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Abstract

We call a Gromov-Hausdorff limit of complete Riemannian manifolds with a

lower bound of Ricci curvature a Ricci limit space. In this paper, we prove that

any Ricci limit space has integral Hausdorff dimension provided that its Hausdorff

dimension is not greater than two. We also classify one-dimensional Ricci limit

spaces.

1 Introduction

In this paper, we study a pointed metric space (Y, y) that is a pointed Gromov-Hausdorff

limit of a sequence of complete, pointed, connected n-dimensional Riemannian manifolds,

{(Mi,mi)}i, with RicMi
≥ −(n − 1), we call such a pointed metric space (Y, y) a Ricci

limit space. The structure theory was much developed by Cheeger-Colding, and has many

important applications to Riemannian manifolds (see [5, 6, 7]). The main purpose of this

paper is to study low dimensional Ricci limit spaces by using their theory and several

results of [16]. First, we give the classification of Ricci limit spaces whose Hausdorff

dimension is smaller than two:

Theorem 1.1. Let (Y, y) be a Ricci limit space. Assume that Y is not a single point.

Then, the following conditions are equivalent:

1. 1 ≤ dimHY < 2 holds.

2. Ri = ∅ holds for every i ≥ 2

3. υ(Ri) = 0 holds for every i ≥ 2

4. Y is isometric either to R, or to R≥0, or to S1(r) = {x ∈ R2||x| = r} for some

r > 0, or to [0, l] for some l > 0.

Key words and phrases. Ricci curvature, Gromov-Hausdorff convergence, Geometric measure theory.
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Here, Ri is the i-dimensional regular set of Y , dimHY is the Hausdorff dimension

of Y , υ is a limit measure on Y . See Definition 2.4 and Definition 2.6. Remark that

dimHY < 1 holds if and only if Y is a single point. Therefore, Theorem 1.1 gives the

isometric clasification of Ricci limit spaces whose Hausdorff dimension is smaller than

two. As a corollary of Theorem 1.1, we have that if dimHY ≤ 2 holds then dimHY is an

integer.

We will give an another characterization of low dimensional points under additional

assumption. For that, we define the local Hausdorff dimension dimloc
H x around a point

x ∈ Y by

dimloc
H x = lim

r→0
dimH Br(x).

Put Y (α) = {x ∈ Y | dimloc
H x = α} for α ≥ 0. Remark that if Y is not a single point,

then dimloc
H x ≥ 1 holds for every x ∈ Y . Next, we shall define the notion of Alexandrov

point. For a proper geodesic space X and a point x ∈ X, we say that x is an Alexandrov

point (in X) if there exist an open neighbourhood U of x, and a negative number K < 0

satisfying the following properties: For every x1, x2, x3 ∈ U and every x4 ∈ X with x1, x4+

x4, x2 = x1, x2, there exist points y1, y2, y3, y4 ∈ H2(K) such that x1, x2 = y1, y2, x2, x3 =

y2, y3, x3, x1 = y3, y1, x1, x4 = y1, y4, y1, y4 + y4, y2 = y1, y2 and x3, x4 ≥ y3, y4. Here,

H2(K) is the two-dimensional space form with the sectional curvature KH2(K) ≡ K, x1, x2

is the distance between x1 and x2.

Denote by Alex(X) the set of Alexandrov points in X. Roughly speaking, an Alexan-

drov points on a metric space means that there exists a lower bound of sectional curvature

around the point in the sense of Alexandrov geometry. Therefore, by the definition, all

points in every Alexandrov spaces are Alexandrov points. We shall state an another

characterization of low dimensional points in Ricci limit spaces:

Theorem 1.2. Let (Y, y) be a Ricci limit space. Assume that R1 ̸= ∅. Then, we have

Alex(Y ) =
∪

α<2 Y (α) = Y (1).

Remark that this theorem is stronger than Theorem 1.1. An idea of the proof of∪
α<2 Y (α) ⊂ Alex(Y ) is the same as the proof of Theorem 1.1. A main idea of the proof

of Alex(Y ) ⊂ Y (1) is to compare between a measure theoretic property of a point in R1

and one of an Alexandrov point by using [16, Theorem 1.1]. We give some application to

Theorem 1.2 in the following.

Fix a sufficiently small positive number ϵ > 0. Let Z be the completion of the 5-

dimensional Riemannian manifold (R>0×S4, dr2+(r1+ϵ/2)2gS4), where gS4 is the standard

Riemannian metric on a 4-dimensional unit sphere in R5. It is known that this space is a

Ricci limit space (see [5, Example 8.77]). On the other hand, for every τ > 0, let Zτ be the

space obtained by adjoining the segment [−τ, 0] to Z at their origins. Cheeger-Colding
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showed that for every τ > 0, Zτ is not a Ricci limit space as a corollary of [6, Theorem

5.1]. This non-existence result also follows from Theorem 1.2 directly. This is a simply

alternative proof.

Let Z1 and Z2 be copies of Z (namely, Z1 and Z2 are isometric to Z, respectively)

and Ẑ the space obtained by adjoining Z1 to Z2 at their origins. It follows directly from

Theorem 1.2 that Ẑ is not a Ricci limit space. Remark that the non-existence of Ẑ as

a Ricci limit space, does not follow from [6, Theorem 3.7] or [6, Theorem 5.1]. See also

Proposition 4.7 and [27, Theorem 1.3].

Theorem 1.2 implies that it is very difficult to construct a Ricci limit space whose one

dimensional regular set is not empty and whose Hausdorff dimension is not one. In fact,

by using the results of this paper, we can prove that if R1 ̸= ∅, then dimHY = 1 in [17].

As more non-existence results, we will also get that (M × Zτ , (m, 0)) is not a Ricci limit

space for every τ > 0 and every pointed connected complete k-dimensional Riemannian

manifold (M,m). See Remark 5.8.

The organization of this paper is as follows. In Section 2, we will introduce several

notions on metric spaces needed subsequently. The proof of Theorem 1.1 is based on

several results on regular sets due to Cheeger-Colding’s works. In Section 3, we will recall

them. In Section 4, we will study a local structure around given ‘low dimensional’ points.

Theorem 1.1 follows directly from the local strucure properties. See Theorem 4.3 and

Theorem 4.5. The main idea of the proof is a geometric rescaling argument based on

several properties of regular sets from Section 3. We will study that under what condition

a limit measure υ is locally equivalent to the one-dimensional Hausdorff measure H1.

Here, for a topological space X, a point x ∈ X and Borel measures υ, µ on X, we say that

υ is locally equivalent to µ at x ∈ X if there exist a positive number C > 1 and an open

neighbourfood U of x such that C−1µ(A) ≤ υ(A) ≤ Cµ(A) for every Borel set A ⊂ U . We

will give a necessary and sufficient condition that υ is locally equivalent to H1 at a point.

See Theorem 4.8. The proof is based on Theorem 1.1 and [16, Theorem 1.1], essentially.

