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Abstract

We consider the generalized Proudman-Johnson equation with an external force.
Solving its steady-states numerically, we demonstrate that a unimodal pattern appears
at large Reynolds numbers if and only if the parameter endowed in the equation is
equal to unity. This may be interpreted as a strong connection of unimodal patterns
to the two-dimensional Navier-Stokes equations.

1 Introduction

It is generally plausible that a simple input produces a simple output while a complex input
results in a complex outcome in differential equations with an external forcing. Suppose for

instance that we are given a second order linear differential equation with a sinusoidal force,
—u" + au = sinnx (—m < x < +7) with the periodic boundary condition,

where a > 0 is a constant and n is a positive integer. The right hand side of this equation,

sin nx, is regarded as an input. The solution, regarded as an output, is

sin nx
n2+a’

u =

which oscillates exactly the same times as the driving force. In other words, the mode of
the output coincides with that of the input. If a depends on x but is close to a constant,
the moduli of the Fourier coefficient of sinnz (and/or sin(n + 1)z) are much larger than

those of other coefficients. Accordingly, the number of oscillation of u (or lap number) is the
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same as that of the input. As far as we know, there is no special reason to doubt of such
a principle in any linear or weakly nonlinear equation of constant coefficients except in the
case of resonance.

It was therefore a surprise for us to find that the two-dimensional (2D) Navier-Stokes
equations possess a solution of very simple character (single peak solution) at high Reynolds
numbers, despite the fact that they are driven by a force of many oscillation: See Kim &
Okamoto (2010). The solutions oscillate as many times as the driving force if the Reynolds
number is small, but the stream function has one and only one peak if the Reynolds number
is large enough. We called such a solution unimodal. To be precise, our claim is that among
many steady-states there exists at least one unimodal solution if the Reynolds number is
large enough—thus, non-unimodal solutions may co-exist with a unimodal solution. For
example, the rhombic flow considered in Kim & Okamoto (2003) produces many bifurcating
solutions but there is always a unimodal solution if the Reynolds numbers is large.

We suspected in Kim & Okamoto (2010) that this phenomenon is closely related to 2D
incompressible flows and that it does not appear in other equations such as reaction-diffusion
equations. The inverse cascade theory of 2D turbulence may be related to the appearance
of the single pair of large vortices in Kim & Okamoto (2010). However, because of the
computational difficulty of the Navier-Stokes flows at high Reynolds numbers, we could not
supply in Kim & Okamoto (2010) enough materials for demonstrating this conjecture. It is
the aim of the present paper to verify this phenomena in a simple model of 2D incompressible
Navier-Stokes equations which we call the generalized Proudman-Johnson equation.

The generalized Proudman-Johnson equation was proposed by Okamoto & Zhu (2000) in
order to study the role of convection term in the blow-up problem. An equation equivalent
to it had appeared earlier in Budd et al. (1994). Here we study it in view of the pattern

formation. It is written as

1
’thmc + zpdjaxvx - az/)x’@bm: = ﬁ (¢x:v:v:v - f) ) (11)
where « is a real parameter and R is a positive parameter, which we call the Reynolds
number.
This equation unifies many differential equations. In fact, if « = —(m —3)/(m —1), then

any solution of (1.1) produces an exact, self-similar solution of the Navier-Stokes equations
in R™. In particular, the equation with & =1 (i.e. m = 2) gives us the original Proudman-
Johnson equation which was derived in Proudman & Johnson (1962). Also, the three-
dimensional (3D) exact solution for the Navier-Stokes equations are obtained with o = 0.
If @ = =3, (1.1) is the Burgers equation. To see this, we differentiate ¢, + b, = %T%z

twice to obtain (1.1) with @ = —3 and without external force. The equation with @ = —2



is obtained if we differentiate the Hunter-Saxton equation (Hunter & Saxton, 1991) which
can be written as 1y, + 1)y, + % (@/}ag)2 = iR@Z)mx. See Okamoto (2009) and Okamoto & Zhu
(2000). Other applications can be found in Budd et al. (1993)&(1994), Saxton & Tiglay
(2008), and the references therein. The equation (1.1) also appears in Holm et al (2008)
when v = 0. There, the authors study the motion of water waves.

The case of @ = oo is of some interest. If we set v = ¢/a and f = 0, and if we let
a — 00, then we obtain ©.p — ©e@ee = R Qppee. After integrating this in o and setting
Ve = 2u, we have

_ 2
ut—uxx+u -7

where v depends only on ¢. This equation, together with the constraint fj: u(t,z)dz =0,
was studied in Budd et al. (1993), Budd et al. (1994), Ikeda et al. (2003), Ikeda et al. (2001),
and Okamot & Zhu (2000) in the context of blow-up of solutions. Interesting applications of
(1.1) with @ = 1 can be found in Cox (1991), Cox (1991a), Grundy & McLaughlin (1997),
and Grundy & McLaughlin (1999). The blow-up problem is considered in Budd et al. (1994),
Chen & Okamoto (2002), and Okamoto & Zhu (2000).

