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Oscillatory motions of an active deformable particle
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We investigate dynamics of an active particle in which shape deformations occur spontaneously. In two
dimensions, the deformations are expanded in terms of the Fourier series and the couplings of different modes are
taken into consideration truncated up to lower orders. We focus our attention on the special symmetrical structure
between the coupled equations of n- and 2n-mode deformations for n = 1, and those for n = 2. We show that an
oscillatory bifurcation occurs for n = 2, which corresponds mathematically to the bifurcation for n = 1 where a
straight motion becomes unstable and a circular motion appears. At the oscillatory state, the particle undergoes
either a spinning motion or a standing oscillation of shape deformations.
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I. INTRODUCTION

Shape deformation of microorganisms such as living cells
and protozoa plays an important role in their active motion
[1–5]. Active motions accompanied with shape deformation
have also been observed in nonbiological systems such as
spontaneously moving oil droplets [6–8]. In order to elucidate
these phenomena from a theoretical viewpoint, one needs to
develop nonlinear dynamics and nonequilibrium statistical
physics. There are a number of elaborated model systems
for specific biological experiments [9–11]. Simple models of
self-propelled motion due to shape deformation have also been
developed [12–15].

Recently, we have developed a theory of the dynamics of a
deformable self-propelled particle which undergoes a spinning
motion [16,17]. In fact, there are a lot of experiments of
a soft particle or a living cell which undergoes a spinning
motion spontaneously [4,5,18–26]. Our previous analysis
was based on former works of a deformable self-propelled
particle [27–30], where the velocity of center of mass and
the symmetric tensor variable representing deformation are
taken into consideration. In Refs. [16,17], we have additively
introduced an antisymmetric tensor variable, which is directly
related to an angular momentum. Therefore, the set of time-
evolution equations introduced is applicable to systems for
which an angular momentum can be defined [18–24]. In
contrast, in some experimental studies, a spinning motion
of an active soft object is related to a chemical wave inside
the particle [25] or traveling waves on the interface [4,5,26],
to which our previous model seems not to be applicable.
The aim of this paper is to introduce and study a theoretical
model for such an active spinning motion from a general view
point in two dimensions where the interfacial motion plays an
important role.

The organization of this paper is as follows: In the next
section, we introduce the time-evolution equations for an active
deformable particle where the deformation is represented by its
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Fourier components. We emphasize a special symmetry of the
coupled equations for different-Fourier-mode deformations in
Sec. III. As an example, we consider the coupled equations
of the first and second mode deformations and of the second
and the fourth mode deformations in Sec. IV, where a circular
motion and a spinning motion are obtained, respectively. In
Sec. V, we analyze the dynamics with the second and the
fourth mode deformations in more detail, and this is compared
with the numerical results in Sec. VI. Discussion of the results
obtained is given in Sec. VII. In Appendix A, the relation
between the Fourier components of deformation and its tensor
descriptions is summarized. The fact that the center of mass
of a particle cannot move when only the modes with even
integers in the Fourier expansion are retained is described in
Appendix B.

II. MODEL

Deformations of a particle around a circular shape with
radius R0 are written as

R(φ) = R0 + δR(φ,t), (1)

where the deviation δR can be expanded in the Fourier series

δR(φ,t) =
∞∑

n=−∞
cn(t)einφ. (2)

We introduce time-evolution equations in terms of the Fourier
coefficients c±n. The zeroth mode is put to be c0 = 0 imposing
the condition of area conservation. Rigid translational motion
is treated as follows. Suppose that the center of mass ρ changes
for an infinitesimal time interval δt as

δρ = vδt. (3)

In two dimensions we may put this, without loss of generality,
as

δρ = ε(cos θ1, sin θ1), (4)

where ε is the magnitude of deviation and θ1 is its direction.
This means that v contains only the first mode n = ±1. We
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define v±1 = (v/2)e±iθ1 so that

v = [v1 + v−1, − i(v1 − v−1)]. (5)

Then, we can take v±1 as dynamical variables removing the
modes c±1 from the expansion (2).

Hereafter, we take into consideration deformations, as
well as the velocity of the center of mass v±1, up to the
fourth orders of the Fourier components: c±2, c±3, c±4.
We derive the time-evolution equations for these variables
based on the two fundamental symmetries, uniformity and
isotropy of space. The set of equations is constructed such that
the translational symmetry and the rotational symmetry are
satisfied. The couplings of the v±1 modes and the deformations
are considered up to the cubic nonlinearity. From these
considerations, the time-evolution equations are obtained as

dv1

dt
= −κ1v1 − α0|v1|2v1

+α1c2v−1 + α2c3c−2 + α3c4c−3

+α4|c2|2v1 + α5|c3|2v1 + α6|c4|2v1

+α7c
2
2c−3 + α8c2c3c−4 + α9v

2
−1c3

+α10v−1c−2c4, (6)

