TWO SEMI-PARASITIC COPEPODS OF MARINE INVERTEBRATES FROM JAPAN (GYCLOPOIDA: LICHOMOLGIDAE) ${ }^{1,2)}$

Kunihiko IZAWA
Faculty of Fisheries, Mié University, Tsu, Mié Prefecture, Japan

With Text-figures 1-42

Two commensal copepods belonging to the family Lichomolgidae were obtained respectively from a cuttlefish, Sepia esculenta, and a sabellid polychaete, Sabellastarte indica, in the vicinity of the Seto Marine Biological Laboratory in 1971. The commensal of Sepia, representing a new species of the genus Lichomolgus, is described here under the name of L. sepiae. The new species is nearly allied to L. longicauda (Claus, 1860) which has been frequently recorded as associating with Sepia officinalis and S. filliouxi in the Mediterranean and the Atlantic (see Stock, 1956, Humes and Stock, 1973), and these two may probably be regarded as the sibling species, the latter distributed in the Mediterranean or the Atlantic and the former in the Pacific.

The other species here dealt with is identified with Nasomolgus firmus Humes and Ho, 1967, originally recorded from Sabellastarte magnica in Madagascar. The specimens obtained from S. indica in Japan is almost in complete agreement with the original description, except a few minor variations. To verify the present identification, the figures of Japanese specimens are given in this paper together with some measurements.

Lichomolgus sepiae n. sp.

(Figs. 1-19)
Material: Two ovigerous females and 4 males taken from gills of Sepia esculenta Hoyle, caught in Tanabe Bay on the Pacific coast of Middle Japan on April 17, 1971. Holotype (female) and paratypes (1 female and 4 males) are depodited at the Seto Marine Biological Laboratory.

Female: Body (Fig. 1) somewhat slender, 1.28 mm long, excluding caudal ramus, 0.58 mm wide; carapace 0.51 mm long on the median line. Female paratype 1.27 mm long, 0.54 mm wide, with carapace 0.48 mm long. First pedigerous

1) Contributions from the Seto Marine Biological Laboratory, No. 615.
2) This work was partly supported by grants in Aid for Miscellaneous Scientific Researches from the Ministry of Education (Nos. 874226 and 974236).
segment distinct from carapace through a dorsal suture. Genital segment distinct from succeeding segment. Translucent; eyes with silvery luster.

First antenna (Fig. 3) 7 -segmented; formula of spinules on segments as 4, 11,

6, 3, 4+1 aesthete, $2+1$ aesthete, and $7+1$ aesthete. Second antenna (Figs. 2 \& 4) 4-segmented; first two segments long, each with a seta; third segment short, with 3 setae, inclusive of a feeble hook-like one; terminal segment intermediate in length, with 2 unequal stout claws and 3 setae. Mandible (Fig. 5) structured as in L. longicauda and Doridicola agilis; in addition to having a squamiform process fringed by ca. 23 spinules, armed with pectination consisting of ca. 31 setae on the concave side in the middle and with terminal lash serrated with ca. 34 teeth on the convex side, but spineless on the concave side. Paragnath (Fig. 6) is a small lobe

Figs. 9-12. Lichomolgus sepiae n. sp., female. 9. urosome, dorsal view. 10. genital segment with spermatophores, dorsal view. 11. first and second legs in situ, ventral view. 12. third and fourth legs in situ, ventral view, magnification as in fig. 11.
hairy on the median margin. First maxilla (Fig. 6) elongate, bearing a seta near the middle and 3 finely denticulate terminal spines. Second maxilla (Fig. 7) 2segmented; first segment stout, nearly as long as wide; second segment tapering distally, ending in 2 , long and short, lash-like spines and bearing 2 short, proximodistally arranged setae. Longer distal spine fringed on the median side with a row of ca. 19 spinules diminishing the size distally, while shorter one about half as long as the longer with ca. 10 tiny marginal spinules on the median side and 2 or 3 hairs
on the other side. Maxilliped (Fig. 8) 3-segmented; first segment unarmed; second segment slightly shorter than the first, with 2 setae; third segment very short, wider than long, tipped by 2 stout spines spinulated on both sides and a feeble seta.