With o = 1 and f = sinfz with ¢ = 2,3, we showed in Kim & Okamoto (2010) numeri-
cally that nontrivial solutions bifurcate from the trivial solution /=% sin /2. We found that,
if R is not large, the solution has ¢ peaks. As the Reynolds number R tends to oo, one
family of the solutions tends to be unimodal. Specifically, the solution tends to a constant
times sin x, although the system is forced by sin2x or sin3z. We may therefore say that
at very large Reynolds numbers, a solution shows a topologically simple, universal pattern,
irrespective of the mode of the forcing. We also conjectured in Kim & Okamoto (2010) that
this pattern occurs only in differential equations related to the 2D Navier-Stokes equations.

Now one may naturally wonder if such a peculiar bifurcation is common or not, generic
or not. In dynamical systems’s words, we may wonder if such a case is structurally stable
or not. We wish therefore to embed the equation into a more general equation (or a system
of equations). The equation (1.1) seems to be a good candidate because of the properties
stated above. We have thus been led to the problem to study how the bifurcating structure
in (1.1) may change as « varies. Our computation below demonstrates that the unimodality
do not occur if @ > 1. In particular, the occurrence of the unimodal solution is structurally
unstable. Also, we observe no change from many modes to single mode as R — oo in the
case of axi-symmetric solutions of the Navier Stokes equations in dimension > 3, or in the

Burgers equation.

Remark. The reader may wonder why we impose an external force of the form % f.



Indeed we may consider

¢txx + d)d)xxx - a¢x¢:m - %d)x:ﬂxm - f

as well, but this is mathematically equivalent to (1.1). In fact, if we change variables as
(6,t) = (R, R7'1),

and then replace R? by R, i.e., re-define the Reynolds number, then we obtain (1.1).

The present paper is organized as follows. The numerical method is described in section
2. Results in the case of @ = 1 are presented in section 3. Numerical results in the case of
a > 1 are presented in section 4. The cases of -3 < a <1, a = -3, and —o00 < a < —3
are studied in section 5, 6, and 7, respectively. Critical Reynolds numbers are determined
in section 8. Conclusions are given in section 9. Section 10 is an appendix, where we will

show that qualitatively the same result is obtained for a different external force.

2 Discretization by the spectral method

Henceforth we consider steady-states of (1.1) with the periodic boundary condition. In order

to eliminate the translational indefiniteness (i.e., if ¢(x) is a solution, then ¢ (z — ¢) with a

constant ¢ is a solution, too.), we restrict ourselves to solutions which are odd functions.
We require that ¢(x) = ¢~*sin fz, which we call a trivial solution, is a solution of (1.1).

This is equivalent to set
(a—1)R

57 sin(20x). (2.1)

f =sinlx —

If we integrate (1.1) in x, we have

i/// i _a_l _ w, 0+1 N2 _
Rz/) + T, cos({x) G cos(20x) — Yy + 5 (¢")” = constant. (2.2)
Let
N
YN = Z ay, sin nx (2.3)
n=1

be an approximation. Substituting this into (2.2), we expand the left hand side of (2.2) into
cosine series. For k =1,2,--- | N we set as Fi(R, a;ay,as,--- ,ay) the coefficient of cos kx

in the equation above. Then, we obtain after some calculations

k3 1 a—1
Fy(R,a5a1,a9, -+ ,ay) = _Eak + @(Sk,f - Wék’%
N—k k—1
1 , 1 ,
+3 [m(m + k)(a + 3) + k] amm ik — 1 E [m(m — k)(a+ 3) + k] apag_m,
m=1 m=1



where d;; = 1 if £ = j, and 0;; = 0 otherwise. F' = (Fy, Fy,---, Fy) defines a mapping
from (0,00) x R x RY into RY. We compute zeros of F' by the path-continuation method,
see Kim & Okamoto (2010). With N = 200, most of the solutions were easily computed
for R < 5000. For larger R we used N = 500 or N = 1000. As a test for convergence, we

employed the following criterion:

N _ 2N
Y~ s
I
where || - || is the L2-norm and 1" denotes the approximate solution (2.3) with mode N. We

increased N until this criterion was satisfied.

If  # 1, then the force f in (2.1) consists of two terms of different order. Accordingly,
the reader may wonder if it is a dimensionally correct choice. We therefore compute solutions
in the case where f is given by f = sin/z. In this case we do not have an explicit trivial
solution, but we can still compute in the same way. The result, which will be shown in

section 10, turns out to be qualitatively the same.

3 Results in the case of o =1

We first recall some results in Kim & Okamoto (2010), where the case of a = 1 was studied
with £ = 2 and ¢ = 3. The bifurcation diagrams are reproduced here as Figure 1. We noticed

numerically that

Proposition 3.1 There exists a family of solutions Vg for a sufficiently large R which

satisfies limp_ o0 Yr = £sinz.

The profiles of the first order derivatives ¢’, which are plotted in Figure 2, look similar to the
trivial solution if they are close to the bifurcation point. However, they have one and only
one peak if they are far enough from the trivial solution. See Figure 2. In Kim & Okamoto
(2010) we also presented an asymptotic analysis by which we can expect limg_,~, 1)gp = £sin z.
The system is driven by sinfx. Nevertheless, the steady-states which are proportional to
sin x are realized when R > 1. Since those solutions have one and only one peak, we called
them unimodal.

