A New Species of the Commensal Crab Genus Aphanodactylus (Crustacea: Brachyura: Pinnotheridae) from the Yaeyama Islands, Southern Japan

Author(s)
Konishi, Kooichi; Noda, Hirokuni

Citation
PUBLICATIONS OF THE SETO MARINE BIOLOGICAL LABORATORY (1999), 38(5-6): 223-229

URL
http://hdl.handle.net/2433/176286

Type
Departmental Bulletin Paper

Textversion
publisher
Kyoto University
A New Species of the Commensal Crab Genus *Aphanodactylus* (Crustacea: Brachyura: Pinnotheridae) from the Yaeyama Islands, Southern Japan

Koichi Konishi¹ & Hirokuni Noda²

¹National Research Institute of Aquaculture, Nansei, Mie, 516–0193 Japan
²Department of Biology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162–8666 Japan

Abstract A new commensal crab, *Aphanodactylus loimiae*, is described from the Yaeyama Islands, Okinawa Prefecture, Japan. The present species is the third species of this rare pinnotherid genus. It differs from the two previously known species in carapace shape, number of segments of antennal flagellum, and number of merus teeth on walking legs. The single specimen was found in the tube of a sessile polychaete, *Loimia ingens* Grube. A dichotomous key and a diagrammatic key to the subfamilies of the Pinnotheridae and the genera of the Asthenognathinae in Japan are given.

Key words: Crustacea, Pinnotheridae, *Aphanodactylus*, Polychaeta, *Loimia*, key, new species, taxonomy

Since the description of *Pinnotheres pholadis* in the “Fauna Japonica” by de Haan (1835), the pinnotherid crab fauna of Japan has come to include 31 species in 13 genera (Sakai, 1976; Miyake, 1983; Konishi, 1996). Most of the work, however, has been focused on the subfamily Pinnotherinae, with relatively little attention directed toward other subfamilies, e.g., the Asthenognathinae. At present, the Asthenognathinae consists of seven genera in the world, two of which, *Asthenognathus* and *Tritodynamia*, have been known from Japan. The genus *Aphanodactylus* was proposed by Tesch (1918), with the description of a new species, *A. sibogae*, from Sumbawa Island, Indonesia. Another species, *A. edmondsoni* was described by Rathbun (1932) from the Hawaiian Islands. No other records of *Aphanodactylus* crabs have been published. A single specimen of a small pinnotherid crab, representing the genus *Aphanodactylus*, but differing morphologically from the two previously known species, was collected from a polychaete tube near the Yaeyama Marine Park Research Station in the Yaeyama Islands, southwest of Okinawa, Japan.

This paper gives a description of this new species of *Aphanodactylus* and a diagrammatic key to the subfamilies of the Pinnotheridae and the genera of the Asthenognathinae in Japan. The specimen has been deposited in the National Science Museum, Tokyo, under the accession number NSMT-Cr 12484.

Aphanodactylus loimiae sp. nov.

[Japanese name: Koyubi-pinno]

(Figs. 1, 2)

Material examined: Holotype (NSMT-Cr 12484) ovigerous female with carapace length (CL) 7.9 mm and width (CW) 13.9 mm, from a tube of the terebellid polychaete *Loimia ingens* Grube, 1878, collected by F. Iwase, June 28, 1988. Type locality: ca. 3 m depth off Kuroshima Island, the Yaeyama Islands, Japan, 24°14'N, 123°59'E.

Etymology: The specific epithet was formed from the generic name of the host terebellid
Fig. 1. *Aphanodactylus loimiae* sp. nov., holotype ovigerous female (NSMT-Cr 12484). a: whole animal in dorsal view, setae of appendages only shown on right side, b: antenna, c: maxilliped 3, d: left cheliped, e: merus of walking leg 3, f: walking leg 4 with detail of seta. Scale bar = 1 mm.
Fig. 2. *Aphanodactylus lotmiae* sp. nov., holotype ovigerous female (NSMT-Cr 12484). Photographs in dorsal (a), ventral (b), and frontal view (c). Scale bar = 10 mm.
polychaete Loimia.

