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Abstract 

Photoluminescence (PL) fatigue-recovery phenomena in germanium sulfide were 

investigated, and the temperature dependence of the time-dependent PL intensity for 

several compositions (Ge33.3S66.7, Ge20S80 and Ge10S90) was analyzed. Side-bands were 

observed and two bands out of them for argon-ion laser excitation, one at 2.25 eV for all 

compositions and the other extended from 2.15 to 2.45 for Ge10S90 especially at the lower 

temperatures, were used to fully describe the time-dependence. 

The functional form which is similar to those in the previous report [T. Nakanishi 

et al., J. Non-Cryst. Solids 354 (2008) 1627] was used and it is extended to account for the 

effect of side-band at below 30 K for Ge20S80 and monotonous decrease of background for 

Ge10S90.  
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1. Introduction 

 Chalcogenide glasses are one of the most prospective materials in amorphous 

semiconductors, and have attracted a number of researches. For example, phase-change 
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optical disks using reversible switching between crystalline and non-crystalline states by 

light have been developed for chalcogenide thin films, Ge-Sb-Te or Ag-In-Sb-Te [1]. The 

chalcogenide compounds include chalcogen (group Ⅵ) elements such as sulfur, selenium 

and tellurium, which have high structural flexibility due to their twofold coordination. As a 

result of the structural flexibility, thin-film chalcogenides and chalcogenide glasses exhibit 

a variety of photo-induced phenomena in their optical and thermal properties such as 

photo-bleaching [2, 3], photoconductivity [4, 5], photo-expansion [6], etc. In particular, it is 

well known that the intensity of photoluminescence (PL) decreases through prolonged 

irradiation of bandgap or sub-bandgap light. This phenomenon is called PL fatigue [7]. To 

understand the origin of the PL fatigue, various reports [8-11] have been published. It is 

investigated that the phenomenon is strongly related to a photo-induced change of localized 

electronic states of defects, which is also the case with many other photo-induced 

phenomena. There are some models [12-19] for such defects. Nevertheless, these models 

need evidence.  

Technological appliations of amorphous chalcogenides are expected toward those 

roughly categorized in two fields, utilizing two characteristic physical properties of these 

glasses described above: high-density optical storage making use of flexibility of 

chalcogens especially at photo-excited states; and glass materials for integrated optics 

making use of their high transparency at near-infrared region [20]. The above studies on PL 

give insight into bandgap states which possibly cause degradation of light transmission, and 

into meta-stability under photo-irradiation which is fundamental process of optical 

recording with photo-induced phenomena through transient PL measurements. 

 The purpose of the present study is to clarify the fundamental process of the 

photo-structural properties of Ge-S chalcogenide glass. Several reports can be found for PL 

from Ge-S glass [21-30]. Nevertheless, these properties have not been investigated 

compared with other chalcogenides. For this purpose, the relation between the origin of 



 3 

photoinduced phenomena and the defect-related process including its temperature 

dependence should be elucidated for the Ge-S glass. 

 Seki et al. [28-30] investigated the electronic structures of Ge1-xSx (0.60 ≤ x ≤ 0.90) 

chalcogenide glass, and provided a schematic for the electronic structures near bandgap for 

Ge-S glass and density of states (DOS) of Ge-S glass through both experiments and 

calculations [31, 32]. It is demonstrated in the series of studies that the charged and neutral 

center acts as radiative and non-radiative recombination centers, respectively [29]. 

 In our previous study [33], temperature dependence of the photo-induced PL 

fatigue-recovery phenomena in GeS2 glass was investigated. The mechanism of PL fatigue 

can be explained by photo-induced creation of meta-stable neutral defects D0, which are 

non-radiative recombination centers. The recovery process, which is observed for the first 

time and proved to be a reverse process of the PL fatigue by Seki and Hachiya [29], 

depends apparently on temperature and restores the charged defects, surmounting an 

activation energy, ΔE, at the cost of heat energy. 