Now since we verified Proposition 3.1 only in the case of / = 2 and 3, the reader may
wonder if it is always true for an arbitrary ¢. In the present paper, we continued numerical
experiments with larger ¢’s and confirmed Proposition 3.1 for 4 < ¢ < 10. Some numerical
results are as follows:

Figure 3 is the bifurcation diagram in the case of / = 4. A family of solutions bifurcates

from the trivial solution 1 = 4~*sin 4z, which are represented by the horizontal axis in
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Figure 1: Bifurcation diagrams o = 1. ¢ = 2 (left). ¢ = 3 (right).

Figure 2: Profiles of ¢/. ¢ =2, a = 1. R = 4,10,100,1000,10000 (left). ¢ = 3, a = 1,
R =7,10,13,20. These solutions correspond to the black squares in Figure 1 (right).



Figure 3. They bifurcate at around R = 81. It is a subcritical pitchfork bifurcation. After
experiencing a turning point which is located at around R ~ 7.5, they continue to exist in
7.5 < R < oo with no further bifurcation. Figure 4 shows the graphs of ¢’ with various
R. The one near the bifurcation point (R = 70) has four peaks, while those away from the
trivial solution have one and only one peak. As Figure 3 shows, the diagram has the lines
a; = £4 as an asymptote. In fact the solutions are asymptotically ¢» — £4sinz as R — oo.
Table 1 is the list of the Fourier coefficients of a solution with R = 10000. Obviously, they
are very small except for a;, which is close to 4. (The other solution is nothing but ¢(x+).)

Here is a remark about the diagram. If / is even the equation is symmetric with respect
to f(x) — f(xz+ ). Therefore, if the bifurcation diagram is drawn in (R, a;), then they are
symmetric with respect to the horizontal axis. On the other hand, if ¢ is odd, there is no
such symmetry. This symmetry induces a fact that the bifurcation from the trivial solution

is a pitchfork if 7 is even, while it is transcritical if / is odd.
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Figure 3: The bifurcation diagram. ¢ = 4. o = 1. The horizontal axis (the broken line)
denotes trivial solutions. The vertical axis represents a,, the coefficient of sinz (left). The
part near the bifurcation point is magnified in the right.

Table 1: Fourier coefficients of the solution at R = 10000. ¢ = 4.

coefficients

a; 3.99887570831577
as 0.00002222222222
as 0.00000000054426
o 0.00000088889289
as -0.00000034718202
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Figure 4: Profiles of ¢/. ¢ = 4. o« = 1. R = 10,15,30,70 (left). R = 20,100,1000 on
uppermost branch (right). The figure on the right shows that limg . 9}, = 4 cosz.
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Figure 5: Bifurcation diagrams. ¢ = 7. o = 1. The graph on the right is the blow-up of the
one on the left near the bifrucation point. The meaning of the letters A, B, C' are explained
in Figure 6.

Table 2: Fourier coefficients of the solution at R = 10000. ¢ = 7.

coefficients

ay 6.99710851254874
as 0.00002222222222
as 0.00000000031111
ay 0.00000088888890
as 0.00000000007881
ag 0.00000016326531
ar 0.00000000003563
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Figure 6: Profiles of ¢'. £ = 7. a = 1. The graphs in the upper right (labelled as A) are
those which are close to the bifurcation point. The letters A, B, C' imply that the solutions
correspond those in the area indicated by the same letter in Figure 5.
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Figure 7: Bifurcation diagrams. ¢ = 10. o = 1.



Other cases are seen in Figures 5, 6, and 7, which may serve as evidence supporting
Proposition 3.1 for 4 < ¢ < 10. We also provided a very plausible argument in p.66 in
Kim & Okamoto (2010) for the validity of this proposition. We, however, do not know a
mathematical proof.

Since 0.0000222- - =~ % = 10000, Tables 1 and 2 suggest that a; ~ ¢ and ay ~ % as
R — oo. This is confirmed by the following asymptotic analysis. We showed in Kim &

Okamoto (2010) that the following expansion is plausible

W(x) = Lsinz + hlj(f) +o (%) (R — o),

where h(x) is to be determined. We start with this and substitute this into (1.1). We then
collect the R™! terms, which turn out to be

d d?
14 (sinxd— — Cosx> <— + I) hy(x) — €sinz + sinfx = 0, (3.1)

x da?

where I denotes the identity operator. Putting hy(z) = 3,7, ¢;sin kxz and substituting this

into (3.1), we obtain
: : { 2 : :
sinlx — {sinz + 5 ch(k — 1) [(k+1)sin(k — 1)z — (k — 1)sin(k + 1)z] = 0.
k=1

If ¢ > 3, this equation gives us

9 3 75
12 (—]. + 502) = 0, 16603 = 0, l <_§CQ + ?C4> =0. (32)

In particular, we have ¢o = 2/9 = 0.2222---, ¢5 = 0, and ¢4 = /25 = 0.00888 - --. Now
this agrees perfectly with numerical data in Tables 1 and 2.

