COUNTEREXAMPLES TO KODAIRA’S VANISHING AND
YAU’S INEQUALITY IN POSITIVE CHARACTERISTICS
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To the memory of Professor Masaki Maruyama

ABSTRACT. We generalize Tango’s theorem [T1] on the Frobenius map
of the first cohomology groups to higher dimensional algebraic varieties
in characteristic p > 0. As application we construct counterexamples to
Kodaira vanishing in higher dimension, and prove the Ramanujam type
vanishing on surfaces which are not of general type when p > 5.
Let X be a smooth complete algebraic variety over an algebraically closed
field of positive characteristic p > 0, and let D be an effective divisor on X.
In this article we study the kernel of the Frobenius map

1) F* : H'(X,0x(~D)) — H'(X,Ox(~pD))

of the first cohomology groups of line bundles.

Tango [T1] described the kernel of F™* in terms of the exact differentials
in the case of curves. First we generalize this result to varieties of arbitrary
dimension, that is, we prove

Theorem 1. The kernel of the Frobenius map (1) is isomorphic to the vector
space

{df € Qox) | f € Q(X), (df) > pD},

where Q(X) is the function field of X and (w) > pD means that a rational
differential w € Qg (x) belongs to I'(X, Qx(—pD)).

Using this description and generalizing Raynaud’s method [Ra], we con-
struct pathological varieties of higher dimension which are similar to his
surfaces:

Theorem 2. Let p be a prime number and n > 2 an integer. Then there
exist an n-dimensional smooth projective variety X of characteristic p and
an ample line bundle L such that
(a) H'(X,L™") #0,
(b) the canonical divisor class Kx is ample and the intersection number
(ci(X).K%") is negative for every i > 2, and
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(c) there is a finite cover G of X and a sequence of morphisms
G=Gp—Gpq— - >G> Gy

such that Gi41 — G; is a P'-bundle for everyi=1,---,n —1 and
that G1 is a nonsingular curve. The Euler characteristic e(X)(:=

degc, (X)) of X is equal to e(G) = 2" Le(Gy).
Here ¢;(X) is the ith Chern class of X.

When p = 2, 3, we obtain similar varieties X with quasi-elliptic fibrations
X — Y. In this case, the canonical classes Kx are the pull-back of ample
divisor classes on Y. By the property (b) and Yau’s inequality ([Y1], [Y2])
or by (a) and [DI], we have

Corollary. The algebraic variety X in the theorem is not liftable to charac-
teristic zero.

Throughout this article R.V. (Ramanujam vanishing) on an algebraic sur-
face X means the vanishing of H'(X, L™!) for all nef and big line bundles
on X . Conversely to the above counterexample, using Theorem 1 and [LM],
we prove the following.

Theorem 3. In the case where X is of dimension two, we have the following:

(a) Assume that X is not of general type and that the Iitaka fibration
X — C is not quasi-elliptic when the Kodaira dimension k(X) is 1
and p=2,3. Then R.V. holds on X.

(b) If R.V. does not hold on X, then there exist a birational morphism
X' — X and a morphism g : X' — C onto a smooth algebraic curve
C such that every fiber F' of g is connected and singular. Further-
more, the cotangent sheaf Qp has nonzero torsion.

Our counterexamples X in dimension two are sandwiched between two
Pl-bundles, and the general fibers F in (b) of Theorem 3 are rational for
them. A curve of higher (geometric) genus appears as such a fiber F' if we
take a sufficiently general separable cover m : X — X with (degm,p) = 1.
R.V. does not hold on X either since L™! is a direct summand of mem* L1,

All results of this article are contained in either [M1] or [M2] except
for Proposition 3.2. The report [M1] is an outcome of the author’s semi-
nar around 1977 on [Mum] and a preprint of [Ra] with Professor Masaki
Maruyama, to whose advice and encouragement the author expresses his
sincere gratitude on this occasion. The author is also grateful to the referee
for his careful reading and suggestion of useful references.

Convention. In the following we assume the characteristic p is positive
and mean by K.V. (Kodaira vanishing) the vanishing of the first cohomology
group H'(X, L=1) for all ample line bundles L on X.
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1. TANGO’S THEOREM

The feature of positive characteristic is the existence of the Frobenius
morphisms F': X — X and the Frobenius maps. Let L be a line bundle on
X. The Frobenius morphism induces the Frobenius map
(2) F*:HYX,L Y - HYX,L™P)
between the first cohomology groups. When X is normal and dim X > 2,
we have

Lemma 1.1 (Enriques-Severi-Zariski). H*(X, L=™) = 0 holds if L is ample
and m s sufficiently large.