 In this paper, we focus not only on the fatigue-recovery mechanism of the main 

photoluminescence band, but also on those of the sub-bands for several Ge-S glasses. It is 

well known that the number density of defects, both of charged defects, D‐, D+ and neutral 

defect D0, change with their compositions [28, 34]. In particular, the content of sulfur 

affects the rate of photo-induced reaction. The relation between the phenomena and 

composition, or temperature, should provide a clue to understand the photoluminescence 

mechanism.   

 

2. Experimental  

2.1 Preparation of samples 

 The sample preparation process has already been described in a previous report 

[33]. Bulk Ge20S80 and Ge10S90 samples, other than Ge33.3S66.7 of Ge-S glasses were prepared 
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by the melt-quenching technique. The high purity raw materials were weighed and well 

mixed. The mixed powders were sealed in an evacuated fused silica ampoule (≤ 5 × 10-6 

Torr). They were kept at 1173 K for 40 h in a furnace after 10 h of temperature elevation, 

quenched in ice water. Additionally, they were annealed at temperatures 50 K lower than 

their Tg [35], which is 331 K for Ge20S80 and 290 K for Ge10S90, in order to get rid of internal 

distortions and cracks. The non-crystalline nature of the samples was confirmed by an 

X-ray diffraction and the compositions were quantitatively analyzed by an electron probe 

microanalyzer (EPMA) in the same of the GeS2 glass. The difference in composition 

between the first batch content and the prepared glasses were within 1 %. 

 

2.2. Photoluminescence measurements 

 The setup for PL measurements has also been described in the previous report [33]. 

The time-dependent PL measurements were performed at 20 K-intervals from 10 K to 90 K 

for the main peak at 2.20 eV through prolonged irradiation by excitation light. It has 

additionally been measured at 110 K, 150 K for PL spectra, but the time dependence 

measurement was not performed. An argon-ion laser light with 457.9 nm of wavelength  

(2.71 eV) was used for excitation. The excitation intensity was 12 mW (0.7 W/cm2). To 

obtain the evidence for the existence of another side-band at the foot of the main peak at 

lower temperatures, a He-Cd laser light with 441.6 nm of wavelength (2.81 eV), and 0.7 

W/cm2 of excitation intensity was used.  

 

3. Results 

 Figs. 1 and 2 show the PL spectra for Ge20S80 and Ge10S90. Those for GeS2 glass 

(Ge33.3S66.7) are given in Ref. 25. The PL intensity has a maximum at 30 K for GeS2 glass, at 

below 10 K (~ 6 K) for Ge20S80, and at 10-50 K (~ 30 K) for Ge10S90. The compositional 

dependence of spectral shape of PL at 10 K is shown in Fig. 3. The spectra have a peak at 
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around 2.20 eV and are asymmetric shape especially for S-rich compositions.  

 The time-dependent peak intensities of the PL for Ge20S80 and Ge10S90 at 2.20 eV, 

measured at 10, 30, 50, 70 and 90 K are presented in Figs. 4 and 5. It is clearly observed 

that these behaviors strongly depend both on composition and temperature. The fitting 

functions were given and explained in Ref. 33. The time-dependent peak intensity of PL for 

GeS2 was also presented. For Ge20S80 and Ge10S90, different behaviors were observed at 10 K, 

and also at 30 K for Ge20S80.  

 The temperature dependence of the fatigue and recovery time constants, τF and τR, 

are presented in Figs. 6. and 7, which were estimated by fitting to the results in Figs. 4 and 

5. The coefficients of fatigue and recovery, A and B, which were amplitude for the fatigue 

and recovery processes and described in detail in the previous chapter, are plotted in Figs. 8 

and 9. 