Before going into the study of the cases of @ # 1, we present here a graph of neutral
curves—the curves of critical Reynolds numbers as a functions of a. For a fixed «, the trivial
solution is stable for small R. We derived the linearized operator at the trivial solution and
computed its eigenvalues. The linearised operator is derived in the function space of odd
functions. In other words, only perturbations by sin kz (k = 1,2, ---) are considered. By the
bisection method, we compute R* such that the linearized operator at R = R* possesses (
as an eigenvalue. This was computed with N = 200. Numerical outputs are compared with
those with N = 500 and we verified that change in any case was smaller than 0.001. The
results are drawn in Figure 8. As the left figure shows, two vertical lines « = —3.5 and a =1
are asymptotes in the case of / = 1. Accordingly, the bifurcation from the trivial solution
occurs if —oo < a < —3.50r1 < a < 4oo. In the case of £ = 2, it occurs if —oco < @ < —3

or af < a < +o00.

10
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Figure 8: Critical Reynolds numbers for / = 1 and ¢ = 2. The figure on the left hand side

is the case of / = 1. Two vertical lines @« = —3.5 and o = 1 are asymptotes. No bifurcation
point was found in —3.5 < a < 1. The figure on the right hand side is the case of ¢ = 2.
The line @« = —3 is an asymptote. The neutral curve on the right has a minimum « at

a* ~ —2.378. It tends to upward indefinitely. It passes through (o, R) = (—1.433---,100)
and (o, R) = (—1.032,1000). The asymptote seems to be a = —1. We found no bifurcation
point in -3 < a < .

4 The case where a > 1

From this section onward we consider the case of / = 2 and a # 1. In the present section we
show that there is no bifurcating branch with R — oo if @ > 1.

Bifurcation diagrams in the case of & > 1 are very different from those with @ = 1. See
Figure 9. If a = 1, the pitchfork extends to R = oco. However, if @ > 1, a solution branch
for all the fixed o € (1, 00) has an upper bound Ry(«) such that all the solutions bifurcating
from the trivial solution satisfies R < Ry(«). We do not know why such a difference suddenly
appears when a exceeds 1.

This character of the bifurcation diagram is observed in each of our experiment in the
case of & > 1. Figure 10 shows the cases of 1.08 < a < 5. There is no solution with R — oc.
Instead, there is a branch in which R tends to zero and |a;| tends to infinity.

Just to make it sure, we studied the profiles of ©» as R — 0. The solutions diverge in the
order of R™. We therefore plotted profiles of Ry in Figure 11, which then suggests that
limp o RY" exists but the limit function is not a constant multiple of cosz. Therefore no

unimodality is observed in this case.

5 The case where -3 < a <1

We now consider the case where / =2 and —3 < a < 1.

For a fixed —1 < a < 1, we obtained a pitchfork bifurcation, as is drawn in Figure 12.

11
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Figure 9: Bifurcation diagrams. ¢ = 2. o« = 1,1.002,1.005. The broken line is the diagram
when o = 1. The solid black line, & = 1.005. The solid gray line, « = 1.002. Those solutions
with a; < 0 are omitted.
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Figure 11: Profiles of Ry"'. / =2, =5. R =10.03,0.1,1,1.5,1.8.
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This shows that, as a decreases, the bifurcating solution tends to the trivial solution and
the bifurcation point moves to the right. However, the topology of the diagram is identical

with that in the case of a = 1.

o=-1

Figure 12: Bifurcation diagrams. ¢ = 2. a = 1,0.95,0, —1. The horizontal axis denotes
trivial solutions. The vertical axis represents a;, the coefficient of sin x.

On the other hand, the bifurcation diagram looks substantially different if @ < —1. See
Figures 13 and 14, for the case of a« = —2, —2.25, —2.27, respectively. They show that the
second pitchfork, which has a larger critical Reynolds number, appears if a < —1. This
complies with Figure 8.

If « < —2.27, then the diagram is disconnected as in Figure 14, which contains two
hairpin curves in 193.7--- < R in addition to a closed loop in 21 < R < 94. The loop
is connected with the trivial solutions by two pitchfork points. The hairpin curves move
rightwards as a decreases further. The size of the loop on the left hand side decreases as
a decreases. Eventually all the solutions, except for the trivial solution, disappear. Some
loops of the diagram are shown in Figure 14(right).

We now fix R and draw a bifurcation diagram in («,a;) plane. The diagram of the
solutions for R = 10 is drawn in Figure 15. When R = 100, two turning points (the limit
points) appear in the bifurcation diagram, see Figure 16. If we increase R further, the tips
around o &~ —2.23 become sharper, and computation becomes more difficult. See Figure 17,
where only the part of a; > 0 is plotted.

As Figures 16 and 17 show, the diagram varies quite sensitively near o ~ 1, although
they in fact change continuously. The slope at o = 1 is extremely large. This remarkable
fact is a first indication that v = 1 is very special, and is better understood when we consider
them together with solutions of o > 1.

