
 

 

Highlights 

 
► A dynamically stabilized Moving Particle Semi-implicit method is developed. ► A new scheme is proposed to 

provide meticulously adequate interparticle repulsive forces. ► The new scheme is shown to provide physically sound 

and computationally stable results. ► Verifications with different applications are performed to show the stabilizations. 
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This technical note presents a simple and effective scheme for Dynamic Stabilization of MPS method. 

The new scheme, abbreviated as DS, reproduces meticulously adequate repulsive forces to attenuate the 

interparticle penetration and thus stabilizes the calculations, even for highly deformed flows characterized 

by tensile stress states. By performing a set of simple two-phase flow simulations, we also show the 

inappropriateness of the simplified/anti-symmetric MPS pressure gradient models as they may result in 

predominant excessive repulsive forces and thus being unable to simulate the main flow features. The DS 

scheme is shown to provide physically sound and computationally stable simulations of such flows.    
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1. Introduction 

The MPS (Moving Particle Semi-implicit) method was originally proposed by Koshizuka and Oka 

[1] for viscous incompressible flow as a Lagrangian mesh-free method. Lagrangian approach in hydraulic 

flow simulation is free from the non-linear advection term causing numerical diffusion, however, it 

simultaneously may result in instability due to the maldistribution of calculation points (particles). Up to 

now, the instability issue, as a general problem of particle method, has been widely studied [2-9]. In 

MPS-based simulations, the main causes of the maldistribution of particles correspond to either 

underestimation of interparticle repulsive forces or overestimation of interparticle attractive forces. 

Due to the predominancy of attractive force overestimation, Koshizuka et al. [10] modified the 

original MPS gradient model so that the pressure interacting forces would be purely repulsive, and some 
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so-far proposed modifications including the so-called CMPS method [11] are based on this concept. This 

approach is generally composed of an artificial repulsive force which vanishes for a perfectly symmetric 

distribution of neighboring particles. As a result, stability and accuracy would depend on the 

instantaneous distribution of calculation points. The concept of repulsive interparticle forces for 

enhancement of stability has also been introduced in the SPH framework [4] by incorporating a 

stress-dependent repulsive force term multiplied by a constant coefficient. 

To minimize the tensile instability issue in MPS framework, Khayyer and Gotoh [8] proposed a 

Gradient Correction (GC) scheme. Nevertheless, this scheme does not resolve the maldistribution of 

particles and requires a meticulous setting of calculation condition with prudence. In a recent paper, 

Khayyer and Gotoh [9] showed that multiphase particle-based simulations are prone to become easily 

destabilized as a result of unphysical perturbations in particle motion and resulting interparticle 

penetrations. 

In brief, a stabilization approach regardless of stress state is required for stable and accurate 

particle-based simulation. This short note highlights the particle method related to instability and the 

unphysical states of so-far proposed MPS methods stabilized by repulsive forces. A modification, namely 

a Dynamically Stabilized scheme, is proposed to resolve these problems. The new scheme provides 

meticulously adequate repulsive forces based on the Newton’s third law of motion for both compressive 

and tensile stress states. It is shown to stabilize and adjust the disorder of calculation points for 

comprehensive MPS applications. 

 

2. The gradient model and instability 

In this section, previous and present gradient terms in the MPS method are explained. Detailed 

descriptions of other differential operators of standard and improved MPS methods can be referred to [1, 

8, 12]. 

In MPS method, the gradient operator for the pressure gradient [10] is defined as:  
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where pis the pressure, Ds is number of space dimensions, r is coordinate vector, w(r) is the kernel 

function and n0 is the reference particle number density. The subscripts i and j correspond to target particle 

and its neighboring particles, respectively. 

The Corrected MPS (CMPS) method [11] modifies Eq. 1 to enforce interparticle anti-symmetric 

interactions with consideration of the Newton’s third law: 
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Considering the original gradient term [1] and the artificial repulsive force term for stabilization, Eq. 1 

can be rewritten as:  
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Similarly in the CMPS method (Eq. 3): 

    




 






 ij
ijij

ij

jiiis

ij
ijij

ij

ijs

i
w

pppp

n

D
w

pp

n

D
p rrrr

rr

rrrr

rr

)(
)ˆ()ˆ(

)(
)(

2
0

2
0

     (5) 

In the right hand of both Eqs. 4 and 5, because the first term is the mathematical definition of gradient 

term, the second term can be regarded as the artificial repulsive force term. Focusing on pressure 

differences in the numerators, we can write: 
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Therefore, the stability with regard to Eqs. 1 and 3 would depend on pressure states and particle 

distributions. And the artificial repulsive force is clearly predominant in these equations rather than the 

original gradient. On that account, the gradient operators may result in overestimation of interparticle 

pressure forces and, as a result, would bring about unphysical fluid motions and perturbations. 