 

4. Discussion 

4.1. Composition dependence of the photo-induced phenomena and side-band effects 

 An original model for the photoluminescence fatigue-recovery phenomena in Ge-S 

glass is described by Seki and Hachiya [29]. As discussed in Ref. 33, the full description of 

PL fatigue–recovery phenomena for GeS2 glass for wide temperature range needs an 

extension of the function, which include side-band effect at cryogenic temperatures. Figs. 4 

and 5 show the temperature dependence of the phenomena, although a large difference 

among compositions is observed. It is more clearly observed by He-Cd laser excitation 

(441.6 nm) the existence of another band at PL around 548 nm (2.26 eV) - 543 nm (2.28 

eV). The PL spectra of side-bands by He-Cd laser excitation for Ge33.3S66.7, Ge20S80 and 

Ge10S90 at 10K are shown in Fig. 10. It is assumed from the spectra that the side-band has at 

least two different peaks. 

 The time-dependence at 10 and 70 K for Ar+-ion laser excitation (457.9 nm), 
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compared with He-Cd laser excitation (441.6 nm), are presented in Figs. 11 (at 10 K) and 

12 (at 70 K) for Ge20S80, and in Figs. 13 (at 10 K) and 14 (at 90 K) for Ge10S90. The 

side-band at 2.28 eV for Ge33.3S66.7 by Ar+-ion laser excitation forms a high-energy tail of 

the main peak at 2.20 eV, as demonstrated in the previous study [33]. 

 For Figs. 11 and 12 for Ge20S80, it is confirmed that the spectra has another peak at 

2.25 eV, and the peak intensity change under prolonged irradiation, other than main peak at 

2.20 eV. The side-band PL is included in total time dependence differently than that of 

main peak it measure at 2.20 eV, judging from the fatigue-recovery behaviors below 30 K 

for Ge20S80, and Ge10S90 along with Ge33.3S66.7 below 10 K. The side-band time-dependence 

become negligible compared with main peak for Ge20S80 over 70 K. Those of main peak 

and side-band peak are complementary, which are monotonic increasing and monotonic 

decreasing. These data can be fitted using the same function as Eq. (4) in Ref. 33 below 30 

K as those of Ge33.3S66.7 below 10 K, but the time constants of third and fourth terms in the 

function, which describe side-band terms, are different.  

 On the other hand, the behavior of Ge10S90 in Figs. 13 and 14 are basically different 

from Ge33.3S66.7 and Ge20S80. The side-band PL of Ge10S90 at 2.28 eV does not change for 

prolonged irradiation, but the fatigue process for the main peak is clearly observed for each 

temperature in Figs. 5, 13 and 14. The different behavior of Ge10S90 originates from a 

time-dependent background intensity observed in the inset of Figs. 13 and 14, where the 

baseline of the spectra abruptly decreases. As already discussed for GeS2 [33], only the 

side-bands at the high-energy-side of the main band were excited by He-Cd laser. 

 Fig. 15(a) and (b) show PL spectra excited by light of 457.9 nm, normalized by 

main peak and measured at 10 K and 70 K. A large decrease of background and those of 

side bands indicated by solid and broken arrows are observed. The side band spectra for the 

He-Cd excitation also exhibited a fatigue-recovery phenomenon for Ge33.3S66.7 and Ge20S80, 

while it was not observed other than the decrease of background for Ge10S90. The side bands 
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were not clearly observed in the spectra for Ar+-ion laser (457.9 nm) excitation. For Ge10S90, 

the recovery process was not clearly observed within the present timescale even for 90 K. 

 The time-dependence of the PL intensity for this composition is then characterized 

by (ⅰ) fatigue process of main band, (ⅱ) fatigue process of the extended background, and 

(ⅲ) fatigue-recovery process of the side band at 2.25 eV (551 nm) to affect the 

peak-position intensity of main band at 2.20 eV.  

