
17	6	0	2.506514	1.113890	0.030967	20	6	0	-3.926545	-2.242959	-0.342291
17	6	0	3.668454	1.876956	-0.134433	20	6	0	-3.876932	-0.909070	-0.244193
16	6	0	4.947915	1.305541	-0.154453	19	6	0	-2.606028	-0.317339	-0.244193

2a

3a E(RB3LYP) = -1416.41048 hartree

E(I	RB3L	YI	P) = -1739.3	75423 hart	ree			Cer	nter		Atomic	Atom	ic Co	ordina	tes
								Nu	mber	•	Number	Туре	Х	Y	Z
Ce	nter		Atomic A	Atomic	Coo	ordinat	es								
Nu	mber	•	Number 7	Гуре	Х	Y	Ζ	1	6	0	1.19293	9 1	.832465	-0.08	81706
								2	6	0	1.106990) 3	.184748	-0.46	55420
1	6	0	1.206497	1.86692	28	-0.13	3277	3	6	0	-0.11796	51 .	3.835652	-0.5	37337
2	6	0	1.124373	3.22852	21	-0.48	3554	4	6	0	-1.30183	2 3	3.151312	-0.2	83583
3	6	0	-0.098445	3.8832	85	-0.54	49677	5	6	0	-1.27645	7 1	.797880	0.08	35429
4	6	0	-1.284466	3.1928	18	-0.32	25036	6	6	0	-0.01688	5 1.	.161965	0.20)7909
5	6	0	-1.264953	1.83106	3	0.01	1826	7	15	0	-0.02666	53 -0).539434	0.7	85425
6	6	0	-0.006683	1.19308	7	0.12	9524	8	6	0	1.56079′	7 -1	.191100	0.20)6782
7	15	0	-0.015218	-0.5272	14	0.669	9868	9	6	0	-1.44974	3 -1	.193156	-0.1	46552
8	6	0	1.572825	-1.16575	1	0.05	8177	10	6	0	1.782609	9 -2	.558850	0.28	32426
9	6	0	-1.442956	-1.1529	93	-0.28	38904	11	6	0	3.053053	3 -3	.115787	0.03	36490
10	6	0	1.790287	-2.53554	.3	0.07	1460	12	6	0	4.11688	5 -2.	.281480	-0.2	10040
11	6	0	3.055729	-3.08225	4	-0.2	17124	13	6	0	3.956354	4 -0.	.871368	-0.2	21400
12	6	0	4.119764	-2.24025	9	-0.43	35228	14	6	0	2.649050) -0.	.294341	-0.0	46990
13	6	0	3.962330	-0.83110	3	-0.38	80295	15	6	0	5.09351	5 -0.	.036527	-0.3	64007
14	6	0	2.657595	-0.25895	6	-0.1′	71969	16	6	0	4.957733	3 1	.327676	-0.29	92466
15	6	0	5.100698	0.00743	39	-0.48	8298	17	6	0	3.67985	7 1	.899882	-0.14	45665
16	6	0	4.969208	1.36701	14	-0.35	1021	18	6	0	2.514829	91	.142701	-0.07	74857
17	6	0	3.692947	1.93506	50	-0.17	7236	19	6	0	-2.61750	07 -0	0.362419	-0.0	99267
18	6	0	2.526975	1.17730	01	-0.14	0731	20	6	0	-3.89263	64 -0).964266	-0.3	56956

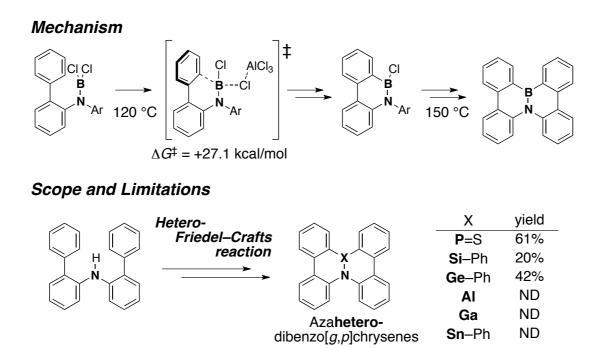
21	6	0	-3.947181	-2.310880	-0.806198	23	6	0	-1.598773	2.788587	0.407267
22	6	0	-2.798029	-3.047755	-0.971401	24	6	0	-2.554273	-0.801493	-0.194497
23	6	0	-1.550050	-2.494413	-0.607047	25	6	0	-3.717629	-1.512616	-0.502682
24	6	0	-2.557157	1.045827	0.190384	26	6	0	-4.973856	-0.853769	-0.422171
25	6	0	-3.750647	1.719607	0.417914	27	6	0	-5.083960	0.449252	-0.006964
26	6	0	-5.005242	1.093904	0.270187	28	1	0	5.870333	-1.422511	-0.659062
27	6	0	-5.078547	-0.211227	-0.157714	29	1	0	2.911870	4.380956	1.059288
28	1	0	-5.910544	1.662941	0.461556	30	1	0	-6.060216	0.911747	0.117156
29	1	0	-3.727934	2.765570	0.705337	31	1	0	-4.978346	3.032541	0.772464
30	1	0	-2.846143	-4.069215	-1.337927	32	1	0	3.119407	4.496091	-0.102722
31	1	0	-6.039645	-0.687584	-0.334197	33	1	0	0.930406	3.500596	-0.624843
32	1	0	-4.919453	-2.747299	-1.021826	34	1	0	5.845918	-1.625757	-0.147905
33	1	0	3.189906	-4.192453	0.077555	35	1	0	-0.121406	-4.165539	1.883392
34	1	0	0.975559	-3.218763	0.582894	36	1	0	6.076973	0.806068	0.202232
35	1	0	5.827306	1.975595	-0.355356	37	1	0	5.087815	3.016741	0.240613
36	1	0	3.622892	2.979713	-0.083686	38	1	0	-0.726449	3.429953	0.447028
37	1	0	-0.153637	4.877193	-0.845056	39	1	0	-2.223446	-3.131497	1.118698
38	1	0	6.069138	-0.496935	-0.496866	40	1	0	2.033855	-3.096821	1.394979
39	1	0	5.112993	-2.687999	-0.367242	41	6	0	-3.735899	-2.961480	-0.946415
40	1	0	-0.666363	-3.118338	-0.675894	42	1	0	-4.082617	-3.638225	-0.153814
41	1	0	-2.247730	3.658492	-0.436241	43	1	0	-2.754835	-3.309901	-1.275367
42	1	0	1.994613	3.732246	-0.756974	44	1	0	-4.435406	-3.075871	-1.783286
43	8	0	-0.213681	-0.737743	2.266133	45	6	0	3.705223	-3.115561	-0.430811
						46	1	0	2.758271	-3.479354	-0.834045
						47	1	0	3.940443	-3.714232	0.459383

1b

E(RB3LYP) = -1

			-3.328526	
-1419.782625 hartree	 	 		

Ce	nter		Atomic A	tomic Co	ordinates	2 b)						
Nu	mber	•	Number T	ype X	Y Z	E(1	RB3I	_YI	P) = -1817.9	993829 har	tree		
1	6	0	1.200196	-1.476548	0.236917	Ce	nter		Atomic .	Atomic	Coc	ordina	tes
2	6	0	1.128435	-2.663973	0.989390	Nu	mbe	r	Number 7	Гуре	Х	Y	Ζ
3	6	0	-0.092242	-3.260954	1.282078								
4	6	0	-1.277169	-2.682814	0.840301	1	6	0	1.224890	1.5661	31	-0.34	44350
5	6	0	-1.262716	-1.480312	0.114204	2	6	0	1.156839	2.7986	684	-1.02	20670
6	6	0	-0.015564	-0.869401	-0.142059	3	6	0	-0.062002	2 3.417	555	-1.2	270160
7	15	0	-0.038227	0.774131	-0.916764	4	6	0	-1.251766	5 2.819	197	-0.8	370323
8	6	0	1.535463	1.469925	-0.279843	5	6	0	-1.246008	8 1.571	116	-0.2	26463
9	6	0	-1.476847	1.465697	0.017194	6	6	0	0.002795	0.9498	326	0.0	02501
10	6	0	1.742730	2.842716	-0.335557	7	15	0	-0.021646	5 -0.7410	608	0.6	529106
11	6	0	3.005696	3.415690	-0.086899	8	6	0	1.556884	-1.4095	68	0.0	08851
12	6	0	4.092775	2.598333	0.110421	9	6	0	-1.465849	-1.377	122	-0.3	08531
13	6	0	3.949212	1.187904	0.082926	10	6	0	1.752582	-2.7833	81	0.0	15024
14	6	0	2.648428	0.593390	-0.044432	11	6	0	3.014264	-3.350	695	-0.2	47804
15	6	0	5.094055	0.351175	0.107539	12	6	0	4.102233	-2.525	551	-0.4	07948
16	6	0	4.959874	-0.999339	-0.072777	13	6	0	3.965261	-1.1170	44	-0.3	26017
17	6	0	3.687024	-1.624778	-0.148630	14	6	0	2.667300	-0.5221	18	-0.1	81051
18	6	0	2.527656	-0.848620	-0.015575	15	6	0	5.114118	-0.2868	20	-0.3	18901
19	6	0	-2.638575	0.623686	0.016133	16	6	0	4.985380	1.0553	371	-0.08	82579
20	6	0	-3.919816	1.229076	0.216659	17	6	0	3.715023	1.6808	331	0.0	26615
21	6	0	-3.998771	2.593175	0.600584	18	6	0	2.550341	0.9182	291	-0.14	41975
22	6	0	-2.854887	3.343315	0.741552	19	6	0	-2.624275	5 -0.5333	338	-0.2	70269


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	0	-3.900812	-1.131519	-0.508149	16	6	0	4.975661	1.022	632	-0.00	4943
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	0	-3.972043	-2.474230	-0.961979	17	6	0	3.703887	1.649	918	0.0	73988
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	0	-2.828711	-3.218884	-1.135757	18	6	0	2.540033	0.880	384	-0.07	0669
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		-5.865486	1.470697				0	-2.550830			0.11	0977
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	1	0	-2.884195	-4.239239	-1.504002	25	6	0	-3.716040	0 1.53	8258	0.43	9240
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30	1	0	-6.043601	-0.824129	-0.422796	26	6	0	-4.971892	2 0.87	9596	0.34	9632
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31	1	0	-4.949760	-2.903275	-1.167483	27	6	0	-5.081459	9 -0.416	5614	-0.08	35151
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1					0.01	2832
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	1	0	5.096483	-2.941128	-0.552694	33	1	0	0.923936	-3.464	942	0.49	0663
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	1	0	-0.703757	-3.315943	-0.823768	34	1	0	5.862176	1.647	252	0.0	75597
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39	1	0	-2.193999	3.288357	-1.126290	35	1	0	-0.10953	1 4.26	6363	-1.8	35080
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		2.061712	3.251440		36	1		6.089829			-0.2	78217
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-						-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								6						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	1	0	2.802947	3.501623	0.819627	42	1	0	-4.092790) 3.67	1008	0.16	0502
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47	1	0	3.983942	3.797194	-0.464739	43	1	0	-2.75993	1 3.31	3987	1.27	0250
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48	1	0	4.533494	3.317044	1.135381	44	1	0	-4.436683	3 3.05	3355	1.77	1800
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49	16	0				45	6	0	3.732496	3.134	974		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						2.373377								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
NumberNumberTypeXYZIc1601.2126261.520985-0.2904962601.1407642.732888-1.002725360-0.0805903.343286-1.262253460-1.2680622.758044-0.836336560-1.2563311.528449-0.15788811500.025307-0.2849521.040064660-0.0064210.9123850.0834082601.478062-0.9925130.1662737150-0.032173-0.7611570.7416893600.0167061.3962070.3199058601.545478-1.4407170.151422460-1.535108-0.9814250.395310960-1.745058-2.8132840.2128856603.863017-0.692070-0.11502310603.011043-3.389684-0.0087037604.051266-2.062118-0.40197512604.099222-2.569518-0.1902298602.945383-2.880418-0.44699713602.659857-0.561343-0.05609810602.5567721.3201090.281635	E(R	B3I	LYP) = -1495.02	28499 hartree		49	8	0	-0.204409	9 -0.924	1834	2.2	28282
NumberNumberTypeXYZIc1601.2126261.520985-0.2904962601.1407642.732888-1.002725360-0.0805903.343286-1.262253460-1.2680622.758044-0.836336560-1.2563311.528449-0.15788811500.025307-0.2849521.040064660-0.0064210.9123850.0834082601.478062-0.9925130.1662737150-0.032173-0.7611570.7416893600.0167061.3962070.3199058601.545478-1.4407170.151422460-1.535108-0.9814250.395310960-1.745058-2.8132840.2128856603.863017-0.692070-0.11502310601.745058-2.8132840.2128856603.863017-0.692070-0.11502411603.011043-3.389684-0.0087037604.051266-2.062118-0.40197512604.099222-2.569518-0.1902298602.5567721.3201090.28163514602.659857-0.561343-0.05609810602.5567721.3201090.281635 <td></td>														
NumberNumberTypeXYZIc1601.2126261.520985-0.2904962601.1407642.732888-1.002725360-0.0805903.343286-1.262253460-1.2680622.758044-0.836336560-1.2563311.528449-0.15788811500.025307-0.2849521.040064660-0.0064210.9123850.0834082601.478062-0.9925130.1662737150-0.032173-0.7611570.7416893600.0167061.3962070.3199058601.545478-1.4407170.151422460-1.535108-0.9814250.395310960-1.745058-2.8132840.2128856603.863017-0.692070-0.11502310601.745058-2.8132840.2128856603.863017-0.692070-0.11502411603.011043-3.389684-0.0087037604.051266-2.062118-0.40197512604.099222-2.569518-0.1902298602.5567721.3201090.28163514602.659857-0.561343-0.05609810602.5567721.3201090.281635 <td>Cer</td> <td>nter</td> <td></td> <td>Atomic A</td> <td>tomic Coo</td> <td>ordinates</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cer	nter		Atomic A	tomic Coo	ordinates								
NumberTypeTTTTTT1601.2126261.520985-0.290496-0.290496-0.1496.009792 hartree2601.1407642.732888-1.002725CenterAtomicAtomicCoordinates360-0.0805903.343286-1.262253NumberNumberTypeXYZ460-1.2680622.758044-0.836336-0.025307-0.2849521.040064660-0.0064210.9123850.0834082601.478062-0.9925130.1662737150-0.032173-0.7611570.7416893600.0167061.3962070.3199058601.545478-1.4407170.151422460-1.535108-0.9814250.395310960-1.745058-2.8132840.2128856603.863017-0.692070-0.11502411603.011043-3.389684-0.0087037604.051266-2.062118-0.40197512604.099222-2.569518-0.1902298602.945383-2.880418-0.44699713603.959926-1.158762-0.1662349601.670778-2.336188-0.13250114602.659857-0.561343-0.056098106<			r				1c							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INUI	noei	L	Number 1	ype A	I L		B3I	JYP	() = -1496.0	009792 ha	artree		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							```			, 				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							C			A 4 : -	A 4 : -	C		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	1.140764	2.732888	-1.002725								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	-0.080590	3.343286	-1.262253	Nui	nbei	r	Number '	Гуре	Х	Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	0	-1.268062	2.758044	-0.836336								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							1	15	0	0.025307	-0.284	952	1.04	0064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
8 6 0 1.545478 -1.440717 0.151422 4 6 0 -1.535108 -0.981425 0.395310 9 6 0 -1.472185 -1.420509 -0.170975 5 6 0 2.599582 -0.105659 0.115023 10 6 0 1.745058 -2.813284 0.212885 6 6 0 3.863017 -0.692070 -0.115024 11 6 0 3.011043 -3.389684 -0.008703 7 6 0 4.051266 -2.062118 -0.401975 12 6 0 4.099222 -2.569518 -0.190229 8 6 0 2.945383 -2.880418 -0.446997 13 6 0 3.959926 -1.158762 -0.166234 9 6 0 1.670778 -2.336188 -0.132501 14 6 0 2.659857 -0.561343 -0.056098 10 6 0 2.556772 1.320109 0.281635														
9 6 0 -1.472185 -1.420509 -0.170975 5 6 0 2.599582 -0.105659 0.115023 10 6 0 1.745058 -2.813284 0.212885 6 6 0 3.863017 -0.692070 -0.115024 11 6 0 3.011043 -3.389684 -0.008703 7 6 0 4.051266 -2.062118 -0.401975 12 6 0 4.099222 -2.569518 -0.190229 8 6 0 2.945383 -2.880418 -0.446997 13 6 0 3.959926 -1.158762 -0.166234 9 6 0 1.670778 -2.336188 -0.132501 14 6 0 2.659857 -0.561343 -0.056098 10 6 0 2.556772 1.320109 0.281635														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
12604.099222-2.569518-0.1902298602.945383-2.880418-0.44699713603.959926-1.158762-0.1662349601.670778-2.336188-0.13250114602.659857-0.561343-0.05609810602.5567721.3201090.281635			0	1.745058	-2.813284				0	3.863017			-0.1	15024
13 6 0 3.959926 -1.158762 -0.166234 9 6 0 1.670778 -2.336188 -0.132501 14 6 0 2.659857 -0.561343 -0.056098 10 6 0 2.556772 1.320109 0.281635	11	6	0	3.011043	-3.389684	-0.008703	7	6	0	4.051266	-2.062	118	-0.4	01975
13 6 0 3.959926 -1.158762 -0.166234 9 6 0 1.670778 -2.336188 -0.132501 14 6 0 2.659857 -0.561343 -0.056098 10 6 0 2.556772 1.320109 0.281635	12	6	0	4.099222	-2.569518	-0.190229	8	6	0	2.945383	-2.880	418	-0.4	46997
14 6 0 2.659857 -0.561343 -0.056098 10 6 0 2.556772 1.320109 0.281635		6					9							
$15 \ 0 \ 0 \ 5.175710 \ 1.775571 \ 0.305212 \ 11 \ 0 \ 0 \ 5.175410 \ 1.775571 \ 0.305505$		6												

