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Abstract 1 

Two-step hydrolysis of husk obtained from rice (Oryza sativa) was investigated as one of the 2 

monocotyledonous angiosperms under the semi-flow hot-compressed water treatment at 3 

230°C/10MPa/15min (1st stage) and 270°C/10MPa/30min (2nd stage). Prior to the hot-4 

compressed water treatment, cold-water extraction at 20°C/10MPa/30min was performed. It 5 

was found that some inorganic constituents and free neutral sugars not being chemically 6 

bonded with the plant cell wall were recovered in the cold-water extracts. In the 1st stage, 7 

hemicelluloses and pectin were selectively hydrolyzed, as well as lignin being partially 8 

decomposed. In addition, protein was found to some extent to be hydrolyzed by the hot-9 

compressed water treatment and various amino acids to form the protein of rice husk were 10 

identified. Hydrolysis of cellulose was, however, observed in the 2nd stage. Some additional 11 

decomposition of lignin and protein was revealed at this stage as well. In total, 96.1% of 12 

oven-dried extractives-free rice husk sample could be solubilized into cold and hot-13 

compressed water. Various products in the water-soluble portion were primarily recovered 14 

as saccharides, which were partially isomerized and then dehydrated and fragmented. The 15 

3.9% of residue after the treatment was composed mainly of lignin and a trace of silica. 16 
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1. Introduction 1 

Rice (Oryza sativa) is the third most important grain crop in the world behind 2 

sugarcane and maize in terms of their total production (FAO, 2013). According to the FAO 3 

statistics, world annual production of paddy rice (husk + bran + starchy endosperm) in 2011 4 

was about 720×106 million tons. It gives an estimation of about 140×106 million tons of rice 5 

husk produced per year globally (International Rice Research Institute, 2013). Removed in 6 

the rice refining process, the husk is undeniably considered to be a problem as an 7 

agricultural waste, even though some extent of husks is used, mainly as agricultural 8 

materials such as cattle feed. 9 

From a taxonomic viewpoint, rice belongs to the grasses (Gramineae), 10 

monocotyledonous angiosperms (monocots). It is considered as a non-woody plant because 11 

of its difference in anatomy and lack of vascular cambium. Rice husk, however, contains a 12 

high percentage of organic substances, as do other lignocelluloses. It predominantly 13 

contains cellulose, hemicelluloses and lignin with some amounts of proteins, starch, 14 

extractives and inorganics (Rabemanolontsoa et al., 2011). Therefore, it is recognized as a 15 

potential source of bioenergy and organic biochemicals. In an attempt to utilize it, recently, 16 

several studies on hydrolysis of rice husk under hot-compressed water conditions have been 17 

done (Chareonlimkun et al., 2010; Mochidzuki et al., 2003; Vegas et al., 2008; 2004; Yu et 18 

al., 2008; Zhang et al., 2010). In addition, the high content of silicon, approximately 15 – 19 

20% as SiO2, is considered as a potential feature of rice husk (Chandrasekhar et al., 2003; 20 

Liou, 2004; Mochidzuki et al., 2001). 21 

The treatment of biomass with hot-compressed water has a long tradition, mostly as a 22 

pretreatment method to improve dissolved pulp production (Al-Dajani and Tschirner, 2010), 23 

separation of hemicelluloses and lignin from biomass (Hasegawa et al., 2004), or enzymatic 24 

hydrolysis of biomass (Cara et al., 2008; Liu and Wyman, 2005; Mosier et al., 2005), and 25 

also aiming at the production of chemicals (biorefinery) with water under subcritical and 26 

supercritical conditions (Ando et al., 2000; Kabyemela et al., 1997a; Liu, 2010; Mok and 27 

Antal, 1992; Sasaki et al., 2002; Yu et al., 2008). The process is termed hydrothermolysis, if 28 
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high temperatures (and necessarily high pressures) are applied. Early efforts with this 1 

regards are summarized by Bonn et al. (1983). 2 

In our previous works (Lu et al., 2009; Ogura et al., 2013; Phaiboonsilpa et al., 2011, 3 

2010), a two-step hydrolysis of various lignocelluloses has been reported, in the course of 4 

which the samples are treated in a semi-flow system with hot-compressed water. Four 5 

lignocellulose samples from taxonomically different plant species have been studied, i.e., (1) 6 

Japanese cedar (Cryptomeria japonica) as one of the softwoods, gymnosperms, (2) 7 