We now study qualitatively the graphs of the solutions and examine if unimodality ap-

pears or not. Before going into detail, we first note that the concept of unimodality is not
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Figure 13: Bifurcation diagrams. ¢ = 2. a = —2 (left) and o = —2.25 (right). In both cases
two pitchforks bifurcate from the trivial solutions.
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Figure 14: Bifurcation diagrams. ¢ = 2. o = —2.27 (left). Loops of solutions (right), where
o is —2.27,—2.3,—2.32, —2.34, —2.36, respectively from the outermost to the innermost.
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Figure 15: The bifurcation diagram: ¢ = 2. R = 10 (left). R = 10,50,100 (right). The
horizontal axis denotes the trivial solution. The vertical axis represents a.
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Figure 17: The bifurcation diagram when ¢ = 2, R = 500.
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free from ambiguity. In fact, there may be a case where v has a unique local maximum and
a unique local minimum but its derivative, say ¢, has more than one local maximum (and
minimum). Accordingly, having one-peak or not depends on which derivative of the function
we see. For instance, consider 1) = sinx + 0.1sin3x. The graph of ¢ has one and only one
peak in —7 < x < 7. However, )" = —sinx — 2.7sin 3z has three peaks there.

Now the solutions with &« = 1 and 1 < R were strongly unimodal, by which we mean
that derivatives of all order converge to a constant multiple of sinx or cosz as R — oo. In
contrast to this, the weak unimodality such as in ¢ = sinx + 0.1 sin 3z does happen in the
case of the generalized Proudman-Johnson equation. The situation is illustrated in Figure
18. At @ = 1 and R = 10*, the solution v is very close to 2sinz. And ¢/, ¢", " are very
close to 2 cosx, —2sinx, —2 cos z, respectively. On the other hand, if o« = 0 and R = 10°,
and 1)’ have one and only one local minimum, while ¢"” and " do have more than one local
maximum (and minimum). The case of & = —1 is shown in Figure 19 (left). Here we can
see a very sharp transition layer (an internal layer) in ¢ at x = +r. Transition layers also
appear in the two solutions of & = —2, see Figure 19 (right). In this case, transition layers

appear in ",

R =10000

R =100000

-4 - - - e 3 2 R 4

Figure 18: Graphs of ¢, ¢/ " ", { = 2. a =1, R = 10*(left). a = 0, R = 10°(right).

When a = 0, the solutions represent steady-states of the 3D Navier-Stokes equations.
Hence it would be interesting to see if a solution shows unimodality for large R. Figure 18
(right) and Figure 20 are the results. It shows no unimodality of ¢". Our computation
suggests that limg_, ., ¢ exists but the limit function is not a constant multiple of sinz. In
fact, the Fourier coefficients a; tends to zero if k is even, and to non-zero value if k£ is odd.
This is reflected in the fact that ¢ has four local maxima and minima. Consequently,
unimodality of the strong sense does not appear in the case of a = 0. We tested other values

of a, too. If —3 < o < —2.38 there was no bifurcation from the trivial solutions. Based on
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Figure 20: Graphs of the bifurcating solutions. ¢" are plotted. ¢ = 2. o = 0. Solutions
with R = 100, 1000, 10, 10° are shown.
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these experiments for values of o € (—3,1), we conclude that unimodality of strong sense

does not appear if —3 < a < 1.

6 The case of a = —3

We prove in this section that the bifurcation does not exist if &« = —3. We set « = —3 in

(1.1) and integrate it twice to obtain

1
Uy + Pip, = (1/)” — sinlx + % sin 2€£> .

We then set o (t,z) = (~*u(¢~*,z) and R’ = R(~*. The result is:

1
Eumx

1 14
U, = — uuy + EW sin /x + 3 sin 2/,

where 7 = ¢=%¢. Let t and R denote 7 and R', respectively. Our equation is then
! +1€2'€+€‘2£ (-7 <x <) (6.1)
Up = —Ugy — Uy + —=L°sin lx + = sin 20x - <x<T), .
""R R 2

where the periodic boundary condition is imposed. Clearly v = sin/x is a solution, whose
stability we are going to prove.
We now set u = sinfz + v in (6.1) and linearize with respect to v to obtain

1

Ut = Ll (vsin lx),. (6.2)

By restricting ourselves to odd solutions in z, we may consider (6.2) in 0 < x < 7 with
v(0) = v(m) = 0. (6.3)

Theorem 6.1 If { = 1, then every solution of (6.2) and (6.3) tends to zero. For a general
¢, any stationary solution of (6.2) and (6.3) is identically zero.

Proof. Suppose that £ = 1. We multiply (6.2) by v(x)sinz and integrate it in 0 < z < 7.
We then obtain

1d ™
5@ (t r)? smxdx—/ vvtsmxdx——— v (vsinx),
:——/ v s1n:z:d:5——/ vgpv cos x dx
:——/ v sin(x :c—— v?sinz dz.
2R
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We therefore have

d 1 T

—I(t) < —=1I(t), where I(t) :/ v(t, z)? sinx da.

dt R .
Accordingly, fow v?sinz dz decays exponentially to zero as t — 0o. Starting with this esti-
mate, we may successively prove that other integrals such as [v?, [v2 --- tends to zero as
t — 00.