Therefore, by the sequence
HY (X, LY — HYX, L") — H'(X, L") — .-
of Frobenius maps, K.V. holds on X if and only if the following holds:

(*) F*: HY(X,L7') — HY(X, L™P) is injective for every ample line bun-
dle L on X.

1.1. Tango-Raynaud curve. The statement (*) makes sense even when
dim X = 1. The following is fundamental for (*) in this case:

Theorem 1.2 (Tango [T1]). Let D be an effective divisor on a smooth
algebraic curve X. Then the kernel of the Frobenius map (1) is isomorphic
to the space of exact differentials df of rational functions f on X with (df) >
pD.

The following example, which was found by Raynaud [Ra] in the case
e = 1, shows that (*) does not holds when dim X = 1.

Example 1.3. Let P(Y') be a polynomial of degree e in one variable Y and
let C' C P? be the plane curve of degree pe defined by

(3) P(YP)—Y = zP¢ 1,

where (Y, Z) is a system of inhomogeneous coordinates of P2. It is easy to
check that C' is smooth and has exactly one point co on the line of infinity.
By the relation
—dY = —7F7%d7

between the differentials dY and dZ, Q¢ is generated by dZ over C' N A2,
In other words, dZ has no poles or zeros over C N A%. Since degQc =
2¢(C') — 2 = pe(pe — 3), we have (dZ) = pe(pe — 3)(c0). Therefore, by
the above theorem of Tango, the Frobenius map (1) is not injective for the
divisor D = e(pe — 3)(00).

A curve C of genus > 2 is called a Tango-Raynaud curve if C satisfies the

following mutually equivalent conditions:

(a) there exists a line bundle L on C such that LP ~ Q¢ and that the
Frobenius map (2) is not injective, and
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(b) there exists a rational function f on C such that df # 0 and that
the divisor (df) is divisible by p.

The curve C' in the above Example is a Tango-Raynaud curve.

1.2. Higher dimensional generalization. Following [T1] we denote the
cokernel of the natural (pth power) homomorphism Ox — F.Ox by By.
For a Cartier divisor D on X we have the exact sequence
(4) 0 — Ox(=D) — Fi(Ox(=pD)) — Bx(-D) — 0
and the associated long exact sequence
) 0 — HUOx(=D) = HOx(-pD)) = H'(Bx(-D))

% H'Ox(~D)) > H'(Ox(~pD)) —
If D is effective, then F* : H'(Ox(—D)) — HY(Ox(—pD)) is surjective.
Hence we have the following

Lemma 1.4. If D is effective, then the coboundary map § of (5) induces
the isomorphism

(6) Ker[F* : H'(Ox(-D)) — H (Ox(—pD))] ~ H°(Bx(—D)).

Assume that X is normal and consider the direct image of the derivation
d: Ox — Qx by F. By F.d, Bx is regarded as a subsheaf of F,Qx. Let
Qg(x) be the Q(X)-vector space of differentials. We denote the constant
sheaf associated with Q(X) or Qg (x) on X by the same symbol, and consider
the intersection dQ(X) N Qx in the constant sheaf Qg(x). Then, more
precisely, Bx is contained in F,(dQ(X) N Qx). We also have Bx(—D) —
F.(dQ(X) N Qx(—pD)). Therefore, by the exact sequence (5), we have

Proposition 1.5. If X is normal, then the kernel of the Frobenius map of
H'(Ox(—D)) is isomorphic to a subspace of the vector space

{df € Qox) | f € Q(X), (df) > pD}.
Corollary. If X is normal and Homo  (Ox (pD),Qx) = 0, then the Frobe-
nius map of H(Ox(—D)) is injective.

When X is smooth, Bx = Fi(dQ(X) N Qx) holds, by the existence of a p-
basis. Hence Bx(—D) = F,.(dQ(X)NQx(—pD)) holds for a Cartier divisor
D and we have Theorem 1.