First four pairs of legs (Figs. $11 \& 12$) carrying 3 -segmented rami except for fourth having 2 -segmented endopodite. Setal formulae of these legs as follows (number of spines in Roman and that of setae in Arabic numerals):

$$
\text { Exopodite } \quad \text { Endopodite }
$$

Leg 1	I-0; I-1; I-4	$0-1 ; 0-1 ;$ I-5
Leg 2	I-0; I-1; III, I-5	$0-1 ; 0-2 ;$ III-3
Leg 3	I-0; I-1; III, I-5	$0-1 ; 0-2 ;$ III-2
Leg 4	I-0; I-1; II, I-5	$0-1 ;$ II-0

Fifth leg (Fig. 9) 2-segmented; basal segment much shorter, fused with pleuron of somite, and tipped by a plumose seta on the dorsal side; second segment ca. 150μ long, as long as or slightly longer than genital segment, and with a ventro-proximal bulge and 2 apical setae. Sixth leg may be represented by a small knob situated near gonopore and bearing 2 tiny setae (Fig. 10). Caudal ramus (Fig. 10) long, ca. 160μ in length and nearly 3.5 times as long as wide.

Male: 4 specimens. Body (Fig. 13) slenderer than female. Length excluding caudal ramus 1.19 mm , with 0.38 mm , and carapace length 0.42 mm on an average.

First antenna (Fig. 14) carrying $4,12+1$ aesthete, $6,3+1$ aesthete, $4+1$ aesthete, $1+1$ aesthete, and $7+1$ aesthete, from 1 st to 7 th segment. Second antenna (Fig. 15) slightly different from that of female in spinulation; 2 spines respectively on first and second segments broader and irregularly spinulate on an edge; second and terminal segments more or less spinulose. Labrum, mandible, paragnath and two maxillae similar to those of female. Maxilliped (Fig. 17) 4-segmented; first two segments long, third very small, fouth forming an elongate claw. Second segment armed with a row of ca. 21 short spines, another row of fine spinules and 2 isolated spines on the inner margin; the longer of the spines mentioned last with biserial spinules. Terminal segment falciform, rimmed with a narrow membrane along the whole concave side, carrying a stout basal seta fringed by uniserial spinules and a tiny subbasal simple spinules.

First four pairs of legs as in female in both segmentation and armature, except setation on third endopodite segment of first leg II-4 instead of I-5 in female (Fig. 18). Abnormal setation of third exopodite segment of right third leg, II, I-5, instead of III, I-5 in normal ones, observed in one male. Free segment of fifth leg (Fig. 19) ca. 100μ long, without basal bulge, and ending in 2 terminal setae with narrow rim on both edges. Caudal ramus ca. 130μ long.

Remarks: Lichomolgus sepiae n. sp. is clearly distinguishable from the closely related species, L. longicauda, by having a narrower carapace. The ratio of carapace length to width is $1: 1.13$ in the female and $1: 0.90$ in the male in the former, whereas $1: 1.22$ in the female in the latter. The new species has the fifth leg and caudal ramus longer than those of longicauda, though the two species are almost
equal in the body length. The free segment of the fifth leg is about 150μ long in the female and 100μ in the male in the former, while about 83μ and 57μ in the latter (all the values referring to L. longicauda were measured on Stock's (1956)

Figs. 13-19. Lichomolgus sepiae n. sp., male. 13. body, dorsal view. 14. first antenna, ventral view. 15. second antenna, inner view. 16. second maxilla, lateral view. 17. maxilliped, inner view. 18. first and second legs in situ, ventral view. 19. fifth leg and genital segment in situ, ventral view.

Figs. 1, 2, 11, and 12). Besides these clear differences, L. sepiae slightly differs from L. longicauda in the armature on the mandible, second maxilla and maxilliped.

As mentioned by Stock (1956), L. longicauda agrees with Doridicola agilis Leydig, 1853, in having rather wide basal portion of the mandibular lappet, fairly long fifth leg, and female maxilliped armed with two powerful spines. L. sepiae resembles D. agilis also in these points. In the shape of the mandible, L. longicauda and sepiae deviate from the other members of Lichomolgus (in strict sense, Humes \& Stock, 1973); especially, L. sepiae is rather similar to D. agilis than to other Lichomolgus $s p p$. in having a scaly area on the convex side of the mandibular base.