Japanese beech (Fagus crenata) as one of the hardwoods, dicotyledonous angiosperms, (3) 8 

frond of nipa (Nypa fruticans) as one of the palms (Arecaceae), monocotyledonous 9 

angiosperms, and (4) straw of rice, as one of the grasses (Gramineae), monocotyledonous 10 

angiosperms. It was elucidated that hemicelluloses and cellulose were separately 11 

hydrolyzed in the 1st and 2nd stages of the treatment, respectively, while lignin was partially 12 

decomposed, mainly in the 1st stage. Various hydrolyzed (only mildly changed) and more or 13 

less heavily decomposed substances from the plant cell wall were obtained and identified. 14 

In the present study, the two-step hydrolysis procedure was applied for rice husk to 15 

gain insights into its decomposition behavior in hot-compressed water. Qualitative and 16 

quantitative analyses were performed on the various products including amino acids 17 

liberated by the hydrolysis of protein in rice husk. Chemical conversion of rice husk under 18 

the treatment conditions was, thus, discussed. 19 

 20 

2. Material and methods 21 

 22 

2.1 Sample preparation 23 

Husk was obtained from rice (Oryza sativa) collected from Aichi Prefecture, Japan. 24 

Detailed information about age, sampling location and time, storage condition before and 25 

during delivery to the laboratory was described in the previous study done by 26 

Rabemanolontsoa et al. (2011). The husk was pulverized with a Wiley mill (1029-C, Yoshida 27 

Seikakusho Co., Ltd.) and sieved to the size < 1 mm. The fines (< 150 μm) were rejected. 28 
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The size-screened samples were then Soxhlet-extracted with acetone until the solvent was 1 

clear of any color according to Tappi Standard T204 om-88 (1988). Prior to use in all 2 

experiments, the extractives-free sample of rice husk was dried at 105°C for 6 h and kept in 3 

a desiccator. All chemicals were of reagent grade and used without purification. 4 

Chemical composition of the rice husk used in this study is 36.5, 17.5, 24.4, 1.7, 0.2, 5 

and 17.8 wt% on an extractives-free basis for cellulose, hemicelluloses, lignin, protein, starch, 6 

and inorganic constituents, respectively. The methods of quantitative chemical analysis are 7 

described by Rabemanolontsoa et al. (2011). Protein content was quantified by the Kjeldahl 8 

method using a nitrogen factor of 6.25 (AOAC Official Method, 2001; Thiex et al., 2002), and 9 

starch content through colorimetry according to Humphreys and Kelley (1961). Its inorganic 10 

constituents were quantified by incinerating the sample into ash in a muffle furnace at 600ºC 11 

for 4 h. 12 

 13 

2.2 Hot-compressed water treatment and its fractionation 14 

The semi-flow system and its operational procedures were described by Lu et al. 15 

(2009). In brief, approximately 0.5 g of oven-dried rice husk sample was placed into the 16 

reaction vessel and treated with cold water (20°C/10MPa/30min) in the semi-flow manner, 17 

followed by two-step semi-flow hot-compressed water at 1st stage, 230°C/10MPa/15min, and 18 

2nd stage, 270°C/10MPa/30min. The same fractionation process as our previous works was 19 

applied to the rice husk (Phaiboonsilpa et al., 2011). Solubles in cold and hot-compressed 20 

water were collected by the fraction collector every 1 min. Soluble portion in hot-compressed 21 

water was left at the ambient temperature and under atmospheric pressure for 12 h; the 22 

liquid was then filtrated over a 0.2-μm membrane prior to subsequent analyses. The solid 23 

residue was oven-dried and analyzed. 24 

 25 

2.3 Analysis of products 26 

The water-soluble portion was analyzed by high-performance anion-exchange 27 

chromatography (HPAEC), high-performance liquid chromatography (HPLC), gas 28 
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chromatography-mass spectrometry (GC-MS), and capillary electrophoresis (CE) as 1 

described in detail by Lu et al. (2009) and Phaiboonsilpa et al. (2010). Post-hydrolysis by 2 

dilute sulfuric acid followed by HPAEC analysis was performed to estimate all recovered 3 

oligosaccharides in the water-soluble portion in terms of acid-hydrolyzed monosaccharides 4 