1.3. Purely inseparable covering in an A'-bundle. When a vector bun-
dle £ on X is given, we have the relative Frobenius morphism P(E) —
P(E®)) over X. We denote this morphism by ¢. We consider the special
case where E is an extension of two line bundles:

(%) 0—Ox(-D)— FE— Ox —0.
Then E®) is also an extension of line bundles

(***) 0— Ox(—pD) — E(p) — Ox — 0.
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Let Fx, C P(E) be the section corresponding to the exact sequence (**).
Then P(E) \ Fyx an Al-bundle and P(FE) is its compactification. Assume
that the extension class « of (**) belongs to the kernel of the Frobenius
map (1). Then (***) have a splitting, which yields a section G’ of P(E®))
disjoint from F. := p(Fu).

Definition 1.6. Let G = G(X, D, «) be the (scheme-theoretic) inverse im-
age of G’ by the relative Frobenius morphism ¢. We denote the restriction
of the projection g : P(F) — X to G by 7.

By construction G is embedded in the Al-bundle P(E) \ Fp. When «
corresponds to n = df € H°(Bx(—D)) in the way of Theorem 1, that is,
when a = 6(n), we denote G by G(X, D,n) also. The morphism 7: G — X
is flat, finite of degree p and ramifies everywhere. If X is normal, then the
local equation of G in P(F) is either irreducible or a pth power. Therefore, if
X is normal and if  # 0, then G is a variety and its function field is a purely
inseparable extension of Q(X). By construction we have the following linear
equivalence:

(7) G — pFs ~ —g*(pD).
Now we can state a criterion for G to be smooth.
Proposition 1.7. Assume that X is smooth. Then G = G(X,D,n) is

smooth if and only if n € H°(Bx(—D)) is nowhere vanishing. If these
equivalent conditions are satisfied, then the natural sequence

(8) 0 — 7°0x (pD) =5 *Qx 15 Qg — Qa/x — 0.
is ezact and g, x is isomorphic to T*Ox (D). In particular the image of T*
is a vector bundle of rank n — 1.

Proof. Assume that D is given by a system {g;}icr of local equations for
an open covering {U, };er of X. We may assume that 7 is represented by a
0-cochain {b;};c; which satisfies

bi = gfci S F(Ui, Ox(—pD)), bj — bi = (1?]- S F(UZ' N Uj, Ox(—pD))

for some ¢; € T'(U;, Ox) and a;; € I'(U;, Ox(—D)). Then {a;j}ijer is a 1-

cocycle which represents o = d(n) and the vector bundle E in (**) is defined
1

ig; 0 . . . :
by the 1-cocycle { (g gj,l 1> } with coefficients in GL(2,Ox). Since

Qijg;
b _—p
9.9 0
1 iJj — (c: 1
(ci 1) (a%gj p 1) (cj 1)

holds, the 0-cocycle {(¢; 1)}ier defines a splitting Ox — E®) of the exten-
sion ().

On each open set U;, G C P(E) \ F is defined by the equation S? = ¢,
where S; is a fiber coordinate of U; x Al. On their intersection, Sf = ¢; (over
Ui) and Sf = ¢; (over Uj) are patched by the affine transformation g;5; =
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9iS; + aij. Let Ox(pD) " Qx be the the multiplication homomorphism
by 7. Since 7*dc; = 0, we have the complex (8).

Let x be a point in U;. If de; vanishes at x, then Sf = ¢; is singular at x.
Assume that dc; is nonzero at x. Then G is smooth at 7~ !(x). Moreover,
the cotangent space of X at x has a basis of the form {vi,...,v,—1,dc;},
and {771, ..., 7*Vn_1,dS;} is a basis of the cotangent space of G at 7~ !(x).
Therefore, the kernel of 7* is spanned by dc; and the cokernel by dS;. Hence
(8) is exact and the image of 7* is a vector bundle of rank n — 1. Since
gjdSj = g;dS; holds in Qg/x, Q¢ x is isomorphic to 7*Ox (D). O

Corollary 1.8. 7" Kx ~ Kg+ (p— 1)7*D.
We define the Fuler number e(X) of X by the top Chern number deg c;op(X).

Corollary 1.9. 7%¢,(X) ~ pc,(G), where n = dim X. In particular, we
have e(X) = e(G).

Proof. Let B be the image of 7. Then by the proposition we have ¢, (G) ~
7*(=D) - cy—1(BY) and 7*c,(X) ~ 7*(=pD) - ¢,—1(BY). Hence ¢, (X) is
rationally equivalent to pc,(G). The second half of Corollary is obtained by
taking the degree of these two 0O-cycles. ([

If X is a Tango-Raynaud curve, then 7 : G — X is nothing but the
Frobenius morphism of X.