dc2

dt
= −κ2c2 − β0|c2|2c2 + β1v

2
1 + β2c3v−1 + β3c4c−2

+β4|v1|2c2 + β5|c3|2c2 + β6|c4|2c2

+β7v1c3c−2 + β8v1c4c−3 + β9c
2
3c−4 + β10v

2
−1c4,

(7)

dc3

dt
= −κ3c3 − ν0|c3|2c3 + ν1v1c2 + ν2c4v−1

+ ν3|v1|2c3 + ν4|c2|2c3 + ν5|c4|2c3

+ ν6v
3
1 + ν7v1c4c−2 + ν8v−1c

2
2 + ν9c2c4c−3, (8)

dc4

dt
= −κ4c4 − λ0|c4|2c4 + λ1c

2
2 + λ2v1c3

+ λ3|v1|2c4 + λ4|c2|2c4 + λ5|c3|2c4

+ λ6v
2
1c2 + λ7v−1c2c3 + λ8c

2
3c−2. (9)

Here, we have used the fact that c−n is the complex conjugate
of cn.

The above truncation of the Fourier modes is justified in the
vicinity of a supercritical drift bifurcation where the velocity v

is small and cn is of the order of vn as long as a circular shape
is stable in a motionless state [31]. However, we consider the
situation that κ2 is negative in the sections below. Therefore,
the above set of equations (6)–(9) should be regarded as a
phenomenological model valid for weak deformations.

III. SPECIAL SYMMETRY

We emphasize that there is a special symmetry among the
equations of modes. The modes n = ±1 and n = ±2 constitute
a set of coupled equations

dv1

dt
= −κ1v1 − α0|v1|2v1 + α1c2v−1 + α4|c2|2v1, (10)

dc2

dt
= −κ2c2 − β0|c2|2c2 + β1v

2
1 + β4|v1|2c2. (11)

In order to avoid complications, we have put c3 = 0 = c4 in
Eqs. (6)–(9) to obtain the above set of equations. Similarly, a
set of coupled equations of n = ±2 and n = ±4 modes must
take the following form:

dc2

dt
= −κ2c2 − β0|c2|2c2 + β3c4c−2 + β6|c4|2c2, (12)

dc4

dt
= −κ4c4 − λ0|c4|2c4 + λ1c

2
2 + λ4|c2|2c4. (13)

Equations (10) and (11) have the same structures as Eqs. (12)
and (13). This is a consequence of the possible coupling of
modes between c±n and c±2n and independent of any details
of the system considered.

The above fact implies that a bifurcation which exists in
Eqs. (10) and (11) should also occur in Eqs. (12) and (13). It
is known that a bifurcation between a straight motion and a
circular motion in Eqs. (10) and (11) exists for −κ1 > 0 and
κ2 > 0 [27]. The question is what kinds of dynamics appear in
Eqs. (12) and (13) as a corresponding bifurcation, which we
shall address below.

IV. CIRCULAR AND SPINNING MOTIONS

Here, we show a consequence of the special similarity
introduced in Sec. III. First, we make a brief review of the
circular bifurcation in Eqs. (10) and (11). The terms with
α4 and β4 are ignored. We consider the situation κ1 < 0 and
κ2 > 0, and β0 = 0 so that the particle is self-propelling and
it tends to be disk shaped when there is no coupling with the
velocity. In general, we can put v±1 = A1e

±iθ1 and

c±n = Ane
±inθn (14)

with An and θn real. Then, Eqs. (10) and (11) can be written as

dA1

dt
= −κ1A1 − α0A

3
1 + α1A1A2 cos(2θ1 − 2θ2), (15)

A1
dθ1

dt
= −α1A1A2 sin(2θ1 − 2θ2), (16)

dA2

dt
= −κ2A2 + β1A

2
1 cos(2θ1 − 2θ2), (17)

2A2
dθ2

dt
= β1A

2
1 sin(2θ1 − 2θ2). (18)

From Eqs. (16) and (18), we have

2
dψ

dt
= −

(
2α1A2 + β1A

2
1

A2

)
sin(2ψ), (19)

where ψ = θ1 − θ2.
Equation (5) gives us up to the first order of deformations

(vx,vy) = (2A1 cos θ1,2A1 sin θ1). (20)

The steady straight motion is given by ψ = 0 for longitudinal
configuration and ψ = π/2 for transverse configuration. That
is, the particle is elongated parallel (perpendicular) to the
migration velocity for the longitudinal (transverse) configu-
ration. The amplitudes are given by κ2A2 = β1A

2
1 cos 2ψ and

α0A
2
1 = −κ1 + α1A2 cos 2ψ . This solution becomes unstable

when the coefficient in front of sin 2ψ in Eq. (19) changes
sign. Substituting the expressions of A1 and A2 gives us the
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stability threshold [27]