10	6	0	5.0055.45	1.262700	0.00001		6	~	2 0 2 0 1 2 2	0.660774	0.050565
12	6	0	5.035747	1.362708	0.238091	7	6	0	3.839122	-0.662774	-0.359765
13	6	0	5.080710	0.017662	-0.057383	8	6	0	4.014492	-2.029282	-0.668518
14	6	0	-1.199234	2.060874	0.023804	9	6	0	2.905863	-2.846417	-0.712972
15	6	0	-1.131383	3.401410	-0.399861	10	6	0	1.641235	-2.299981	-0.374739
16 17	6 6	0	0.083710	4.062671	-0.517835	11 12	6 6	0	2.548515	1.348391	0.085380
	6	0	1.272165	3.389074	-0.264352	12	6	0	3.774035	2.012619	0.170994
18 19	6	0	1.266354	2.049821	0.157943 0.450269	13 14	6	0	5.028384	1.380847	-0.010300
20	6	0 0	-1.803812 -3.084664	-2.347286 -2.895755	0.430269	14	6	0 0	5.062047 -1.213774	0.038216 2.100652	-0.318730 -0.112552
20 21	6	0	-4.131140	-2.893733	-0.065325	15	6	0	-1.145500	3.463954	-0.455114
21	6	0	-3.882127	-0.649249	-0.078480	17	6	0	0.069893	4.130359	-0.433114
22	6	0	-2.603088	-0.071600	0.113008	18	6	0	1.261321	3.447193	-0.318413
23	6	0	-5.068168	0.096402	-0.251484	19	6	0	1.260166	2.086013	0.024179
24	6	0	-4.982191	1.468757	-0.212404	20	6	0	-1.816173	-2.319106	0.262588
26	6	0	-3.711008	2.073646	-0.064617	20	6	0	-3.092381	-2.868753	-0.003896
20	6	0	-2.514507	1.362976	0.053057	$\frac{21}{22}$	6	0	-4.134036	-2.009435	-0.276058
28	6	0	5.534316	-2.323900	-0.601408	23	6	0	-3.886812	-0.619265	-0.294719
20 29	6	0	6.226405	-0.943982	-0.318560	24	6	0	-2.611049	-0.038846	-0.090913
30	6	0	-5.609211	-2.285080	-0.311404	25	6	0	-5.071000	0.121390	-0.494251
31	6	0	-6.242183	-0.853766	-0.399267	26	6	0	-4.986635	1.494498	-0.465514
32	1	0	-3.686350	3.157123	-0.043335	27	6	0	-3.720206	2.099711	-0.290480
33	1	0	-6.767717	-0.702750	-1.350082	28	6	0	-2.523057	1.394677	-0.141451
34	1	0	-6.985037	-0.696824	0.392585	29	6	0	5.491625	-2.297967	-0.893098
35	1	0	-5.862681	2.100932	-0.297554	30	6	0	6.196624	-0.924752	-0.615480
36	1	0	0.106654	5.095302	-0.855317	31	6	0	-5.607839	-2.258933	-0.536807
37	1	0	2.213315	3.894253	-0.449045	32	6	0	-6.239515	-0.830867	-0.661197
38	1	0	-6.061285	-2.877894	0.492702	33	1	0	-3.702357	3.182858	-0.269171
39	1	0	-5.769610	-2.848623	-1.239029	34	1	0	-6.737624	-0.693004	-1.628593
40	1	0	-3.222904	-3.973260	0.235576	35	1	0	-7.003844	-0.663100	0.107250
41	1	0	-1.015340	-3.032685	0.744816	36	1	0	-5.864547	2.125975	-0.575060
42	1	0	6.897164	-1.007040	0.547396	37	1	0	0.091236	5.181979	-0.800484
43	1	0	6.844379	-0.620808	-1.164996	38	1	0	2.198488	3.967620	-0.477096
44	1	0	5.940568	1.957628	0.335754	39	1	0	-6.066576	-2.834836	0.275556
45	1	0	3.771233	3.062262	0.573394	40	1	0	-5.755459	-2.843669	-1.453098
46	1	0	5.743692	-2.669418	-1.621550	41	1	0	-3.234771	-3.944817	0.049826
47	1	0	5.904699	-3.106043	0.071995	42	1	0	-1.030507	-2.995787	0.581813
48	1			-3.939413		43	1		6.887269	-0.997391	0.233575
49	1	0		3.927734			1	0	6.794687	-0.596583	-1.474115
50	1	0		-3.015619			1	0		1.972046	0.075490
						46	1	0		3.076955	0.381106
						47	1	0	5.681095	-2.643052	-1.917062
2 c						48	1	0	5.863687	-3.085339	-0.227058
E(I	RB3I	LYP	() = -1894.22	3518 hartree			1	0	2.981287	-3.902038	-0.960557
						50					
Ce	nter		Atomic A	tomic Coo	ordinates	51			0.792262	-2.973550	
Nu	mber	r	Number Ty	ype X	Y Z						
						3c					
1	15	0	0.012760	-0.269875	0.804630		ורח	VD	1571.04	05401 4	
2	16	0	0.185166	-0.415441	2.771605	E(R	831	JYP) = -1571.25	08542 hartree	
3	6	0	1.464180	-0.958978	-0.054837					·	
4	6	0	0.006465	1.430899	0.160957				Atomic A		
5	6	0	-1.552919	-0.953557	0.198770	Nur	nbei	r	Number T	ype X	Y Z
6	6	0	2.583236	-0.072162	-0.105553						

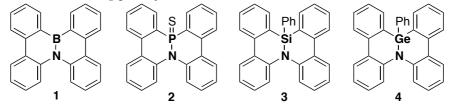
1 2	15 0 0.021910 -0.275694 0.894781 8 0 0.167601 -0.375104 2.391084					E(RB3LYP) = -2015.854408 hartree						
2 3	о 6	0	1.467104	-0.974790	0.047339	Center			·····		 1' /	
4	6	0	0.012550	1.414102	0.241196						ordinates	
5	6	0	-1.544091	-0.963610	0.313350	Nu	Number		Number	Гуре Х	Y Z	
6	6	0	2.591013	-0.091628	0.009865						· · · · · · · · · · · · · · · · · · ·	
7	6	0	3.850967	-0.683870	-0.219932	1	79	0	0.434231	-1.778698	-1.001731	
8	6	0	4.029763	-2.052620	-0.516445	2	17	0	0.977455	-3.414824	-2.566870	
9	6	0	2.921334	-2.869370	-0.572941	3	15	0	-0.092829		0.534044	
10	6	0	1.651637	-2.318198	-0.261616	4	6	0	-1.532592			
11	6	0	2.554158	1.331796	0.187358	5	6	0	-1.58000			
12	6	0	3.779090	1.996172	0.282318	6	6	0	-0.41655			
13	6	0	5.035875	1.362820	0.124259	7	6	0	0.830533		-0.633774	
14	6	0	5.073659	0.016876	-0.168810	8	6	0	0.937585		-0.304680	
15	6	0	-1.205501	2.085865	-0.040898	9	6	0	-0.25719			
16	6	0	-1.136027	3.448644	-0.38547	10	6	0	-1.69569		1.351810	
17	6	0	0.080700	4.113800	-0.453113	11	6	0	1.278309		1.721833	
18	6	0	1.271376	3.432294	-0.233549	12	6	0	-1.82642			
19	6	0	1.266617	2.071610	0.111530	13	6	0	-3.08136		2.750365	
20	6	0	-1.812453	-2.326827	0.412103	14	6	0	-4.21408		2.286046	
21	6	0	-3.093156	-2.880459	0.174970	15	6	0	-4.13266		1.312449	
22	6	0	-4.134598	-2.025349	-0.110560	16	6	0	-2.855204			
23	6	0	-3.884662	-0.636410	-0.166046	17	6	0	-5.312064			
24	6	0	-2.606090	-0.054988	0.015648	18	6	0	-5.222312			
25	6	0	-5.068008	0.100811	-0.381855	19	6	0	-3.97692			
26	6	0	-4.979580	1.473912	-0.393844	20	6	0	-2.800640			
27	6	0	-3.711412	2.080434	-0.236351	21	6	0	2.394790		1.172869	
28	6	0	-2.515121	1.377883	-0.067724	22 23	6	0	3.669132	0.653393	1.799226	
29	6	0	5.509740	-2.323639	-0.719285	23 24	6 6	0	3.755989	-0.039417 -0.585289	3.034869	
30	6	0	6.211846	-0.949044	-0.441178	24 25	6	0 0	2.635092 1.399572	-0.585289	3.616471 2.932325	
31	6	0	-5.610265	-2.278291	-0.357893	23 26	6	0	2.277571	1.673645	0.015625	
32	6	0	-6.239269	-0.852762	-0.519272	20 27	6	0	3.439855	2.072580	-0.651141	
33	1	0	-3.692320	3.163699	-0.245277	27	6	0	4.704838	1.785065	-0.031141	
34	1	0	-6.739853	-0.740290	-1.488684	28 29	6	0	4.820707	1.163861	1.146908	
35	1	0	-7.001137	-0.662410	0.246393	30	1	0	5.598534	2.107215	-0.599615	
36	1	0	-5.855735	2.104540	-0.521363	31	1	0	2.701587	-1.095715	4.572734	
37	1	0	0.103704	5.164790	-0.728606	32	1	0	5.795421	1.018682	1.605600	
38	1	0	2.208961	3.954259	-0.385354	33	1	0	4.728804	-0.135869	3.510341	
39	1	0	-6.066828	-2.830335		34	1	0	-3.14843		3.465838	
40	1	0	-5.763363	-2.887876	-1.256911	35	1	0	-0.959050			
41	1	0	-3.238062	-3.954576	0.255811	36	1	0	-6.123912			
42	1	0	-1.021558	-2.999571	0.728195	37	1	0	-0.48329			
43	1	0	6.889555	-1.016179	0.418768	38	1	0	-6.27748			
44	1	0	6.823369	-0.627869	-1.292959	39	1	0	-5.19813		2.622457	
45	1	0	5.942712	1.955261	0.215185	40	1	0	0.552058	-1.066405	3.363384	
46	1	0	3.785041	3.062654	0.481585	41	1	0	1.725166	4.210616	-0.719208	
47	1	0	5.712596	-2.675114	-1.738518	42	1	0	-2.535100			
48	1	0	5.872516	-3.107172	-0.043625	43	6	0	3.449696	2.783228	-1.988682	
49	1	0	3.000463	-3.926600	-0.812800	44	1	0	3.692917	3.849790	-1.891992	
50	1	0	-2.032941	3.998102	-0.642828	45	1	0	2.496450	2.700865	-2.514207	
51	1	0	0.800231	-2.990048	-0.250455	46	1	0	4.224322	2.340807	-2.625489	
						47	6	0	-4.038750			
						48	1	0	-3.07839			
Αι	ICl(1b)					-	-			0	