(Yang and Wyman, 2008). The product percentages shown in Fig. 1 through Fig. 6, 5 

presented on oven-dried weight basis of the extractives-free sample, are calculated from the 6 

chromatogram peak areas of the HPAEC, HPLC, GC-MS, and CE.  7 

As for amino acid analysis, the water-soluble portion was first derivatized with 8 

phenylisothiocyanate according to the described method (Rutherfurd and Gilani, 2009), 9 

followed by HPLC analysis. Analytical conditions are Wakosil-PTC (4mmX200mm) column, 10 

binary buffers (purchased from Wako Pure Chemical Industries, Ltd.) with a linear-gradient 11 

flow, total flow-rate 1.0 ml/min, oven temp 40ºC, and UV detector at 254 nm. Acid hydrolysis 12 

of the water-soluble portion by 6M HCl acid at 110°C for 24 h under N2 atmosphere in a 13 

closed ampule was performed to estimate all recovered amino acids, existing in polypeptides 14 

and/or oligomeric form associated with saccharides, in terms of acid-hydrolyzed monomeric 15 

amino acids. This acid hydrolysis method was also applied to the solid residue left after the 16 

treatment to know its amino acid composition. 17 

Ashes (obtained as described above) were characterized by means of energy-18 

dispersive X-ray (EDX) spectroscopy. Scanning electron microscope (SEM, JSM-5800, 19 

JEOL Ltd.) equipped with an EDX spectroscopic instrument (EDAX Corp., Pheonix) was 20 

employed at an accelerating voltage of 15 kV (Fig. 7). 21 

 22 

3. Results and discussion 23 

3.1 Free sugars and inorganics in cold-water extracts 24 

As treated by cold water in the semi-flow system at 20°C/10MPa/30min, free neutral 25 

sugars and inorganic constituents were recovered from rice husk as the cold-water extracts. 26 

Figure 1 shows the temperature profile of the treatment and the yields of the free sugars − 27 

glucose, arabinose, and xylose − in cold water (-30 min to -10 min). Obviously, glucose was 28 
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the dominant free sugar, followed by arabinose and xylose. In total, 0.01% of these sugars 1 

were obtained. 2 

Around 0.5% of inorganic contents in rice husk could be recovered in the cold-water 3 

extracts (Table 1), while 12.5% was dissolved in the 1st stage and 4.6% in the 2nd stage hot-4 

compressed water treatment. The rest of 0.2% was left in the solid residue. Accordingly, the 5 

balance of total inorganic components (0.5 + 12.5 + 4.6 + 0.2 = 17.8%) was satisfactory with 6 

100% recovery rate. 7 

In rice straw (Ogura et al., 2013), however, larger amounts of free sugars (0.03%) and 8 

inorganic constituents (2.8%) were found in the cold-water extracts. This recovery was more 9 

pronounced in the study of nipa frond (Phaiboonsilpa et al., 2011). It was reported that 1.5% 10 

of free sugars and 7.4% of inorganic constituents could be achieved.  These results clearly 11 

reflect the effects of differences in morphological parts and characteristics of lignocelluloses 12 

on their chemical compositions and changes under the treatment conditions applied. 13 

 14 

3.2 Hydrolysis of major cell wall components 15 

The two-step hot-compressed water treatment (1st stage, 230°C/10MPa/15min and 2nd 16 

stage, 270°C/10MPa/30min) in a semi-flow system, liquefied 96.1% of the rice husk. The 17 

solid residue left (3.9%) consists mainly of 2.9% lignin with 0.8% incompletely-hydrolyzed 18 

cellulose and 0.2% inorganics. 19 

The following xylo-saccharides were obtained in the 1st stage (Fig. 2): xylose and xylo-20 

oligosaccharides, such as xylobiose, xylotriose, xylotetraose, xylopentaose, xylohexaose, 21 

and the molecules with higher degree of polymerization (DP). Moreover, arabinose, acetic 22 

acid, glucuronic acid, methanol and galacturonic acid were detected. These products are 23 

possibly from acetyl-methylglucuronoarabinoxylan, which is the major hemicellulose found in 24 

monocotyledonous angiosperms (Scheller and Ulvskov, 2010; Suzuki et al., 1998), while 25 

galacturonic acid is from pectin (O'neill et al., 1990). In addition, hydrolyzed monomeric 26 

guaiacyl, syringyl and p-hydroxyphenyl units of lignin − such as coniferyl, sinapyl and p-27 

coumaryl alcohols − were obtained in this stage. It was elucidated that ferulic acid, which is 28 
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known as a characteristic component covalently cross-linked between hemicelluloses and 1 

lignin in monocotyledonous plant cell wall through ester and ether linkages, respectively, 2 

(Buranov and Mazza, 2008; Higuchi et al., 1967a; Iiyama and Lam, 2001) was also detected. 3 