As regards the generic designation of D. agilis described from a nudibranch mollusc Doris lugubris at Trieste, there has been a certain controversy, some authors placing it in Lichomolgus, while others in Doridicola (see Humes \& Stock, 1973). Lately, Humes and Stock (1973), retaining the genus Doridicola, included 14 species in this genus in addition to the type species, D. agilis. Even in this genus, D. agilis is peculiar in having slenderer mandible than in other species and in showing the setal formula of the third exopodite segment of the fourth leg II, I-5 (Sars, 1917, Plate XC) instead of III, I-5 in the other species. On the other hand, it agrees well with the majority of species of Lichomolgus in the constitution of setae.

The sexual dimorphism in the first leg has been regarded as one of the criteria distinguishing Doridicola from Lichomolgus. Although L. inflatus (Tanaka, 1961, Plate 32, Fig. 3), which has a typical lichomolgid mandible, and L. sepiae show a distinct dimorphism in this leg, L. longicauda is uncertain of this point as far as deduced from the published works. From these, it can hardly be justified to regard the sexual dimorphism in the first leg as one of the generic criteria.

As noticed above, the three species, L. longicauda, L. sepiae, and D. agilis, are closely related to one another and seemingly located intermediately between Doridicola and Lichomolgus.

Nasomolgus firmus Humes and Ho, 1967
(Figs. 20-42)
Nasomolgus firmus Humes and Ho, 1967, pp. 386-390, figs. 60-86.
Material: A number of specimens, including ovigerous females and males, taken from Sabellastarte indica (Savigny), at Seto, on April 16, 1971. They are aggregated on the inner surface of the nest tube of the worm.

Female: (Figs. 20-33). Mean body length excluding caudal ramus 0.90 mm , mean width 0.41 mm , egg sac $0.56 \mathrm{~mm} \times 0.16 \mathrm{~mm}$, (based on 9 specimens).

Body translucent, with silvery red eyes, intestinal contents brownish.
Male: (Figs. 34-42). Mean length excluding caudal ramus 0.66 mm , mean width 0.22 mm , (based on 5 specimens).

Remarks: The specimens obtained from S. indica in Japan are in accord with the original description of the type specimens found on S. magnifica in Madagascar, but with some minor variations. The caudal ramus is slightly longer in Japanese
specimens than in the type, about 53μ long in the female and about 33μ in the male in the former, whereas 43μ and 27μ in the latter. The smallest apical seta of the first maxilla (Figs. $26 \& 40$) has a thickened base in both sexes, this feature is

Figs. 20-28. Nasomolgus firmus Humes and Ho, female. 20. body with egg sac, dorsal view. 21. antennal and oral area, ventral view. 22. first antenna, ventral view. 23. second antenna, inner view. 24. mandible, ventral view. 25. labrum and paragnath in situ, ventral view, magnification as in fig. 24. 26. first maxilla, lateral view, magnification as in fig. 24. 27. second maxilla, lateral view, magnification as in fig. 24. 28. maxilliped, lateral view.
not shared with the type specimens (Fig. 70 by Humes \& Ho). The claw-like second segment of the second maxilla bears a row of 8 teeth feebler but longer than in the type specimens and ends in a trifurcate apex (Figs. $27 \& 41$). In the type, the second segment is acuminated apically and carries 7 stout teeth (Figs. $71 \& 82$ by Humes \& Ho).

The present record of N. firmus is the first from the Pacific and Sabellastarte indica (Savigny) is a new host.

Figs. 29-33. Nasomolgus firmus Humes and Ho, female. 29. first leg, ventral view. .30. second leg, ventral view, magnification as in fig. 29. 31. third leg, ventral view, magnification as in fig. 29. 32. fourth leg, ventral view, magnification as in fig. 29. 33. fifth leg and genital segment, dorsal view.