!+""
#

$
%%
&

'

(
)*)""

#

$
%%
&

'

(
)*+"

"
#

$
%
%
&

'

(
)+""

#

$
%%
&

'

(
)= ItBtAtAtAtI E

F

E

551551
PL expexpexpexp)(

ＲＦＦ

　　    (1) 

where the first term describes the fatigue process including the fatigue coefficient A and the 

fatigue time constant τF, and the second term described extend background instead of 

recovery terms, which was obscured below 90 K. The third and the fourth term are those 

affected by the side-band at 2.25 eV, whose band-shape is not clear compared with the 

band at 2.28 eV even by He-Cd laser excitation, although it is assumed as we have already 

done for GeS2 and Ge20S80. It is rather observable as a side-band in Ar+-ion-laser excitation 

spectra as shown in the inset figure of Fig. 13. The following simplified form is used for 

those above 30 K. 
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 The functional form with two fatigue terms successfully fit the experimental 

time-dependent PL intensities. A variety of behavior of time-dependent PL in Ge-S glass is 

summarized in Table1. 

 

4.2. Composition dependence of the fatigue-recovery of photoluminescence 

phenomena in Ge-S glass 

 The fatigue-recovery phenomena in Ge-S system was described by using Eq. (4) in 

Ref. 33, which explicitly took the side-band effect below 10 K into consideration for 
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Ge33.3S66.7, and below 30 K for Ge20S80. As discussed above, Eqs. (1) and (2) were used 

instead for Ge10S90, where the recovery phenomena were not evident. As the time constant 

τR increased against decreasing temperature for all compositions, it is more dramatically 

increased up to 30,000 s for Ge20S80.  On the other hand, τF does not change compare with 

τＲ and it was around 5,000-10,000 s. As discussed by Seki and Hachiya [29], τF is a 

function of power density of the photo-excited region, a function of laser power, while τR is 

the relaxation time of the temperature decrease, which is characteristic time for the thermal 

conduction in glass medium induced by temperature difference results from temperature 

increase through laser irradiation. It is reasonable that only τR depends on medium 

temperature. 

  Activation energy EΔ, which determines the rate of fatigue and recovery process, 

can be estimated from the fit to Eq.(2) of Ref. 33 as demonstrated in Figs. 8 and 9, and in  

Fig. 4 of Ref. 33. It is around 10 meV estimated from both processes for Ge33.3S66.7 glass, 20 

meV for Ge20S80 and 14 meV for fatigue process of Ge10S90. As shown in Fig. 3 of Seki et al. 

[28], relative stability of radiative centers against non-radiative centers depends strongly on 

sulfur content, which results in strong dependence of radiative center population on sulfur 

content, and in difference of ESR-signal and PL intensities [28-30]. Increase of EΔ from x = 

66.7 to 80 (Ge1-xSx) and decrease from x = 80 to 90 correspond to increase and decrease of 

activation energy, respectively, which is needed to suppress and proceed the recovery 

reaction in this case, the reaction from non-radiative to radiative centers. Increase of EΔ 

causes degradation of PL intensity which is observed between x = 66.7 to 80, and 

promotion of PL intensity between x = 80 to 90 [28] as a result of the decrease/increase of 

radiative center population through suppression/promotion of the recovery reaction. All of 

these experimental results are mutually consistent only when we take the recovery process 

into consideration. The transient PL intensity measurement reaches to steady state finally 

after recovery process which follows fatigue process. This fact also means that the recovery 



 9 

process is the rate-limiting process.  

 The above values are reasonably small to be achieved in the present photo-induced 

process assisted by heat and light. For all compositions, both BT2 and AT2 shifted upward 

from Arrhenius-type behavior at lower temperatures. The results indicate that the rate of the 

recovery process and that of the fatigue process relatively increases at lower temperatures. 

As we will discuss below, this discussion is confirmed within ground and first excitation 

states of the main-band photoluminescence process. 