These similar hydrolyzed products were observed in our previous study on rice straw (Ogura 4 

et al., 2013). 5 

As for glucose and cello-oligosaccharides − such as cellobiose, cellotriose, etc. 6 

including the fragments with higher DP − were produced throughout the whole 60 min of the 7 

two-step treatment (Fig. 2). Products from the 1st stage (1 − 25 min) were derived perhaps 8 

from glucomannan in hemicelluloses and para-crystalline cellulose (with disordered 9 

crystallinity), while the rest in the 2nd stage (25 − 60 min) from crystalline cellulose. 10 

The production trends of mono-saccharides are displayed in Fig. 1. All hemicellulose-11 

derived mono-saccharides (xylose, arabinose, galactose, rhamnose, and glucose) arise in 12 

the 1st stage, while glucose set free in the 2nd stage is from the hydrolysis of cellulose. It 13 

should be noted that a small peak of glucose after 0 − 5 min is also observed. This might be 14 

attributed to the hydrolysis of starch to glucose at the beginning of this stage, where the 15 

corresponding temperatures are 180 – 210°C. Even though this temperature range is 16 

relatively low for the starch hydrolysis as reported by Miyazawa et al. (2008), differences in 17 

starting materials, reactor characteristics, and treatment conditions might possibly cause a 18 

variation. Other oligosaccharides from starch such as maltose were, however, not detected. 19 

Arabinan units are hydrolyzed and recovered as arabinose obviously faster than other 20 

mono-saccharides. Similar results were also observed in our previous studies (Lu et al., 21 

2009; Ogura et al., 2013; Phaiboonsilpa et al., 2011, 2010). The relatively high susceptibility 22 

of arabinose in wood hemicelluloses to acid hydrolysis is well known (Fengel and Wegener, 23 

1984; Rydholm, 1965; Sano et al., 1989). Fructose and mannose were formed as isomerized 24 

compounds of glucose in the 2nd stage (25 − 60 min) as reported previously (Lu et al., 2009; 25 

Ogura et al., 2013; Phaiboonsilpa et al., 2011, 2010). 26 

 27 

 28 
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3.3 Degradation products from hemicelluloses and cellulose 1 

The yields of levoglucosan, 5-HMF, and furfural (Fig. 3) as a function of treatment time 2 

can be clearly interpreted. As hemicelluloses in rice husk are mainly composed of pentoses, 3 

furfural was predominantly produced from xylose by elimination of 3 mol water in the 1st 4 

stage. A certain production of 5-HMF at this stage can be explained by the decomposition of 5 

glucose obtained from hydrolysis of glucomannan and para-crystalline cellulose. In the 2nd 6 

stage, on the other hand, the yields of furfural and 5-HMF increased due to more severe 7 

conditions. Levoglucosan as a mono-dehydrated glucose was detected exclusively in the 2nd 8 

stage. Similar findings were reported by Lu et al. (2009), Ogura et al. (2013), and 9 

Phaiboonsilpa et al. (2011). 10 

As for the heavily fragmented compounds, Fig. 4 shows that methylglyoxal and 11 

glycolaldehyde were produced in both 1st and 2nd stages, while erythrose was formed in the 12 

2nd stage only. In the 1st stage, it is likely that pentoses such as xylose and arabinose from 13 

hemicelluloses would be decomposed to glycolaldehyde and glyceraldehyde, and then 14 

glyceraldehyde would be dehydrated to methylglyoxal as observed in glyceraldehyde 15 

pathway of hexose fragmentation (Kabyemela et al. 1997b). 16 

In the 2nd stage, glycolaldehyde and erythrose were formed via retro-aldol 17 

condensation in the glycolaldehyde/erythrose pathway (Kabyemela et al., 1999, 1997c), 18 

while methylglyoxal arises probably via the glyceraldehyde/dihydroxyacetone pathway of 19 

hexose fragmentation (Kabyemela et al., 1999; Watanabe et al., 2005). However, under the 20 

conditions applied, glyceraldehyde and its isomerized dihydroxyacetone as part of the 21 

glyceraldehyde pathway were not detected. This is probably due to the fast dehydration 22 

reaction of glyceraldehyde to methylglyoxal and/or organic acids (Kabyemela et al., 1997b). 23 

Similar decomposition and fragmented compounds were observed in our previous works (Lu 24 

et al., 2009; Ogura et al., 2013; Phaiboonsilpa et al., 2011). 25 

 26 

 27 

 28 
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3.4 Production of organic acids 1 