Figs. 34-42. Nasomolgus firmus Humes and Ho, male. 34. body, dorsal view. 35. urosome, ventral view. 36. first antenna, ventral view. 37. second antenna, inner view. 38. mandible, ventral view. 39. labrum and paragnath in situ, ventral view, magnification as in fig. 38. 40. first maxilla, ventral view, magnification as in fig. 38. 41. second maxilla, lateral view, magnification as in fig. 37. 42. maxilliped, inner view, magnification as in fig. 37.

Acknowledgements

The author wishes to express his deepest appreciation to Dr. S. M. Shiino of Shima Marineland, who was kind enough to give the author invaluable advices and to read the manuscript, and to the staff of the Seto Marine Biological Laboratory, Kyoto University, for their hospetality while the author was studying there, paticularly to Dr. T. Tokioka for his generosity in giving the author timely indispensable advices during this study.

LITERATURE

Bresciani, J., 1970. A new Cholydia from the mantle cavity of a cephalopod (Crustacea, Harpacticoida, Tisbidae). Steenstrupia, 1 (2): 11-16.
Claus, C., 1975. Neue Beitrage zur Kenntnis parasitischer Copepoden, nebst Bemerkungen über das System derselben. Zeitschrift für Wissenschaftliche Zoologie, 25 (4): 327-360, Pls. 22-24.
Della Valle, A., 1880. Sui Coriceidi parassiti, e sul'anatomia del gen. Lichomolgus. Mittheilungen aus der Zoologischen Station zu Neapel, 2: 83-106, Pls. 5 \& 6.
Graeffe, E., 1900. Uebersicht der Fauna des Golfes von Triest nebst Notizen über Vorkommen, Lebensweise aus dem Zoologischen Instituten der Universität Wien und der Zoologischen Station in Triest, 13 (1): 33-80.
Hancock, A. and A. M. Norman, 1863. On Splanchnotrophus, an undescribed genus of Crustacea, parasitic in nudibranchiate Mollusca. Transactions of the Linnean Society of London, 24 (2): 49-60, Pls. 15 \& 16.
Humes, A. G. and J.-S. Ho, 1967. New cyclopoid copepods associated with polychaete annelids in Madagascar. Bulletin of the Museum of Comparative Zoology, 135 (7): 377-413.
Humes, A. G. and J. H. Stock, 1973. A revision of the family Lichomolgidae Kossmann, 1877, cyclopoid copepods mainly associated with marine invertebrates. Smithsonian Contributions to Zoology, (127): 1-368.
Leydig, Er., 1853. Zoologische Notizen 1. Neuer Schmarotzerkrebse auf einem Weichthier. Zeitschrift für Wissenschaftliche Zoologie, 4 (3/4): 377-382, Pl. 14.
Monod, T. et R.-Th. Dollfus, 1932. Les copépodes parasites des mollusques. Annales de Parasitologie Humainae et Comparée, 10 (2): 129-204.
Pesta, O., 1909. Beiträge zur Kennthnis parasitischer Copepoden. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Wien, 84: 257267, Pls. 1-3.
Sars, G. O., 1917. An account of the Crustacea of Norway, with short descriptions and figures of all the species. VI. Copepoda, Cyclopoida, pp. 1-225, Pls. I-CXVIII. Bergen Museum, Bergen.
Sewell, R. B. S., 1949. The littoral and semiparasitic Cyclopoida, the Monstrilloida and Notodelphyoida. John Murray Expedition 1933-34, Science Reports, 9 (2): 17-199.
Stock, J. H., 1956. Lichomolgus longicauda (Claus, 1860), copepod parasite of Sepia, in the North Sea. Beaufortia, 5 (53): 117-120.
Stock, J. H. and G. Kleeton, 1963. Copépodes associés aux invertébrés des côtes du Roussillon. 2. Lichomolgidae ecto-associés d'octocoralliaires. Vie et Miliue, 14 (2): 245-261.

Tanaka, O., 1961. On copepods associated with marine Pelecypoda in Kyushu. Journal of the Faculty of Agriculture, Kyushu University, 11 (3): 249-273, Pls. 22-37.
Wierzejski, A., 1877. Ueber Schmarotzerkrebse von Cephalopoden. Zeitschrift für Wissenschaftliche Zoologie, 29: 562-582, Pls. 32-34.