Roughly speaking, Theorem 4.8 implies a characterization of the local structure around a

low-dimensional point in a Ricci limit space as a metric measure space. In Section 5, we

will study several properties of the Alexandrov set in a Ricci limit space. A main result in

Section 5 is Theorem 5.4. As a corollary, we will give a proof of Theorem 1.2. In Section

6 and 7, we will also study the problem whether the Hausdorff dimension of a Ricci limit

space is an integer. Especially, under the assumption 2 ≤ dimHY < 3, by using an idea

of the proof of Theorem 1.1, we will prove that dimH(Y \Cx) ≤ 2 holds for every x ∈ Y .

Here, Cx is the cut locus of x, defined by Cx = {z ∈ X| x, z + z, w − x,w > 0 for every

w ∈ X \ {z} } if X is not a single point, Cx = ∅ if otherwise. See Corollary 6.4. Cheeger-

Colding defined the polarity of a Ricci limit space, which is a sufficient condition for a
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Ricci limit space to have integral Hausdorff dimension. We can rewrite the condition by

using properties of cut locus on iterated tangent cones. Actually, it is easy to check that

a Ricci limit space (Y, y) is polar if and only if Cx = ∅ holds for every iterated tangent

cone (X, x) of Y . Menguy showed that there exists a non-polar Ricci limit space whose

Hausdorff dimension is an integer. See [19]. We will give an another sufficient condition

for a Ricci limit space to have integral Hausdorff dimension that is weaker condition than

the polarity. Actually, in Section 8, we will prove that if dimH(X \ Cx) = dimHX holds

for every iterated tangent cone (X, x) of Y , then dimHBr(z) ∈ Z holds for every z ∈ Y

and every r > 0. We say that a Ricci limit space is weakly polar if the space satisfies

the condition. See Theorem 7.2 for the detail. It is unknown whether there exists a

non-weakly polar Ricci limit space. In fact, note that the non-polar Ricci limit space in

the example in [19] is weakly polar. We also study several properties of a weakly polar

limit space. See Corollary 7.7.
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2 Notation

We recall some fundamental notions on metric spaces and Ricci limit spaces.

Definition 2.1. We say that a metric space X is proper if every bounded closed

subset of X is compact. A metric space X is said to be a geodesic space if for every points

x1, x2 ∈ X, there exists an isometric embedding γ : [0, x1, x2] → X such that γ(0) = x1

and γ(x1, x2) = x2 hold. We say that γ is a minimal geodesic from x1 to x2.

For a proper geodesic space X, x ∈ X, A ⊂ X, and r > 0, put: Br(x) = {z ∈ X|x, z <

r}, Br(x) = {z ∈ X|x, z ≤ r}, ∂Br(x) = {z ∈ X|x, z = r}, Cx(A) = {z ∈ X| There
exists w ∈ A such that x, z + z, w = x,w holds.}. Throughout the paper, we fix a positive

integer n > 0.

Definition 2.2. Let (Y, y) be a pointed proper geodesic space and K a real number.

We say that (Y, y) is a (n,K)-Ricci limit space (of {(Mi,mi)}i) if there exist sequences
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of real numbers {Ki}i and of pointed, complete, connected n-dimensional Riemannian

manifolds {(Mi,mi)}i with RicMi
≥ Ki(n − 1), such that Ki converges to K and that

(Mi,mi) converges to (Y, y) as i → ∞ in the sense of pointed Gromov-Hausdorff topology.

We recall the definition of pointed Gromov-Hausdorff convergence. For a sequence

of pointed proper geodesic spaces {(Xi, xi)}i, we say that (Xi, xi) converges to a pointed

proper geodesic space (X∞, x∞) in the sense of Gromov-Hausdorff topology if there exist

sequences of positive numbers {ϵi}i, {Ri}i and of maps ϕi : (BRi
(xi), xi) → (BRi

(x∞), x∞)

such that ϵi → 0, Ri → ∞, Bϵi(Image(ϕi)) ⊃ BRi
(x∞) and that |zi, wi−ϕi(zi), ϕi(wi)| < ϵi

for every zi, wi ∈ BRi
(xi). Denote it by (Xi, xi) → (X∞, x∞) for the sake of simplicity.

Moreover for a sequence of points zi ∈ BRi
(xi), we say that zi converges to z∞ ∈ X∞ if

ϕi(zi) → z∞. Denote it by zi → z∞ for the sake of simplicity.

Remark that for every K ̸= 0 and every (n,K)-Ricci limit space (Y, y), by suitable

rescaling, there exists a sequence of complete, connected n-dimensional Riemannian man-

ifolds {(Mi,mi)}i with RicMi
≥ K(n − 1), such that (Mi,mi) → (Y, y). Throughout the

paper, (Y, y) is always a fixed (n,−1)-Ricci limit space of {(Mi,mi)} and not reduced to a

single point. We will say that such a (Y, y) is a Ricci limit space for the sake of simplicity.

Definition 2.3. Let (W,w), (Z, z) be pointed proper geodesic spaces. We say that

(W,w) is a tangent cone at z ∈ Z if there exists a sequence of positive numbers {ri}i with
ri → 0 such that (Z, r−1

i dZ , z) → (W,w), where, dZ is the distance function on Z.

Remark that by Gromov’s compactness theorem, for every x ∈ Y , there exists a

tangent cone (TxY, 0x) at x, however, in general, it is not unique. See [20] for an example.

Note that (TxY, 0x) is a (n, 0)-Ricci limit space for every tangent cone (TxY, 0x) at x.

Next, we shall give several fundamental notions on Ricci limit spaces due to Cheeger-

Colding (see [5]). Throughout this paper, for every metric spaces X1, X2, the metric on

X1 ×X2 is always
√

d2X1
+ d2X2

.

Definition 2.4. Let Z be a proper geodesic space. Assume that for every α ∈ Z,

there exists a tangent cone (TαZ, 0α) at α. For every k ≥ 0 and every ϵ > 0, put

1. WEk(Z) = {x ∈ Z| There exist a tangent cone (TxZ, 0x) at x, and a proper geodesic

space W such that TxZ is isometric to Rk ×W . },

2. Ek(Z) = {x ∈ Z| For every tangent cone (TxZ, 0x) at x, there exists a proper

geodesic space W such that TxZ is isometric to Rk ×W . },

3. WEk(Z) = {x ∈ Z| There exist a tangent cone (TxZ, 0x) at x, and a proper geodesic

space W such that W is not a single point and that TxZ is isometric to Rk ×W.},

4. Rk(Z) = {x ∈ Z|Every tangent cone (TxZ, 0x) at x is isometric to (Rk, 0k).},
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5. (WEk)ϵ(Z) = {x ∈ Z| There exist 0 < r < ϵ and a proper geodesic space (W,w)

such that dGH((Br(x), x), (Br((0k, w)), (0k, w))) < ϵr for Br((0k, w)) ⊂ Rk ×W . },

6. (Ek)ϵ(Z) = {x ∈ Z| There exists r > 0 such that for every 0 < t < r, there exists a

proper geodesic space (W,w) such that dGH((Bt(x), x), (Bt((0k, w)), (0k, w))) < ϵt

holds for Br((0k, w)) ⊂ Rk ×W . },

where dGH is the Gromov-Hausdorff distance between pointed compact metric spaces.

For the sake of simplicity, we use the following notations for (Y, y): WEk = WEk(Y ),

Ek = Ek(Y ), etc. We call the set Rk the k-dimensional regular set of Y and call the set

R =
∪

k Rk the regular set of Y .