As shown in Fig. 5, the produced organic acids are acetic, lactic, glycolic, and formic 2 

acids. The origin of acetic acid in the 1st stage is the acetyl groups of hemicelluloses. On the 3 

other hand, acetic acid from the 2nd stage must be a result of decomposition of cellulose 4 

and/or lignin (Lu et al., 2009; Yoshida et al., 2005). In addition, the production of lactic, 5 

glycolic, and formic acids, observed in both stages of the treatment, indicates that 6 

decomposition of dehydrated and fragmented compounds took place. Acrylic acid and 7 

levulinic acid were not detected. 8 

3.5 Production of amino acids from protein 9 

It was remarkably found that protein in rice husk was hydrolyzed and formed into 10 

various amino acids. Figure 6 depicts production of 5 amino acids such as ─ glutamic acid, 11 

aspartic acid, glycine, proline and alanine. As seen, they were recovered mainly in the 1st 12 

stage, whereas some extents of the amino acids were additionally produced in the 2nd stage. 13 

After the hot-compressed water treatment, traces of glycine, histidine, arginine, alanine and 14 

proline were found to remain in the residue of rice husk (Table 2). 15 

These results are in good agreement with a structure of plant cell wall protein. It was 16 

reported that in addition to the protein-protein (or protein-phenolic-protein) cross-links, the 17 

cell wall protein appears to be crossed-linked with pectic substances, and may have sites for 18 

lignification (Higuchi et al., 1967b; Qi et al, 1995; Whitmore, 1982). Thus, amino acids were 19 

mainly liberated in the 1st stage, where hemicelluloses, pectin and lignin being hydrolyzed. 20 

Higher treatment temperature in the 2nd stage allowed some additional protein which resides 21 

in relatively high resistant location to hydrolyze. The remaining protein might be encrusted by 22 

lignin with a number of condensed-type linkages so that it would not be fractionated and 23 

eventually left over in the residue. 24 

Although relatively low yields of amino acids were observed, after acid hydrolysis of 25 

the water-soluble portion by 6M HCl acid at 110°C for 24 h under N2 atmosphere in a closed 26 

ampule followed by amino acid analysis, recovery of additional 13 amino acids and increase 27 

in all amino acid yields could be obtained, as shown in Table 2. Those are hydroxyproline, 28 
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serine, histidine, arginine, threonine, tyrosine, valine, methionine, cysteine, isoleucine, 1 

leucine, phenylalanine and lysine. In total, 0.40% (= 0.3992% + 0.0015%) of 18 amino acids 2 

were recovered in hot-compressed water-soluble portion and residue of rice husk. 3 

These results suggest that not only ether (R1−O−R2) and ester (R1−CO−O−R2) 4 

linkages in plant cell wall, but also the peptide bond (R1−CO−NH2−R2) in protein could be 5 

hydrolyzed by water under the hot-compressed conditions applied. Nevertheless, its degree 6 

of hydrolysis was not enough to convert protein into monomeric amino acids. Therefore, the 7 

further acid hydrolysis was required after the hot-compressed water treatment to evaluate 8 

protein components.  9 

As indicated by the mol% of amino acids found in acid-hydrolyzed sample (as depicted 10 

in parentheses, Table 2), the major amino acids are found to be proline (5.1×10-4 %), glycine 11 

(4.7×10-4 %), glutamic acid (3.8×10-4 %), aspartic acid (3.4×10-4 %) and alanine (3.3×10-4 %). 12 

The greater mole numbers of proline and glycine than the other amino acids can be ascribed 13 

to the structure of plant cell wall protein which is typically present in 5 forms including (1) 14 

proline-rich protein, (2) glycine-rich protein, (3) hydroxyproline-rich protein, (4) solanaceous 15 

lectin, and (5) arabinogalactan protein (Showalter, 1993; Sommer-Knudsen et al., 1998). 16 

The yield of glutamic acid, on the other hand, is also found to be relatively high. This might 17 

be due to an additional number from glutamine which was converted to glutamic acid during 18 

the HCl acid hydrolysis. It is the case for aspartic acid as well, which was interfered by the 19 

yield of asparagine. Similar findings of high recovery of glutamic acid and aspartic acid as 20 

well as alanine were observed in the study on maize silage by Phipps and Oldham (1979).  21 