Remark 1.10. Purely inseparable coverings such as G(X, D, «) in Defini-
tion 1.6 were studied by many authors and by now it is more or less well
known. It is worth to mention that Kollar[K, Chap. II.6] proves the van-
ishing of H' in characteristic 0 by this using this construction and mod p
reduction.

The morphism G — X in Proposition 1.7 is a special case of a quotient
by 1-foliation and the exact sequence (8) is described in Ekedahl[E1].

2. CONSTRUCTION OF COUNTEREXAMPLES

By a Tango-Raynaud triple, or a TR-triple for short, we mean a triple
(X, D, f) of a smooth variety X, a divisor D on X and a rational function
f € Q(X) with (df) > pD. In this section, we shall construct a new TR-

triple (f( . D, f) from (X, D, f) under a certain divisibility assumption.

2.1. New triple of higher dimension. Let (X, D, f) be a TR-triple. We
assume that D = kD’ for a divisor D’ and an integer k > 2 which is prime
to p, and construct a new TR-triple (X, D, f) with dim X = dim X + 1.
Under the same setting as in the proof of Proposition 1.7, we choose
and fix a non-empty open subset U C X among U;’s, ¢ € I. We shrink U
and replace f with f’ satisfying df’ = df if necessary so that f is regular
over U. We take a fiber coordinate S of P(E) — X over U such that
the section of infinity F, is defined by S = co and G = G(X, D, df) is
defined by S? — f = 0. Our new variety X is a model of the function field



COUNTEREXAMPLES TO KODAIRA’S VANISHING AND YAU’S INEQUALITY 7

Q(X)(S, ¥/SP — f). We construct it in two steps. Let m be a positive integer
such that p 4+ m is divisible by k. By the linear equivalence (7), we have
p+m

G +mFo ~ k(*—Fo — 7 (pD")),

that is, G + mF is the zero locus of a global section of M ~*, where M =
Op(—pszoo + ¢g*(pD")). First in the usual way we take the global k-fold
cyclic covering

k-1
9) Spec (@ MZ> — P(FE)

=0

with algebra structure given by M* ~ Op(g)(—=G — mFy) — Op(g). Then
we take the relative normalization of this covering over a neighborhood of
Fu.

Definition 2.1. We put

k—1
(10) X = Spec (@ Mi([im/k]Foo)>

i=0
with natural algebra structure induced by (9), where [] is the Gauss symbol.
The composite of this k-fold cyclic covering 7 : X' — P(FE) and the structure
morphism P(F) — X is denoted by g : X — X. Furthermore, we set

D:=(k—1)Fx+g¢'D' and f= 57— feQX),
where the unique section of g lying over F, is denoted by the same symbol.

The complete linear system |mFy| defines an embedding outside G for
sufficiently large m. Hence we have

Lemma 2.2. If D is ample, so is D.

Now we assume further that 7 := df € H°(Bx(—D)) is nowhere vanishing.
Then G is smooth by Proposition 1.7 and X is smooth since the branch locus
F, UG is smooth. Since X is defined by the equation T% = SP— f on g~ (U),
taking differential, we have kT*~1dT = —df. Hence dT has no zero along G.
The differential dT" vanishes along the infinity section Fi, with order p(k—1).
Therefore, dT' defines a nonzero global section of Q ¢ (—p(k—1)Fo —ph*D").
It is easily checked that df € H°(Bg(—D)) is nowhere vanishing. Thus we
have

Proposition 2.3. If X is smooth and (X D, f) is a TR- triple with ample
D and nowhere vamshmg n = df, then X is smooth and (X D, f) s also a
TR-triple with ample D and nowhere vanishing 7j := df

Every fiber of ¢ is a rational curve with the unique singular point at the
intersection with 77 1G. The singularity is the cusp of the form 7% = SP.
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Let 7 : G — X be the everywhere ramified covering constructed from

(X, D, f) (Definition 1.6). Since {)/i = {/S — ¥/f, the composite g o 7

factors through 7 and we have the commutative diagram

h
—

Rl
><jz<— (Y
e Q

\]

—
g

Moreover this morphism k : G — G is isomorphic to the P'-bundle P(Og @
Oq(7*D")) over G. Let U and V be the infinity and zero sections of the
P'-bundle h, respectively. They are disjoint and we have

(11) U-V ~h*t"D".

