<table>
<thead>
<tr>
<th>Title</th>
<th>Increase of superfluid density with growth of quasiparticle density of states probed by intrinsic tunneling spectroscopy in Bi${1.9}$Pb${0.1}$Sr$_2$CaCu2O${8+\delta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kambara, Hitoshi; Kakeya, Itsuhiro; Suzuki, Minoru</td>
</tr>
<tr>
<td>Citation</td>
<td>Physical Review B (2013), 87(21)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-06-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/176356</td>
</tr>
<tr>
<td>Rights</td>
<td>©2013 American Physical Society</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Increase of superfluid density with growth of quasiparticle density of states probed by intrinsic tunneling spectroscopy in \(\text{Bi}_{1.0}\text{Pb}_{0.1}\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \)

Hitoshi Kambara,* Itsuhiro Kakeya,† and Minoru Suzuki

Department of Electronic Science and Engineering, Kyoto University, Kyoto, Japan

(Received 27 December 2012; revised manuscript received 5 April 2013; published 28 June 2013)

Interlayer tunneling spectra, the Josephson critical current density \(J_c \), and the normal tunneling resistance have been measured simultaneously for intrinsic Josephson junctions of \(\text{Bi}_{1.0}\text{Pb}_{0.1}\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \) (BiPb2212) in the underdoped region using a small mesa structure (\(S = 1 \times 1 \mu\text{m}^2 \)) and a short-pulse technique. \(J_c \) was significantly enhanced when Bi was partially replaced with Pb. By comparing \(J_c \) with the value estimated by the Ambegaokar-Baratoff formula, it was found that superfluid density doubles in the Pb-containing sample. In addition, Pb raises the superconducting coherence peak without changing the value of the superconducting gap \(\Delta \). Based on a model that accounts for the inhomogeneity of \(\Delta \) in \(k \) space, we argue that the superfluid density increases because Pb substitution increases the homogeneity of \(\Delta(k) \).

DOI: 10.1103/PhysRevB.87.214521

PACS number(s): 74.72.Kf, 74.25.fc, 74.50.+r, 74.62.Dh

I. INTRODUCTION

The crystal structures of cuprate superconductors comprise layers of superconducting CuO$_2$ atomic sheets interspersed with layers of insulating sheets. The interfaces between the layers are termed intrinsic Josephson junctions (IJJs).1 Intrinsic tunneling spectroscopy (ITS) is a technique by which information on the quasiparticle density of states (DOS) in the CuO$_2$ layers can be extracted from the \(c \)-axis current-voltage characteristics.2–4 Since an IJJ inside the crystal is protected by layers of superconducting CuO$_2$ atomic sheets interspersed CuO$_2$ layers can be extracted from the information on the quasiparticle density of states (DOS) in the Intrinsic tunneling spectroscopy (ITS) is a technique by which probes such as angle-resolved photoemission spectroscopy (ARPES)5–7 and scanning tunneling spectroscopy (STS).8–10 These probes have revealed that the pseudogap11 survives even above the superconducting transition temperature \(T_c \). Thus the electronic phase diagram of cuprates can be fully elucidated. More recently, the energy resolution of these spectroscopic probes has been greatly improved, allowing segregations of the electronic phase diagram of cuprates can be fully elucidated. More recently, the energy resolution of these spectroscopic probes has been greatly improved, allowing segregations of the superconducting gaps and the pseudogaps in the momentum space (\(k \) space) to be recognized, which is referred to as Fermi arc.12,13

More relevant to this work, ITS allows simultaneous measurements of the Josephson critical current density \(J_c \) (given by the superfluid tunneling component) and the quasiparticle DOS. In a Josephson junction composed of conventional superconductors, \(J_c \) at a sufficiently low temperature is proportional to the superconducting gap \(\Delta \) by the Ambegaokar-Baratoff formula14

\[
J_c^{AB} \approx \frac{\pi \Delta}{2eR_N S},
\]

where \(R_N \) is the normal tunneling resistance, \(S \) is the area of the Josephson junction, and \(e \) is the elementary charge. From this relationship, we infer that the higher the \(T_c \), \(J_c \), and \(R_N \) in Pb-substituted Bi2212 (BiPb2212) by ITS. We then estimated \(J_c^{AB} \) from \(\Delta \) and \(R_N \), and determined \(J_c^{AB} \).

In this paper, we discuss the effect of the Pb substitution on \(J_c \), the quasiparticle DOS in the \(k \) space, and the superconducting gap structure. We measured \(J_c \), \(\Delta \), and \(R_N \) in Pb-substituted Bi2212 (BiPb2212) by ITS. We then estimated \(J_c^{AB} \) from \(\Delta \) and \(R_N \), and determined \(J_c^{AB} \).