 22 

3.6 Inorganic constituents in the fractions 23 

The EDX spectra of inorganic constituents dissolved in the cold-water extracts and 24 

two-step hot-compressed water-soluble portions, and that of the solid residue are presented 25 

in Fig. 7. In rice husk, the elements Na, Si, Cl, and K were detected. These elements are 26 

present as parts of salts in oxalates and carbonates, but they can also be bound to cell wall 27 

components such as carboxyl groups of hemicelluloses or pectic materials (Saka 2001). The 28 
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chlorine (Cl) is exclusively present in salts, as they can be simply removed by dissolving in 1 

cold water, while Na and K probably occur in both forms. On the other hand, Si is certainly 2 

part of silica. It was partially removed by hot-compressed water in the 1st and 2nd stage 3 

treatment and the rest remained in the solid residue. 4 

 5 

3.7 Overall products from hemicelluloses, cellulose, lignin, and others 6 

In Table 1, the results of this study are summarized. It is elucidated that the water-7 

soluble portion contains 37.0% hydrolyzed products as various saccharides, uronic acids, 8 

methanol, and acetic acid. The quantification in detail is: 14.5% (= 13.8% + 0.7%) are from 9 

hemicelluloses and 22.5% (= 2.9% + 19.6%) are from cellulose. In addition, 21.5% lignin-10 

derived products are obtained, mainly in oligomeric forms. As for the decomposed 11 

compounds, 5.9% including 2.1% from dehydrated compounds, 2.5% from fragmented 12 

compounds, and 1.3% from organic acids are realized. Moreover, 0.01% free sugars, 0.4% 13 

amino acids and 17.6% inorganic constituents were recovered. The rest 13.7% are 14 

unidentified products in the water-soluble portion. 15 

Rice husk consists of 17.5% hemicelluloses, 36.5% cellulose, and 24.4% lignin. 16 

Hemicelluloses were hydrolyzed approximately to an extent of 82.9% (= (13.8 + 0.7) / 17.5 × 17 

100%), cellulose to 61.6% (= (2.9 + 19.6) / 36.5 × 100%), and lignin to 88.1% (= 21.5 / 24.4 18 

× 100%) in the two-step hot-compressed water treatment. 19 

Although the percentages of hydrolyzed products from hemicelluloses and cellulose in 20 

rice husk were basically the same as the ones of rice straw reported previously by Ogura et 21 

al. (2013), the decomposed products from lignin were slightly higher in case of rice straw. On 22 

the other hand, more residue and larger lignin proportion in the residue of rice husk were 23 

obtained as treated under the same hot-compressed water conditions. A clear reason for this 24 

is not known. However, this might be due to the differences in its morphological parts used, 25 

and the lignin content which is somewhat greater in husk compared to the straw. 26 

 27 

 28 
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4. Conclusions 1 

Hemicelluloses and crystalline cellulose of rice husk were hydrolyzed separately by a 2 

two-step hot-compressed water treatment in a semi-flow system. Lignin was partly 3 

decomposed into hot-compressed water. Galacturonic acid was detected from the hydrolysis 4 

of pectin. The production of p-coumaryl alcohol and ferulic acid evidently clarified the 5 

characteristics of lignin in monocotyledonous angiosperm plant species. Various amino acids, 6 

moreover, revealed the hydrolysis of rice husk protein and possibility to obtain additional 7 

products from lignocelluloses. Free neutral sugars soluble in cold-water extracts and 8 

inorganic constituents recovered in different fractions were also observed under the studied 9 

treatment conditions. The yields of products as a function of elution time permit the 10 

interpretation of the locations and connectivity of the molecules associated in the plant cell 11 

wall. A comparison of this present study with the previous works on Japanese cedar, 12 

Japanese beech, nipa frond, and rice straw emphasizes the inherent effects of native 13 

chemical compositions of plant cell wall on their chemical conversion behaviors. These lines 14 

of study would provide very useful information for a novel technology to efficiently utilize 15 

various kinds of lignocellulosics for biochemicals and biofuels.16 
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List of figure captions 1 

Fig. 1 Mono-saccharides from rice husk as treated in a semi-flow reaction cell with cold 2 

water at 20°C/10MPa/30min followed by two-step hot-compressed water at 3 

230°C/10MPa/15min and 270°C/10MPa/30min. Arrows indicate recovery of 4 

xylose, arabinose, and glucose in cold-water extracts. Inserted figure depicts the 5 

enlarged peaks of xylose, arabinose and glucose. 6 

Fig. 2 Hydrolyzed products from rice husk as treated by two-step semi-flow hot-7 

compressed water at 230°C/10MPa/15min and 270°C/10MPa/30min. The 8 

inserted figure is the enlargements of glucuronic acid, methanol, galacturonic 9 

acid in the 1st stage. 10 

Fig. 3 Dehydrated compounds from rice husk as treated by two-step semi-flow hot-11 