The pull-backs 7*F, and 7*G are U and pV, respectively. In particular, we
have

(12) 7D~ (k— 1)U+ h*r*D' ~ kU — V.

Proposition 2.4. Assume that X is smooth and (X, D, f) is a TR-triple
with (df) = pD. Then G is a P!-bundle over G and the Euler number e(X)
of X is equal to 2e(X).

Proof. The first half is already shown above. This implies e(G) = e(P!)e(G) =
2e(G). Hence the second half follows from Corollary 1.9. O

Remark 2.5. The expression (10) of the cyclic covering 7 : X — P(E)
was not given in the original [M1] though it is now standard. See e.g.,
Hesnault-Viehweg[HV, Section 3].

2.2. The canonical classes of G and X. Let (X, D, f) be a TR-triple
with an ample divisor D and nowhere vanishing (df) € H°(Bx(—D)). We
compute the canonical classes of G and X. Since G is a P-bundle over G
with two disjoint sections U and V, the relative cotangent bundle 25 e is

isomorphic to Og(—U — V). Hence we have
(13) Kg~-U—-V+hEKg~—2U+h"(Kg+71'D’).
by (11). By Corollary 1.8 and (12), we have
T*Kx ~Kg+ (p—1)7"D
(14) ~—=2U+h (Kg+7 D)+ (p—1){(k—1)U+h*7*D'}
~(pk —p—k— 1)U+ h* (Kg + pr*D’).
We note that pk — p — kK — 1 > 0 and the equality holds if and only if

{p.k} ={2,3}.
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In the following we denote by ~q the Q-linear (or Q-rational) equivalence
of Q-divisors (or Q-cycles). For the later use we put

1 ~ 1 N
1T*D and J:=Kgz+ = 7*D

15 J =
(15) — —

for an integer k. Since D’ ~q D/k, we have

(16) ~Q <Z:12>U+h*{KG+<;+k(%l_l)>T*D}

k—1 1 1 1
~ _ _2 * - _ o *D
Q(k—l >U+h {”k(k— k—1> }

- 1 1

by (13).

2.3. Chern numbers of X. For the same reason as (13), we have

o(G)~(1+U+V)-h*c(Q)
(17) G(G) ~ B e(G) + (U + V) - Wi (G).
Since U NV = (), we have
U-V~0,
(18) U~ (U=V)+V)-U~Ek'h*r*D .U,
VEia (U-U=-V))-V~—ktwr*D.V
by (11). More generally, we have

(19) U™ ~ k=™ psr*Dm=1. U and
Vm ~ (_k)—m+1h*T*Dm—1 .V

for every integer m > 1.

Proposition 2.6. Let A and u be nonnegative integers such that A+i+pu =
dim G. Then we have

a1 (@) .ci(G).7*DM)

A
a=0 a
A

a=0



10 SHIGERU MUKAI

Proof. By (12) and (17), we have
(c1(G) .ci(G).7* D)

=(c1(G) .h*ei(G).7D") + (e (@) B ci_1(G).(U + V).7*DH)

Z (2) (h*Cl (G)A—a,h*ci(( ;)(U ‘/)a-(k‘(f _ V)”)
a=0
AN . Ao 1% "
+ E: (a) (R*c (G h* ey (G).(U + V)L (kU — V)#)
a=0
Z (2) (h*Cl(G)A—OC_h*Ci<G),(kMZZOH‘N + (_1);1, O‘+M))
a=0 [/
A * A—a p* atpil it
+2 (a) (h*c1 (G R ;1 (G).(KHUOTHHL 4 (—1)pyotitly)
a=0
Z A B . i B
(Oé) (h*CI(G))‘ a,h*cz(G).h*T* DoHr,U« 1'(]{1 a +(—1)'U’k;1 o NV))
a=0 i/

A
> @ (h*e1(G) W es1(G) B r* DO (K0T 4 (— 1)k 1Y)).

a=0

Since both U and V are sections of h : G — G, we have (h*Z.U) = deg Z
for every O-cycle Z on G. Therefore the proposition follows from the last
expression. O

Corollary. (c1(G)*.c;(G).7*D") is of degree < 1 as a Laurent polynomial in
the variable k. Moreover, the coefficient of k is equal to (c1(G)*.c;(G).7* DF1)
of w>1 and 0 otherwise.