Description: Carapace (Figs. 1a, 2a) slightly subquadrate, transversely elongated, about 1.76 in CW:CL ratio. Anterior border of carapace almost straight, but slightly deflexed in middle portion. Surface of carapace smooth. Eye-stalks small, oval in frontal view. Antennule folded into a groove. Antenna (Fig. 1b) minute, peduncle four-segmented, and flagellum consisting of seven segments with a long seta and two small setae on distal segment. Maxilliped 3 (Fig.1c) oriented longitudinally (Fig.2c), ischium distinctly longer than merus, and palp segments jointed end to end; inner side of merus and ischium fringed with long, plumose setae; exopod with two-segmented flagellum with long distal setae. Cheliped (Fig. 1d) smooth, but carrying a number of setae on its inner margin and on edges of movable and immovable fingers; length of palm about 1.5 times that of fingers. Meri of walking legs 1–3 almost equal in length and with 4–6 teeth on posterior border (Fig.1e), while those of walking legs 4 with a well developed tooth and two vestigial ones (Fig.1f). Dactyli of walking legs remarkably tiny and almost invisible, as suggested by the generic name (Gk. ἀόπαλος = invisible + dactylus): shorter than 1/3 of propodus. Each leg with rows of plumose setae along the edges. Abdomen (Fig.2b) consisting of seven segments. Body colour ivory-white in living specimen.

Remarks

The CW:CL ratio of the present specimen (=1.76) is different from those of A. sibogae (=1.88) and A. edmondsoni (=1.69). The present species differs from A. sibogae in lacking two pairs of surface pits on the carapace and in the large number of segments of the antennal flagellum: 2–3 and 7 segments in A. sibogae and A. loimiae, respectively. Another congener, A. edmondsoni, is distinguished by the outline of carapace and the posterior teeth on its walking legs 1–3: a large triangular spine instead of 5–6 spines in the present species. Edmondson (1962) stated that the walking leg 4 of A. edmondsoni was armed with

<table>
<thead>
<tr>
<th>Characters</th>
<th>A. loimiae (This study)</th>
<th>A. sibogae (Tesch, 1918)</th>
<th>A. edmondsoni (Rathburn, 1932)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carapace:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>width (mm)</td>
<td>13.9</td>
<td>11.25</td>
<td>16.2</td>
</tr>
<tr>
<td>length (mm)</td>
<td>7.9</td>
<td>6</td>
<td>9.6</td>
</tr>
<tr>
<td>width/length</td>
<td>1.76</td>
<td>1.88</td>
<td>1.69</td>
</tr>
<tr>
<td>anterior border</td>
<td>straight</td>
<td>straight</td>
<td>slightly convex</td>
</tr>
<tr>
<td>pits on dorsal surface</td>
<td>absent</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Antenna:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flagellar segments</td>
<td>7</td>
<td>2–3</td>
<td>10</td>
</tr>
<tr>
<td>Walking legs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merus teeth (1st-3rd)</td>
<td>4–6</td>
<td>some teeth</td>
<td>1</td>
</tr>
<tr>
<td>merus teeth (4th)</td>
<td>1 + 2v</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td>Locality:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuroshima Is.</td>
<td></td>
<td>Sumbawa Is.</td>
<td>Oahu Is.</td>
</tr>
<tr>
<td>Japan]</td>
<td>[Indonesia]</td>
<td>[Hawaii]</td>
<td></td>
</tr>
<tr>
<td>Host:</td>
<td>Loimia ingens</td>
<td>Loimia sp.*</td>
<td>Loimia medusa</td>
</tr>
</tbody>
</table>

v: vestigial
*Possibly L. ingens, judging from Caullery (1944)
NEW SPECIES OF APHANODACTYLUS

two small teeth on lower border of the merus, while there are prominent tooth and two vestigial ones in A. loimiae. The diagnostic characters of the three species of Aphanodactylus are summarized in Table 1.