−κc
1 = − α0κ

2
2

2α1β1
+ κ2

2
. (21)

In a similar way, we consider the corresponding bifurcation
in Eqs. (12) and (13). Here, we take into consideration up to
the bilinear couplings, and hence, ignore the terms with β6

and λ4. The time-evolution equations are given in terms of the
amplitudes and the phases as

dA2

dt
= −κ2A2 − β0A

3
2 + β3A2A4 cos , (22)

2A2
dθ2

dt
= −β3A2A4 sin , (23)

dA4

dt
= −κ4A4 − λ0A

3
4 + λ1A

2
2 cos , (24)

4A4
dθ4

dt
= λ1A

2
2 sin , (25)

where  = 4θ2 − 4θ4. Here, it is found from Eqs. (22)–(25)
that the dynamics is governed by A2, A4, and . The equation
for  is given from Eqs. (23)–(25) by

d

dt
= −�(A2,A4) sin , (26)

where

�(A2,A4) = 2β3A4 + λ1
A2

2

A4
. (27)

Now we consider the situation κ2 < 0 and κ4 > 0 so
that the second order (i.e., elliptical) deformation occurs
spontaneously whereas the forth order deformation relaxes in
the absence of the interaction. We may put λ0 = 0 for κ4 > 0,
while β0 should be positive for κ2 < 0. For simplicity, we omit
the terms with the coefficients β6 and λ4. Then, the stationary
solutions of Eqs. (22) and (24) are obtained as

A2 =
{

−κ2

β0 − β3
λ1
κ4

cos2 

}1/2

, (28)

A4 = λ1

κ4
A2

2 cos . (29)

We note from Eq. (26) that there are two solutions of ; one
is tan  = 0, which is stable as long as |κ2| ≶ κc

2 for κc
2 ≷ 0.

Here, we have defined the bifurcation threshold

κc
2 = − β0κ

2
4

2β3λ1
+ κ4

2
. (30)

The other is

cos2  = κc
2 − κ4

2

|κ2| − κ4
2

, (31)

whose stability condition is given by |κ2| > κc
2 > κ4/2. The

last inequality and Eq. (30) imply that the bifurcation from
the solution tan  = 0 to the solution given by Eq. (31)
occurs when β3λ1 < 0 since β0 > 0. Here, the sign of cos 

is determined from Eq. (29); i.e., it is positive if λ1 > 0 while
it should be negative if λ1 < 0. If the solution (31) is stable
and hence sin  takes a finite value, then, from Eqs. (23)
and (25), the direction of the second and the fourth mode

deformation, 2θ2 and 4θ4, change monotonically in time with
their difference  = 4θ2 − 4θ4 time independent. Therefore,
this solution represents a spinning motion of a particle with 2-
and 4-mode deformations. One can check that the bifurcation
of this spinning motion given by Eq. (30) corresponds to the
bifurcation of the circular motion given by Eq. (21).

V. STANDING WAVE OF DEFORMATION

In this section, we consider the dynamics when both the
second and the fourth Fourier mode deformations, c±2 and
c±4, may occur spontaneously; i.e., both κ2 and κ4 can take
negative values in Eqs. (12) and (13). In this case, the terms
with positive values of β0 and λ0 should be added to avoid a
divergence.

Now, we investigate the stationary solutions of Eqs. (22),
(24), and (26) and their stability. Here, note that the stationary
solutions of Eq. (26) have already been obtained in the previous
section, and they are given by sin  = 0 and by �(A2,A4) = 0,
where A2 and A4 are given, respectively, from Eqs. (22) and
(24) as functions of . Generally, the stability of the stationary
solutions can be analyzed by using the linear stability matrix
[32] defined by

Lij = ∂

∂Xj

dXi

dt
, (32)

where Xi ∈ {A2,A4,}. For a special case, that is, for the
stationary solution of Eq. (26) given by sin  = 0, the stability
of Eqs. (22) and (24) and that of Eq. (26) are decoupled with
each other, and hence, we can consider them separately. The
linear stability matrix of Eqs. (22) and (24) is defined by

Lij = ∂

∂Aj

(
dAi

dt

)
(33)

and the stability of the solution sin  = 0 is given by

L = −� cos  < 0. (34)

When L > 0, the stationary solution of  can be obtained
from � = 0.

Equations (22) and (24) have a pair of trivial solutions, A2 =
A4 = 0, which represents a motionless disk-shaped particle
without deformations. The stability of this solution is given,
from Eq. (33), by

κ2 > 0 and κ4 > 0. (35)

Since the magnitudes of the second and fourth mode deforma-
tion are zero, their angles θ2 and θ4 lose their meaning, and
hence, it is unnecessary to consider Eq. (26) and its stability
Eq. (34).