 Presented in Fig. 16 is a possible model for the excitation-radiation mechanism in 

this study, not only main PL band (2.22 eV) but sub-bands (2.25 and 2.28 eV) being taken 

into account. These sub-bands were revealed in this study partly because we used shorter 

wavelength of light with He-Cd laser additionally, and because PL spectra were measured 

at lower temperatures compared with previous studies [28-30]. In such case, we can assume 

second excited states for both charged and neutral pair of defects to be located slightly 

above those for the first excited states with higher excitation energy, the following features 

would be enough to explain results summarized in Table 1: (i) radiative centers for main PL 

at 2.22 eV have second excitation states a** above first states a* and energy barriers (e2-c2 

and e2-h2) between a** (c2) and second states h2; (ii) the second excitation states h2 above 

first states f* for non-radiative recombination (f-g-f*-f) for neutral defects [29] are radiative 

this time. If the sub-band at 2.25 eV is for radiation from second excited states for neutral 

defects (h2-i), the time-dependence which is contrary to main-band fatigure-recovery can 

be explained. On the other hand, if the sub-band at 2.28 eV is for c2-d, the difference from 

sub-band in 2.25 eV in time-dependence is possible, which is observed as presented in 

Table 1. The difference in height of energy barriers (activation energy) from both sides 

(difference in e2-c2 and e2-h2) depends on sulfur content, and that will account for 

presence and absence of 2.25 or 2.28 eV sub-bands in Table 1. Furthermore, as can be seen 

in Fig. 16, the reversal of relative advantage of fatigue reaction over recovery in the second 
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excited states from that of the first excited states for the main-band PL also results in higher 

activation energy required to c2 to h2 reaction, and therefore, the absence of 

time-dependence in side-band 2 as a consequence. The composition dependence may also 

explain relatively strong sub-bands above, other bands at 2.35, 2.40, … eV and 

backgrounds for Ge10S90 glass even for Ar+-laser excitation, if the second excited states and 

possibly the higher states are slightly lower for this glass composition. The dependence is 

naturally reflected in configuration of ground states and first excitation states, which results 

in variation of fatigue/recovery time constants of main PL band.  

 

5. Conclusions 

 The time-dependent photoluminescence and its temperature-dependence for 

several compositions (Ge33.3S66.7, Ge20S80 and Ge10S90) were investigated.  

 Side-band effects were considered to fully describe the time dependence, one band 

at 2.25 eV for all compositions and the other extended from 2.15 to 2.45 for Ge10S90, 

especially at the lower temperatures.  

 Another side-band at 2.28 eV, which is apparently time-independent, was also 

analyzed. 

 The functional form was similar to those in the previous report, and was extended 

to account for the effect of side-band at below 30 K for Ge20S80 and monotonous decrease 

of background for Ge10S90.  
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Fig. 2 The PL spectra for Ge10S90 at 10, 30, 50, 70, 90, 110, 130 and 150 K. 
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Fig. 1 The PL spectra for Ge20S80 at 10, 30, 50, 70, 90, 110 and 150 K. 
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Fig. 3 The PL spectra of Ge33.3S66.7 (GeS2), Ge20S80 and Ge10S90 at 10 K and 

normalized at peak position. 
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Fig. 4 The time dependence of the PL at 2.20 eV in Ge20S80 glass at 10, 30, 50, 70 and 90 K. 

The full curves are the fits using Eq. (4) in Ref. 25 for 10 and 30 K, and Eq. (1) in Ref. 25 

for other temperatures.  
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Fig. 5 The time dependence of the PL at 2.20 eV in Ge10S90 glass at various 

temperatures. The full curves are the fits using Eq. (1) for 10 K, and Eq. (2) for other 

temperatures.  
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Fig. 6 The time constants τF, τR, are plotted from using the results by fitting for Fig. 4 at 

cryogenic temperatures. 
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Fig. 7 The time constants, τR, is plotted from using the results by fitting for Fig. 5 at 

cryogenic temperatures. 
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Fig. 8 The coefficients for fatigue and recovery multiplied by T2, AT2 and BT2, estimated by 

fitting of A and B. Solid line and broken line are drawn for guides for the eye.   
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Fig. 9 The coefficients for fatigue and recovery multiplied by T2, AT2, estimated by fitting of 

A. Broken line are drawn as a guide for the eye.   
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Fig. 10 The PL spectra for Ge33.3S66.7, Ge20S80 and Ge10S90 glasses observed at 10 K.  
The excitation energy is 441.6 nm (2.81 eV) and intensity is 12 mW with He-Cd laser. 