Remark 2.5. It is easy to check the following:

1. (WEk)ϵ is open.

2. WEk =
∩

ϵ>0(WEk)ϵ, Ek =
∩

ϵ>0(Ek)ϵ.

3. WEk = Ek = Rk = ∅ for every k ≥ n+ 1.

We end this section by giving the definition of limit measure. The measure is useful

tool to study Ricci limit spaces.

Definition 2.6. Let υ be a Borel measure on Y . We say that υ is the limit measure

of {(Mj,mj, vol /volB1(mj))}j if

volBr(xj)

volB1(mj)
→ υ(Br(x))

as j → ∞ for every r > 0, every x ∈ Y and every sequence xj ∈ Mj with xj → x. Then, we

say that (Mj,mj, vol /volB1(mj)) converges to (Y, y, υ) in the sense of measured Gromov-

Hausdorff topology, or (Y, y, υ) is the Ricci limit space of {(Mj,mj, vol /volB1(mj))}j.
Denote it by (Mj,mj, vol /volB1(mj)) → (Y, y, υ) for the sake of simplicity.

By taking a subsequence {(Mi(j),mi(j))}j of {(Mi,mi)}i, there exists the limit mea-

sure on Y of {(Mi(j),mi(j), vol/volB1(mi(j))}j. See for instance [5, Theorem 1.6], [5,

Theorem 1.10], [10]. Therefore, throughout the paper, υ is always the limit measure on Y

of {(Mj,mj, vol /volB1(mj))}j.

3 Some properties of regular set

One of important results on regular set due to Cheeger-Colding, is that υ(Y \R) = 0. See

[5, Theorem 2.1]. We need more detailed properties of regular set to study low dimensional
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Ricci limit spaces in the following sections. These results are not stated in the form we

need for this paper in Cheeger-Colding’s papers but are essentially direct consequence

of their work. Remark that the following proposition is not a direct consequence of

υ(Y \ R) = 0.

Proposition 3.1. We have that υ
(
Br(x) ∩

(∪
j≥k Rj

))
> 0 for every x ∈ WEk and

every r > 0.

Proof. By [7, Theorem 3.3], we have that υ(Br(x) ∩ Ek) > 0 for every r > 0. If

υ(Br(x) ∩ Rk) > 0, then we have the claim. Assume υ(Br(x) ∩ Rk) = 0. Then, since

υ(Br(x) ∩ Ek) ≤ υ(Br(x) ∩Rk) + υ(Br(x) ∩WEk), we have υ(Br(x) ∩WEk) > 0. By [5,

Lemma 2.5] and [5, Lemma 2.6], we have υ(Br(x) ∩ Ek+1) > 0. The iteration stops since

El = ∅ for any l > n by Hausdorff dimension argument. By iterating this argument, we

have the assertion.

Proposition 3.2. We have that υ
(
Br(x) ∩

(∪
j≥k+1Rj

))
> 0 for every x ∈ WEk

and every r > 0.

Proof. First, remark that for every ϵ > 0, δ > 0 and every x ∈ WEk, there exists

s > 0 with s < ϵ such that
υ(Bs(x) \ (WEk+1)δ)

υ(Bs(x))
< ϵ.

See (2.42) in [5] for the proof. Remark that this statement does not follow directly from

the result υ(WEk \ WEk+1) = 0. Fix a sequence of positive numbers {ϵi}i with ϵi → 0.

Then there exists a sequence xi ∈ (WEk+1)ϵi with xi → x. By [7, Theorem 3.3] and the

definition of (WEk+1)ϵ, there exists a sequence of positive numbers {δi}i with δi → 0 such

that υ(Bδi(xi) ∩ Ek+1) > 0. Since Bδi(xi) ⊂ Br(x) for every sufficiently large i, we have

υ(Br(x)∩Ek+1) > 0. By an argument similar to the proof of Proposition 3.1, we have the

assertion.

We will use next corollaries in the following sections, essentially.

Corollary 3.3. We have that WEk ⊂
∪

i≥k+1Ri for every k ≥ 1.

Corollary 3.4. Let i ≥ 1.

1. If υ(Rj) = 0 for every j ≥ i, then we have that WE j = ϕ for every j ≥ i. Especially,

we have that Rj = ∅ for every j ≥ i.

2. If υ(Rj) = 0 for every j ≥ i+ 1, then we have that WE j = ∅ for every j ≥ i.
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4 Local structure around low dimensional points

In this section, we exhibit a local structure around a low dimensional point in a Ricci

limit space. As a corollary, it gives Theorem 1.1.

4.1 Local metric structure around low dimensional points

We say that a point x ∈ Y is an interior point on a minimal geodesic γ : [0, l] → Y (l > 0)

if x ∈ γ((0, l)) holds.

Proposition 4.1. Let x be a point in R1. Then, x is an interior point on a minimal

geodesic.

Proof. This proof is done by contradiction. Assume that the assertion is false. Let

{ri}i be a sequence of positive numbers with ri → 0 such that (Y, r−1
i dY , x) → (R, 0).

Then there exist sequences of points {x−
i }i, {x+

i }i ∈ Y and of positive numbers {ϵi}i such
that ϵi → 0, |x−

i , x − ri| < ϵiri, |x+
i , x − ri| < ϵiri and x−

i , x + x+
i , x − x−

i , x
+
i < ϵiri. Fix

a minimal geodesic γi : [0, x
−
i , x

+
i ] → Y from x−

i to x+
i and put si = x, Image(γi). By

the assumption, we have si > 0. By triangle inequality, we have si → 0. By Gromov’s

compactness theorem, without loss of generality, we can assume that (Y, x, s−1
i dY ) con-

verges to a tangent cone (TxY, 0x) at x. By the construction, there exist z ∈ ∂B1(0x)

and an isometric embedding L : R → TxY such that z ∈ Image(L) and 0x ̸∈ Image(L).

By applying splitting theorem to (TxY, z) (see [4, Theorem 6.64]), there exists a proper

geodesic space W such that W is not a single point and that TxY is isometric to R×W .

This contradicts the assumption x ∈ R1.

Remark 4.2. By the proof of Proposition 4.1, we have that every x ∈ R1 is an interior

point on a limit minimal geodesic. Here we say that a minimal geodesic γ : [0, l] → Y is

a limit minimal geodesic (of {(Mi,mi)}i) if there exists a sequence of minimal geodesics

γi : [0, li] → Mi such that li → l and γi → γ in the sense of Gromov-Hausdorff topology.

This result is essentially used in [17].

Theorem 4.3. Let x ∈ Y \
∪

i≥2Ri. Then, there exists ϵ > 0 such that (Bϵ(x), x) is

isometric either to ((−ϵ, ϵ), 0) or to ([0, ϵ), 0).

Proof. 1. The case x ∈ R1.