We now suppose that ¢ is a positive integer and that v is independent of ¢. Then,

—v, —vsinlx = ¢,

R

where ¢ is a constant. We can solve this equation by the method of variation of parameters:
Set

v(x) = A(z) exp <—§ cos éx) :
We then have

A'(x) = cRexp <% cos Ex) :

Since v(0) = 0, we obtain

v(x) = CR/ exp <—§ cos lx + % cos Zy) dy.
0

This must satisfy v(7) = 0 by the boundary condition. We see easily that it is the case if
and only if ¢ = 0. Namely, v = 0. ]

This theorem implies that for £ > 2, there is no bifurcation of odd steady-state. If / =1,
then no bifurcation, steady or Hopf, exists among the odd functions. However, we cannot

exclude the possibility of Hopf bifurcation if £ > 2.

7 Cases where o < —3

As Figure 8 indicates, there are bifurcation points in the range @ < —3. Let us see what is
happening in this range of a.

Bifurcation diagrams at o = —3.2 and o = —4.4 are drawn in Figure 21. If « = —3.2 the
diagram is disconnected into upper and lower branches, while if o = —4.4, it is separated
into left and right branches. The right one is a ‘hairpin’ curve. In each case, there exists a
family of solutions where R increases indefinitely to oo and those where R decreases to zero.

We now examine that unimodality is not observed in those solutions of increasing R.
When o = —3.2, there are two solutions with very large R. The graphs of ¢’ are plotted

in Figure 22, where two solutions are very close to each other except in the boundary layer
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near x = +m. Similarly we computed solutions with large R with different «. As far as we
computed for —40 < a < —3, no unimodality was observed at all. We also verified that the

solutions with a; T and R | 0 show no unimodality (figures are omitted).

1.2 T T T T T T T T T 0.2

0.18}
0.16
014y a=-44
0.12}
a; oa
0.08 | ]
0.06 T —— 1
0.04 ]
0.02
0 . L L L L L L L L 0 L L L L L L L L L
0 100 200 300 400 __500 600 700 800 900 1000 0 20 40 60 80 100 120 140 160 180 200
R

Figure 21: Bifurcation diagrams for « = —3.2 (left) and o« = —4.4 (right). ¢ = 2. Critical
Reynolds numbers are approximately 46.31 and 28.01, respectively. Only those parts of
a; > 0 are plotted because of the symmetry.
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Figure 22: Graphs of two different ¢'. R = 10*, o = —3.2.

8 Stability

In this section we prove some facts on the neutral curves. In Kim & Okamoto (2010) we
proved that the steady-state £~*sin fx is stable for all R > 0 if £ = 1. We also proved that,
if £ = 2, a bifurcation of steady-states occurs at R = R., where 3.55 < R, < 3.5971. These
results were, however, only for the case of @« = 1. Accordingly we study here the same
problem for general . In particular, we prove that there is no bifurcation of odd stationary
solutions if / =1 and —7/2 < a < 1.
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Following ITudovich (1965), Kim & Okamoto (2010), and Meshalkin & Sinai (1962), let

us set now 1) = £~ *sin fx + g, substitute it into (1.1), and linearize in g. We then obtain

coslx
14

in/
Gtax + Snz—zx (agw + 67291::1:1:) -

(g + €72Oég$$) = Rilgwwww- (81)

Substituting g(z,t) = e’ Y "> | ¢, sinnz into (8.1), we have the following recurrence relation
forn > 1,

2
2n <)\ + %) le, + A(n,a,0) cuo— B(n,a,l) chye =0, (8.2)

where A(n,a,?) = (n — 20)*> + (1 — a)l(n — ) and B(n,a,f) = (n+20)? + (a — 1){(n + {),
and we have set ¢ =0 and ¢_; = —¢; for j = 1,2,--- £ — 1. For later discussion, we note
the positivity of the coefficients A(n, o, ¢) and B(n, a, {):

Lemma 8.1 Suppose that £ > 1, =3 < a < 1, and n > 1. Then A(n,a,l) > 0 and
B(n,a,l) > 0. The equality holds true if and only if « =1 and n = 20. If ¢ = 1, then the

same conclusion holds for all =7/2 < a < 1.

Proof. Note that

An,a,l) = <n_w)2+52(3+a)(1—a)
o 2 1 :
B(n, a,f) = <n+@> +é2(3+a4)(1—a),

which implies the first conclusion. The second conclusion is proved similarly, because of
A(n,a,1) =n? — (a+3)n+a+3 and B(n,a,1) =n? + (a+ 3)n + a + 3. ]

We first consider the case where ¢ = 1. The following theorem asserts that there is no
eigenvalue A of nonnegative real part for —7/2 < o < 1. In particular, the trivial solution
with £ =1 is stable for all the Reynolds numbers if —7/2 < a < 1.

Theorem 8.1 Suppose that { =1 and that R[\] > 0. Then ¢, = 0 is the only solution of
(8.2) forall —=7/2<a<1and0 < R < 0.

Proof. We first note that we consider only those solutions of (8.2) such that " |c,|* < oc.
We next note the following proposition: if there exists a non-trivial solution with R[A] > 0,
then A is real. This can be proved just as Meshalkin and Sinai proved a similar proposition
for Kolmogorov flow. See Meshalkin & Sinai (1962). We omit the details.