Other than the present genus, close similarity has also been noted to a species of the pinnotherelinid genus Pinnixa. Serene (1964) commented on the similarities found in Aphanodactylus and Pinnixa brevipes H. Milne Edwards, 1853 and stated, “Cependant brevipes a les pattes ambulatoires beaucoup plus longues comparativement à celles de A. sibogae et c’est une espèce différente qui justifie une nouvelle description avec figure d’après le type.” Detailed information on the type specimen of P. brevipes is required before any conclusions can be drawn.

The present crab was found in a tube of the sessile polychaete Loimia just as A. sibogae was. According to Edmondson (1946), A. edmondsoni lives in the shelly tube of a large terebellid worm, and Schmitt et al. (1973) suggested “Loimia medusa (Savigny)” for this worm which is commonly found around Hawaii. No other host animals have been known for Aphanodactylus (Table 1). It is possible that the large tubes of Loimia provide a good refuge for commensal crabs with a smooth and transversely elongated carapace. In fact, the pinnotherinid species Sakainia japonica Serene, 1964, which has similar external morphology to species of Aphanodactylus, lives within the tubes of L. medusa (Yamaguchi et al., 1976; Konishi, 1981). Caullery (1944) noted that commensal anomuran crabs of the genus Polyonyx were commonly found in the tubes of L. ingens.

Aphanodactylus loimiae is the third record and species of its genus in the world. The subfamily Asthenognathinae of Japan now consists of three genera. Up-dated keys to the pinnotherid subfamilies and the asthenognatinid genera of Japan are given below, and Fig. 3 reproduces the same information diagrammatically.

Key to the subfamilies of the Pinnotheridae in Japan.

F1a. Orbits transverse in the usual position, invisible in dorsal view F2
F1b. Orbits and eye-stalks parallel longitudinally, wholly visible in dorsal view Subfamily Xenophthalminae

F2a. Ischium and merus of maxilliped 3 separated ... F3
F2b. Ischium and merus of maxilliped 3 fused to a single piece Subfamily Pinnotherinae

F3a. Ischium of maxilliped 3 smaller than merus, palp often larger than ischium-merus Subfamily Pinnotherelinae
F3b. Ischium of maxilliped 3 larger than merus, palp smaller than ischium-merus Subfamily Asthenognathinae

Key to the genera of the Asthenognathinae in Japan

G1a. Merus of maxilliped 3 slightly shorter than ischium, palp segments jointed end to end .. G2
G1b. Merus of maxilliped 3 as long as ischium, dactylus of palp jointed to inner border of protopod .. Tritodynamia

G2a. Dactylus of walking leg 4 not considerably reduced, longer than 1/2 of propodus; carapace roughly hexagonal Asthenognathus
G2b. Dactylus of walking leg 4 considerably reduced in size, shorter than 1/3 of propodus; carapace subquadrate Aphanodactylus
Fig 3. Diagrammatic key to pinnotherid subfamilies and asthenognathinid genera of Japan. Abbreviations on the various branch segments correspond to the headers of the key in the text. Diagnostic parts are indicated by hatching. The figures of *Xenophthalmus*, *Tritodynamia*, and *Asthenognathus* are redrawn from Sakai, 1976.
Acknowledgements

We express our sincere gratitude to Mr. F. lwase of Stella-Chemifa Corporation for collecting the material and Dr. H. Uchida of the Sabiura Marine Park Research Station for identifying the polychaete worm. Dr. H. Takahashi Prof. Emer. of Hokkaido University kindly provided us a literature. Our cordial thanks also due to Dr. M.J. Grygier of the Lake Biwa Museum for critical reading of the manuscript and Dr. M. Takeda of the National Science Museum for his encouragement during the study.

References

Tesch, J.J. 1918. The Decapoda Brachyura of the Siboga Expedition. II. Goneplacidae and Pinnotheridae. Siboga-Expeditie, 39c, 147 pp., pls. 7–18.