By Proposition 4.1, there exist r > 0, x−, x+ ∈ Y and a minimal geodesic γ :

[0, x−, x+] → Y from x− to x+ such that x−, x = x+, x = 100r, x ∈ Image(γ)

and B100r(x) ⊂ Y \
∪

i≥2 Ri. It suffices to check that B10r(x) \ Image(γ) = ∅.
Assume that B10r(x) \ Image(γ) ̸= ∅. Let z ∈ B10r(x) \ Image(γ) and w ∈ Image(γ)
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with z, w = z, Image(γ) > 0. Remark that w ∈ B50r(x). Fix a minimal geodesic

γ1 : [0, z, w] → Y from z to w. For every ϵ > 0 with ϵ << z, Image(γ), let w(ϵ) ∈
Image(γ1) and x−(ϵ), x+(ϵ) ∈ Image(γ) with w,w(ϵ) = x−(ϵ), w = x+(ϵ), w = ϵ.

Then we have that x−(ϵ), w(ϵ) = x−(ϵ), w(ϵ)+w(ϵ), z−w(ϵ), z ≥ z, w−w(ϵ), z = ϵ.

Similarly, we have x+(ϵ), w(ϵ) ≥ ϵ. Therefore, for every tangent cone (TwY, 0w) at

w, there exists a proper geodesic space W such that W is not a single point and

that TwY is isometric to R × W . Thus, we have w ∈ WE1. By Corollary 3.3, we

have w ∈
∪

i≥2Ri. This contradicts the assumption Image(γ) ⊂ Y \
∪

i≥2 Ri.

2. The case x ∈ Y \ R1.

There exist r > 0, x+ ∈ Y and a minimal geodesic γ : [0, x, x+] → Y from x

to x+ such that x, x+ = 100r and B100r(x) ⊂ Y \
∪

i≥2 Ri. It suffices to check

that B10r(x) \ Image(γ) = ∅. Assume that B10r(x) \ Image(γ) ̸= ∅. Let z ∈
B10r(x) \ Image(γ) and w ∈ Image(γ) with z, w = z, Image(γ) > 0. Remark that

w ∈ B50r(x). If w ̸= x, then, by the case 1, there exists ϵ > 0 such that (Bϵ(w), w)

is isometric to ((−ϵ, ϵ), 0). This contradicts the fact z, w = z, Image(γ). Thus, we

have w = x. Fix ϵ > 0 with ϵ << 100r, x+(ϵ) ∈ Image(γ) with x, x+(ϵ) = ϵ and a

minimal geodesic γϵ : [0, z, x+(ϵ)] → Y from z to x+(ϵ).

Claim 4.4. x ∈ Image(γϵ).

This proof is done by contradiction. Assume that the assertion is false. Put t =

inf{z,m | m ∈ Image(γϵ) ∩ Image(γ)} > 0. By the definition, we have that γϵ(t) ∈
Image(γ) and that γϵ(s) ̸∈ Image(γ) for every s < t. On the other hand, by the

assumption, we have γϵ(t) ∈ E1. Since γϵ(t) ̸∈ WE1, we have γϵ(t) ∈ R1. By the

case 1, there exists τ > 0 such that (Bτ (γϵ(t)), γϵ(t)) is isometric to ((−τ, τ), 0).

This contradicts the fact that γϵ(s) ̸∈ Image(γ) for every s < t. Therefore we have

Claim 4.4.

By Claim 4.4, we have x ∈ E1. Since x ̸∈ WE1, we have x ∈ R1. This contradicts

the assumption x ∈ Y \ R1.

Theorem 4.5. Let x be a point in Y . Then, 1 ≤ dimloc
H x < 2 holds if and only if

x ∈ Y \
∪

i≥2 Ri holds.

Proof. By Theorem 4.3, if x ∈ Y \
∪

i≥2 Ri, then 1 ≤ dimloc
H x < 2. Let i ≥ 2 and

x ∈ Ri. For every s > 0, take zs ∈ Bs(x) ∩ Ri. By [6, Corollary 1.36], we have that

dimHBt(zs) ≥ 2 for every s, t > 0. Especially, we have that dimHBs(x) ≥ i ≥ 2 for every

s > 0. Therefore, we have dimloc
H x ≥ i ≥ 2.
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Theorem 1.1 follows directly from Corollary 3.4, Theorem 4.3 and Theorem 4.5. Put

AY (1) = {x ∈ Y | lim infr→0 υ(Br(x))/r > 0} (is called the Ahlfors one regular set of

(Y, y, υ)). See Section 6 in [16] for the definition of the set AY (α) for a real number

1 ≤ α ≤ n. Remark that the subset AY (1) is one dimension in some sense. Actually,

υ and the one dimensional Hausdorff measure H1 are mutually absolutely continuous on

AY (1). We end this section by giving the following corollary:

Corollary 4.6. Assume υ(Y \ AY (1)) = 0. Then we have dimHY = 1.

Proof. By [7, Theorem 3.23] and [7, Theorem 4.6], we have that υ(Ri \ (Ri ∩
AY (i))) = 0 for every i. Therefore, by the assumption, we have that υ(Ri) = 0 for

every i ≥ 2. Thus, the assertion follows directly from Theorem 1.1.

4.2 Local measure structure around low dimensional points

In this subsection, we will study locally equivalence between a limit measure υ and the

one-dimensional Hausdorff measure H1. Remark that it follows from Bishop-Gromov

inequality for υ that υ−1({x}) ≤ lim infr→0 υ(Br(x))/r ≤ C(n)υ−1({x}) for every x ∈ Y

(see [6], [16] for the definition of the measure υ−1 on Y ).

Proposition 4.7. Let x be a point in R1. Then we have lim infr→0 υ(Br(x))/r > 0.

Proof. The proof is done by contradiction. Assume that the assertion is false. Hence

we have υ−1({x}) = 0. Then, by [6, Theorem 3.7], for every x1, x2 ∈ Y \ {x} and every

ϵ > 0, there exist y1, y2 ∈ Y and a minimal geodesic γ : [0, y1, y2] → Y from y1 to y2

such that x1, y1 ≤ ϵ, x2, y2 ≤ ϵ and x ̸∈ Image(γ). Then, by an argument similar to the

proof of Proposition 4.1, there exist a tangent cone (TxY, 0x) at x and a proper geodesic

space W such that W is not a single point and that TxY is isometric to R × W . This

contradicts the assumption x ∈ R1.

The next theorem is the main result in this section. This is a characterization of local

equivalence between a limit measure and H1.

Theorem 4.8. Let x be a point in Y . The following conditions are equivalent:

1. A limit measure υ and the one dimensional Hausdorff measure H1 are locally equiv-

alent at x.

2. lim infr→0 υ(Br(x))/r > 0 and 1 ≤ dimloc
H x < 2 hold.

Proof. If υ is locally equivalent toH1 at x, then it follows from Theorem 4.3 and The-

orem 4.5 that dimloc
H x = 1 and lim infr→0 υ(Br(x))/r > 0. Assume that lim infr→0 υ(Br(x))/r >
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0 and 1 ≤ dimloc
H x < 2. Then, by Theorem 4.3 and Theorem 4.5, there exists ϵ > 0

such that (B2ϵ(x), x) is isometric either to ((−2ϵ, 2ϵ), 0) or to ([0, 2ϵ), 0). It follows

from [16, Theorem 1.1] that there exists d ≥ 1 such that d−1 ≤ lim inf υ(Br(y))/r ≤
lim sup υ(Br(y))/r ≤ d for every y ∈ Bϵ(x). For every a ∈ Bϵ(x), there exists ra > 0 such

that d−1/2 ≤ υ(Br(a))/r ≤ 2d for every r < r0. It follows from standard covering lemma

(see Chapter 1 in [24]) that there exists C(d, n) ≥ 1 such that C(d, n)−1H1(A) ≤ υ(A) ≤
C(d, n)H1(A) for every Borel subset A of Bϵ(x).