49 50	1 1	0 0	-4.38530 -4.76185			40 41	6 6	0 0	-5.528306 -4.980821	2.778681 1.517401	-0.805292 -0.487110
						42	6	0	-3.689668	1.410920	-0.001620
• •						43 44	6 6	0 0	4.858057 5.613712	3.894191 3.060514	-0.943029 -0.150731
	2d						6	0	5.019535	1.903501	0.385437
E(F	E(RB3LYP) = -3403.707541 hartree						6	0	3.683765	1.605666	0.383437
							6	0	3.689656	-1.410910	-0.001657
Cer	nter		Atomic	Atomic Co	ordinates	47 48	6	0	4.980804	-1.517382	-0.487166
Nu	mber	r	Number	Type X	Y Z	48 49	6	0	4.980804 5.528291	-1.317382	-0.487100
						49 50	6	0	4.804924	-3.918728	-0.803333
1	15	0	-3.04562	-0.063865	0.846082	50	6	0	-0.587341	2.754385	-0.334311 -2.368170
2	15	0	3.045619		0.846078	51	6		0.455311	3.661304	1.803880
3	16	0	-3.25526			52 53	6	0 0	0.433311 0.587337	-2.754389	-2.368186
4	16	0	3.255251		2.808954	55 54	1	0	6.536051	-2.734389	-1.204890
5	6	0	-0.69030		-0.058274	55	1	0	5.593902	-0.627388	-0.593275
6	6	0	0.690301		-0.058276	55	1	0	6.658869	3.277706	0.048560
7	6	0	1.343833		0.270782	50 57	1	0	5.608524	1.239063	1.011295
8	6	0	0.697922		0.287995	58	1	0	-6.536071	2.845716	-1.204816
9	6	0	-0.69793			50 59	1	0	-5.593925	0.627410	-0.593213
10	6	0	-1.34384		0.270782	59 60	1	0	-6.658889	-3.277675	0.048487
11	6	0	-1.42177		-0.792720	61	1	0	-5.608544	-1.239044	1.011241
12	6	0	-1.46496		0.536460	61 62	1	0	1.047017	-1.239044	1.362172
13	6	0	1.421765		-0.792709	63	1	0	5.243386	-4.900918	-0.694088
14	6	0	1.464968		0.536441	64	1	0	3.243380	-4.900918	0.252026
15	6	0	-2.84603		-0.599406	65	1	0	-0.921367	-4.726925	-3.127592
16	6	0	-3.48888		-1.195531	65 66	1	0	-0.921307	-4.726923	-3.127392
17	6	0	-2.74898		-2.068172	67	1	0			
18	6	0	-1.46029		-2.390159	67 68	1	0	-3.236299 -1.046937	-5.327276 5.773873	-2.514182 1.362045
19	6	0	-0.78083		-1.789206	69	1		0.921402	4.726874	
20	6	0	0.780839		-1.789214	69 70	1	0 0	-5.243377		-3.127652
21	6	0	1.460318		-2.390192	70	1	0		4.900937	-0.694058 0.251953
22	6	0	2.749002		-2.068189	71	1	0	-3.242304 5.301594	5.982560	
23	6	0	3.488886		-1.195515	72	1		3.236318	4.776787 5.327247	-1.397586
24	6	0	2.846027		-0.599386	73 74	1 6	0 0	-0.455296	-3.661287	-2.514213 1.803892
25	6	0	-0.86674			74	1	0			2.125618
26	6	0	-1.54520			76	1		-0.775532	-2.668738	
27	6	0	-2.77359					0	-1.258607	-4.097463	1.198980
28	6	0	-3.48369			77 78	1 1	0	-0.352910	-4.285640	2.699385
29	6	0	-2.86154			78 79		0	-0.932333	1.740807	-2.164363
30	6	0	2.861539		0.154698	80	1 1	0	-1.349061	3.447581	-1.996213 -3.456295
31	6	0	3.483706		-0.019358	80 81		0	-0.541474	2.882557	
32	6	0	2.773628		0.373692	82	1 1	0	0.775782	2.668718	2.125245
33	6	0	1.545254		0.971500	82 83		0	1.258520	4.097909	1.199138
34	6	0	0.866772		1.071131	83 84	1	0	0.352760	4.285293	2.699609
35	6	0	-3.68377		0.150392	84 85	1 1	0	1.349011	-3.447755	-1.996450
36	6	0	-5.01955		0.385389	85 86	1	0	0.541373	-2.882300	-3.456339
37	6	0	-5.61372		-0.150789	00	1	0	0.932448	-1.740895	-2.164171
38	6	0	-4.85806		-0.943068						
39	6	0	-4.80492								
-	-	-				1					

Mechanistic Study on Bora-Friedel–Crafts Reaction and Its Application to Other Heteroatoms

Abstract: In situ NMR measurements and DFT calculations of the reaction pathway were performed as the basis of a mechanistic study of the bora-Friedel–Crafts reaction. The ¹H NMR spectra clearly indicate that the first cyclization takes place at 120 °C and the second cyclization takes place at 150 °C. The ¹¹B NMR spectra suggest that three-fold coordinated boron species are major intermediates during the reaction rather than four-fold coordinated species. DFT calculations suggest that the mechanism proceeds *via* a relatively stable aluminate intermediate. The activation energy calculated for the first cyclization step is 27.1 kcal/mol (ΔG^{\ddagger}), which is good agreement with the experimental results. Next, to establish further applications of the hetero-Friedel–Crafts reaction, 4b-aza-hetero-dibenzo[*g*,*p*]chrysene derivatives have been synthesized *via* phospha-, sila-, and germa-Friedel–Crafts reactions. The development of these reactions has led to insights into a wide variety of molecular structures of azadibenzochrysene derivatives with heteroatom junctions and into the suitable ranges of electronegativity and atomic radius of the heteroatoms for the reactions.

5-1. Introduction

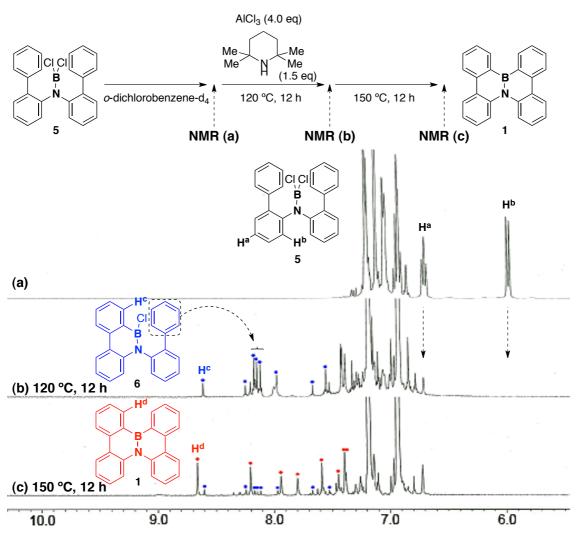

Replacement of the C–C units in dibenzo[g,p]chrysene with isoelectronic B– N units affords novel hetero- π -conjugated molecules that are structurally similar to their all-carbon analogs but exhibit substantially different optical and electronic properties (see Chapter 1). Changes in the heteroatom junctions perturb the π -conjugated framework, which makes modifying the heteroatom junction a promising way to modulate the physical properties and explore the novel characters of these molecules.^{1,2} This makes the development of a facile synthetic method for introducing various heteroatoms especially desirable. First, this author investigated the reaction mechanism of the bora-Friedel–Crafts reaction in detail. From this framework, the development of various hetero-Friedel–Crafts reactions was envisioned based on these theoretical insights (Scheme 1).

Scheme 1. Tandem hetero-Friedel–Crafts reaction producing a π -conjugated framework with a heteroatom junction

In this chapter, both NMR and theoretical studies on the mechanism of the bora-Friedel–Crafts reactions for the synthesis of **1** are described. In addition, novel phospha-, sila-, and germa-Friedel–Crafts reactions have been developed based on the obtained mechanistic understanding, and the syntheses of other 4b-azadibenzo[g,p]chrysene derivatives (**2**, **3**, and **4**) are described.

Chart 1. 4b-Azadibenzo[*g*,*p*]chrysene derivatives

¹ Reviews: (a) Liu, Z.; Marder, T. B. Angew. Chem., Int. Ed. **2008**, 47, 242–244. (b) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. **2009**, 87, 8–29. (c) Ashe, A. J., III Organometallics **2009**, 28, 4236–4248. (d) Fukazawa, A.; Yamaguchi, S. Chem. Asian J. **2009**, 4, 1386–1400.


² Recent examples: (a) Saito, S.; Matsuo, K.; Yamaguchi, S. J. Am. Chem. Soc. **2012**, *134*, 9130–9133. (b) Chen, L.; Puniredd, S. R.; Tan, Y.-Z.; Baumgarten, M.; Zschieschang, U.; Enkelmann, V.; Pisula, W.; Feng, X.; Klauk, H.; Müllen, K. J. Am. Chem. Soc. **2012**, *134*, 17869–17872. (c) Dou, C.; Saito, S.; Matsuo, K.; Hisaki, I.; Yamaguchi, S. Angew. Chem., Int. Ed. **2012**, *51*, 12206–12210.

5-2. Results and Discussion

5-2-1. NMR and theoretical studies on the bora-Friedel–Crafts reaction

To gain mechanistic insight into the bora-Friedel–Crafts reaction, ¹H and ¹¹B NMR studies were carried out during the course of the reaction (Figures 1 and 2). Figure 1a shows the ¹H NMR spectrum of **5**; all peaks were observed in the range of 5.9 ppm to 7.3 ppm. Figure 1b shows the ¹H NMR spectrum of the reaction mixture including 6, which was obtained by treating 5 with 4 equivalents of $AlCl_3$ and 1.5 equivalents of 2,2,6,6-tetramethylpiperidine for 12 h at 120 °C. The peaks derived from 5, such as the H^a and H^b peaks, disappeared completely, and a new set of characteristic peaks was observed in the range of 7.5 ppm to 8.6 ppm. In particular, the peaks at 8.6 ppm and around 8.2 ppm could be assigned the proton at the position ortho to the boron atom (H^c) and protons on the uncyclized phenyl ring, respectively. These results suggest the complete conversion of boron dichloride 5 to the monochloride 6. When the reaction mixture was further heated at 150 °C for 12 h, the peaks assigned to 6 became minor, and the peaks of 1 were observed as a major component of the reaction mixture (Figure 1c). The peaks corresponding to the position *ortho* to the boron atom have been slightly shifted to a lower field by the cyclization (H^c vs. H^d). These results clearly indicate that the first cyclization takes place at 120 °C, whereas the second cyclization is much slower and takes place at 150 °C.

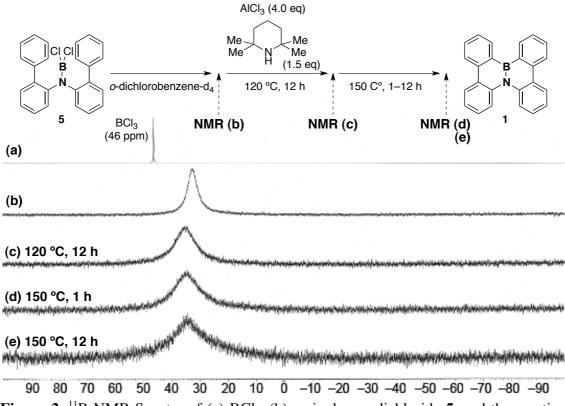
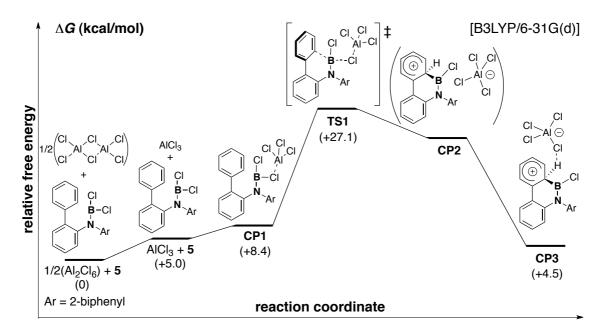


Figure 1. ¹H NMR spectra of (a) aminoboron dichloride **5** and the reaction mixture after treatments at (b) 120 °C for 12 h and (c) 150 °C for a further 12 h (392 MHz, o-dichlorobenzene-d₄).

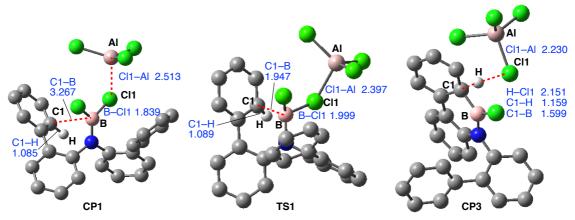
To obtain detailed insight into the boron intermediates in this reaction, ¹¹B NMR spectra were also measured and analyzed (Figure 2). Figures 2a and 2b show the ¹¹B NMR spectra of boron trichloride (46 ppm) and **5** (31 ppm), respectively. After the treatment at 120 °C for 12 h, the peak derived from **5** disappeared, and a new broad peak (35 ppm) appeared (Figure 2c). This peak did not show any notable change upon further heating at 150 °C for 12 h (Figure 2d–e). However, the ¹H NMR results confirm that **1** would be generated at 150 °C. It is possible that the peaks could not be separated because **1** and **6** have close ¹¹B NMR shifts. Furthermore, ¹¹B NMR spectra of four-fold and symmetric three-fold coordinated boron species generally tend to have a sharper singlet peak than those of asymmetric three-fold coordinated boron species, because of the quadrupolar relaxation.³ These results suggest that three-fold coordinated boron

³ Odom, J. D. Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E.

species are major intermediates during the reaction, rather than four-fold species such as boron-amine complexes.⁴


Figure 2. ¹¹B NMR Spectra of (a) BCl_3 , (b) aminoboron dichloride **5**, and the reaction mixture after treatments at (c) 120 °C for 12 h, (d) 150 °C for a further 1 h, and (e) 150 °C for a further 12 h (98 MHz, *o*-dichlorobenzene-d₄).

To further investigate the reaction pathway of the bora-Friedel–Crafts reaction, DFT calculations were performed at the B3LYP/6-31G(d) level. Figures 3 and 5 show sections of energy profile (all Gibbs free energy, ΔG) for the reaction pathway of the first cyclization reaction to form **6**. In Figure 3, aluminum chloride dimer (Al₂Cl₆) dissociates into monomer (AlCl₃) with $\Delta\Delta G = +5.0$ kcal/mol. Aminoboron chloride **5** interacts with AlCl₃ to form complex **CP1**, which is 3.4 kcal/mol higher in energy than the sum of **5** and AlCl₃. The cyclization of **CP1** *via* **TS1** and **CP2** requires an activation energy of $\Delta G^{\ddagger} = +18.7$ kcal/mol to form an aluminate complex, **CP3**. This transformation is exothermic, with $\Delta\Delta G = -3.9$ kcal/mol. Normally, an arenium ion intermediate **CP2** is found in the intrinsic reaction coordinate calculations. However, this state could not be observed for this reaction, because the following **CP3** has been stabilized. The existence of this intermediate could potentially become a driving force for this cyclization reaction. In addition, the calculated structures, along with key bond


W. Eds.; Pergamon: Oxford, 1982, Vol. 1, p. 253.

⁴ Grosso, A. D.; Singleton, P. J.; Muryn, C. A.; Ingleson, M. J. Angew. Chem., Int. Ed. **2011**, 50, 2102–2106.

distances, are depicted in Figure 4 for **TS**, **CP1**, and **CP3**. During the transformation from **TS1** to **CP3**, the C1–H distance increases from 1.089 to 1.159 Å. This result suggests that **CP3** would be likely susceptible to the following deprotonation reaction.