Here we propose a Dynamically Stabilized (DS) gradient operator comprising of the original 

Taylor-series consistent gradient model [1] and a meticulously adequate stabilizing force. 
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where Fij
DSis the stabilizing force for target particle i from neighboring particle j, ρ is particle density, Πij 

is parameter to adjust the magnitude of Fij
DS

, rji= rj  ri, eji,// is the unit vector of rji, d is particle diameter, 

and αDS is constant for adjusting active range of Fij
DS

. The superscript * refers to a state after the 

advection by the original gradient term. αDS is decided according to Courant stability condition for a time 

resolution as: 

1 dtDS αα                                     (9)  

where αdt is the ratio of the time step to Courant number (=0.1) [13]. In fact, Dynamic Stabilization is 

activated if a neighboring particle j overlaps into the target particle i by more than 10 % of the initial 

spacing. The intermediate position vector r
*
ji can be expressed with the parallel and normal vectors as: 
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where r
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ji,// is the parallel vector of r
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ji, and r
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*
ji. The parallel and normal vectors 

in the above equation can be obtained from the following equations: 
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where eji,⊥is the unit vector of rji,⊥. As shown in Fig. 1, when particles overlap with each other, the 

stabilizing repulsive force is given to make them separated and verged on each other as the least, that is 

the adequate repulsive force. The stabilizing forces between particles i and j act at the opposite directions 

along the eji,// respectively to satisfy anti-symmetric relation in accordance with the Newton's third law, 

that is: 

//,//, ,; jijiijijjiij FFFFFF                                          (12) 



Stabilizing force is based on the instantaneous distribution of particles without any pressure value as: 
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where rij
DS

 is the coordinate vector through revision. From Eq. 13, the following equations can be 

obtained: 
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Considering Eq. 12, revising coordinate vector Δrij
DS

 is derived from Eq. 8: 
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From Eqs. 14, 16, and 17: 
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Therefore, 
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The adequate stabilizing forces Fij
DS

 are calculated by the prediction of the particle positions based 

on the original gradient term corresponding to the first term in the right hand side of Eq. 7. Firstly, the 

predicted relative distance between particles i and j is obtained from Eq. 11. If the particles would 

penetrate each other in the prediction, parameter Πij to adjust the magnitude of Fij
DS

 is calculated by Eq. 

19. In this process, Fij
DS

 is considered on the basis of a one-to-one relative position of a target particle i 

and a neighboring particle j and thus, the pressure gradient at particle i is obtained by considering the 



distribution of all neighboring particles through a weighted averaging of Fij
DS

 as shown in Eq. 7. 

 

3. Numerical simulation  

3.1 Evolution of a square patch of fluid [14] 

To test the stability of the proposed scheme in tensile stress states, the evolution of a 2D square 

patch of water subjected to a rigid rotation is performed. The evolution of the fluid patch is governed by 

the continuity and Euler equations [14]. In the present simulation, as an initial condition, the square patch 

is set as 1.0 m in length (L = 1.0 m) comprising of water particles with d = 2.0 × 10
-2

 m. The angular 

velocity is set as 1.0 s
-1

. 

Fig. 2 shows snapshots of water particles and pressure field by MPS-HS-GC and MPS-HS-GC-DS 

methods. From Fig. 2(a), the MPS-HS-GC snapshot at t = 0.84 s is characterized by an unphysical 

pressure field and dispersed particles in the vicinity of the patch boundaries. The MPS-HS-GC simulation 

breaks up at this moment. On the other hand, in Fig. 2b, the MPS-HS-GC-DS snapshot shows a stable 

state without unphysical particle clustering and fragmentation. The MPS-HS-GC-DS simulation continues 

to run and maintains its stable state tenaciously (shown in Fig. 2c and d). Hence, the Dynamically 

Stabilized scheme provides a fully stable simulation of a highly deformed free-surface flow characterized 

by a tensile stress state. 

 

3.2. Numerical simulation of two-phase flows 

In this section, the stability and performance of the proposed scheme in reproduction of 

multi-phase flows are examined through some benchmark numerical tests. For comparison, these 

numerical tests are implemented by three numerical models listed as follows. 

1. CMPS-HS: An improved particle method using the CMPS gradient scheme [11] and a Higher order 

Source of Poisson pressure equation [12], which is effective in enhancing the numerical stability 

(and can treat only repulsive interaction between particles). 