Remark that there exist two limit measures υ1, υ2 on a (2, 0)-Ricci limit space [0, 1]

such that υ1 is locally equivalent to H1 at 0 and that υ2 is not locally equivalent to H1

at 0. See [5, Example 1.24].

5 Alexandrov set

In this section, we study the Alexandrov set in a Ricci limit space (Y, y). Especially, we

will give a proof of Theorem 1.2 and show several non-existence results for a metric spaces

as a Ricci limit space (e.g. Zτ , Ẑ in Section 1).

5.1 A proof of Theorem 1.2

Remark that the next proposition is a direct consequence of the facts that the rescaled

pointed proper geodesic space (Y, r−1dY , x) is a Ricci limit space for every 0 < r ≤ 1 and

every x ∈ Y and that the measure υr = υ /υ(Br(x)) is a limit measure of it.

Proposition 5.1. For every 0 < r < 1 and every x ∈ Y , there exists a limit measure

υr on (Y, r−1dY , x) such that υr(B
r−1dY
s1

(x1))υ(Bs2r(x2)) = υr(B
r−1dY
s2

(x2))υ(Bs1r(x1)) for

every x1, x2 ∈ Y and every s1, s2 > 0. Especially, for every tangent cone (TxY, 0x) at x,

there exist a limit measure υ∞ on (TxY, 0x) and a sequence of positive numbers {ri}i with
ri → 0 such that υ(Bsri(x))/υ(Bri(x)) → υ∞(Bs(0x)) for every s > 0.

We will give a proof of the next proposition in appendix.

Proposition 5.2. Let (W,w) be a pointed proper geodesic space and d ≥ 1 with

d−1 ≤ diamW ≤ d. Assume that (Rk × W, (0k, w)) is a (n, 0)-Ricci limit space. Then,

for every limit measure υ on Rk ×W , there exists a Borel measure υW on W such that

υ = Hk × υW and that lim supδ→0 υW (Bδ(z))/δ ≤ C(n, d,R) < ∞ for every R > 0 and

every z ∈ BR(w).

Compare the following proposition and Proposition 4.7:

Proposition 5.3. Let x be a point in WE1. Then we have lim infr→0 υ(Br(x))/r = 0.

11



Proof. The proof is done by contradiction. Assume that the assertion is false. There

exist a tangent cone (TxY, 0x) at x and a proper geodesic space W such that W is not a

single point and that TxY is isometric to R×W . Let υ∞ be a limit measure on TxY as in

Proposition 5.1. Then it follows from [16, Proposition 4.3] that (υ∞)−1({0x}) > 0. This

contradicts Proposition 5.2.

The following theorem is the main result in this subsection.

Theorem 5.4. Let x be a point in Y and w, z points in Y \ {x}. Assume that x,w+

w, z = x, z, υ(Cw({z})) > 0 and dimloc
H x > 1. Then, x is not an Alexandrov point.

Proof. This proof is done by contradiction. Assume that x is an Alexandrov point.

Fix a sufficiently small r > 0 and a minimal geodesic γ : [0, x, z] → Y from x to z.

Without loss of generality, we can assume that Br(x) ⊂ Alex(Y ). Put α = γ(r) and

w = γ(r/2).

Claim 5.5. Let γ̂ : [0, w, z] → Y be a minimal geodesic from w to z. Then, we have

α ∈ Image(γ̂).

The proof is done by contradiction. Assume that the assertion is false. Then there

exists s ∈ [0, w, z] such that γ̂(s) ∈ ∂Br(x) and γ̂(s) ̸= α. Put α̂ = γ̂(s). Then, we have

that 0 ≤ x,w +w, α̂− x, α̂ = x,w + (w, α̂+ α̂, z)− (x, α̂+ α̂, z) ≤ x,w +w, z − x, z = 0.

Therefore, there exists a minimal geodesic Γ : [0, x, α̂] → Y from x to α̂ such that

w ∈ Image(Γ). This contradicts the assumption Br(x) ⊂ Alex(Y ). Thus, we have the

assertion.

By Claim 5.5, for every sufficiently small t > 0, there exists αt ∈ Y such that ∂Bt(w)∩
Cw({z}) = {αt}. By the assumption of υ(Cw({z})) > 0 and [16, Theorem 4.6], we have

υ−1({αt}) > 0. On the other hand, for the tangent cone (TαtY, 0αt) at αt, there exists

a proper geodesic space W such that TαtY is isometric to R × W . By the assumption

of dimloc
H x > 1 and αt ∈ Alex(Y ), we have that W is not a single point. Therefore, by

Proposition 5.3, we have υ−1({αt}) = 0. This is a contradiction.

We end this subsection by giving a proof of Theorem 1.2.

A proof of Theorem 1.2. It suffices to check that Alex(Y ) ⊂ Y (1). Let x ∈ Alex(Y )

and z ∈ R1. If z = x, then, it follows from the fact x ∈ Alex(Y ) that there exists

ϵ > 0 such that (Bϵ(x), x) is isometric to ((−ϵ, ϵ), 0). Especially, we have dimloc
H x = 1.

Hence, assume x ̸= z below. Let r be a sufficiently small positive number and w ∈
Br(x) \ {x} ⊂ Alex(Y ) with x,w + w, z = x, z. By Proposition 4.7 and [16, Corollary

5.7], we have υ(Cw({z})) > 0. Thus, by Theorem 5.4, we have dimloc
H x = 1. Therefore we

have Theorem 1.2. □
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5.2 Alexandrov set in tangent cones

In this subsection, we will give an analogous statement to Theorem 1.2 for tangent cones

by using measure contraction argument. See for instance Appendix 2 in [5] or [23] for the

measure contraction property.

Theorem 5.6. Let (X, x) be a proper geodesic space and k a non-negative integer.

Assume that (Rk ×X, (0k, x)) is a (n, 0)-Ricci limit space and X(1) ̸= ∅. Then we have

Alex(X) = X(1).

Proof. Let w ∈ Alex(X) and z ∈ X(1). Assume that dimloc
H w > 1 holds. By

Corollary 3.3 and an argument similar to the proof of Theorem 4.5, there exists an open

neighbourhood U of z such that U ∩WE1(X) = ∅. Then, by an argument similar to the

proof of Theorem 4.3, there exists a sufficiently small ϵ > 0 such that (Bϵ(z), z) is isometric

either to ((−ϵ, ϵ), 0) or to ([0, ϵ), 0). Fix τ > 0 with τ << ϵ and a minimal geodesic

γ : [0, z, w] → X from z to w. Put ẑ = γ(ϵ/2), ŵ = γ(z, w − ϵ) and α = γ(z, w − 2ϵ).

Claim 5.7. C(0k,ŵ)(Bτ (0k, ẑ)) ∩ (Bϵ+τ (0k, ŵ) \Bϵ(0k, ŵ)) ⊂ B3τ (0k, α).