2.4. Proof of Theorem 2. Now we are ready to construct an n-dimensional
TR-triple (X,,, Dy, dfy,). We define two sequences {k; }1<i<n—1 and {e; }1<i<n—1
of positive integers inductively by the rule

ki =1+ Ci€;—1 and e, = 6i_1ki

for 2 <i<n-—1, where {cz}z is a non-decreasing sequence of integers ¢; > 2
such that k;’s are not divisible by p. (The simplest choice is ¢; := p for
every i.) We start with an arbitrary positive integer k1 > 2 prime to p and
e1:= k.

The first TR-triple (X7, D1, df1) consists of a Tango-Raynaud curve X7,
a divisor D; and an exact differential df; with (df;) = pD;y such that D
is divisible by e,_1. Then we apply the construction in §2.1 by taking
k,_1-fold covering of the P!-bundle P(E;) over X1, and put (X2, D2, df2) =
(X1,Dy,d fl) This is a TR-triple of dimension 2. We repeat this process n—
1 times. We note that the divisor Dy = (ky—1 — 1) Foo + D1 /kp—1 is divisible
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by e,_2. In particular, Dy is divisible by k,_o. Hence, taking k,_o-fold

covering of P(Esy) over Xy, we obtain (X3, D3, df3) = (Xg, Do, de), which is

a TR-triple of dimension 3 such that Ds is divisible by e, _3, and so on. In

the final (n — 1)st step we take the k;-fold covering of P(E,,_1) since D,,_1 is

divisible by e; = k;. We obtain a new TR-triple (X,,, Dy, df,,), which is an

n-dimensional counterexample to Kodaira’s vanishing by Proposition 2.3.
The first half of (b) of Theorem 2 is a consequence of the following

Proposition 2.7. The canonical class Kx, is ample if {p, k1} # {2, 3}, and
the pull-back of an ample divisor on X,,—1 if {p,k1} = {2,3}.
Proof. Since 1, : G, — X, is finite, it suffices to show that Kqg,,_1 +
£ Tn_1Dn—1 is ample by (14). We put
1
Ji=Kg + ——7'D;
i G, + K s — 17— i

for every 1 < i < n —1 after (15). Since p/k; > 1/(k; — 1), it suffices to
show the following:

claim 1. J; is ample.

We prove it by induction on ¢. In the case ¢ = 1, both K¢, and D; are
ample. Hence J; is ample. Assume that i > 2. We have

kn_iy1—1  cp—it1€n—;

kp—i—1 Cn—i€n—i—1
ifn—i>2 and (kg —1)/(k1 —1) = c2k1/(k1 — 1) > 2. By the formula (16),
J; is ample since so is J;_1 and since kp—;+1 > kp—;- O
Now we consider the sequence of the morphisms
G, a2 g, Ma,

in order to investigate the asymptotic behavior of certain Chern numbers
of X, as k1,---,kn—1 go to oo, where G; := Gj_1 for j = 2,--- ,n. Since
G is a curve, we have —degci(G1) = deg 1y D1 = 29 — 2, where g is the
genus of the Tango-Raynaud curve G; ~ X;. Applying Proposition 2.6 (or
its Corollary) successively to the above morphisms h;, we have the following

Proposition 2.8. The intersection number (c1(Gp)*.c;(Gy).7Dh) is a Lau-
rent polynomial in the variables ki, ..., kn_1 whose coefficients are integers
independent of X1 and D1. The degree of the Laurent polynomial is at most
1 with respect to every variable. Moreover, the coefficient of ki---kn_1 is
equal to

29 — 2 if (A\,i,1) =(0,0,n),
_(29_2) if()\aivﬂ):(170;71—1)7(();1;”—1)7 and
0 otherwise.

Furthermore we have
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Proposition 2.9. The intersection number (K};Zcz(Xn)) is a Laurent poly-
nomial in the variables ki, ..., k,—1 and the degree is at most 1 with respect
to each wvariable. If i > 2, then the coefficient of the highest monomial
ky---kn_1 in the Laurent expression of (K;‘(;’cz(Xn)) is equal to —p~"(p —

)" (n—1)(2g9 — 2).
Proof. By (17), 1:¢i(Xy,) is rationally equivalent to
i

¢i(Gn)+ (1 =p)Y ¢ij(Gy).TiD},

j=1
~ (1 =p)7iD% 4 (1 = p)er (Gp) iDL + (lower terms in D).
Since 1ic1(Xy) ~ (1 — p)15i Dy, + c1(Gyr), we have
P (er(Xa) ™ ci(X))
—(rper (X" (X))
—(1— D) + (1 — g (n— i) (e (G D)
+ (1 = p)"" (e (Gp). 7D + (lower terms in D,,).