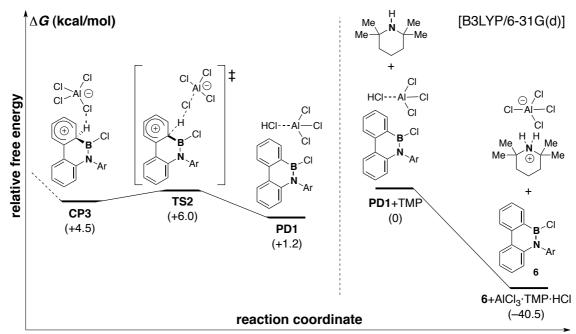

Figure 3. Gibbs free energy profiles for the early part of the bora-Friedel–Crafts reaction mechanism based on DFT calculations at the B3LYP/6-31G(d) level.

Figure 4. Calculated structures of the transition state **TS1** and intermediates **CP1** and **CP3**. H atoms are not shown, except that bonded to the C1 atom. Key bond distances (Å) are indicated.

Next, the elimination of hydrogen chloride from **CP3** takes place *via* **TS2** with a very small activation energy of $\Delta\Delta G^{\ddagger} = +1.5$ kcal/mol to form the monocyclized product **PD1** and AlCl₃·HCl (Figure 5, left). 2,2,6,6-Tetramethylpiperidine and AlCl₃·HCl form an ion pair of tetrachloroaluminate and tetramethylpiperidinium to make the whole process exothermic, with a stabilization energy of 40.5 kcal/mol (Figure 5, right). Because this large exothermicity inhibits the progress of the reverse reaction, 2,2,6,6-tetramethylpiperidine could play an important role in enhancing the

product yield. The pathway of the second cyclization reaction could not be found at present; however, it has been assumed that the mechanism proceeds *via* a similar aluminate intermediate.

Figure 5. Gibbs free energy profiles for the early part of the bora-Friedel–Crafts reaction mechanism based on DFT calculations at the B3LYP/6-31G(d) level.

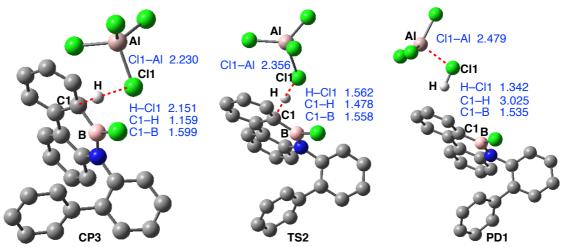


Figure 6. Calculated structures of TS2, CP3, and PD1. H atoms are not shown, except that the bonded to the C1 or Cl1 atom. Key bond distances (Å) are indicated.

5-2-2. Synthesis of azaphosphadibenzochrysene derivatives

To obtain a comprehensive understanding of the hetero-Friedel–Crafts reaction and the physical properties of heterodibenzochrysenes, the syntheses of azadibenzo[g,p]chrysene derivatives possessing heteroatoms other than boron were also investigated. The phospha-Friedel–Crafts reaction was examined first (Scheme 2). In this reaction, phosphination of diarylamine 7 through sequential treatments with BuLi

and PCl₃ gave diarylaminodichlorophosphine **8**. Sulfurization of **8** with sulfur and the subsequent tandem phospha-Friedel–Crafts reaction with AlCl₃ at 120 °C afforded compound **2** in 61% yield. The reaction did not proceed at all without sulfurization of **8**. One reason for this might be that the electrophilicity of phosphine dichloride is smaller than that of thiophosphine dichloride. When teraryldichlorophosphines were used, the phospha-Friedel–Crafts reaction gave several byproducts in the absence of NEt[']Pr₂ (see Chapter 4). However, the addition of amine is not indispensable in this reaction of **8**. This might be because the aminothiophosphine **8** is more stabilized to treatment with acidity by the nitrogen atom than the arylthiophosphines.

Scheme 2. Synthesis of 2 via the phospha-Friedel–Crafts reaction

The molecular structure of **2** has been determined by performing X-ray crystallography (Figure 7). The P–N bond length [1.6901(15) Å] was found to be longer than the B–N bond length in azaboradibenzochrysene **1** [1.426(3) Å], which is consistent with the covalent radii of the P and B atoms (P 1.11 *vs*. B 0.85 Å).⁵ The phosphorus center adopts a distorted tetrahedral geometry with C1–P–N, N–P–C2, and C2–P–C1 bond angles of 99.09(8)°, 102.66(8)°, and 110.20(9)°, respectively. Because of the tetrahedral geometry of the phosphorus centers as well as the steric repulsion between the hydrogen atoms at the positions *ortho* to the phosphorus atom (C5–C7–C6–C8 dihedral angle = 66.82°), **2** adopts a twisted conformation. In particular, the rigid tetrahedral geometry of the phosphorus center caused the biphenyl moieties of **2** to be highly twisted compared to those in **1** (Figure 7b). In the crystal, the *P*-helix (shown in blue) and *M*-helix (shown in pink) enantiomers are packed alternately. However, the intermolecular π - π distances of **2** are longer than those of **1** because of the presence of sulfur atoms (4.3–5.0 *vs*. 3.3–3.6 Å).

⁵ Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 186–197.

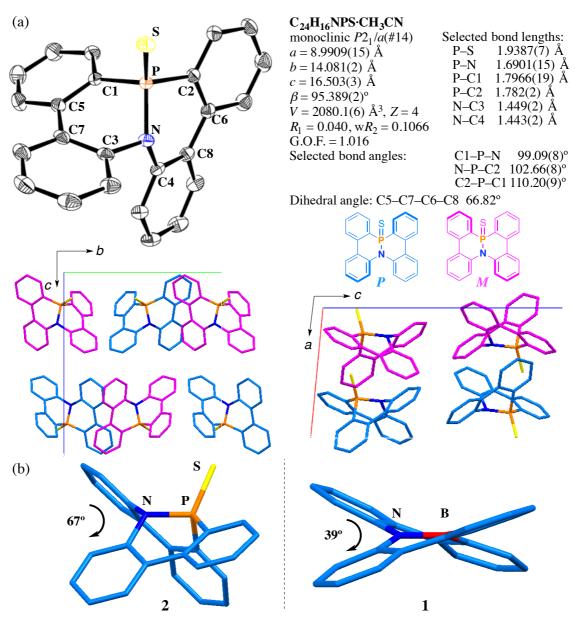
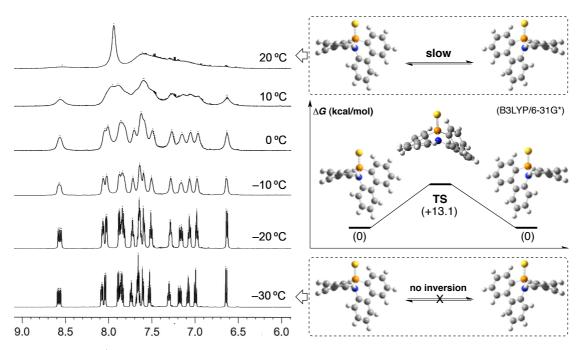
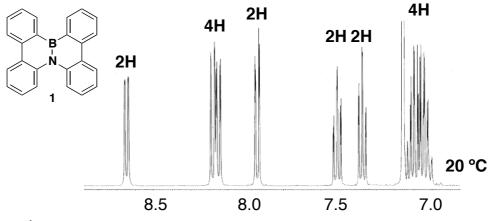




Figure 7. (a) ORTEP drawing and packing structures of 2. Thermal ellipsoids are shown at 50% probability, and H atoms have been omitted for clarity. (b) Comparison of dihedral angles in 2 with those in 1. The *P*-enantiomer is shown in blue, and the *M*-enantiomer is shown in pink.

Compound 2 had broader ¹H NMR peaks because of the molecular inversion motion between the *P*- and *M*-isomers. In variable-temperature NMR (VT-NMR) measurements, the peaks sharpened as the temperature dropped because molecular motion was suppressed (Figure 8, left). This result indicates that the isomers of 2 exchange configurations slowly around room temperature. The isomerization barrier between the *P*- and *M*-enantiomers of 2 was estimated from DFT calculations to be +13.1 kcal/mol (Figure 8, right). On the other hand, azaboradibenzochrysene 1 had sharp peaks in its ¹H NMR spectra at 20 °C because of the smooth inversion between *P*and *M*-isomers (Figure 9).

Figure 8. VT-¹H NMR analysis in CDCl₃ and calculated inversion barrier for **2**.

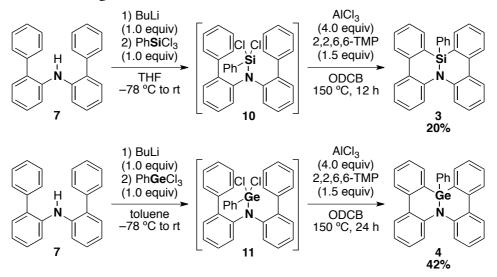


Figure 9. ¹H NMR analysis of **1** in CDCl₃ at 20 °C.

5-2-3. Synthesis of azasiladibenzochrysene and azagermadibenzochrysene derivatives

To apply the present synthetic strategy to the introduction of group 14 elements, the corresponding sila- and germa-Friedel–Crafts reactions were used to synthesize the SiN- and GeN-fused polycyclic aromatic compounds **3** and **4** (Scheme 3). Introduction of silicon or germanium to diarylamine **7** was achieved by treating it with BuLi and PhXCl₃ (X = Si or Ge), and the subsequent tandem hetero-Friedel–Crafts reactions in the presence of AlCl₃ and 2,2,6,6-tetramethylpiperidine were found to afford compounds **3** and **4** in 20% and 42% yields, respectively. Although synthesis of the corresponding SnN-fused polycyclic aromatic compound using PhSnCl₃ in the same manner described above was also attempted, no cyclized product was obtained. This may be because the compound is thermodynamically unstable because of the large radius of the tin atom (Si 1.16 *vs*. Ge 1.24 *vs*. Sn 1.40 Å),⁵ which requires significant distortion of the expected cyclized product.

Scheme 3. Sila- and germa-Friedel–Crafts reactions

The molecular structures of **3** and **4** have been determined by performing X-ray crystallography (Figure 10, 11). The Si–N and Ge–N bond lengths [1.7260(19) and 1.8512(16) Å] were found to be longer than the P–N bond length in **2** [1.6901(15) Å], which is consistent with their covalent radii (Si 1.16 and Ge 1.24 *vs*. P 1.11). In the structure of **3**, the silicon center adopts a distorted tetrahedral geometry with C1–Si–N, N–Si–C2, and C2–Si–C1 bond angles of 101.68(10)°, 102.34(10)°, and 118.97(10)°, respectively. Likewise, in the case of **4**, the germanium center also adopts a similar geometry with C1–Ge–N, N–Ge–C2, and C2–Ge–C1 bond angles of 101.68(10)°, 102.34(10)°, and 118.97(10)°, respectively. Because of the tetrahedral geometries of the silicon and germanium centers, the biphenyl moieties of **3** and **4** were highly twisted, as was the case for **2**, because these atoms have similar atomic radii (Figure 11b). On the

other hand, the *P*- and *M*-isomers of **3** are arranged in an offset packing in a monoclinic crystal system, whereas the molecules of **4** are packed in a triclinic system. This change might be induced by many factors, such as the difference between the dipole moments of **3** and **4** (Si 1.244 D vs. Ge 1.688 D). Molecules of **3** adopt a similar packing to that found for **2**, but the molecular orientations alternate along the *b* axis. This is because the phenyl group in **3** is more bulky than the sulfur in **2**, which makes these alternating orientations necessary for void filling in the crystal.

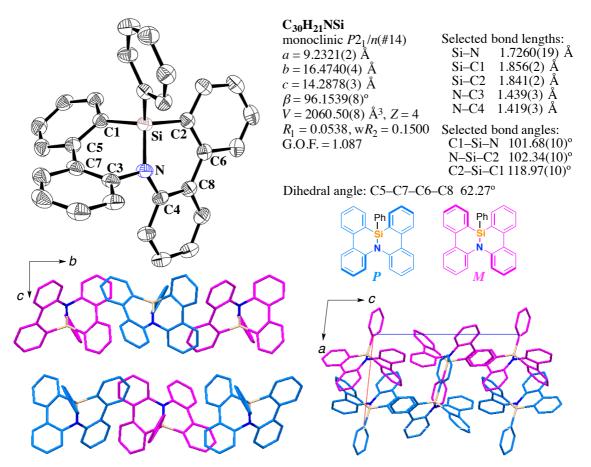
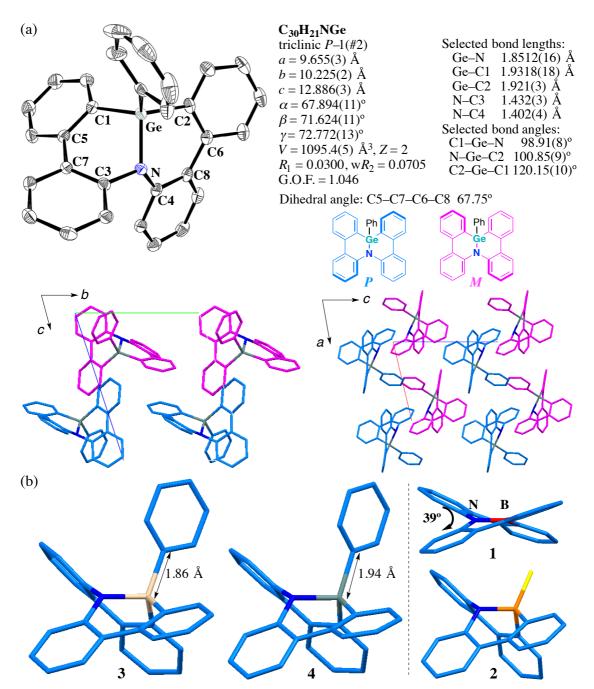



Figure 10. ORTEP drawing and packing structures of 3. Thermal ellipsoids are shown at 50% probability, and H atoms have been omitted for clarity. The *P*-enantiomer is shown in blue, and the *M*-enantiomer is shown in pink.