By this proposition we henceforth assume that A is a non-negative real number. We
accordingly assume that c¢,’s are real, too. We now prove that ¢, # 0 for all n > 1 unless

¢n’s are identically zero. Since ¢g = 0, ¢; = 0 implies ¢ = 0. Applying the same argument
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repeatedly, we conclude that ¢; # 0 unless ¢, = 0. Suppose now that there exists a k

such that ¢; # 0,¢9 # 0,-++ , ¢ # 0 and ¢xy1y = 0. Then the recurrence relation closes in
C1,Ca, - - -, Cp only. This relation can be written as
c1 0
| ==V
¢ 0

where the matrix M is of the following tri-diagonal form:

o —B(1) 0 0 0
A2 @ —B2) 0 . 0
A (:) A(:3) g3 —?(3) (:) |
0 o0 Alh—1) g -B(k-1)
0 .- 0 0 Ak) @

where A(k) and B(k) denote A(k,a, 1) and B(k,a, 1), respectively and ¢, = 2n(\ + n?/R)
(n=1,2,---,k). M is easily seen to be nonsingular. Hence our claim follows.

Suppose next that we have a solution {c,} # {0}. We may then introduce p, = ¢, /¢, —1
for n > 1 and simplify (8.2) as

2n n? A(n,a, 1)
— A+ = — = a1 8.3
) () B s~ (&)

Now from (8.2) for n = 1 we have

If « = —7/2, then ¢; = 0, whence ¢, = 0 for all n. We now suppose that —7/2 < a. We

then obtain

¢ P 1 P 9
miai%;7@+ﬁ>2@ﬂﬂ§2&§
for all =7/2 < o < 1. Thus, applying a mathematical induction to (8.3), we deduce p,, > 0
for all n > 1. Moreover, since B(n,a, 1) < (n+ 2)?, it follows, by (8.3) again, that

o2n? 1 o2n3

" > >
B(n,a,1) R — (n+2)?R —

n
Pnt1 > BYz) (8.4)

for all n > 1, which implies

el = lesllon ool = Jerl 2 (2) (=1
Cn| = |C1]]P2 Pnl = |C1 oRrR \ 2R n ..
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The right hand side tends to infinity as n — oo for each fixed R > 0 and —7/2 < o < 1.

Thus the Fourier series is divergent. Consequently, ¢, = 0 is the only solution. ]

We next consider the case where ¢ = 2. Henceforth we assume that —3 < o < 1. The

recurrence relation reads

2
2°n ()\ + %) o+ A(n,a,2)cy_o — B(n,a,2)cpy0 =0 (1 <n) (8.5)
with ¢g = 0 and ¢_; = —¢;. For the sake of convenience, we define ¢, forn = -2, -3,---, by

requiring that (8.5) holds for all integer n. The well-definedness of ¢, comes from Lemma
8.1. (8.5) shows that the coefficients cor—; with odd indices are related each other but are
independent of the coefficients ¢y, with even indices. We first prove that ¢ = ¢4 =--- = 0.

We set n = 2k in (8.2) and rewrite it with ¢}, = cy;. Then we have
4 Ak? / 2 / 2 /
2%k [ AN+ 53 G+ (E=2)"+(1—a)(k—1)]c, = [(k+2)"+(a—1)(k+1)]c, ., =0 (1<k)

and ¢, = 0. This is the same as the recurrence formula (8.2) in the case of ¢ = 1, except for
a change in the coefficient of ¢j,. We may apply the same argument and conclude that ¢}, is
zero for all k. The details are left to the reader.

For the odd coefficients, the recurrence relation becomes

(2k +1)?

252k +1) [ A
@h+n) (2

) Cor1 + A2k 4+ 1)eop 1 — B(2k 4+ 1) o3 =0 (0 < k), (8.6)
where A(2k+1) = (2k—3)2+2(1 —a)(2k — 1) and B(2k+1) = (2k +5)?+2(a — 1) (2k + 3),
both of which are positive for all —3 < a < 1. In the same way as before, we may conclude
that either all of them are zero or none of them is zero.

Suppose that {cor_1} is a non-trivial solution. Then we may introduce p, = ¢op11/Con_1
for n € Z and rewrite (8.6) as

1
o1+ D(2n+1)— = puy, (8.7)

n

where a,, = ;EZ) (A + ”—Rz) and D(n) = ggz; Then for all n the following relation holds true:

. D2n —1) D(2n+1) 3)
n = (2, = — ) )
P = fan—t D(2n— 3) L Dent3)
a n
D(2n — 5) 2t D(2n +5)
Aon—5 + 7 A2n+3 + —

(2n—3 +

This is a necessary condition for a non-trivial solution to exist. We now note
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Proposition 8.1 Suppose that for some ny we have

- D(2ny — 1) o D(2ny + 1) 89)
2ot . D@n-3) L Dem+3) ' '
Aope— Qop,
2o D(2ng — 5) 2ot D(2ng +5)
a/2n075 + 7 a/2n0+3 + —

We then define p,, as this quantity. For other n, we define p, by (8.7). With this {p,}, we
define {c,} by pn = Cony1/con1. We can define {c,} uniquely if we set ¢; = 1.