Hence our assertion follows from Proposition 2.8. O

By the proposition, (K% ".c;(Xy)) is negative for sufficiently large choice
of k1,--+ ,kn—1 for @ > 2. This shows (b) of Theorem 2. (c) is a direct
consequence of Proposition 2.4.

2.5. Properties of (Xo, Dy,dfs). Here we remark a few properties of 2-
dimensional counterexamples (X, D, df) := (X2, D2, df2), which is a k-fold
covering of a P!-bundle over a Tango-Raynaud curve C. By Proposition 1.7,
the cokernel of the multiplication map by df is locally free. In our case, the
cokernel is a line bundle. Hence we have the exact sequence

(21) 0 — Ox(pD) % Oy — Ox(Kx — pD) — 0.
Proposition 2.10. (a) The complete linear system |p(pD — Kx)| is
non-empty.
(b) If k = —1(p), then X has a nonzero vector field, that is, H*(Tx) #
0

(c) When {p,k} # {2,3}, the canonical class Kx is ample and K.V.
holds for Kx, that is, H'(Ox(—Kx)) = 0.

Proof. First we compute the canonical class Kx more rigorously than in
§2.2. Since Kppy)c = —2Fx + D1 and since the k-fold cyclic covering
7 : X — P(E) has branch locus G U Fi, we have

KX/C = W*KIP(E)/C + (k — 1)G+ (k’ — l)FOO ~ —(k—l— 1)Foo + (k — 1)G+Q*D1.

The rational function SP — f gives the linear equivalence G ~ p(Fo, — D7)
on P(E), which is (7). Hence its kth root {/SP — f € Q(X) gives the
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equivalence G ~ p(Fo, — D1/k) on X. Therefore, we have
(22) Kx ~ Kx/c+pD~ (pk—p—k—-1)Fs + (p+k)D1/k

and pD — Kx ~ (k+1)Fy — D;. Now we are ready to prove our assertions.

(a) |p(pD — Kx)| is non-empty since p(pD — Kx) is linearly equivalent
to (k+1)G + pD1 /k.

(b) Put k = ap—1 for a nonnegative integer a. Then we have pD — Kx ~
apFso — D1 ~ aG + D1 /k. Since Tx contains Ox(pD — Kx) as a line
subbundle, we have H%(T) # 0.

(¢) Kx is ample by Proposition 2.7. Since p(pk —p —k —1) > k —
1, we have Hom(Ox (p"Kx),Ox(D)) = 0 for every m > 1. Hence we
have Hom(Ox(p"Kx),2x) = 0 by (21) and (a). Therefore, we have
H'(Ox(—~Kx)) = 0 by the corollary of Proposition 1.5 and Lemma 1.1. O

By (a) of the proposition the cotangent bundle Qx is not slope stable
with respect to any ample line bundle. Since any positive dimensional al-
gebraic group does not act on a surface of general type, the group scheme
Aut X is not reduced by (b). See [Ru] and [La] for alternative treatment
of (generalized) Raynaud’s surface from this viewpoint. We refer to [E2]
and [SB] for the pluricanonical maps of surfaces of general type in positive
characteristic.

3. SURFACES ON WHICH R.V. DOES NOT HOLD

In this section we prove Theorem 3. By virtue of the following result, Ra-
manujam’s vanishing (R.V.) on a (smooth complete) surface X is equivalent
to the injectivity of the Frobenius map (2) for all nef and big line bundle L.

Proposition 3.1 (Szpiro[Sz|, Lewin-Ménégaux [LM]). HY(X,L™™) = 0
holds for m >> 0 if L is nef and big.

The following is inspired by a similar statement [T2, Corollary 8]. This
is not absolutely necessary for our proof but makes it more transparent.

Proposition 3.2. Let X' be the blow-up of a surface X at a point. The
R.V. holds on X' if and only if so does on X.