Figure 11. (a) ORTEP drawing and packing structures of **4**. Thermal ellipsoids are shown at 50% probability, and H atoms have been omitted for clarity. (b) Comparison of structures **1**–**4**. The *P*-enantiomer is shown in blue, and the *M*-enantiomer is shown in pink.

5-2-4. Range of applicability of hetero-Friedel–Crafts reactions

The hetero-Friedel–Crafts reactions for the other group 13 elements, theoretically producing AlN- and GaN-fused polycyclic aromatic compounds, were also investigated, but no cyclized products were obtained. Figure 12 shows the electronegativities (Pauling's scale)⁶ and covalent radii³ of the group 13, 14, and 15 elements. Considering the successful syntheses of the azadibenzochrysenes possessing boron, phosphorus, silicon, and germanium atoms and the failures of the syntheses of aluminum, gallium, and tin derivatives, heteroatoms with electronegativities ≥1.90 and covalent radii ≤1.24 would be suitable for the present hetero-Friedel–Crafts protocol. It is conceivable that mono- or bis-cyclized products with electropositive heteroatoms may not be stable under the reaction conditions, and the reverse reaction or undesirable side reactions may occur. On the other hand, the formation of six-membered rings including heteroatoms with large radii would be kinetically unfavorable. From this point of view, the development of the arsa-Friedel-Crafts reaction, for example, remains a matter for future investigation. As for larger atoms, changes in the aromatic framework to adjust the heteroatom-carbon bond lengths of the product would be necessary, such as the introduction of a five-membered ring into the starting material or a seven-membered ring into the product. These insights into strategies for accommodating large atoms would be helpful for introducing transition metals such as iridium, platinum, and so on.

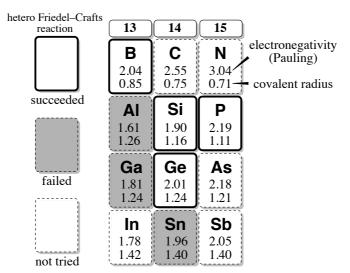


Figure 12. Electronegativities and covalent radii of group 13, 14, and 15 elements.

⁶ Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, New York, **1960**.

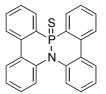
5-3. Conclusions

Mechanistic studies on the bora-Friedel–Crafts reaction using in situ NMR measurements and DFT calculations of the reaction pathway have been conducted. The ¹H NMR spectra clearly indicate that the first cyclization takes place at 120 °C, and the second cyclization takes place at 150 °C. The ¹¹B NMR spectra also suggest that the cyclization reaction occurs at 120 °C. However, the mono- and bis-cyclized compounds could not be distinguished, probably because these peaks appear at similar shifts (one broad peak at 35 ppm). These results suggest that three-fold coordinated boron species are major intermediates during the reaction, rather than four-fold coordinated species. In addition, DFT calculations have revealed the reaction pathway of the first cyclization. The second cyclization pathway is still unclear, but it is supposed that the mechanism proceeds *via* a relatively stabilized aluminate intermediate. The actual synthesis.

Further applications of the hetero-Friedel–Crafts reactions were examined based on the information obtained from the above-mentioned mechanistic study: azathiophospha- (2), azaphenylsila- (3), and azaphenylgermadibenzochrysene (4) derivatives have also been synthesized. In the obtained crystals, these heteroatom centers adopted a distorted tetrahedral geometry corresponding to each covalent radius, and their twisted *P*-helix and *M*-helix enantiomers were packed alternately in a racemic cocrystal. Thus, this author has shown that azadibenzochrysene derivatives with heteroatom junctions can adopt a wide variety of molecular structures and that hetero-Friedel–Crafts reactions are suitable for particular ranges of the electronegativity and atomic radius of the heteroatom.

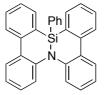
5-4. Experimental Section

General. All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under a positive pressure of argon. Air- and moisture-sensitive liquids and solutions were transferred via a syringe or a stainless steel cannula. Organic solutions were concentrated by rotary evaporation at ca. 30–400 mmHg. Gel permeation chromatography was performed on a JAIGEL-1H and 2H (20 mm i.d.) with an LC-9204 (Japan Analytical Industry Co., Ltd.).


Instrumentation. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on JEOL ECS400 (392 MHz) NMR spectrometers. Proton chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the tetramethylsilane (δ 0). ¹³C NMR spectra were recorded at 98.5 MHz: carbon chemical shift values are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the carbon resonance of CD_2Cl_2 (δ 54.2), C_6D_6 (δ 128.0), and tetramethylsilane (δ 0). ¹¹B NMR spectra were recorded at 131 MHz: boron chemical shift values are reported in parts per million (ppm, δ scale) and are referenced to the external standard boron signal of BF₃·Et₂O (δ 0). Data are presented as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet and/or multiplet resonances, br = broad), coupling constant in hertz (Hz), signal area integration in natural numbers, and assignment (*italic*). IR spectra were recorded on an ATR-FTIR spectrometer (FT/IR-Spectrum One, PerkinElmer). Characteristic IR absorptions are reported in cm⁻¹. Melting points were recorded on a Yanaco MP-500V. High-resolution mass spectra (HRMS) were obtained using the electron impact (EI) method with JEOL JMS-700, JMS-SX102A or the fast atom bombardment (FAB) method with JEOL JMS-HX110A or the matrix assisted laser desorption/ionization (MALDI) method with Thermo Fisher Scientific orbitrapXL. Purity of isolated compounds was determined by GC analysis on Shimadzu GC-2010 Plus instrument equipped with an FID detector and a capillary column, ZB-1MS (Phenomenex, 10 m \times 0.10 mm i.d., 0.10 µm film thickness) and/or ¹H NMR analyses.

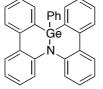
Solvent. *o*-Dichlorobenzene and anhydrous toluene were purchased from Wako Pure Chemical Industries, Ltd. (Wako) and dried over Molecular Sieves 4A and degassed before use. Water content of the solvent was determined with a Karl Fischer Moisture Titrator (MKC-610, Kyoto Electronics Company) to be less than 15 ppm.

Materials. Materials were purchased from Wako, Tokyo Chemical Industry Co., Ltd., Aldrich Inc., Hokko Chemical Industry Co., Ltd., and other commercial suppliers, and were used after appropriate purification, unless otherwise noted. Florisil[®] (100–200


mesh) and Celite[®] were purchased from Wako. Aryl halides and aryl amines were purified by distillation or recrystallization to be over 99.5% pure by GC analysis.

Synthesis of 4b-aza-12b-thiophosphadibenzo[g, p]chrysene (2)

A solution of butyllithium in hexane (1.23 mL, 1.63 M, 2.0 mmol) was added slowly to a solution of 7 (0.642 g, 2.0 mmol) in toluene (10 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of phosphorus trichloride (0.275 g, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 1 h, sulfur (0.096 g, 3.0 mmol) was added at 0 °C and stirred at 50 °C for 1 h. Then solvent was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (1.33 g, 10 mmol) in 1,2-dichlorobenzene (10 mL) at 0 °C. After stirring at 120 °C for 1 h, 1,4-diazabicyclo[2.2.2]octane (1.12 g, 10 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.465 g, 61% yield) as white-yellow powder. IR (neat): cm⁻¹ 3054 (Ar-H), 1578, 1474, 1445, 1428, 1269, 1242, 1192, 1067, 966, 894, 867, 783, 749, 730, 715, 700, 652, 610, 545, 516, 486, 462; mp: >450 °C; ¹H NMR (CD₂Cl₂ at -40 °C, 600 MHz) δ 6.65 (d, 1H, J = 8.4 Hz), 7.01 (t, 1H, J = 7.2 Hz), 7.09 (t, 1H, J = 7.8 Hz), 7.19 (dd, 1H, J = 7.8, 13.8 Hz), 7.31 (td, 1H, J = 3.0, 7.8 Hz), 7.54 (t, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 7.2 Hz), 7.65–7.69 (m, 2H), 7.75 (td, 1H, J = 3.0, 7.8 Hz), 7.84–7.91 (m, 3H), 8.05 (d, 2H, J =7.2 Hz), 8.09 (t, 1H, J = 7.2 Hz), 8.58 (dd, 1H, J = 7.8, 15.6 Hz); ¹³C NMR (CD₂Cl₂ at -40 °C, 151 MHz) & 118.1, 120.8, 121.2, 122.3, 124.4, 126.5, 128.1, 128.5, 128.6, 128.7, 128.9, 129.3, 130.2 (2C), 131.6, 132.1, 132.8, 132.9, 134.4, 134.5, 135.2, 135.3, 136.2, 141.5; HRMS (EI) m/z [M]⁺ calcd for C₂₄H₁₆NB 381.0741; observed 381.0746.


Synthesis of 4b-aza-12b-siladibenzo[g, p]chrysene (3)

A solution of butyllithium in hexane (0.62 mL, 1.60 M, 1.0 mmol) was added slowly to a solution of **7** (0.321 g, 1.0 mmol) in THF (5 mL) at -78 °C under argon. After 1 h, trichlorophenylsilane (0.212 g, 1.0 mmol) was added at -78 °C. After stirring at room temperature for 12 h, solvent was removed *in vacuo*, and the reaction mixture was added to a solution of aluminum trichloride (0.533 g, 4.0 mmol) and 2,2,6,6-tetramethylpiperidine (0.233 g, 1.50 mmol) in 1,2-dichlorobenzene (10 mL) at 0

°C. After stirring at 150 °C for 24 h, 1,4-diazabicyclo[2.2.2]octane (1.12 g, 4.0 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed *in vacuo*, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.085 g, 20% yield) as colorless powder. IR (neat): cm⁻¹ 3046 (Ar-H), 1591, 1568, 1475, 1428, 1270, 1205, 1114, 1066, 998, 973, 889, 782, 746, 730, 711, 699, 617, 553, 522, 510; mp: 235.0–235.9 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 7.01–7.17 (m, 6H), 7.22 (td, 2H, *J* = 0.9, 6.7 Hz), 7.28–7.34 (m, 3H), 7.39 (td, 2H, *J* = 0.9, 7.2 Hz), 7.57–7.64 (m, 4H), 7.80 (dd, 2H, *J* = 1.3, 7.6 Hz), 7.96 (d, 2H, *J* = 8.1 Hz); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 122.9 (2C), 125.6, 125.7 (2C), 127.1 (2C), 128.0 (2C), 128.4 (2C), 128.5 (2C), 128.8 (2C), 129.3, 130.6 (2C), 131.5 (2C), 133.9 (2C), 134.3 (2C), 135.5 (2C), 141.7 (2C), 142.6 (2C); HRMS (FAB) *m*/*z* [M]⁺ calcd for C₃₀H₂₁NSi 423.1443; observed 423.1426.

Synthesis of 4b-aza-12b-germadibenzo[g, p]chrysene (4)

A solution of butyllithium in hexane (1.25 mL, 1.60 M, 2.0 mmol) was added slowly to a solution of 7 (0.643 g, 2.0 mmol) in toluene (20 mL) at -78 °C under argon. After 1 h, the reaction mixture stirred at 0 °C for 1 h. A solution of phenylgermanium trichloride (0.512 g, 2.0 mmol) was added at -78 °C. After stirring at room temperature for 12 h, solvent was removed in vacuo, and the reaction mixture was added to a solution of aluminum trichloride (1.07 g, 8.0 mmol) and 2,2,6,6-tetramethylpiperidine (0.466 g, 3.00) in 1,2-dichlorobenzene (10 mL) at 0 °C. After stirring at 150 °C for 24 h, 1,4-diazabicyclo[2.2.2]octane (1.12 g, 10 mmol) was added. The reaction mixture was filtered with a pad of Celite[®]. After the solvent was removed in vacuo, the crude product was purified by GPC (eluent: toluene) to obtain the title compound (0.389 g, 42% yield) as colorless powder. IR (neat): cm⁻¹ 3061 (Ar–H), 1591, 1568, 1472, 1425, 1300, 1274, 1201, 1159, 1119, 1106, 1092, 1062, 999, 943, 917, 889, 871, 777, 733, 721, 698, 673, 615, 562, 530, 512, 494, 464; mp: 232.3–233.1 °C; ¹H NMR (CD₂Cl₂, 392 MHz) δ 7.01–7.17 (m, 6H), 7.22 (td, 2H, J = 0.9, 6.7 Hz), 7.28–7.34 (m, 3H), 7.39 (td, 2H, J =0.9, 7.2 Hz), 7.57–7.64 (m, 4H), 7.80 (dd, 2H, *J* = 1.3, 7.6 Hz), 7.96 (d, 2H, *J* = 8.1 Hz); ¹³C NMR (CD₂Cl₂, 98.5 MHz) δ 122.7 (2C), 124.3 (2C), 127.4 (2C), 127.8 (3C), 129.0 (2C), 129.5 (2C), 130.1 (2C), 130.5, 130.9 (2C), 131.8 (2C), 134.5 (2C), 134.8 (2C), 135.2 (2C), 143.0 (2C), 145.1 (2C); HRMS (MALDI) *m*/*z* [M+H]⁺ calcd for C₃₀H₂₁NGe 470.0964; observed 470.0980.

Crystallographic data collection and structure determination. Crystals of **2**, **3** and **4** were mounted on a Rigaku Saturn CCD diffractometer for data collection using graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Crystal data and data statistics are summarized in Figure 13. The structures were solved by direct methods with (SIR2008)⁷ and refined by full-matrix least-squares techniques against F^2 (SHELXL-97)⁸. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions (C–H = 0.95 Å) and kept fixed. In the subsequent refinement, the function $\sum w(F_o^2 - F_c^2)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as R1 = $\sum (||F_o| - |F_c||)/\sum |F_o|$ and wR2 = $[\sum w(F_o^2 - F_c^2)^2 / \sum (wF_o^4)]^{1/2}$. All calculations were performed by using Crystal Structure 4.0, and illustrations were drawn by using ORTEP–3.

⁷ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; de Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. **2007**, *40*, 609-613.

⁸ Sheldrick, G. M. Program for the Solution of Crystal Structures; University of Göttingen, Germany, 1997.