For the trivial solution A2 = 0 of Eq. (22), there is another
solution of Eq. (24), that is, A2

4 = −κ4/λ0, where κ4 < 0 is
required since λ0 > 0. From the stability matrix (33), one can
obtain the stability condition of the pair of solutions A2 = 0
and A4 = √−κ4/λ0 as

κ4 < 0 and κ2 > β3

√
−κ4/λ0 cos . (36)

This gives the stability condition of a motionless particle with
4-mode static deformation. Here, note that, although the angle
θ2 is not defined for A2 = 0, we may consider it just above the

062912-3



MITSUSUKE TARAMA AND TAKAO OHTA PHYSICAL REVIEW E 87, 062912 (2013)

bifurcation where A2 becomes finite, and hence,  = 4θ2 −
4θ4 is given from Eq. (26) with sin  = 0.

Now, nontrivial stationary solution of Eq. (22) can be
obtained as

A2 =
{−κ2 + β3A4 cos 

β0

}1/2

. (37)

Then, the solution A4 of Eq. (24) satisfies

β0λ0A
3
4 + (β0κ4 − β3λ1 cos2 )A4 + κ2λ1 cos  = 0. (38)

Since Eq. (38) is cubic with respect to A4, the solution can be
solved analytically, but we do not write down the explicit form
here.

When the solution of Eq. (26) is given by sin  = 0, the
angles θ2 and θ4 are both time independent as can be seen
from Eqs. (23) and (25). Therefore, the solution of Eq. (38)
with Eq. (37) represents a motionless particle with 2- and
4-mode static deformations. The stability condition of this
state is obtained from Eqs. (33) and (34). There are at least
three possibilities of bifurcations; two of them are obtained
from the 2 × 2 matrix L given by Eq. (33) [32]. The first
possibility is given by the condition that the determinant of
the stability matrix becomes zero, det L = 0, where one of
the eigenvalues changes its sign from negative to positive. The
second possibility is a Hopf bifurcation given by the trace of the
stability matrix; i.e., tr L = 0. As long as Eq. (34) is satisfied, it
is expected from Eqs. (23) and (25) that the magnitudes of the
second and the fourth mode deformations undergo oscillation
beyond this Hopf bifurcation threshold keeping their direction
2θ2 and 4θ4 time independent. The third possibility is given by
L = 0, where the stationary solution of the angles sin  = 0
becomes unstable. In this case, it is expected from Eqs. (23)
and (25) that a spinning motion occurs above the instability
threshold. In fact, for κ4 > 0, this bifurcation corresponds to
the spinning bifurcation given by κ2 = κc

2 where κc
2 has been

defined by Eq. (30).
When the stationary value of  is given by � = 0, the

solution A4 of Eq. (38) with Eq. (37) represents a spinning
motion, where a particle with 2- and 4-mode deformations
rotates around its motionless center of mass. This spinning
motion is the solution described in the previous paragraph.
The analytical form of this solution is obtained from Eqs. (27),
(37), and (38) as

A2
2 = −2β3(2κ2 + κ4)

4β0β3 − λ0λ1
, (39)

A2
4 = λ1(2κ2 + κ4)

4β0β3 − λ0λ1
, (40)

cos  = −κ2λ0λ1 + 2κ4β0β3

β3λ1(2κ2 + κ4)

{
λ1(2κ2 + κ4)

4β0β3 − λ0λ1

}1/2

. (41)

The stability condition of the spinning motion is obtained
from the real part of all the eigenvalues of the stability matrixL
given by Eq. (32). The characteristic equation of L is written
as λ3 − ILλ2 + IILλ − IIIL = 0, where IL, IIL, and IIIL
are the first, second, and third invariants of the stability matrix
L. Here, we note that the first and third invariants are nothing
but the trace and the determinant, respectively, whereas the

second invariant is defined by

IIL = 1

2

{
(tr L)2 − tr L2} . (42)

It is convenient to introduce

P = −1

9
I 2
L + 1

3
IIL, (43)

Q = − 1

27
I 3
L + 1

6
ILIIL − 1

2
IIIL, (44)

with which the characteristic equation can be written by using
λ′ = λ − IL/3 as λ′3 + 3Pλ′ + 2Q = 0. From a straightfor-
ward calculation, we obtain the stability limit of the spinning
motion as follows: First, if Q2 + P3 > 0, the spinning state
becomes unstable by a pitchfork bifurcation or by a Hopf
bifurcation. The pitchfork bifurcation boundary is given by

U+ + U− + 1

3
IL = 0, (45)

whereas the Hopf bifurcation boundary is obtained as

− 1

2
(U+ + U−) + 1

3
IL = 0, (46)

where

U+ = [−Q + (Q2 + P3)1/2]1/3, (47)

U− = [−Q − (Q2 + P3)1/2]1/3. (48)

Note that both U± are real for Q2 + P3 > 0. On the other
hand, if Q2 + P3 < 0, the spinning motion loses its stability
by a pitchfork bifurcation given by

2(−P)1/2 cos

(
1

3
arccos(−Q(−P)−3/2)

)
+ 1

3
IL = 0. (49)

To summarize, the spinning motion loses its stability by a
Hopf bifurcation or by a pitchfork bifurcation. After the Hopf
bifurcations, an oscillation of the magnitude of deformations
for the spinning particle is expected to occur.