compressed water at 230°C/10MPa/15min and 270°C/10MPa/30min. 12 

Fig. 4 Fragmented compounds from rice husk as treated by two-step semi-flow hot-13 

compressed water at 230°C/10MPa/15min and 270°C/10MPa/30min. 14 

Fig. 5 Organic acids from rice husk as treated by two-step semi-flow hot-compressed 15 

water at 230°C/10MPa/15min and 270°C/10MPa/30min. 16 

Fig. 6 Amino acids from rice husk as treated by two-step semi-flow hot-compressed 17 

water at 230°C/10MPa/15min and 270°C/10MPa/30min. 18 

Fig. 7 Comparison of EDX spectra of inorganic constituents in ashes of rice husk, 19 

obtained in cold-water extraction, the 1st and 2nd stage hot-compressed water-20 

soluble portions, as well as residue. 21 

22 
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Table 1 Summarized yields of products from rice husk as treated by semi-flow cold-water 1 
(20°C/10MPa/30min) followed by two-step semi-flow hot-compressed water treatments at 2 
230°C/10MPa/15min and 270°C/10MPa/30min

 a-e
.
 3 

Products 

Yield (wt% on oven-dried extractives-free basis) 

Cold-water 
extraction  

1st Stage 
 

2nd Stage 
Total 

Extracts Hemicelluloses Cellulose Lignin Hemicelluloses Cellulose Lignin 

Free sugars    0.01  - - -  - - - 0.01 

From hemicellulose and cellulose 

 - 13.8 2.9 -  0.7 19.6 - 37.0 

- Xylo-saccharides - 12.20 - -   0.70
 c
 - - 12.90 

- Arabinose -  0.70 - -   0.01
 c
 - -   0.71 

- Acetic acid -  0.60 - -  - - -   0.60 

- Glucuronic acid -  0.02 - -  - - -   0.02 

- Methanol -  0.01 - -  - - -   0.01 

- Galactose -  0.20 - -  - - -   0.20 

- Rhamnose -  0.03 - -  - - -   0.03 

- Mannose -  0.01 - -  -   0.05
 d
 -   0.01 

- Galacturonic acid -   0.01
 a
 - -  - - -   0.01 

          

- Cello-saccharides - -  2.90 
b
 -  - 19.50 - 22.40 

- Fructose - - - -  -   0.03
 d
 -   0.03 

From lignin        

 - - - 17.7  - - 3.8 21.5 

- Coniferyl alcohol - - -  2.03  - -  0.24  2.27 

- Sinapyl alcohol - - -  0.18  - -  0.01  0.19 

- p-Coumaryl alcohol - - -  0.06  - -  0.01  0.07 

- Ferulic acid - - -  0.17  - -  0.01  0.18 

- Dimeric, trimeric and 
 oligomeric products 

- - - 15.26  - -  3.53 18.79 

Dehydrated compounds 
  - 0.2 - -  - 1.9 - 2.1 

- Levoglucosan - - - -  -  0.50 -  0.50 

- 5-HMF -  0.06 - -  -  1.30 -  1.36 

- Furfural -  0.10 - -  -  0.10 -  0.20 

Fragmented compounds 

 - 1.6 - -  - 0.9 - 2.5 

- Methylglyoxal -  0.90 - -  -  0.20 -  1.10 

- Glycolaldehyde -  0.70 - -  -  0.20 -  0.90 

- Erythrose - - - -  -  0.50 -  0.50 

Organic acids 

 - 0.4 - -  - 0.9 - 1.3 

- Acetic acid - - - -  -  0.20 -  0.20 

- Lactic acid -  0.10 - -  -  0.20 -  0.30 

- Glycolic acid -  0.10 - -  -  0.20 -  0.30 

- Formic acid -  0.20 - -  -  0.30 -  0.50 

Amino acids 

 - 0.4 - -  - 0.0 - 0.4 

- Glutamic acid -  0.02 - -  -  0.00 -  0.02 

- Aspartic acid -  0.01 - -  -  0.00 -  0.01 

- Glycine -  0.00 - -  -  0.00 -  0.00 

- Proline -  0.00 - -  -  0.00 -  0.00 

- Alanine -  0.00 - -  -  0.00 -  0.00 

- Oligomeric amino 
acids 

e
 

-  0.37 - -  -  0.00 -  0.37 

Inorganics 0.5 12.5 - -  - 4.6 - 17.6 
          

Total 0.5 28.9 2.9 17.7  0.7 27.9 3.8 82.4 

Unknown        13.7 

Residue      3.9 
a
 Galacturonic acid from pectin; 