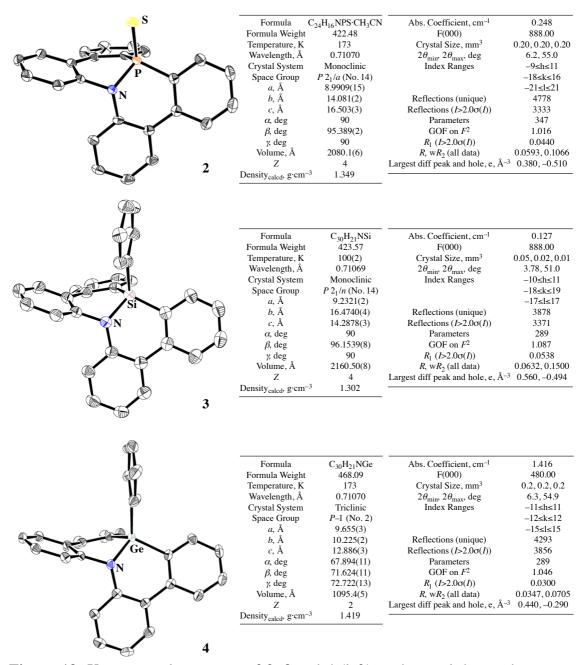


Figure 13. X-ray crystal structures of 2, 3 and 4 (left), and crystal data and structure refinement (right). Thermal ellipsoids are shown at 50% probability and H atoms have been omitted for clarity.

Computational studies. The calculations for the reaction pathway of bora-Friedel– Crafts reaction (Figures 3–6) and inversion barrier of **2** (Figure 8) were performed with Gaussian 03^9 and 09^{10} packages. The DFT method was employed using the B3LYP hybrid functional.¹¹ Structures were optimized with the 6-31G(d) basis set.¹² Each stationary point was adequately characterized by normal coordinate analysis (no imaginary frequencies for an equilibrium structure and one imaginary frequency for a transition structure) using the same method as for the geometry optimization. Intrinsic reaction coordinate (IRC) analyses¹³ were carried out throughout the reaction pathways to confirm that all stationary points are smoothly connected to each other using the same method as for the geometry optimization.

⁹ Gaussian 03, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

¹⁰ Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

¹¹ (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. *Rev. B* **1988**, 37, 785–789.

¹² Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, **1986** and references cited therein.

¹³ (a) Fukui, K. Acc. Chem. Res. **1981**, *14*, 363–368. (b) Gonzalez, C.; Schlegel, H. B. J. Chem. *Phys.* **1989**, *90*, 2154–2161. (c) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. **1990**, *94*, 5523–5527.

Cartesian coordinates

The reaction pathway of bora-Friedel–Crafts reaction (Figures 3–6)

inc icu	cuon paini	ay of bora I	ricaci craj	is ic	uci	1011	1 181105 5	0)	
Al ₂ Cl ₆				13	6	0	3.074602	1.693806	1.655695
	(P) = -3240	5.4814253 hartr	ee	14	6	0	2.512770	2.648773	2.497790
				15	6	0	1.130493	2.835188	2.497588
Center	Atomic	Atomic Co	oordinates	16	6	0	0.334493	2.051943	1.667621
Number	Number	Type X	Y Z	17	1	0	-4.153639	1.573916	-1.626997
				18	1	0	-3.152069	3.253040	-3.135185
1 13 0	1.618559	0.000029	0.000061	19	1	0	-0.671436	3.582580	-3.138302
2 13 0) -1.61853	3 0.000062	-0.000009	20	1	0	0.740170	2.199586	-1.654997
3 17 0	-2.64029	0 -1.826549	-0.000003	21	1	0	4.153536	1.573790	1.627348
4 17 0	-2.63856	3 1.827627	-0.000035	22	1	0	3.151886	3.252989	3.135406
5 17 0	2.639849	-1.826856	0.000058	23	1	0	0.671272	3.582713	3.138162
6 17 0	2.639049	0 1.827308	-0.000192	24	1	0	-0.740230	2.199773	1.654743
7 17 0	0.000019	-0.000641	1.627352	25	6	0	-3.011150	-0.076836	0.082152
8 17 0	.0.00008	3 -0.000958	-1.627220	26	6	0	-4.494545	-1.853186	1.697217
				27	6	0	-4.004039	-0.903675	-0.472096
				28	6	0	-2.777481	-0.161196	1.464873
AlCl ₃				29	6	0	-3.511317	-1.040103	2.262376
	$(P) = -162^{\circ}$	3.2220743 hartr	ee	30	6	0	-4.737730	-1.781417	0.324394
L(IU0011				31	1	0	-4.183016	-0.870791	-1.542981
Center	Atomic	Atomic Co	oordinates	32	1	0	-2.024772	0.467430	1.927325
Number	Number	Type X		33	1	0	-3.313808	-1.084338	3.329995
			·	34	1	0	-5.493889	-2.415673	-0.130544
1 13 0	0.000060	-0.000003	0.000154	35	1	0	-5.062863	-2.538713	2.319844
2 17 0			-0.000039	36	6	0	3.011174	-0.076810	-0.082009
3 17 0				37	6	0	4.494672	-1.852992	-1.697160
4 17 0			-0.000039	38	6	0	4.004021	-0.903707	0.472221
	2.005017	0.000045	0.0000000	20	6	0	0 777602	0.161010	1 161756

5

E(RB3LYP) = -1925.4932848 hartree

Center			Atomic A	Atomic	Co	ordinates		
Number			Number 7	Гуре	Х	Y	Ζ	
1	7	0	0.000015	0.30031	5	-0.00	0023	
2	5	0	0.000004	-1.1174	99	-0.0	00098	
3	17	0	-0.657494	-2.042	887	-1.3	866334	
4	17	0	0.657515	-2.0430	91	1.36	5983	
5	6	0	-3.074702	1.6938	80	-1.6	55457	
6	6	0	-2.512911	2.6487	99	-2.4	97633	
7	6	0	-1.130620	2.8351	19	-2.4	97628	
8	6	0	-0.334570	2.0518	49	-1.6	67734	
9	6	0	-0.892757	1.0755	75	-0.8	31269	
10	6	0	-2.295917	0.8951	74	-0.7	97005	
11	6	0	0.892711	1.07557	78	0.831	274	
12	6	0	2.295873	0.89513	33	0.797	165	

27	6	0	-4.004039	-0.903675	-0.472096
28	6	0	-2.777481	-0.161196	1.464873
29	6	0	-3.511317	-1.040103	2.262376
30	6	0	-4.737730	-1.781417	0.324394
31	1	0	-4.183016	-0.870791	-1.542981
32	1	0	-2.024772	0.467430	1.927325
33	1	0	-3.313808	-1.084338	3.329995
34	1	0	-5.493889	-2.415673	-0.130544
35	1	0	-5.062863	-2.538713	2.319844
36	6	0	3.011174	-0.076810	-0.082009
37	6	0	4.494672	-1.852992	-1.697160
38	6	0	4.004021	-0.903707	0.472221
39	6	0	2.777603	-0.161019	-1.464756
40	6	0	3.511486	-1.039845	-2.262303
41	6	0	4.737765	-1.781366	-0.324313
42	1	0	4.182920	-0.870939	1.543123
43	1	0	2.024927	0.467666	-1.927184
44	1	0	3.314054	-1.083966	-3.329941
45	1	0	5.493892	-2.415671	0.130608
46	1	0	5.063030	-2.538456	-2.319819

CP1

E(RB3LYP) =	-3548.7293998 hartree
-------------	-----------------------

Center			Atomic	Atomic	Со	Coordinates			
Number		r	Number	Туре	Х	Y	Ζ		
1	13	0	-3.241845	1.441	067	0.0	78698		
2	17	0	-3.850999	0.460	688	-1.6	90662		
3	17	0	-2.502858	3.412	574	-0.1	03040		
4	17	0	-4.339159	0.997	688	1.8	37639		
5	5	0	0.207869	0.0707	776	-0.34	1459		

6	17	0	0.046739	0.911969	-1.866247						
7	17	0	-1.217801	0.148685	0.818161	Ce	nter		Atomic	Atomic C	oordinates
8	7	0	1.339054	-0.646125	0.075731		mbe	r	Number	Туре Х	
9	6	0	4.479981	1.035429	-1.122648						
10	6	0	5.165586	-0.044679	-1.670589	1	13	0	3.676051	-0.071841	-0.088595
11	6	0	4.596959	-1.317649	-1.622578	2	17	0	3.417209	-1.764977	1.161732
12	6	0	3.343689	-1.486052	-1.041971	3	17	0	4.012814	1.787407	0.905269
13	6	0	2.643368	-0.397289	-0.507161	4	17	0	4.884110	-0.373181	-1.813692
14	6	0	3.216268	0.895373	-0.518933	5	5	0	-0.055870	0.674435	-0.202559
15	6	0	1.294432	-1.682699	1.087371	6	17	0	0.282678	0.516958	1.555406
16	6	0	0.408842	-2.781350	0.988568	7	17	0	1.594472	0.228919	-1.238416
17	6	0	0.433454	-3.725516	2.032330	8	7	0	-1.210497	0.014420	-0.842471
18	6	0	1.302371	-3.615460	3.113715	9	6	0	-3.893695	2.611256	-0.872254
19	6	0	2.190008	-2.541008	3.177936	10	6	0	-4.955260	1.925567	-1.456953
20	6	0	2.181402	-1.584945	2.167337	11	6	0	-4.754887	0.605117	-1.859666
21	1	0	4.938037	2.019876	-1.127737	12	6	0	-3.524722	-0.026677	-1.676312
22	1	0	6.144478	0.105201	-2.116847	13	6	0	-2.443096	0.652047	-1.087997
23	1	0	5.121231	-2.175334	-2.033732	14	6	0	-2.644938	2.002281	-0.695345
24	1	0	2.899978	-2.474662	-0.990614	15	6	0	-1.076485	-1.375605	-1.239074
25	1	0	-0.232255	-4.580438	1.963689	16	6	0	-1.220614	-2.447273	-0.330806
26	1	0	1.296727	-4.372990	3.892074	17	6	0	-1.002482	-3.748938	-0.822752
27	1	0	2.883986	-2.443682	4.007619	18	6	0	-0.682165	-3.993644	-2.154431
28	1	0	2.876105	-0.752570	2.204080	19	6	0	-0.571254	-2.926386	-3.046949
29	6	0	2.577688	2.116080	0.055967	20	6	0	-0.763475	-1.629201	-2.582037
30	6	0	1.472267	4.489396	1.104162	21	1	0	-4.014196	3.649195	-0.573077
31	6	0	2.524636	3.291141	-0.713809	22	1	0	-5.914166	2.413277	-1.599787
32	6	0	2.069450	2.157631	1.365389	23	1	0	-5.565609	0.047186	-2.320339
33	6	0	1.522601	3.332427	1.882980	24	1	0	-3.405690	-1.058842	-1.981405
34	6	0	1.977677	4.464452	-0.196742	25	1	0	-1.110248	-4.581083	-0.133381
35	1	0	2.894560	3.273745	-1.735078	26	1	0	-0.526614	-5.013538	-2.494746
36	1	0	2.111195	1.273508	1.992440	27	1	0	-0.324302	-3.098871	-4.090410
37	1	0	1.138126	3.342041	2.899076	28	1	0	-0.658147	-0.784998	-3.256837
38	1	0	1.936388	5.356519	-0.815523	29	6	0	-1.518616	2.740299	-0.116052
39	1	0	1.038238	5.400348	1.505933	30	6	0	0.753705	4.067283	0.942789
40	6	0	-0.547749	-3.007498	-0.135316	31	6	0	-1.635739	3.540598	1.023646
41	6	0	-2.389628	-3.551760	-2.200406	32	6	0	-0.221129	2.550851	-0.695769
42	6	0	-1.886423	-3.326875	0.154451	33	6	0	0.891600	3.285847	-0.186139
43	6	0	-0.151757	-2.969559	-1.483058	34	6	0	-0.513251	4.185806	1.542599
44	6	0	-1.063937	-3.239735	-2.503740	35	1	0	-2.597832	3.636393	1.516629
45	6	0	-2.797931	-3.594254	-0.865970	36	1	0	-0.189574	2.281768	-1.750431
46	1	0	-2.217652	-3.341944	1.189010	37	1	0	1.857017	3.189975	-0.670919
47	1	0	0.876244	-2.739458	-1.740752	38	1	0	-0.621395	4.793288	2.437601
48	1	0	-0.734040	-3.207165	-3.538393	39	1	0	1.609477	4.583421	1.364440
49	1	0	-3.829911	-3.825316	-0.617723	40	6	0	-1.588078	-2.301795	1.107250
50	1	0	-3.100366	-3.753441	-2.996594	41	6	0	-2.287412	-2.159972	3.829545
						42	6	0	-0.774595	-2.890161	2.089622
						43	6	0	-2.763303	-1.650077	1.510943
TS	1					44	6	0	-3.108888	-1.580760	2.860795
		[\ 77) = 2540	70072201		45	6	0	-1.118270	-2.815717	3.438821
E(1	VD 31	LIF	$r_{j} = -3548.$	7007230 hartr	ee	1'	v	0	1.110270	2.013/11	5.150021

38

39

41

43

37 1 0 1.534659

40 6 0 -4.192044

42 6 0 -3.785191

44 6 0 -5.580433

45 6 0 -4.266478

1 0 1.823734

1 0 2.291693

6 0 -5.162251

6 0 -5.101287

-0.489945

-4.435954

-2.841842

-0.125907

-2.749389

-0.914122

-0.670859

-1.972323

-2.214466

-2.940397

-1.295964

-3.140584

-0.341440

-0.657025

-1.429955

0.578976

0.424549

-1.585361

46	1	0	0.148280	-3.380011	1.792373
47	1	0	-3.420906	-1.213062	0.766440
48	1	0	-4.026820	-1.077847	3.154399
49	1	0	-0.467775	-3.264653	4.184514
50	1	0	-2.556859	-2.102389	4.880845