II. EXPERIMENTS

Single crystals (nominal composition of \(\text{Bi}_{1.0}\text{Pb}_{0.1}\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \) used in the present work had been grown previously by the self-flux method.20 Electron dispersive spectroscopy (EDS) reveals a homogeneous distribution of Pb within the crystal, and a composition of \(\text{Bi}_{1.0}\text{Pb}_{0.1}\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \). To ensure identical Pb concentrations among the samples, crystals with flat surfaces (\(ab \) plane) were collected from aggregates grown in the same crucible. To obtain Hall-bar and mesa structures, crystals were fabricated under vacuum conditions. Basic properties of the samples are listed in Tables I and II.
Differences between samples are caused by changing oxygen concentrations throughout the processes in vacuum.

Samples H-1, H-2, and H-3 were used for \(ab\)-plane transport measurements. The Hall-bar patterns were formed by photolithography with either wet or dry etching in thin (<500 nm) crystals cleaved from the single crystals. A prepared sample with silver electrodes is shown in Fig. 1(a).

III. RESULTS AND DISCUSSION

A. \(ab\)-plane transport measurements

Figure 2 shows how the \(ab\)-plane resistivity \(\rho_{ab}(T)\) and the Hall coefficient \(R_H(T)\) vary with temperature. A typical Hall-bar sample (H-3) of thickness \(d = 346\) nm was used. We define \(T_c\) as the midpoint of the resistance drop starting around 100 K. The obtained \(T_c\) values are consistent with those of bulk BiPb2212 crystals obtained from the same crucible.

\(R_H(T)\) exhibits a broad peak around 130 K associated with \(T\)-linear behavior at a higher temperature region and a rapid decrease in the lower temperature region. These \(R_H(T)\) trends are commonly observed in cuprate superconductors.\(^{22}\) Among the samples, sample H-3 with the highest \(T_c\) shows the smallest \(R_H(300\) K) [see Table I], which tells that all of the samples are underdoped.

B. Estimation of hole doping

The extent of doping \(p\) in the mesa must be determined in this study, since we aim to compare the doping evolution of the superconducting gap and Josephson critical current between BiPb2212 and Bi2212. In BiPb2212, \(p\) cannot be directly determined by cation substitution because the excess oxygen located between the BiO planes introduces hole carriers into the CuO\(_2\) layers.\(^{23,24}\) According to Ando et al.\(^{25}\) and Konstantinović \textit{et al.},\(^{26}\) \(p\) can be determined by comparing the hole number per Cu atom \(n_{\text{Cu}}^p\) at 300 K in various cuprates with that in La\(_2-x\)Sr\(_x\)CuO\(_4\) (LSCO), for which \(p\) is equal to \(x\).

Applying this approach, we obtained \(p\) as 0.124–0.150 from the measured values of \(n_{\text{Cu}}^p = 0.31–0.41\). From these results, we obtain the following empirical formula\(^{27}\) for determining \(T_c(p)\) of the BiPb2212:

\[
\frac{T_c}{T_c^{\text{max}}} = 1 - 82.6(p - 0.16)^2, \tag{2}
\]

where \(T_c^{\text{max}}\) is 89.7 ± 0.5 K. The doping \(p\)’s of the mesas listed in Table II are estimated by Eq. (2) from the measured \(T_c\) values versa. For all of the samples used in this study, \(p\) is below 0.16, inconsistent with an interpretation that substituting Bi\(^{3+}\) with Pb\(^{2+}\) in Bi2212 increases hole carriers in the CuO\(_2\) layers and makes the crystals overdoped. We posit instead that the Pb substitution decreases the volume of excess oxygen near the substitution site. In fact, the excess oxygen trapped between the BiO planes modifies the crystal structure,\(^{28,29}\) thus the

<table>
<thead>
<tr>
<th>Sample</th>
<th>M-1</th>
<th>M-2</th>
<th>M-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_c) (K)</td>
<td>63.5</td>
<td>77</td>
<td>86.5</td>
</tr>
<tr>
<td>(\Delta(T)) (meV)</td>
<td>36</td>
<td>37.3</td>
<td>32.3</td>
</tr>
<tr>
<td>(J_c(0) K) (kA/cm(^2))</td>
<td>2.4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>(J_c^{\text{AB}}(10) K) (kA/cm(^2))</td>
<td>43.6</td>
<td>48.2</td>
<td>51.1</td>
</tr>
<tr>
<td>(R_m(10) K) ((\Omega))</td>
<td>129.5</td>
<td>121.5</td>
<td>99.2</td>
</tr>
<tr>
<td>(\rho) (300 K) ((\Omega) cm)</td>
<td>11.3</td>
<td>10.3</td>
<td>7.88</td>
</tr>
<tr>
<td>(p)</td>
<td>0.098–0.103</td>
<td>0.115–0.123</td>
<td>0.132–0.148</td>
</tr>
<tr>
<td>Number of IJJs: (N)</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Area: (S) ((\mu)m(^2))</td>
<td>1 \times 1</td>
<td>1 \times 1</td>
<td>1 \times 1</td>
</tr>
</tbody>
</table>
presence of Pb reduces the significance of the modulation of the ab plane.16,30