Proof. Let © € X be the center of the blowing up 7 : X’ — X. If L is a
nef and big line bundle on X, then so is the pull-back 7#*L. If R.V. holds
on X', then H'(X',7*L~"') vanishes. Since H'(X,L~!) is isomorphic to
HY(X',7*L~1), R.V. holds also on X.

Conversely assume that R.V. holds on X and let D’ be a nef and big
divisor on X’. Then D := m,D’ is also nef and big. By Theorem 1, the
vector space {df € Qqx) | f € Q(X), (df) = pD} is zero. The space
{df € Qoxry | f € QIX'), (df) > pD'} is also zero since (df) > pD is a
divisorial condition. Therefore, R.V. holds on X'. [l

We first prove (b). Let X be a surface on which R.V. does not hold. By
Proposition 1.5, there exist a rational function f and a nef and big divi-
sor D with (df) > pD. f gives a rational map from X to the projective
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line P'. By taking suitable blowing-ups X’ — X and the Stein factoriza-
tion, we have the morphism g : X’ — C with ¢,O0x, = O¢. C is smooth
since so is X. Every fiber of g is connected. Let L be the image of the
multiplication homomorphism Ox(pD) — Qx- by df. The relative cotan-
gent sheaf Qy/ /o = Qx//g*Qc contains T := L/[L N g*Qc] as a subsheaf.
On a non-empty subset of C, Q¢ contains df as its global section. Hence,
LNg*Qc # 0 and T is a torsion sheaf. There exists an effective divisor A
with Supp A = Supp 7" which is linearly equivalent to ¢1(L) — c¢1 (LN g*Q¢).
c1(L) = pD is a nef and big divisor on X’ and ¢1(L N g*Q¢) < g* K¢ holds.
Hence A contains a component G different from fibers of g. Then for every
fibers B of g, {25 has nonzero torsion at the intersection BNG. In particular,
B is singular at BNG.

Now we prove (a). By Proposition 3.2, we may assume that X is a
(relatively) minimal model.

Proposition 3.3. If X is a ruled surface or an elliptic surface, then R.V.
holds on X.

Proof. Let h : X — C be a P'-bundle or an elliptic fibration of X. Then
there exists an exact sequence

0—h*Qc— Qx — Qx/c — 0

of torsion free sheaves on X. Let L be a nef and big line bundle on X. The
degree of L, h*Q¢ and x /¢ restricted to general fibers of h are positive,
zero and nonpositive, respectively. Therefore, we have Homoe, (L, h*Q¢) =
Homo, (L, Qx/c) = 0. By the exact sequence, we have Home, (L, x) = 0.
Hence R.V. holds on X. (This argument is taken from [T2, Corollary 6].) O

case 1. If k(X)) = —oo, then we can take a P!-bundle as a relatively minimal
model. Hence R.V. holds by the proposition.

case 2. If k(X) = 1, then the minimal model X is an elliptic surface by our
assumption. Hence R.V. holds by the proposition.

case 3. Assume that x(X) = 0. By the classification of Bombieri-Mumford
[BM1], X and the second Betti number Ba(X) satisfy one of the following:

(a) B2(X) =6 and X is an abelian surface.

(b) B2(X) =22 and X is a K3 surface.

(c) Ba(X) = 10 and X is either a classical, singular or supersingular
Enriques surface. The last two types occurs only when p = 2.

(d) B2(X) = 6 and X is either hyperelliptic or quasi-hyperelliptic. The
latter appears only when p = 2, 3.

In the case (a), R.V. holds by the corollary of Proposition 1.5 since Qx ~
(’)??2. In the case (d), R.V. holds by Proposition 3.3 since X has an elliptic
fibration also (over P!) by [BM1, Theorem 3]. Our proof of Theorem 3 is
completed by the following
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Proposition 3.4. R.V. holds on a K3 and an Enriques surfaces.

Proof. 1t suffices to show injectivity of (1) for all nef and big divisor D on
X. Assume the contrary. Then, by Lemma 1.4, H(Bx(—D)) is nonzero.
By the multiplication map

(23) H°(Ox(D)) x H(Bx(~D)) — H°(Bx),
and by the Riemann-Roch inequality
1
(24) dim H%(Ox (D)) > 5 (D) + x(0x) > 2,
we have
dim Ker[F* : H'(Ox) — H'(Ox)] = dim H(Bx) > 2.

This is a contradiction since H'(Oy) is at most 1-dimensional by [BM1] and
[BM2, Lemma 1]. O
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