CP3

E(RB3LYP) = -354	8.7330564	hartree

ц(1	ND 51		$(-5)^{-5}$./330304 naru	ee	10	1	õ	2.117(20	0.404146	
						46 47	1 1	0 0	-3.117638 -5.425135	-0.494142 -0.071185	
	nter		Atomic		oordinates	47	1	0	-6.279995	-2.378169	
Nu	mbe	r	Number	Туре Х	Y Z	49	1	0	-3.950200	-2.805829	
	10		4 222041	0.5105(2	0.10.401.5	50	1	0	-5.536766		
l	13	0	4.332941	0.519563	0.184915	50	1	0	-5.550700	-5.701902	-0.119195
2	17	0	4.518353	0.282867	-1.960647						
3	17	0	4.032970	-1.423397	1.102383	т	20				
4	17	0	5.930551	1.628603	1.063723	T					
5	5	0	-0.522814	0.356244	-1.107397	E(I	RB3	LYI	P(= -3548)	.7267282 ha	rtree
6	17	0	-0.694864	1.264965	-2.613549						
7	17	0	2.416933	1.619176	0.495735		nter		Atomic		Coordinates
8	7	0	-1.333825	0.607425	0.018713	Nu	mbe	r	Number	Туре	X Y Z
9	6	0	-0.146138	-1.902366	2.534809						
10	6	0	-0.781694	-1.459907	3.680833	1	13	0	3.676051	-0.071841	-0.088595
11	6	0	-1.603354	-0.328044	3.611181	2	17	0	3.417209	-1.764977	1.161732
12	6	0	-1.780532	0.351379	2.412575	3	17	0	4.012814	1.787407	0.905269
13	6	0	-1.136221	-0.079755	1.243286	4	17	0	4.884110	-0.373181	-1.813692
14	6	0	-0.302410	-1.235020	1.299094	5	5	0	-0.055870	0.67443	5 -0.202559
15	6	0	-2.366060	1.628696	-0.022370	6	17	0	0.282678	0.516958	1.555406
16	6	0	-3.722027	1.280119	-0.176040	7	17	0	1.594472	0.228919	-1.238416
17	6	0	-4.663990	2.322157	-0.149920	8	7	0	-1.210497	0.01442	0 -0.84247
18	6	0	-4.277944	3.652702	0.005840	9	6	0	-3.893695	2.61125	6 -0.872254
19	6	0	-2.927711	3.975672	0.146392	10	6	0	-4.955260	1.92556	
20	6	0	-1.973542	2.959532	0.138079	11	6	0	-4.754887	0.60511	7 -1.859660
21	1	0	0.533052	-2.745546	2.593052	12	6	0	-3.524722	-0.026677	
22	1	0	-0.627265	-1.972724	4.624525	13	6	0	-2.443096	0.65204	
23	1	0	-2.102225	0.037703	4.503980	14	6	0	-2.644938	2.00228	
24	1	0	-2.410852	1.230497	2.382362	15	6	0	-1.076485	-1.375605	
25	1	0	-5.713829	2.073414	-0.275334	16	6	0	-1.220614	-2.447273	
26	1	0	-5.031174	4.435395	0.011197	17	6	0	-1.002482	-3.748938	
27	1	0	-2.615461	5.008721	0.265779	18	6	0	-0.682165	-3.993644	
28	1	0	-0.918787	3.185969	0.263507	19	6	0	-0.571254	-2.926380	
29	6	0	0.382307	-1.702091	0.112989	20	6	0	-0.763475	-1.629201	
30	6	0	1.748191	-2.506247	-2.264207	20	1	0	-4.014196	3.64919	
31	6	0	0.824128	-3.021413	-0.048057	21	1	0	-5.914166	2.41327	
32	6	0	0.625568	-0.740307	-0.965891	22	1	0	-5.565609	0.04718	
33	6	0	1.326488	-1.209191	-2.156527	23 24		0	-3.405690	-1.058842	
33 34	6			-3.406088	-2.130327		1				
		0	1.488665			25	1	0	-1.110248	-4.581083	
35	1	0	0.636572	-3.757826	0.724517	26	1	0	-0.526614	-5.013538	
36	1	0	1.308976	0.071641	-0.504691	27	1	0	-0.324302	-3.098871	-4.090410

28	1	0	-0.658147	-0.784998	-3.256837	19	6	0	4.295514	3.294905	-1.817654
29	6	0	-1.518616	2.740299	-0.116052	20	6	0	3.214044	2.454558	-1.559864
30	6	0	0.753705	4.067283	0.942789	21	1	0	0.180235	-3.429940	-1.788289
31	6	0	-1.635739	3.540598	1.023646	22	1	0	1.930650	-3.905664	-3.419776
32	6	0	-0.221129	2.550851	-0.695769	23	1	0	3.827853	-2.298063	-3.705981
33	6	0	0.891600	3.285847	-0.186139	24	1	0	3.925103	-0.263385	-2.342277
34	6	0	-0.513251	4.185806	1.542599	25	1	0	6.603551	1.775089	0.159256
35	1	0	-2.597832	3.636393	1.516629	26	1	0	6.373876	3.690576	-1.392320
36	1	0	-0.189574	2.281768	-1.750431	27	1	0	4.178988	4.135195	-2.495809
37	1	0	1.857017	3.189975	-0.670919	28	1	0	2.255100	2.623991	-2.040223
38	1	0	-0.621395	4.793288	2.437601	29	6	0	-0.046143	-1.293668	-0.109857
39	1	0	1.609477	4.583421	1.364440	30	6	0	-2.109410	-0.702884	1.742504
40	6	0	-1.588078	-2.301795	1.107250	31	6	0	-1.119340	-2.192763	0.105130
41	6	0	-2.287412	-2.159972	3.829545	32	6	0	-0.015727	-0.085433	0.635965
42	6	0	-0.774595	-2.890161	2.089622	33	6	0	-1.051514	0.185165	1.554689
43	6	0	-2.763303	-1.650077	1.510943	34	6	0	-2.126055	-1.909142	1.011636
44	6	0	-3.108888	-1.580760	2.860795	35	1	0	-1.171477	-3.128974	-0.437215
45	6	0	-1.118270	-2.815717	3.438821	36	1	0	-2.977929	0.428632	0.299234
46	1	0	0.148280	-3.380011	1.792373	37	1	0	-1.015278	1.107301	2.127326
47	1	0	-3.420906	-1.213062	0.766440	38	1	0	-2.938474	-2.615539	1.153697
48	1	0	-4.026820	-1.077847	3.154399	39	1	0	-2.882134	-0.497204	2.478974
49	1	0	-0.467775	-3.264653	4.184514	40	6	0	4.786100	-0.040206	0.881770
50	1	0	-2.556859	-2.102389	4.880845	41	6	0	5.277419	-2.186928	2.634588
						42	6	0	4.062977	-0.167326	2.078219

PD1

E(RB3LYP) = -3548.7337284 hartree

				Atomic	 C a	ordinates		
Center			Atomic					
Number		r	Number	Туре Х		Y	Ζ	
1	13	0	-5.974533	0.1945	508	-0.0	18198	
2	17	0	-5.964698	0.5364	177	2.0	75446	
3	17	0	-5.808101	-1.8352	54	-0.60	04092	
4	17	0	-7.128473	1.4761	173	-1.2	34347	
5	5	0	1.167083	0.8719	59	0.43	31377	
6	17	0	1.270937	2.4151	61	1.34	0360	
7	17	0	-3.730882	1.0665	598	-0.60	09570	
8	7	0	2.193565	0.5183	81	-0.47	9678	
9	6	0	0.999877	-2.72832	24	-1.880	5692	
10	6	0	1.987039	-3.00373	35	-2.81	7951	
11	6	0	3.046692	-2.10528	33	-2.970	5100	
12	6	0	3.105147	-0.95561	9	-2.203	3685	
13	6	0	2.111179	-0.66874	12	-1.248	8772	
14	6	0	1.021719	-1.57033	38	-1.079	9486	
15	6	0	3.345352	1.3752	70	-0.68	2987	
16	6	0	4.573707	1.1101	20	-0.04	4669	
17	6	0	5.652715	1.9636	21	-0.33	0990	
18	6	0	5.521720	3.0443	57	-1.20	1330	
15 16 17	6 6 6	0 0 0	3.345352 4.573707 5.652715	1.3752 1.1101 1.9636	70 20 21	-0.68 -0.04 -0.33	2987 4669 0990	

31	6	0	-1.119340	-2.192763	0.105130
32	6	0	-0.015727	-0.085433	0.635965
33	6	0	-1.051514	0.185165	1.554689
34	6	0	-2.126055	-1.909142	1.011636
35	1	0	-1.171477	-3.128974	-0.437215
36	1	0	-2.977929	0.428632	0.299234
37	1	0	-1.015278	1.107301	2.127326
38	1	0	-2.938474	-2.615539	1.153697
39	1	0	-2.882134	-0.497204	2.478974
40	6	0	4.786100	-0.040206	0.881770
41	6	0	5.277419	-2.186928	2.634588
42	6	0	4.062977	-0.167326	2.078219
43	6	0	5.766781	-1.000219	0.584772
44	6	0	6.008701	-2.066341	1.451741
45	6	0	4.306992	-1.232308	2.945828
46	1	0	3.328690	0.586717	2.343255
47	1	0	6.333101	-0.913817	-0.338819
48	1	0	6.767211	-2.803099	1.200936
49	1	0	3.742304	-1.310613	3.871013
50	1	0	5.464966	-3.016345	3.311068

2,2,6,6-tetramethylpiperidine(TMP)

E(RB3LYP) = -409.15252616 hartree

ordinates Y Z -0.441549
-0.441549
-0.441549
-0.211635
-0.424783
0.088528
-0.424901
-0.051476
-0.051544
-0.045576
1.185852

10	1	0	0.000003	2.998238	-0.249337	22	1	0	-3.198775	-2.853628	-3.008647
11	1	0	1.282523	1.323779	-1.519811	23	1	0	-0.858165	-2.156052	-2.530251
12	1	0	2.164064	1.730192	-0.045141	24	6	0	2.741754	0.305774	-0.260931
13	1	0	-1.282186	1.323530	-1.519954	25	6	0	4.588081	-1.290377	1.173262
14	6	0	1.673659	-0.443078	1.439910	26	6	0	4.067870	0.740121	-0.041328
15	1	0	1.588068	-1.498356	1.728086	27	6	0	2.349202	-0.953677	0.265541
16	1	0	2.712470	-0.135447	1.613579	28	6	0	3.289244	-1.731038	0.973865
17	1	0	1.042338	0.138225	2.116553	29	6	0	4.971687	-0.042665	0.661494
18	6	0	2.363610	-0.966476	-0.902175	30	1	0	4.404287	1.699918	-0.415971
19	1	0	3.354598	-0.527647	-0.735717	31	1	0	2.977944	-2.692974	1.369627
20	1	0	2.425634	-2.032085	-0.643816	32	1	0	5.985222	0.319423	0.814769
21	1	0	2.115810	-0.890268	-1.965294	33	1	0	5.300223	-1.900903	1.721506
22	6	0	-1.673506	-0.443054	1.439945	34	6	0	-2.183119	0.486715	1.116067
23	1	0	-2.712057	-0.134706	1.613954	35	6	0	-1.836326	2.266683	3.269058
24	1	0	-1.588705	-1.498486	1.727857	36	6	0	-1.369596	0.141123	2.206589
25	1	0	-1.041537	0.137551	2.116541	37	6	0	-2.828264	1.733978	1.128989
26	6	0	-2.363741	-0.966413	-0.902002	38	6	0	-2.654847	2.617945	2.194354
27	1	0	-2.425413	-2.032143	-0.644043	39	6	0	-1.198028	1.024791	3.272469
28	1	0	-3.354802	-0.527916	-0.735078	40	1	0	-0.893420	-0.833576	2.232122
29	1	0	-2.116351	-0.889755	-1.965188	41	1	0	-3.458621	2.014880	0.289300
						42	1	0	-3.156847	3.581844	2.181945

6

E(RB3LYP) = -1464.6972066 hartree

AICl₃·TMP·HCl E(DD2IVD) = -2402.2654850 h

44 1 0 -1.699178

43 1 0 -0.568488 0.737649

4.110492

4.099538

2.954043

Center			Atomic	Atomic C	Coordin	ates	Al	Cl ₃ .	TN	AP·HCl				
Number		r	Number	Туре Х	X Y	Ζ	E(RB3LYP) = -2493.2654859 hartree							
1	5	0	0.900940	-1.407076	0.0	0.056883		nter		Atomic	Atomic	С	oordina	ites
2	17	0	0.320113	-2.985622	0.6	95555	Nui	nbe	r	Number	Туре	Х	Y	Ζ
3	7	0	-0.004849	-0.562965	-0.6	37140								
4	6	0	2.130759	2.338253	-1.6	09089	1	7	0	1.900579	-0.00004	5	-0.86	2833
5	6	0	1.238379	3.106917	-2.3	39197	2	1	0	2.197787	-0.00004	1	-1.84	4848
6	6	0	-0.073792	2.655871	-2.5	506897	3	6	0	2.035556	1.26357	2	1.27	76639
7	6	0	-0.470235	1.452589	-1.9	942814	4	6	0	2.595575	0.000010		1.943911	
8	6	0	0.427319	0.667405	-1.1	94372	5	6	0	2.035785	-1.26368	2	1.27	6667
9	6	0	1.768855	1.109366	-1.0	17728	6	6	0	2.325779	-1.35044	6	-0.23	3282
10	6	0	-1.385580	-0.947380	-0.8	43331	7	6	0	2.325652	1.35035	8	-0.23	3263
11	6	0	-2.417121	-0.451581	-0.0	19980	8	1	0	2.450030	-2.16514	1	1.74	2901
12	6	0	-3.733855	-0.842288	-0.3	18104	9	1	0	3.692945	0.00012	24	1.92	27810
13	6	0	-4.022842	-1.698767	-1.3	78896	10	1	0	2.306625	-0.00000	7	3.00	0172
14	6	0	-2.988682	-2.183942	-2.1	79620	11	1	0	0.950274	1.30406	52	1.43	30431
15	6	0	-1.676153	-1.800715	-1.9	10862	12	1	0	2.449510	2.16513	51	1.74	42945
16	1	0	3.146702	2.698809	-1.4	99721	13	1	0	0.950527	-1.30440	2	1.43	0529
17	1	0	1.561800	4.046486	-2.7	77610	14	6	0	3.802332	1.63490)2	-0.54	3781
18	1	0	-0.789228	3.238914	-3.0	080190	15	1	0	4.021035	1.52041	4	-1.61	2555
19	1	0	-1.486159	1.108269	-2.0)85939	16	1	0	4.009944	2.67681	7	-0.28	2215
20	1	0	-4.536770	-0.473265	0.3	313796	17	1	0	4.497573	1.01248	35	0.02	20448
21	1	0	-5.051451	-1.988729	-1.5	74870	18	6	0	1.452488	2.42138	34	-0.90	4038

19 20	1 1	0 0	1.707826 1.633999	3.397537 2.470415	-0.480072 -1.984932	28 29	1 1	0 0	1.707856 0.386750	-3.397603 -2.250432	-0.479915 -0.732294
21 22	1	0 0	0.386717 3.802424	2.250376 -1.634962	-0.732530 -0.543911	30 31	1 13	0	0.860417	-0.000244	-0.923887 0.045963
22	1	0	3.802424 4.010040	-1.034902	-0.282561	32	10	0	2	0.000133	-1.805409
23 24	1	0	4.021104	-1.520260	-1.612669	33	17	0	1.222001	1.766832	1.148110
25	1	0	4.497691	-1.012661	0.020425	34	17	0	-1.849739	-1.766548	1.148101
26	6	0	1.452505	-2.421474	-0.903924	35	17	0	-4.527646	-0.000520	-0.474927
27	1	0	1.633863	-2.470593	-1.984842						