The proof is as follows. Let g ∈ C(0k,ŵ)(Bτ (0k, ẑ)) ∩ (Bϵ+τ (0k, ŵ) \ Bϵ(0k, ŵ)). There

exist (v, x̂) ∈ Bτ (0k, ẑ) and a minimal geodesic Γ from (v, x̂) to (0k, ŵ) such that Γ(t0) = g

for some t0. Denote Γ(t) = (a(t), γ̂(t)) and put Φ(s) = γ̂((v, x̂), (0k, ŵ)s/x̂, ŵ) for 0 ≤
s ≤ x̂, ŵ. Remark that |a(t)| ≤ τ for every t and that Φ(s) is a minimal geodesic from

x̂ to ŵ. By an argument similar to the proof of Claim 5.5, we have α ∈ Image(γ̂). On

the other hand, since g ∈ Bϵ+τ (0k, ŵ) \ Bϵ(0k, ŵ), we have γ̂(t0) ∈ Bϵ+τ (ŵ) \ Bϵ−τ (ŵ).

Since α ∈ Image(γ̂) ∩ Bϵ+τ (ŵ) \ Bϵ−τ (ŵ), we have γ̂(t0), α ≤ 2τ . Therefore we have

g, (0k, α) ≤ |a(t0)|+ γ̂(t0), α ≤ 3τ .

Therefore, by Bishop-Gromov inequality for υ, we have υ(Bτ (0k, ẑ)) ≤ C(ϵ, n, z, x)υ(B2τ (0k, α)).

Since the ball Bτ (0k, ẑ) is Euclidean (or half a Euclidean ball), by [7, Theorem 4.6], we have

lim infτ→0 υ(Bτ (0k, ẑ))/τ
k+1 > 0. Therefore, we have lim infτ→0 υ(Bτ (0k, α))/τ

k+1 > 0.

Thus, by Proposition 5.1 and Proposition 5.2, there exists C > 1 such that C−1τ k+1 ≤
υ(Bτ (0k, α)) ≤ Cτ k+1 for every 0 < τ < 1. Therefore, there exist a pointed proper

geodesic space (Z1, z1), a tangent cone T(0k,α)(R
k ×X), a limit measure υ̂ on T(0k,α)(R

k ×
X), and a Borel measure υZ1 on Z1 such that T(0k,α)(R

k ×X) is isometric to Rk+1 × Z1,

υ̂ = Hk+1 × υZ1 and lim infτ→0 υ̂(Bτ (0k, z1))/τ
k+1 > 0. On the other hand, since α ∈

Alex(X) and dimloc
H w > 1, we have that Z1 is not a single point. Therefore, by Propo-

sition 5.2, we have lim infτ→0 υ̂(Bτ (0k, z1))/τ
k+1 = 0. This is a contradiction. Therefore,

we have Alex(X) ⊂ X(1).

Let β ∈ X(1) and δ > 0 with dimHBδ(β) < 2. By Corollary 3.3 and an argument

similar to the proof of Theorem 4.5, we have Bδ(β)∩WE1(X) = ∅. Thus, by an argument
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similar to the proof of Theorem 4.3, there exists r > 0 such that (Br(β), β) is isometric

either to ((−r, r), 0) or to ([0, r), 0). Especially, we have β ∈ Alex(X).

Remark 5.8. Let (X, x) be a pointed proper geodesic space. For an open subset U

of X, we say that U has k-dimensional C∞-Riemannian structure if for every x ∈ U ,

there exist an open neighbourhood V of x and a k-dimensional (not necessary complete)

Riemannian manifold N such that V is isometric to N . Assume that there exist open sets

U1, U2 of X such that U1 has one-dimensional C∞-Riemannian structure and that U2 has

k(≥ 2)-dimensional C∞-Riemannian structure. Let (M,m) be a pointed l-dimensional

complete C∞-Riemannian manifold. Then, by an argument similar to the proof of Theo-

rem 5.6, we have that (M×X, (m,x)) is not a Ricci limit space, especially, (M×Zτ , (m, 0))

is not a Ricci limit space.

We say that a proper geodesic space X is non-branching if for every x ∈ X and every

y ∈ X \ Cx, there exists a unique minimal geodesic from x to y.

Theorem 5.9. Assume that R1 ̸= ∅ and that Y is non-branching. Then we have

dimHY = 1.

Proof. Let x ∈ R1. First, we will show that Y \ Cx ⊂ AY (1). Let z ∈ Y \ Cx.

There exists w ∈ Y \Cx such that z ̸= w and x, z + z, w = x,w hold. By the assumption

of non-branching, there exists a unique minimal geodesic γ : [0, x, w] → Y from x to

w and it satisfies z ∈ Image(γ). By Proposition 4.7 and [16, Theorem 1.1], we have

υ−1({z}) > 0. Therefore, we have Y \Cx ⊂ AY (1). It follows from [16, Theorem 3.2] that

υ(Y \ AY (1)) = 0. By Corollary 4.6, we have the assertion.

Remark that it is unknown whether there exists a branching Ricci limit space. How-

ever, if we drop the non-branching assumption in the theorem above, then we can get the

same conclusion. See [17].

6 The case 2 ≤ dimHY < 3

In this section, we will study the Hausdorff dimension of a Ricci limit space (Y, y) with

2 ≤ dimHY < 3. The main result in this section is Corollary 6.4.

Proposition 6.1. Let s ≥ 1, U be an open subset of Y with dimHU ≤ s, x ∈ U ,

and (TxY, 0x) a tangent cone at x. Assume that there exists a proper geodesic space W

such that TxY is isometric to R[s]−1 ×W . Then, W is isometric either to a single point,

or to R, or to R≥0, or to S1(r) for some r > 0, or to [0, l] for some l > 0, where

[s] = max{k ∈ Z|k ≤ s}.
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Proof. By an argument similar to the proof of Theorem 4.3, it suffices to check

WE1(W ) = ∅. Assume WE1(W ) ̸= ∅. Then we have WE [s](TxY ) ̸= ∅. Thus, by

Corollary 3.3, we have WE [s]+1(TxY ) ̸= ∅. Hence, we have that (WE [s]+1)ϵ ∩ U ̸= ∅ for

every ϵ > 0. Thus, by [7, Theorem 3.3] and Corollary 3.3, there exists i ≥ [s] + 1 such

that Ri∩U ̸= ∅. Therefore, by [6, Corollary 1.36], we have that dimHU ≥ i ≥ [s]+1 > s.

This is a contradiction. Therefore we have WE1(W ) = ∅.

Corollary 6.2. Let s ≥ 1 and U be an open subset of Y with dimH U ≤ s. Then,

we have dimH(E[s]−1 ∩ U) ≤ [s].

Proof. First, we will show the following:

Claim 6.3. Let X be a proper geodesic space, A ⊂ X and s > 0. Assume that the

following hold:

1. For every x ∈ X and every sequence of positive numbers {ri}i with ri → 0, there exist

a subsequence {ri(j)}j and a tangent cone (TxX, 0x) at x such that (X, r−1
i(j)dX , x) →

(TxX, 0x).

2. dimH TαX ≤ s holds for every α ∈ A and for every tangent cone (TαX, 0α) at α.