VI. NUMERICAL RESULTS

In this section, we show the results of numerical simulations
and compare them with the analytical results obtained in
the preceding section. In order to solve Eqs. (12) and (13)
with β6 = λ4 = 0 numerically, we have varied the parameters
κ2 and κ4 with the coupling constants fixed as β0 = −β3 =
λ0 = λ1 = 1. The fourth-order Runge-Kutta method has been
employed with the time increment δt = 10−3.

The results are summarized in Fig. 1, where the bifurcation
lines obtained in Sec. V are superposed. Different symbols in
Fig. 1 represent different types of solutions. The plus, the cross,
and the square symbols stand for a motionless particle with a
nondeformed circular shape, a statically deformed shape with
only 4-mode deformation, and a statically deformed shape with
both 2- and 4-mode deformations. Figure 2 displays shapes of
a motionless particle with 2- and 4-mode static deformations
for (a) κ2 = 0.2 and κ4 = −0.1 and (b) κ2 = −0.1 and κ4 =
0.3, and (c) with 4-mode static-deformation for κ2 = 0.4 and
κ4 = −0.1.

In the region indicated by the circle, a particle with both
2- and 4-mode static deformations rotates around its center
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FIG. 1. (Color online) Dynamical phase diagram obtained nu-
merically by solving Eqs. (12) and (13). In the region indicated by
the plus, cross, and square symbols, a particle is motionless without
deformations, with only 4-mode static deformation, and with 2- and
4-mode static deformations, respectively. The circles, triangles, and
diamonds stand for a spinning motion, a standing oscillation, and an
oscillation-spinning motion, respectively. The bifurcation lines are
obtained analytically, whose derivations are described in the text.

of mass. In this spinning state, the shape of the particle is
time independent in the co-rotating frame. The time series
of the spinning state is displayed in Fig. 2(d) for κ2 = −0.1
and κ4 = −0.1 with the time interval �t = 2.5. In the region
represented by the triangle, the particle with the 2- and 4-mode
deformations undergoes a standing oscillation as shown in
Fig. 3(a) for κ2 = 0 and κ4 = −0.1 with the time interval
�t = 4. Since this oscillation is a strong relaxation oscillation,
we have shown a detailed time series with �t = 0.6 between
t = 4 and 8 and t = 8 and 12. In the region indicated by the
diamond symbols, the oscillation-spinning motion appears,
where the particle with the 2- and 4-mode deformations
undergoes both standing oscillation and spinning motion. The
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FIG. 2. (Color online) Snapshot of motionless static-deformed
particle with 2- and 4-mode deformations for (a) κ2 = 0.2 and
κ4 = −0.1 and (b) κ2 = −0.1 and κ4 = 0.3, and (c) with 4-mode
deformation for κ2 = 0.4 and κ4 = −0.1. (d) Time series of the
snapshot of a spinning particle with 2- and 4-mode deformations for
κ2 = −0.1, κ4 = −0.1 with time interval �t = 2.5, where the particle
undergoes the clockwise rotation. The radius of a nondeformed
circular shape is chosen as R0 = 3. The center of mass is displayed
by the cross.

time series of this state is depicted in Fig. 3(b) for κ2 = −0.05
and κ4 = −0.4 with time interval �t = 0.4.

As mentioned in Sec. III, the coupled equations for the 2-
and 4-mode deformations have the same structure as those
for 1 and 2 modes. In fact, we note that the motionless
state with 2- and 4-mode static deformations, the spinning
motion, the standing oscillation, and the oscillation-spinning
motion correspond to the straight motion, the circular mo-
tion, the rectangular motion, and the quasiperiodic motion
in the dynamic of the first and the second Fourier-mode
deformations [28].