 20 

 
 

! "#!

 
 

 

$%&'!((!)*+!,%-+!.+/+0.+01+!23!,*+!45!%0,+06%,7!328!-9%0!:90.!;"'"#!+<=!90.!6%.+>:90.!

;"'"?! +<=! 328!@+"#AB#! 9,! (#!C'!)*+! %06+,! %6! ,*+!45! 6/+1,89! +D1%,+.!:7!E8F>%20! G96+8!23!

H?I'J!0-;"'I(!+<=!90.!K+>L.!G96+8!M%,*!HH('N!0-!;"'B(!+<='! !

!

#

?#

(##

(?#

#

(##

"##

O##

H##

?##

N##

I##

B##

# ?# (## (?# "##

10 K

P0
,+
06
%,7
!Q!
9'
R'

!P0
,+
06
%,7
!Q!
9'
R'

P889.%9,%20!,%-+!Q!-%0

!!!E8F>%20!G96+8!+D1%,9,%20!;"'I(!+<=!
!!!!!!!!!!!328!-9%0!/+9S!;"'"#!+<=
!!!K+>L.!G96+8!+D1%,9,%20!;"'B(!+<=
!!!!!!328!6%.+>:90.!/+9S!;"'"?!+<=

#

"#

H#

N#

B#

(##

("#

"'(? "'" "'"? "'O "'O?

P0
,+
06
%,7
!Q!
9'
R'

T0+8&7!Q!+<

E8F>%20!G96+8!+D1%,9,%20!;"'I(!+<=!
K+>L.!G96+8!+D1%,9,%20!;"'B(!+<=

 

Fig. 11 The time dependence of the PL intensity for main band (2.20 eV) and side-band 

(2.25 eV) for Ge20S80 at 10 K. The inset is the PL spectra excited by Ar+-ion laser of 

457.9 nm(2.71 eV) and He-Cd laser with 441.6 nm (2.81 eV).  
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Fig. 12 The time dependence of the PL intensity for main band (2.20 eV) and side-band 

(2.25 eV) for Ge20S80 at 70 K. The inset is the PL spectra excited by Ar+-ion laser of 

457.9 nm (2.71 eV) and He-Cd laser with 441.6 nm (2.81 eV).  
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Fig. 13 The time dependence of the PL intensity for main band (2.20 eV) and side-band 

(2.28 eV) for Ge10S90 at 10 K. The inset is the PL spectra excited by Ar+-ion laser of 

457.9 nm (2.71 eV) and He-Cd laser with 441.6 nm (2.81 eV). The solid and broken 

lines are to additional lines. 
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Fig. 14 The time dependence of the PL intensity for main band (2.20 eV) and side-band 

(2.28 eV) for Ge10S90 at 90 K. The inset is the PL spectra excited by Ar+-ion laser of 

457.9 nm (2.71 eV) and He-Cd laser with 441.6 nm (2.81 eV).  
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Fig. 15 The PL spectra of Ge10S90 glass measured the passage of time: 0, 30 and 180 min  

at 10 K (a) and: 0, 30, 90 and 180 min at 70 K (b) normalized at main-band peak position. 
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Fig. 16  A Schematic for the excitation-radiation process for the main-band and side-band 
photoluminescence emission mechanism.
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PL bands 
Time 

dependence 
Ge33.3S66.7 Ge20S80 Ge10S90 

Ar+-ion laser (2.71 eV) excitation 

Main peak 
2.20 eV 

F-R Strong Strong Strong (F) 

He-Cd laser (2.81 eV) excitation 

Side-band 1 
2.25 eV 

R-F 
Strong, 

below 10 K 
Strong, 

below 30 K 
Weak, 

below 10 K 
Side-band 2 

2.28 eV 
– Weak – Strong 

Background 
2.15-2.45 eV 

F – – Strong 

F: Fatigue process; R: Recovery process 

 

Table.1 PL bands and their time-dependent phenomena in Ge-S glass. 