b
 Cello-saccharides from glucomannan and para-crystalline cellulose; 

c
 Xylo-4 

saccharides and arabinose from hemicelluloses incompletely hydrolyzed in the 1st stage; 
d
 Mannose and 5 

fructose are considered as hydrolyzed products from cellulose; 
e
 Oligomeric amino acids are quantified from the 6 

yields of monomeric amino acids after HCl acid hydrolysis of hot-compressed water-soluble portion. 7 
8 
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Table 2 Yields (wt% on oven-dried extractives-free basis) of amino acids in hot-compressed 1 
water-soluble portion of rice husk and its residue as treated by two-step semi-flow hot-2 
compressed water treatments at 230°C/10MPa/15min and 270°C/10MPa/30min a-c. 3 

No. Amino acid 
Hot-compressed water-soluble  Residue 

As received sample 
a
 Acid-hydrolyzed sample 

b
 

1. Glutamic acid 0.0154 0.0557 (3.4×10
-4

) 
c
 - 

2. Aspartic acid 0.0125 0.0449 (3.8×10
-4

) - 

3. Hydroxyproline - 0.0185 (1.4×10
-4

) - 

4. Serine - 0.0203 (1.9×10
-4

) - 

5. Glycine 0.0003 0.0354 (4.7×10
-4

) 0.0004 

6. Histidine - 0.0080 (0.5×10
-4

) 0.0001 

7. Arginine - 0.0174 (1.0×10
-4

) 0.0001 

8. Threonine - 0.0199 (1.7×10
-4

) - 

9. Alanine 0.0002 0.0289 (3.3×10
-4

) 0.0004 

10. Proline 0.0003 0.0581 (5.1×10
-4

) 0.0005 

11. Tyrosine - 0.0178 (1.0×10
-4

) - 

12. Valine - 0.0203 (1.7×10
-4

) - 

13. Methionine - 0.0051 (0.3×10
-4

) - 

14. Cysteine - 0.0010 (0.1×10
-4

) - 

15. Isoleucine - 0.0101 (0.8×10
-4

) - 

16. Leucine - 0.0150 (1.1×10
-4

) - 

17. Phenylalanine - 0.0193 (1.2×10
-4

) - 

18. Lysine - 0.0035 (0.2×10
-4

) - 

 Total 0.0287 0.3992  0.0015 

a
 As received sample: the soluble portion was directly subjected to amino acid analysis; 

b
 Acid-4 

hydrolyzed sample: the soluble portion was hydrolyzed by 6M HCl acid at 110°C for 24 h under N2 5 
atmosphere in a closed ampule prior to the amino acid analysis; 

c
 Numbers in parentheses indicate 6 

yields of amino acids in acid-hydrolyzed sample on mol% basis. 7 
8 
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Fig. 1 Mono-saccharides from rice husk as treated in a semi-flow reaction vessel with cold 3 

water at 20°C/10MPa/30min followed by two-step hot-compressed water at 4 

230°C/10MPa/15min and 270°C/10MPa/30min. Arrows indicate recovery of xylose, 5 

arabinose, and glucose in cold-water extracts. The inserted figure depicts the enlarged 6 

peaks of xylose, arabinose and glucose. 7 
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Fig. 2 Hydrolyzed products from rice husk as treated by two-step semi-flow hot-compressed 4 

water at 230°C/10MPa/15min and 270°C/10MPa/30min. The inserted figure is the 5 

enlargements of glucuronic acid, methanol, galacturonic acid in the 1st stage. 6 
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Fig. 3 Dehydrated compounds from rice husk as treated by two-step semi-flow hot-4 

compressed water at 230°C/10MPa/15min and 270°C/10MPa/30min. 5 
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Fig. 4 Fragmented compounds from rice husk as treated by two-step semi-flow hot-4 

compressed water at 230°C/10MPa/15min and 270°C/10MPa/30min. 5 
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Fig. 5 Organic acids from rice husk as treated by two-step semi-flow hot-compressed water 4 

at 230°C/10MPa/15min and 270°C/10MPa/30min. 5 

6 
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Fig. 6 Amino acids from rice husk as treated by two-step semi-flow hot-compressed water 4 

at 230°C/10MPa/15min and 270°C/10MPa/30min. 5 

6 
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Fig. 7 Comparison of EDX spectra of inorganic constituents in ashes of rice husk, obtained 4 

in cold-water extraction, the 1st and 2nd stage hot-compressed water-soluble portions, as 5 

well as residue. 6 