The lines in Fig. 1 are the stability limit obtained analyt-
ically in Sec. V. The thick solid line and the dotted line are
the stability limit of the motionless circular particle without
deformation and of the motionless particle with only 4-mode
static deformation, obtained respectively from Eq. (35) and
from Eq. (36). The thin solid lines are the bifurcation threshold
between the motionless deformed state with both 2- and
4-mode static deformations and the spinning motion, given by
Eq. (45). Here, note that we have checked numerically that this
line coincides with the pitchfork bifurcation line obtained from
L = 0 with tr L < 0 and det L > 0 for the set of solutions
(A2,A4,) given by Eqs. (37) and (38), and sin  = 0. For this
set of solutions, there is another bifurcation line displayed by
the thin broken line in Fig. 1. This is the Hopf bifurcation line
of the motionless deformed state with both 2- and 4-mode static
deformations, given by tr L = 0 with L < 0 and det L > 0.
Beyond this Hopf bifurcation, an oscillatory motion appears
as predicted in Sec. V. The thick broken line is the Hopf
bifurcation boundary of the spinning motion, which is obtained
from Eq. (46). The corresponding bifurcation lines have been
obtained for 1- and 2-mode equations in Ref. [28] except for
the Hopf bifurcation line indicated by the thick broken line.

VII. DISCUSSION

In this paper, we have investigated the dynamics of an
active deformable particle whose shape deformation occurs
spontaneously. The time-evolution equations for the Fourier
components of deformations are constructed up to the 4-mode
deformation and the couplings of different Fourier modes are
considered up to the third orders for simplicity.

We have first shown that there exists a special symmetry be-
tween the coupled equations of n- and 2n-mode deformations
for different integers n. As an example, we have compared the
dynamics obtained for the coupled time-evolution equations of
the 1- and 2-mode deformations, and for the equations of the 2-
and 4-mode deformations. As a result, we have predicted by the
theoretical analysis and confirmed by numerical simulations
the existence of several types of solutions: the spinning motion
of a deformed particle, the standing oscillation of deforma-
tions, and the oscillation-spinning motion, where both the
oscillation of the deformation and the spinning motion occur,
as well as the motionless particle with static deformations, for
the equations of 2- and 4-mode deformations. Moreover, all
the bifurcations of different solutions, except the bifurcation
between the standing oscillation and the oscillation-spinning
state, are obtained analytically, which are in good agreement
with the numerical results as in Fig. 1.
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FIG. 3. (Color online) Time series of the snapshot of (a) standing oscillation of the 2- and 4-mode deformations for κ2 = 0 and κ4 = −0.1
and (b) oscillation-spinning motion with 2- and 4-mode deformations for κ2 = −0.05 and κ4 = −0.4. The particle rotates in the clockwise
direction. The time interval is chosen as �t = 4 for (a) and �t = 0.4 for (b). In Fig. (a), a detailed time series with �t = 0.6 is also shown for
the time region where the motion is very rapid. After t = 7.6, the shape returns to that at t = 0.

Actually, the coupling of the first and second mode
deformations has been investigated in Refs. [27,28], where
the variables are expressed in the form of a vector and
a second rank tensor. In Appendix A, we summarize the
relation between the Fourier components of the deformation
and its tensor descriptions. Since the ±1-mode Fourier
components result in the displacement of the center of
mass, they can be included in the velocity of the center
of mass. Therefore, despite the mathematical equivalence
of the time-evolution equations, the actual dynamics we
have obtained in this paper for the time-evolution equations
of the second and the fourth Fourier-mode deformations
represents physically different behavior from those obtained in
Refs. [27,28].

We make a remark about ignoring the n = 3 mode in
the present investigation. The results obtained for the 2- and
4-Fourier modes are justified as long as we are considering
the situation that the center of mass of the particle is
constant in time. In that case, we may put, as shown in
Appendix B, all the modes with odd integers identically equal
to zero.

The present results imply that there are at least two
different mechanisms for a spontaneous spinning motion of
a particle. One is the case where a particle generates an
angular momentum. This has been modeled by introducing the
antisymmetric tensor as a dynamic variable which couples with
the migration velocity and the deformation tensors [16,17,33].
The other is the excitation of a propagating wave on the surface
of a soft particle as described in the present paper. Then, a
question arises as to how one can distinguish experimentally
these two different kinds of spinning motions. We do not have
any conclusive answer for this at present. But, one of the
possibilities is to look for standing oscillation by changing the
system parameters since such an oscillation never emerges in
the spinning motion caused by the angular momentum. In fact,

in Ref. [4], both a spontaneous spinning motion and a standing
oscillation have been observed.

Finally, we briefly mention the dimensionality of space. In
this paper, we have considered a spontaneous spinning motion
only in two dimensions. In fact, most of the experiments of
living cells such as protozoa are carried out on a substrate
and hence, quasi-two-dimensional. However, there are many
biological objects [10] and nonbiological droplets [34,35]
which undergo a bulk three-dimensional self-propelled mo-
tion. Therefore, it is interesting to extend the present theory
to three dimensions. However, a rotational motion in three
dimensions is not necessarily axial symmetric. It has been
shown that a helical motion appears as well as a circular motion
[29]. Therefore the structure of bifurcations is expected to be
more complex compared to two dimensions and systematic
studies are needed. We shall return to this problem somewhere
in the near future.
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APPENDIX A: TENSOR DESCRIPTIONS

In this Appendix, we summarize the relation between the
representations of deformations in two dimensions in terms
of the Fourier components cn as Eq. (2) and in terms of
the tensor variables as used in Refs. [16,17,27–31]. Tensor
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representation for deformations of a three-dimensional particle
has been formulated by Fel [36].