The proof of this proposition is the same as in the case of & = 1 in Kim & Okamoto (2010),
which utilizes the idea of Iudovich (1965) and Meshalkin & Sinai (1962). Since the proof is
straightforward, we omit it.

Let us now set n = 0 to obtain

D(-1) D(1)
a_i + T DE (8.10)
a_z + W ay + 7D(5)

as + ——

We now prove that there exists an R > 0 for which (8.10) holds true. Let f(A, R, o) denote

the denominator of the right hand side. Since
a—_(2n—1) = —

and

we may rewrite (8.10) as

b D(1)

MR = - 8.11
o= T R &1
which, together with Re[\] > 0, implies that
A(l)  2a+7

ANR = = . 8.12
TR 0) = 53y = Gat19 (8.12)

This is the equation which determines the critical Reynolds number.

Let us now suppose that A = 0. Since f(0, R, ) > a; = ﬁ, we see that

11{1% f(0, R, ) = +o0,

if & > —19/6 which is the current case. On the other hand we see that

D(3) 32 (3—20)R
0,R < =
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If the right hand side with R = 16 is smaller than ggffg, then (8.12) must have a root in
0 < R < 16. It is not difficult to show that this is indeed the case if 12a? + 128 + 213 > 0,
namely if @ > (v/385 — 32)/6 = —2.06---. But it is not easy to see precisely how small «

can be for (8.12) to have a root.

If we consider only the first part of the continued fraction expression of f(0, R, a), we

have an estimate

32 200+ 7
< . 8.13
(6o +19)R ~ 6+ 19 ( )
This yields
- 32
200+ 7
We proceed to the next order approximation to have
32 (3—=2a)R  2a+T7
> . 8.14
(6 +19)R * 3227 6a + 19 ( )
This implies that either
B> 48 (18a + 63 + /46802 + 2508 + 3285)
57 — 20 — 1202
or
R < 48 (18a + 63 — /46802 + 2508 + 3285)
57 — 20 — 1202
if the expression inside the square root is positive, i.e., @ > ay = —2.278961555---. Com-

bining this with the first order approximation, we obtain upper and lower bounds for the

critical Reynolds number:

32 R —48(18a + 63 — /46802 + 2508 + 3285)
20047 ¢ —57 4+ 20a + 1202

for ap < a < 1. If we go one step further to obtain the third order approximation, then

we have more accurate bounds. The results are depicted for each fixed o as two curves
representing the second order approximation (upper) and the third order approximation
(lower) in Figure 23. Numerical results are displayed by + marks, which obviously are very
close to the upper curve (i.e. the second order approximation), showing a good agreement.

Near the point ayg = —2.278961555... the second order approximation no longer permits
a real positive critical Reynolds number. But this only shows that the approximation is no
longer a good one. Nor does it imply the absence of bifurcation for those a: smaller than ay.
In fact, Figure 14 shows that bifurcation exists even in @ = —2.36. If we assume that the
critical Reynolds number exists and if we solve the third order approximation, it provides
us an approximate critical Reynolds number for all —3 < o < 1. However, the third order
approximation is not good enough to suggest a behaviour of the neutral curve (the (o, R)

curve of the critical Reynolds numbers).
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Figure 23: Upper and lower bounds for the critical Reynolds numbers. (‘+’ represents the
numerical result).

9 Conclusions

Our computation shows that the solutions become strongly unimodal if and only if & = 1 and
R — oo. This conforms to our conjecture that unimodal solutions at 1 < R is connected to
the 2D Navier-Stokes equation. Strongly unimodal solutions do not appear if 1 < a. On the
other hand, weakly unimodal solutions were found in —2.3--- < o < 1. We also found some
solutions which become very large as R | 0. The global bifurcation diagram with varying
(e, R) is complicated, and we will report on their structures in the forthcoming paper.

Some of the asymptotic properties of the solution as R — oo are shown to agree with the
result by the asymptotic expansion. Theoretical prediction about the neutral curve matches
well for —2 < a.

10 Appendix: A case of a different force

The purpose of the present section is to give an example of an external force of a single term.

We actually consider

where 5 was chosen just arbitrarily. Similar results can be obtained for f = sin4xz and
f =sin6z. For the sake of simplicity only those results for & = 0 are presented.

Since no explicit solution is available in this case, we start with ¢» = 5~*sin 5z which is
a good approximation if R is small enough. We then apply the path-continuation method

and increase R gradually. We obtain Figure 24 (left) as a bifurcation diagram. The branch
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which is denoted by the broken line consists of those solutions represented as
() = assin 5x + a9 sin 10x + ay5 sin 152 4 - - - .

We call it the main branch. The graphs are plotted in Figure 24 (right). The solutions on
the secondary branch which bifurcate at R & 275 have non-zero values in a; (and others).
Their graphs are shown in Figure 25. If R is increased further, the peak at x = &7 becomes
higher and the interior layer at x = + becomes thinner. But the other undulations remain.

n

These are graphs of ¢)"". The graphs of 1) show that they are unimodal. So we obtain weakly

unimodal solutions similar to those in the previous forcing case.
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Figure 24: Bifurcation diagrams (left). Graphs of solutions on the main branch (right).
f =sinbdz; a = 0.
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