2. MPS-HS-GC: An enhanced particle method utilizing the HS scheme [12] and a Gradient Correction 

(GC) [8], which is effective in improvement of accuracy (and can treat both repulsive and tensile 

interactions). 



3. MPS-HS-GC-DS: An enhanced particle method using the HS [12], GC [8] and the newly DS 

scheme. 

3.2.1. Settlement of heavier fluid in water 

Numerical simulation of a simple typical two-phase flow, i.e. settlement of heavier fluid particles in 

water, is performed with CMPS-HS, MPS-HS-GC and MPS-HS-GC-DS methods. The initial condition is 

set as shown in Fig 3. The tank is 0.25 m in length and 0.2 m in height, and is filled with 7000 fluid 

particles with d = 2.5 × 10
-3

 m, resulting in a water depth of 0.175 m. The densities of the lighter particles 

ρL and the heavier particles ρH are set as ρL = 1000.0 kg/m
3
 and ρH = 2650.0 kg/m

3
, respectively. From Fig 

4, the CMPS-HS method reproduces a stable free-surface, however, vectors of velocity are unphysical 

with perturbations. In addition, some heavier particles do not settle down and are fully bounded within the 

lighter fluid particles. The cause of this unphysical result is likely brought about by a too strong 

stabilizing force (Eq. 5). The results by MPS-HS-GC are characterized by an unstable free-surface, in 

particular, at t = 0.4 s. This unphysical reproduction leads to numerical instability at t = 0.41 s. On the 

other hand, MPS-HS-GC-DS portrays a physically sound reproduction of the phenomenon. The snapshots 

by this method show a smooth free-surface with reproducing the circulating flow driven by the settlement 

of heavier fluid. The settlement of heavier fluid particles is well simulated by this method. 

 

3.2.2. Surfacing of lighter fluid in water 

Simulation of a two-phase flow with surfacing of lighter fluid particles in water is performed (Fig. 5) 

with CMPS-HS, MPS-HS-GC and MPS-HS-GC-DS methods. The initial set up of calculation 

corresponds to that in Section 3.2.1, except for replacing a fluid lighter than water with ρL = 600.0 kg/m
3
 

in place of the previously heavier fluid. As shown in Fig. 6, in spite of the smooth free-surface line, 

CMPS-HS recurrently shows unphysical perturbation of velocity even in the static state at t = 10.00 s. 

Further, lighter particles stay in water, or are bounded within heavier (water) particles. While, 

MPS-HS-GC reproduces rather smoother velocity field, surface particles behave unstably and the 

simulation breaks up at t = 0.35 s. The MPS-HS-GC-DS shows a good reproduction in both velocity field 

(circulating flow driven by surfacing of particles) and behavior of particles. This scheme resolves all 

problems shown in the results of the other schemes. 



 

 

4. Concluding remarks 

A novel scheme is proposed for Dynamic Stabilization of a particle method, namely, the MPS 

method. The new scheme, abbreviated as DS, provides precisely adequate repulsive interparticle forces 

based on the instantaneous distribution of particles to eliminate the interparticle penetration which is the 

main cause of instability in particle methods. A few numerical tests, namely, evolution of a square patch 

of fluid and a set of simple two-phase flow simulations have been performed to show the stabilizing and 

enhancing effects of the DS scheme. Despite the fact that this paper focuses on Dynamic Stabilization of 

2D MPS-based simulations, the major finding and developments can be easily applied and extended to 

3D simulations as well as other particle methods, i.e. the SPH method. 
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Figure captions 

 

Fig. 1. A graphical presentation of the concept of the Dynamic Stabilization scheme 

 

Fig. 2. Snapshots of water particles together with pressure field by the MPS-HS-GC and the 

MPS-HS-GC-DS methods in simulation of an initially square patch of fluid  

 

Fig. 3. Initial condition of fluid particles in simulation of a two-phase flow for settlement of heavier fluid. 

 

Fig. 4. Snapshots of fluid particles together with velocity vectors by the MPS-HS, CMPS-HS and the 

MPS-HS-GC-DS methods in simulation of a two-phase flow for settlement of heavier fluid 

 

Fig. 5. Initial condition of fluid particles in simulation of a two-phase flow for surfacing of lighter fluid 

 

Fig. 6. Snapshots of fluid particles together with velocity vectors by the MPS-HS, CMPS-HS and the 

MPS-HS-GC-DS methods in simulation of a two-phase flow for surfacing of lighter fluid 
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