For a second-mode deformation, we define the symmetric
tensor of second rank by

Sij = δ2

∑
m=1,2

(
N

(2,m)
i N

(2,m)
j − 1

2
δij

)
, (A1)

with

N (n,m) =
(

cos

(
θn + 2m

n
π

)
, sin

(
θn + 2m

n
π

))
, (A2)

where the angle θn is related with the Fourier components as
Eq. (14). By setting δ2 = 2A2, we can write Eq. (A1) in terms
of c±2 as [31]

S11 = −S22 = c2 + c−2,S12 = S21 = i(c2 − c−2). (A3)

In a similar way, a third-rank symmetric tensor is defined by

Uijk = δ3

∑
m=1,2,3

N
(3,m)
i N

(3,m)
j N

(3,m)
k . (A4)

By setting δ3 = (8/3)A3 we obtain the relation between Uijk

and c±3 as [31]

U111 = −U122 = c3 + c−3,
(A5)

U222 = −U112 = i(c3 − c−3).

Here, due to the symmetry of the tensor U , the other
components U212, U221, U121, and U211 are equated to U122

(the former two) and U112 (the latter two), respectively.
Finally, we show a symmetric-tensor representation of the

fourth-mode deformation. The fourth-rank symmetric tensor

is defined by

Tijk� = δ4

4∑
m=1

{
N

(4,m)
i N

(4,m)
j N

(4,m)
k N

(4,m)
�

− 1

8

(
δij δk� + δikδj� + δi�δjk

)}
. (A6)

By setting δ4 = 4A4, the relation between the symmetric tensor
and c±4 is given by T1111 = T2222 = −T1122 = T + and T1112 =
−T1222 = T −, where we have defined

T + = c4 + c−4,T
− = i(c4 − c−4). (A7)

The other components are obtained by the symmetric property
of the tensor T as T1122 = T1212 = T1221 = T2112 = T2121 =
T2211, T1112 = T1121 = T1211 = T2111, and T1222 = T2122 =
T2212 = T2221.

APPENDIX B: VELOCITY OF THE CENTER OF MASS

The velocity of the center of mass can be written as [31]

v = 1

�

∫
dωV (ω)R(ω), (B1)

where � is the area of the particle and

dω = R
√

1 + (R′/R)2dφ, V = dR/dt√
1 + (R′/R)2

, (B2)

with R′ = ∂R/∂φ. The position vector R is given by a complex
representation as R = R(φ)eiφ . Since R(φ) is given by Eq. (1)
with (2) excluding n = ±1 modes, the integrand dωV R must
take a factor dφeimφ+iφ with m even integer when δR contains
only the modes with even integers—in other words, the case
that m = −1 is totally excluded. Therefore, after integral over
0 < φ < 2π , the velocity of the center of mass v vanishes
identically.

[1] K. Keren, Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott,
A. Mogilner, and J. A. Theriot, Nature (London) 453, 475
(2008).

[2] L. Bosgraaf and P. J. M. Van Haastert, PLoS ONE 4, e5253
(2009).

[3] L. Li, S. F. Nørrelykke, and E. C. Cox, PLoS ONE 3, e2093
(2008).

[4] Y. T. Maeda, J. Inose, M. Y. Matsuo, S. Iwaya, and M. Sano,
PLoS ONE 3, e3734 (2008).

[5] T. Kaindl, H. Rieger, L.-M. Kaschel, U. Engel, A. Schmaus,
J. Sleeman, and M. Tanaka, PLoS ONE 7, e42991 (2012).

[6] K. Nagai, Y. Sumino, H. Kitahata, and K. Yoshikawa, Phys. Rev.
E 71, 065301(R) (2005).

[7] H. Boukellal, O. Campás, J.-F. Joanny, J. Prost, and C. Sykes,
Phys. Rev. E 69, 061906 (2004).

[8] Y. Sumino, H. Kitahata, H. Seto, and K. Yoshikawa, Soft Matter
7, 3204 (2011).

[9] H. Wada and R. R. Netz, Phys. Rev. E 80, 021921 (2009).
[10] T. Ishikawa, J. R. Soc. Interface 6, 815 (2009).
[11] S. I. Nishimura, M. Ueda, and M. Sasai, PLoS Comput. Biol. 5,

e1000310 (2009).