Then, we have dimHA ≤ s.

This proof is done by contradiction. Assume dimHA > s. Fix ϵ > 0 with dimHA >

s + ϵ. Then it is not difficult to check that there exist α ∈ A and a sequence of positive

numbers {ri}i with ri → 0 such that limi→∞(Hs+ϵ
∞ (A ∩ Bri(α))/ri

s+ϵ) > 0 (see (1.39) in

[6] for the definition of the (s+ ϵ)-dimensional spherical Hausdorff content Hs+ϵ
∞ ). By the

first assumption, without loss of generality, we can assume that there exists a tangent

cone (TαX, 0α) at α such that (X, r−1
i dX , α) → (TαX, 0a). By the construction, it is not

difficult to see that Hs+ϵ(B1(0α)) > 0. Especially, we have that dimH TαX ≥ s + ϵ > s.

This is a contradiction. Therefore, we have Claim 6.3.

By Proposition 6.1, for every x ∈ E[s]−1 ∩U and every tangent cone (TxY, 0x) at x, we

have dimH TxY ≤ [s]. Therefore Corollary 6.2 follows directly from Claim 6.3.

We end this section by giving the following:

Corollary 6.4. Assume 2 ≤ dimHY < 3. Then we have that dimH(Y \ Cx) ≤ 2 for

every x ∈ Y .

Proof. By Y \ Cx ⊂ E1 and Corollary 6.2.

Remark 6.5. It seems that dimH(Z \Cz) = dimHZ holds for every Ricci limit space

(Y, y), every tangent cones (Z, z) at every x ∈ Y . If it is true, then we can prove that

dimHY ∈ Z holds for every Ricci limit space (Y, y). See the next section.
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7 Hausdorff dimension of Ricci limit spaces

In this section, we will study a weakly polar Ricci limit space (Y, y).

Definition 7.1. A pointed proper geodesic space (X, x) is called by an iterated tan-

gent cone of Y if there exists a sequence of pointed proper geodesic spaces {(Xi, xi)}Ni=0

such that X0 = Y , (XN , xN) = (X, x) and that (Xi+1, xi+1) is a tangent cone at a point

in Xi for every i.

Recall that a Ricci limit space (Y, y) is weakly polar if dimHX = dimH(X \Cx) holds

for every iterated tangent cone (X, x) of Y .

Theorem 7.2. Assume that Y is weakly polar. Then we have that dimHBR(z) ∈ Z

for every z ∈ Y and every R > 0. Especially, we have that dimH Y ∈ Z and dimloc
H z ∈ Z.

Proof. Fix an integer k > 0 with dimHBR(z) < k + 1. It suffices to check that

dimHBR(z) ≤ k. By Claim 6.3, it suffices to see that dimHTzY ≤ k holds for every z ∈ Y

and every tangent cone (TzY, 0z) at z. Fix a tangent cone (TzY, 0z) and put (Y1, y1) =

(TzY, 0z). By the assumption and Claim 6.3, it suffices to see that dimHTz1Y1 ≤ k holds

for every z1 ∈ Y1\Cy1 and every tangent cone (Tz1Y1, 0z1) at z1. We also fix a tangent cone

(Tz1Y1, 0z1) and put (Y2, y2) = (Tz1Y1, 0z1). By the construction, there exists a pointed

proper geodesic space (W2, w2) such that (Y2, y2) is isometric to (R×W2, (0, w2)). Without

loss of generality, we can assume that W2 is not a single point. Remark the following:

Claim 7.3. We have that C(0k,w) = Rk × Cw in Rk × W for every k ≥ 1 and every

pointed proper geodesic space (W,w).

This claim is a direct consequence of the fact that every minimal geodesic in a product

of geodesic spaces is a product of minimal geodesics of the factors (see for instance [1]).

By the assumption of weakly polar, Claim 7.3 and [15, Corollary 5.4], we have dimH(W2\
Cw2) ≥ dimHCw2 . Thus, it suffices to see that dimHTŵ2W2 ≤ k−1 for every ŵ2 ∈ W2\Cw2

and every tangent cone (Tŵ2W2, 0ŵ) at ŵ2. Fix a tangent cone (Tŵ2W2, 0ŵ) and put

(W3, w3) = (Tŵ2W2, 0ŵ2). By the construction, there exists a pointed proper geodesic

space (W4, w4) such that (W3, w3) is isometric to (R×W4, (0, w4)). By Claim 6.3, with-

out loss of generality, we can assume thatW4 is not a single point. Since (R
2×W4, (02, w4))

is an iterated tangent cone of Y , by the assumption of weakly polar and Claim 7.3, we

have dimH(W4 \ Cw4) ≥ dimHCw4 . Therefore, it suffices to see that dimHTŵ4W4 ≤ k − 2

for every ŵ4 ∈ W4 \ Cw4 and every tangent cone (Tŵ4W4, 0ŵ4) at ŵ4.

Continue this argument and construct a pointed proper geodesic space (W2k, w2k) as

above. Then, it suffices to see that dimHW2k ≤ 0, i.e. W2k is a single point. Assume
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that W2k is not a single point. Then, by the construction, there exist an iterated tangent

cone (X, x) of BR(z) and a proper geodesic space L such that X is isometric to Rk+1×L.

Therefore, we have that (WEk+1)ϵ ∩ BR(z) ̸= ∅ for every ϵ > 0. Thus, by Corollary 3.3

and [7, Theorem 3.3], there exists i ≥ k + 1 such that Ri ∩ BR(z) ̸= ∅. Therefore, by [6,

Corollary 1.36], we have that dimHBR(z) ≥ i ≥ k+1. This is a contradiction. Therefore,

we have dimHBR(z) ≤ k.

Remark 7.4. By an argument similar to the proof of Theorem 7.2, if dimH(X \
WD0(x)) ≥ dimHWD0(x) holds for every iterated tangent cone (X, x) of Y , then we

have the same conclusion to Theorem 7.2 (see [5, Definition 2.10] for the definition of

WD0(x)).

Remark 7.5. Recall that we say that Y is polar if for every iterated tangent cone

(X, x) of Y and every z ∈ Z \ {x}, there exists an isometric embedding γ from R≥0 to

X such that γ(0) = x and γ(x, z) = z (see [5]). It is not difficult to see that Y is polar if

and only if Cx = ∅ for every iterated tangent cone (X, x) of Y .

Theorem 7.6. Let R > 0, k ≥ 1 and z ∈ Y . Assume that Y is weakly polar and that

dimHBR(z) ≥ k holds. Then, we have υ(BR(z) ∩ (
∪

i≥k Ri)) > 0.

Proof. Fix a sufficiently small ϵ > 0. By the assumption, we haveHk−ϵ(BR(z)) = ∞.