The isomerization barrier calculation of 2 (Figure 8)(P)-23310-5.601445

(P))-2							33	1	0	-5.601445	0.7104		-1.15	
E(F	RB3L	YP	(-1718) = -1718	.5076967 h	nartre	ee		34	1	0	-0.084303	-3.4020		3.55	
								35	1	0	1.102620	-2.70634		1.482	
Cer	nter		Atomic	Atomic	Co	ordina	105	36	1	0	-4.233138	2.1762		-2.63	735
Nu	mbei	•	Number	Туре	Х	Y	-	37	1	0	-1.744083	2.1386		-2.43	
								38	1	0	3.303771	2.56080		1.47	
1	6	0	-1.835302	-1.0071	52	1.00	1172	39	1	0	5.891464	-0.30583		-0.428	
2	6	0	-2.499142	-0.1190	61	0.01	2939	40	1	0	1.993015	4.49587		2.212	
3	6	0	-2.478658	-1.3995	93	2.18	5502	41	1	0	4.448090	1.56162		0.192	
4	6	0	-0.525254	-1.4925	82	0.76	6596	42	1	0	-0.423174	4.6563	93	1.56	537
5	6	0	-3.896809	-0.1022	41	-0.13	1601	43	1	0	-1.449823	2.8818	16	0.22	265
6	6	0	-1.741144	0.7155	554	-0.84	1495								
7	6	0	-1.856818	-2.2573	10	3.09	01727								
8	15	0	0.264587	-0.93509	97	-0.778	3913	TS	-2						
9	6	0	2.046184	-0.71763	37	-0.556	6666	E(F	RB3L	YP) = -1718	.4879754 h	artre	ee	
10	7	0	-0.302039	0.7002	287	-0.74	9171								
11	6	0	2.880599	-1.77538	36	-0.947	318	Cer	nter		Atomic	Atomic	Со	ordinat	es
12	6	0	4.263795	-1.65053	36	-0.874	872	Nu	mber	•	Number	Туре	Х	Y	Ζ
13	6	0	-4.519102	0.7236	589	-1.06	53707								
14	6	0	-0.569681	-2.7372	99	2.84	1713	1	6	0	2.106626	-1.10589	2	-0.604	72
15	6	0	0.095808	-2.34831	10	1.67	9167	2	6	0	2.512109	0.29489	8	-0.382	206
16	6	0	-3.753474	1.5452	211	-1.89	94741	3	6	0	2.847940	-1.94662	0	-1.460	48′
17	6	0	2.583216	0.5028	55	-0.08	9789	4	6	0	0.999152	-1.65715	2	0.066	667
18	6	0	-2.364221	1.5294	192	-1.78	88092	5	6	0	3.867517	0.62917	'9	-0.558	396
19	16	0	-0.234586	5 -1.980	212	-2.3	57585	6	6	0	1.603046	1.30513	9	0.044	483
20	6	0	1.722992	1.6200	37	0.35	9331	7	6	0	2.551761	-3.29777	6	-1.583	840
21	6	0	2.269884	2.6417	06	1.15	9368	8	15	0	-0.077265	-0.55779	92	1.05	60
22	6	0	0.343202	1.7035	04	0.02	8355	9	6	0	-1.730805	-0.9869′	73	0.42	83
23	6	0	4.813013	-0.43776	52	-0.452	2428	10	7	0	0.221506	0.95707	'4	0.253	302
24	6	0	1.529853	3.7328	63	1.59	4112	11	6	0	-2.287607	-2.21048	34	0.82	85
25	6	0	3.988673	0.6191	00	-0.082	2557	12	6	0	-3.407652	-2.7259	77	0.18	34(
26	6	0	0.185202	3.81804	40	1.23	5428	13	6	0	4.348020	1.91842	25	-0.383	322
27	6	0	-0.398574	2.8131	125	0.4	73323	14	6	0	1.495971	-3.85032	3	-0.854	220
28	1	0	-3.467218	-1.0116	95	2.41	1705	15	6	0	0.720109	-3.02723	5	-0.045	88
29	1	0	-4.501266	-0.7696	16	0.47	4827	16	6	0	3.455799	2.90843	0	0.014	476
30	1	0	-2.376686	-2.5426		4.00	02199	17	6	0	-2.377961	-0.1913	58	-0.54	
31	1	0	2.431497	-2.68261	15	-1.339	9660	18	6	0	2.118509	2.59799	8	0.243	376
32	1	0	4.904074	-2.47504		-1.173		19	16	0	0.170017	-0.6323		2.99	

20	6	0	-2.062884	1.252224	-0.0	536245	8	15	0	-0.263507	-0.932826	-0.780577
21	6	0	-3.059729	2.129880	-1.0	097566	9	6	0	0.527542	-1.496028	0.762243
22	6	0	-0.889690	1.810363	-0.0	051963	10	7	0	0.301973	0.702669	-0.744483
23	6	0	-3.963876	-2.017083	-0.8	84832	11	6	0	-0.092429	-2.356003	1.671583
24	6	0	-2.965475	3.509561	-0.9	959026	12	6	0	0.573942	-2.749333	2.832148
25	6	0	-3.467022	-0.764497	-1.2	27794	13	6	0	-1.536472	3.732063	1.597521
26	6	0	-1.891491	4.034449	-0.2	248215	14	6	0	-4.261372	-1.654652	-0.874207
27	6	0	-0.888949	3.188449	0.	220275	15	6	0	-2.878024	-1.776993	-0.947459
28	1	0	3.656228	-1.528264	-2.0	50240	16	6	0	-0.191420	3.818844	1.240722
29	1	0	4.565888	-0.158881	-0.8	16959	17	6	0	1.837335	-1.010609	0.998150
30	1	0	3.141730	-3.919620	-2.2	51586	18	6	0	0.394424	2.814925	0.478944
31	1	0	-1.841174	-2.749925	1.0	558907	19	16	0	0.235656	-1.971152	-2.363746
32	1	0	-3.832640	-3.674144	0.4	499284	20	6	0	2.499940	-0.117786	0.013427
33	1	0	5.401476	2.137373	-0.5	29596	21	6	0	3.897556	-0.099173	-0.131563
34	1	0	1.266369	-4.909230	-0.92	29934	22	6	0	1.740909	0.719858	-0.837125
35	1	0	-0.114829	-3.456924	0.4	493147	23	6	0	1.860872	-2.269467	3.083491
36	1	0	3.795351	3.926233	0.1	85294	24	6	0	4.518847	0.731252	-1.060300
37	1	0	1.492704	3.395675	0.5	94969	25	6	0	2.481602	-1.407522	2.180336
38	1	0	-3.965725	1.717340	-1.:	525665	26	6	0	3.752221	1.555677	-1.887552
39	1	0	-4.807914	-2.426724	-1.4	32899	27	6	0	2.363045	1.538311	-1.780514
40	1	0	-3.755760	4.151729	-1.	336108	28	1	0	-4.450755	1.556379	0.195015
41	1	0	-3.945408	-0.215867	-2.0	31808	29	1	0	-3.308790	2.558081	1.475985
42	1	0	-1.835981	5.096573	-0.0	027225	30	1	0	-5.891102	-0.312951	-0.426093
43	1	0	-0.132658	3.614326	0.	856358	31	1	0	-1.099082	-2.713951	1.473486
							32	1	0	0.089416	-3.417388	3.538532
							33	1	0	-2.001329	4.494293	2.215413
(<i>M</i>)-2						34	1	0	-4.900371	-2.480068	-1.173567
`	·		P) = -1718	.5076968 hart	ree		35	1	0	-2.427623	-2.683152	-1.340784
							36	1	0	0.415634	4.657672	1.570263
Cer	nter		Atomic	Atomic (Coordin	ates	37	1	0	1.445967	2.884798	0.233791
	mbe	r	Number	Туре У		Z	38	1	0	4.502774	-0.768674	0.471749
				JE			39	1	0	2.381430	-2.558211	3.992486
1	6	0	-2.584030	0.501158	-0.0	088399	40	1	0	5.601165	0.719269	-1.153100
2	6	0	-1.725652	1.619413		361667	41	1	0	3.469983	-1.019828	2.407858
_	-	-					1					

1	6	0	-2.584030	0.501158	-0.088399
2	6	0	-1.725652	1.619413	0.361667
3	6	0	-3.989733	0.614910	-0.080541
4	6	0	-2.045174	-0.718063	-0.556512
5	6	0	-2.274647	2.640221	1.161414
6	6	0	-0.345559	1.704718	0.032345
7	6	0	-4.812443	-0.443065	-0.450756

35	1	0	-2.427623	-2.683152	-1.340784
36	1	0	0.415634	4.657672	1.570263
37	1	0	1.445967	2.884798	0.233791
38	1	0	4.502774	-0.768674	0.471749
39	1	0	2.381430	-2.558211	3.992486
40	1	0	5.601165	0.719269	-1.153100
41	1	0	3.469983	-1.019828	2.407858
42	1	0	4.231074	2.190232	-2.627665
43	1	0	1.742229	2.149701	-2.427763

List of Publications

The present thesis is composed of the following papers.

Chapter 1:

(1) Synthesis of BN-fused Polycyclic Aromatics via Tandem Intramolecular Electrophilic Arene Borylation

Hatakeyama, T.; <u>Hashimoto, S.</u>; Seki, S.; Nakamura, M.

J. Am. Chem. Soc. 2011, 133, 18614–10617. Highlighted in SYNFACTS, 2012, 0159.

Chapter 2:

(2) Azaboradibenzo[6]helicene: Carrier Inversion Induced by Helical Homochirality Hatakeyama, T.; <u>Hashimoto, S.</u>; Oba, T.; Nakamura, M. J. Am. Chem. Soc. 2012, 134, 19600–19603. Highlighted in JACS Spotlights, 2013, 135, 1. Highlighted in SYNFACTS, 2013, 0157.

Chapter 3:

(3) Synthesis of BN-fused Polycyclic Aromatic Compounds Containing Five-membered Heterocyclic Ring

Hashimoto, S.; Hatakeyama, T.; Nakamura, M.

In preparation. (A patent application has been filed for the results described in this chapter: PCT/JP2012/056206.)

Chapter 4:

(4) Tandem Phospha-Friedel–Crafts Reaction Toward Curved π -Conjugated Frameworks with a Phosphorus Ring Junction

Hatakeyama, T.; <u>Hashimoto, S.</u>; Nakamura, M. *Org. Lett.* **2011**, *13*, 2130–2133.

Chapter 5:

(5) Mechanistic Study on Bora-Friedel–Crafts Reaction and Its Application to Other Heteroatoms

<u>Hashimoto, S.</u>; Hatakeyama T.; Nakamura, M. In preparation.

List of Publications

The following publication is not included in this Thesis

(6) Highly Selective Biaryl Cross-Coupling Reactions between Aryl Halides and Aryl Grignard Reagents: A New Catalyst Combination of *N*-Heterocyclic Carbenes and Iron, Cobalt, and Nickel Fluorides

Hatakeyama, T.; <u>Hashimoto, S.</u>; Ishizuka, K.; Nakamura, M. *J. Am. Chem. Soc.* **2009**, *131*, 11949–11963.

Patent

- (1)「多環芳香族化合物」
 畠山琢次,中村正治,<u>橋本士雄磨</u>
 PCT/JP2010/053818, WO 2010/104047 A1
- (2) 「多環芳香族化合物」
 畠山琢次,中村正治,<u>橋本士雄磨</u>
 PCT/JP2012/056206

Review

 (1)「鉄及び鉄族元素触媒による高選択的ビアリールクロスカップリング」 畠山琢次, 橋本士雄磨, 中村正治 ペトロテック, 2013, 36, 17-21.

Book

(1)「34. Williamson エーテル合成」

 <u>橋本士雄磨</u>,清家弘史,中村正治
 トップドラッグから学ぶ創薬化学 第Ⅱ部
 有機合成化学協会編,東京化学同人 2012 年

Acknowledgments

The study described in this thesis has been carried out under the direction of Professor Masaharu Nakamura from April 2007 to March 2013 at the International Research Center for Elements Science, Institute for Chemical Research, Kyoto University.

I would like to express my sincerest gratitude to Professor Masaharu Nakamura for his kind guidance, helpful suggestions, and hearty encouragement throughout this study. I wish to appreciate to Associate Professor Hikaru Takaya and Assistant Professor Takuji Hatakeyama for their guidance and helpful discussions during for the course of this study. They provided insight and direction-right up to my goal. I am grateful to Dr. Kentaro Ishizuka, Dr. Katsuhiro Isozaki, and Dr. Hirofumi Seike for their helpful discussions, technical assistance and kind encouragement. I also acknowledge the contribution of Tsuyoshi Oba and Yuma Aoki for their helpful experiments in the study. I am obliged to Saori Takami for kindly supporting my daily work. I appreciate to all present members and alumni of Professor Nakamura's group for their kind supports and encouragement.

I acknowledge my appreciation to Professor Kouichi Ohe and Professor Yasujiro Murata for careful reviewing of this thesis and fruitful comments. I wish to thank Professor Shuhei Seki (Osaka university) for TRMC measurements, and Toshiaki Ikuta and Jingping Ni (JNC Petrochemical Corporation) for TOF and IP measurements. Powder X-ray diffraction and micro-crystallography measured at SPring-8 (BL19B2, BL38B1, BL40XU), I would like to appreciate to the beam-line staffs. I thank all members of Professor Tokitoh's group, Ozawa's group, Murata's group, Kawabata's group, Yamago's group, and Kaji's group.

I am indebted to the staff at Institute for Chemical Research and Graduate School of Engineering, Kyoto University, for the provision of services. Especially, I would like to thank Toshiko Hirano for elemental analysis and precision weighing, Kyoko Ohmine for high resolution NMR analysis, and Tomoko Terada, Akiko Fujihashi, Mayumi Inutsuka, Keiko Kuwata, Sakiko Goto for Mass spectrometry. I appreciate the financial support of Research Fellowships for Young Scientists of Japan Society for the Promotion of Science (JSPS).

Of course no acknowledgments would be complete without giving thanks to my father, Masaru Hashimoto and my brother Mahito Hashimoto. Their love provided my inspiration and was my driving force. I would like to thank my wife Nayoung Kim for her personal support and great patience at all times.

Finally, I would like to dedicate this work to my lost mother, Yoshiko Hashimoto, who left us too soon. I hope that this work makes you proud.

March, 2013

Sigma Hashimoto