[12] S. Günther and K. Kruse, Europhys. Lett. 84, 68002 (2008).
[13] G. P. Alexander and J. M. Yeomans, Europhys. Lett. 83, 34006

(2008).
[14] D. Shao, W.-J. Rappel, and H. Levine, Phys. Rev. Lett. 105,

108104 (2010).
[15] F. Ziebert, S. Swaminathan, and I. S. Aranson, J. R. Soc. Interface

9, 1084 (2012).
[16] M. Tarama and T. Ohta, J. Phys.: Condens. Matter 24, 464129

(2012).
[17] M. Tarama and T. Ohta, Prog. Theor. Exp. Phys. (2013)

013A01.
[18] F. Takabatake, N. Magome, M. Ichikawa, and K. Yoshikawa,

J. Chem. Phys. 134, 114704 (2011).
[19] W. L. Zeile, F. Zhang, R. B. Dickinson, and D. L. Purich, Cell

Motil. Cytoskeleton 60, 121 (2005).
[20] H. C. Crenshaw, Amer. Zool. 36, 608 (1996).
[21] V. B. Shenoy, D. T. Tambe, A. Prasad, and J. A. Theriot, Proc.

Natl. Acad. Sci. USA 104, 8229 (2007).
[22] W. R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D. B. Weibel,

H. C. Berg, and G. M. Whitesides, Nature (London) 435, 1271
(2005).

062912-7

http://dx.doi.org/10.1038/nature06952
http://dx.doi.org/10.1038/nature06952
http://dx.doi.org/10.1371/journal.pone.0005253
http://dx.doi.org/10.1371/journal.pone.0005253
http://dx.doi.org/10.1371/journal.pone.0002093
http://dx.doi.org/10.1371/journal.pone.0002093
http://dx.doi.org/10.1371/journal.pone.0003734
http://dx.doi.org/10.1371/journal.pone.0042991
http://dx.doi.org/10.1103/PhysRevE.71.065301
http://dx.doi.org/10.1103/PhysRevE.71.065301
http://dx.doi.org/10.1103/PhysRevE.69.061906
http://dx.doi.org/10.1039/c0sm00906g
http://dx.doi.org/10.1039/c0sm00906g
http://dx.doi.org/10.1103/PhysRevE.80.021921
http://dx.doi.org/10.1098/rsif.2009.0223
http://dx.doi.org/10.1371/journal.pcbi.1000310
http://dx.doi.org/10.1371/journal.pcbi.1000310
http://dx.doi.org/10.1209/0295-5075/84/68002
http://dx.doi.org/10.1209/0295-5075/83/34006
http://dx.doi.org/10.1209/0295-5075/83/34006
http://dx.doi.org/10.1103/PhysRevLett.105.108104
http://dx.doi.org/10.1103/PhysRevLett.105.108104
http://dx.doi.org/10.1098/rsif.2011.0433
http://dx.doi.org/10.1098/rsif.2011.0433
http://dx.doi.org/10.1088/0953-8984/24/46/464129
http://dx.doi.org/10.1088/0953-8984/24/46/464129
http://dx.doi.org/10.1093/ptep/pts051
http://dx.doi.org/10.1093/ptep/pts051
http://dx.doi.org/10.1063/1.3567096
http://dx.doi.org/10.1002/cm.20050
http://dx.doi.org/10.1002/cm.20050
http://dx.doi.org/10.1093/icb/36.6.608
http://dx.doi.org/10.1073/pnas.0702454104
http://dx.doi.org/10.1073/pnas.0702454104
http://dx.doi.org/10.1038/nature03660
http://dx.doi.org/10.1038/nature03660


MITSUSUKE TARAMA AND TAKAO OHTA PHYSICAL REVIEW E 87, 062912 (2013)

[23] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E.
Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011).

[24] F.-L. Wen, K.-T. Leung, and H.-Y. Chen, Phys. Rev. E 86, 061902
(2012).

[25] D. Taniguchi, S. Ishihara, T. Oonuki, M. H.-Kitahata, K. Kaneko,
and S. Sawai, Proc. Natl. Acad. Sci. USA 110, 5016 (2013).

[26] H. Ebata and M. Sano (unpublished).
[27] T. Ohta and T. Ohkuma, Phys. Rev. Lett. 102, 154101 (2009).
[28] T. Hiraiwa, M. Y. Matsuo, T. Ohkuma, T. Ohta, and M. Sano,

Europhys. Lett. 91, 20001 (2010).
[29] T. Hiraiwa, K. Shitara, and T. Ohta, Soft Matter 7, 3083

(2011).

[30] M. Tarama and T. Ohta, Eur. Phys. J. B 83, 391 (2011).
[31] T. Ohta, T. Ohkuma, and K. Shitara, Phys. Rev. E 80, 056203

(2009).
[32] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector Fields (Springer-
Verlag, New York, 1983).
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