Hence, by an argument similar to the proof of Claim 6.3, there exist x ∈ BR(z) and a

tangent cone (TxY, 0x) at x such that Hk−ϵ(TxY ) > 0 holds. Fix a tangent cone (TxY, 0x)

and put (Y1, y1) = (TxY, 0x). Since dimHY1 ≥ k − ϵ > k − 2ϵ > 0 and dimH(Y1 \ Cy1) =

dimHY1, we have H
k−2ϵ(Y1 \Cy1) = ∞. Similarly, there exist x1 ∈ Y1 \Cy1 and a tangent

cone (Tx1Y1, 0x1) at x1 such that Hk−2ϵ(Tx1Y1) > 0 holds. Put (Y2, y2) = (Tx1Y1, 0x1). By

the construction, there exists a pointed proper geodesic space (X2, x2) such that (Y2, y2) is

isometric to (R×X2, (0, x2)). Thus, we have that dimH X2 ≥ k− 1− 2ϵ > k−1−3ϵ > 0.

Therefore, since dimHX2 = dimH(X2 \ Cx2), we have Hk−1−3ϵ(X2 \ Cx2) = ∞. By an

argument similar to that above, there exist x̂2 ∈ X2 and a tangent cone (Tx̂2X2, 0x̂2) at

x̂2 such that Hk−1−3ϵ(Tx̂2X2) > 0. Put (X3, x3) = (Tx̂2X2, 0x̂2). By the construction,

there exists a pointed proper geodesic space (X4, x4) such that (X3, x3) is isometric to

(R × X4, (0, x4)). Since (R2 × X4, (02, x4)) is an iterated tangent cone of BR(z), by the

assumption, we have that dimHX4 = dimH(X4\Cx4) and dimHX4 ≥ k−2−3ϵ > k−2−4ϵ.

Continue this argument and construct a pointed proper geodesic space (X2(k−1), x2(k−1))

as above. By the construction, (Rk−1 ×X2(k−1), (0k, x2(k−1))) is an iterated tangent cone

of BR(z). We have dimHX2(k−1) ≥ k − (k − 1) − 2(k − 2)ϵ > 1 − 2(k − 1)ϵ > 0. Since

X2(k−1) is a geodesic space, we have dimHX2(k−1) ≥ 1. Therefore, there exists a pointed

proper geodesic space (W,w) such that (Rk × W, (0k, w)) is an iterated tangent cone of
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BR(z). Thus, we have that (WEk)ϵ ∩ BR(z) ̸= ∅ holds for every ϵ > 0. Therefore, by

Corollary 3.3 and [7, Theorem 3.3], we have υ(BR(z) ∩ (
∪

i≥k Ri)) > 0.

The main result in this section is the following:

Corollary 7.7. Assume that Y is weakly polar. Let k ≥ 1 satisfying that Rk ̸= ∅
and that Ri = ∅ for every i > k. Then we have that dimHY = k, Hk(Rk) > 0 and

υ(Rk) > 0.

Proof. By [6, Corollary 1.36], we have dimHY ≥ k. Assume dimHY ≥ k+ 1. Then,

by Theorem 7.6, there exists i ≥ k+1 such that Ri ̸= ∅. This contradicts the assumption.

Thus we have dimHY < k + 1. By Theorem 7.2, we have dimHY = k. Next, assume

υ(Rk) = 0. Then we have that υ(
∪

i≥k Ri) = υ(Rk) = 0. This contradicts Proposition

3.1. Thus, we have υ(Rk) > 0. By [7, Theorem 3.23] and [7, Theorem 4.6], we have

Hk(Rk) > 0.

8 Appendix: A proof of Proposition 5.2

In this section, we will give a proof of Proposition 5.2. First, we give the following lemma

without the proof because it follows directly from easy calculation:

Lemma 8.1. Let (X, x) be a pointed metric space, R ≥ 1, δ, ϵ > 0, vα, vβ ∈ B1(0k) ⊂
Rk and xα, xβ ∈ BR(x)\BR−1(x). Assume that xα, xβ ≤ δ and that (0k, x), (vα, xα) +

(vα, xα), (vβ, xβ)−(0k, x), (vβ, x) ≤ ϵ holds in Rk×X. Then, we have that (vα, xα), (vβ, xβ) ≤
C(r, R)(δ + ϵ).

A proof of Proposition 5.2 Without loss of generality, we can assume that z ∈ BR(w)\
Bd−1(w). By the assumption, there exist a sequence of pointed complete connected n-

dimensional Riemannian manifolds {(Mj,mj)}j and a sequence of positive numbers {ϵj}j
with ϵj → 0 such that RicMj

≥ −ϵj and (Mj,mj, vol/volB1(mj)) → (Rk ×W, (0k, w), υ)

. Fix a sufficiently small δ > 0. Let {(ti, xi)}Ni=1 be a maximal δ-separated subset of

[0, 1]k×Bδ(z), z ∈ BR(w)\Br(w) and yij ∈ Mj with yij → (ti, xi) as j → ∞. Remark that

{Bδ/3(y
i
j)}i is pairwise disoint for every sufficiently large j. Put r = d−1, Xj =

∪
i Bδ/3(y

i
j),

Smj
Mj = {u ∈ Tmj

Mj||u| = 1}, t(u) = sup{t ∈ R>0| expmj
su ∈ Mj \ Cmj

for every

0 < s < t} for u ∈ Smj
Mj, Ŝmj

Mj = {u ∈ Smj
Mj| There exists 0 < t < t(u) such

that expmj
tu ∈ Xj holds.} and Aj(u) = {t ∈ (0, t(u))| expmj

tu ∈ Xj} for u ∈ Ŝmj
Mj

and θ(t, u) = tn−1
√

det(gij|expmj
tu), where gij = g(∂/∂xi, ∂/∂xj) for a normal coordinate
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(x1, x2, . . . , xn) around mj. Then, by Laplacian comparison theorem, we have

volXj =

∫
ŜmjMj

∫
Aj(u)

θ(t, u)dtdu

≤
∫
Ŝmj

∫
Aj(u)

sinhn−1(t)
θ
(
r
2
, u
)

sinhn−1( r
2
)
dtdu

≤
∫
ŜmjMj

θ
(
r
2
, u
)

sinhn−1
(
r
2

) ∫
Aj(u)

sinhn−1(2R + 10)dtdu

≤ C(n, r, R)

∫
ŜmjMj

θ
(r
2
, u
)
H1(Aj(u))du.

Put aj(u) = inf Aj(u) and bj(u) = supAj(u) for u ∈ Ŝmj
Mj. Then, by Lemma 8.1,

we have that bj(u) − aj(u) ≤ C(r, R)δ for every sufficiently large j. Thus volXj ≤
C(r, R)δvol(∂B r

2
(mj) \Cmj

), where vol = vol/volB1(mj). By Bishop-Gromov inequality,

we have vol(∂B r
2
(mj) \ Cmj

)/volB r
2
(mj) ≤ vol ∂B r

2
(p)/volB r

2
(p), where p is a point in

the n-dimensional space form whose sectional curvature is equal to −1. Thus, we have

N∑
i=1

υ(B δ
3
(ti, xi)) ≤ C(n, r, R)δ.

By [5, Proposition 1.35], there exists a Borel measure υW on W such that υ = Hk × υW .

Therefore, by Bishop-Gromov inequality for υ, we have

υW (Bδ(w)) = υ([0, 1]k ×Bδ(w)) ≤
N∑
i=1

υ(Bδ(ti, xi))

≤ C(n)
N∑
i=1

υ(B δ
3
(ti, xi))

≤ C(n, r, R)δ.

Therefore, we have Proposition 5.2.
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