C. ITS measurements

Figure 3(a) shows the relationship between temperature and c-axis resistivity ρ_c of the mesas. T_c is defined as the midpoint of the resistive transition. As temperature decreases up to T_c, ρ_c increases to several times larger than that at room temperature, and suddenly drops thereafter. This remarkable change in ρ_c is characteristic of underdoped Bi2212.15,31 In addition, the magnitude of ρ_c and the extent of its rise increase with decreasing T_c. These features further suggest that all of the mesas are underdoped. However, the ρ_c values are several times smaller than those of Bi2212, suggesting that the structural modifications induced by the Pb substitution18 lower the tunnel barrier of the IJJ.

Figures 3(b)–3(d) exhibit the c-axis I-V characteristics for the respective mesas. The homogeneous critical current for all branches and equal voltage spacing between the branches demonstrate that the IJJs within the mesas possess identical properties. The number of junctions N included by each mesa is clearly indicated by the number of branches in the figures. Furthermore, because the first branch in each mesa is perpendicular to the voltage axis, the contact resistance of each mesa is sufficiently low. Therefore, we can extract quasiparticle tunneling properties for a single IJJ by dividing the observed voltage by the number of junctions. The number of junctions N included by each mesa is clearly indicated by the number of branches in the figures.

Figure 4 displays the results of ITS measurements for the same mesas. The I-V curves are linear in the high voltage region (>120 mV), implying that the self-heating induced by the bias current is sufficiently suppressed. Thus we can determine the normal tunneling resistance R_N from the slope of the I-V characteristics in the linear region. When self-heating is not negligible, sublinear behavior occurs in the high voltage region of the I-V curve.32 The dI/dV magnitudes of the tunneling spectra display sharp peaks, characteristic of superconducting gaps below T_c. The superconducting gaps ($\Delta = 30–40$ meV at $T = 10$ K) are the same as those for underdoped Bi2212.15 However, as shown later, the peak magnitudes exceed those of Bi2212 in the same doping region. We also observe another gap structure ($>2\Delta$) that dips and rises below T_c and survives at temperatures exceeding T_c. This can be interpreted as the pseudogap.15

D. Doping dependence of Josephson critical current density

As shown in Figs. 3(b)–3(d), since the Josephson critical current is homogenous within the stacked IJJs, J_c can measure bulk superconducting properties in addition to Δ. Here, the doping dependences of J_c and the superconducting gap structures of BiPb2212 and Bi2212 are compared. As already discussed, the Josephson critical current density J^{AB} in an s-wave superconductor at a low temperature is given by Eq. (1).14 Since the J^{AB} differs between s wave and d wave by an order of unity,53 Eq. (1) is applicable to our analysis.
FIG. 3. (Color online) Temperature dependence of the c-axis resistivity ρ_c (a) and I-V characteristics obtained by an analog oscilloscope at 5 K (b)–(d) for the mesa samples.

The present study, J_c, R_N, and Δ are independently determined from Figs. 3(b)–3(d), 4(a)–4(c), and 4(d)–4(f), respectively. Figure 5 shows how J_c^{AB}, J_c, and the ratio J_c/J_c^{AB} vary with p in both Bi2212 and BiPb2212. Previous experiment has shown that J_c in underdoped Bi2212 is more than an order of magnitude smaller than J_c^{AB}. It is also known that as p decreases, J_c becomes more suppressed. For instance, J_c/J_c^{AB} decreases from 0.067 to 0.027 as p decreases from 0.14 to 0.10. A similar result is obtained for BiPb2212, although the magnitudes of both J_c^{AB} and J_c are larger than those of Bi2212 due to the lowered R_N values (relative to Bi2212). However, the extent of the suppression is quantitatively smaller in the

FIG. 4. (Color online) I-V curves measured by short-pulse ITS (a)–(c) and tunneling spectra (d)–(f) for the mesa samples. In this figure, the horizontal axis is normalized to the single junction voltage by dividing the observed voltage by the number of junctions.
We suggest instead that the Pb substitution increases the length of the Fermi arc, which weakens the extent of \(J_{c} \) suppression. This suggestion is justified by a model that explains the anomalous suppression of \(J_{c} \) in underdoped Bi2212, in terms of \(k \)-space inhomogeneity in the superconducting gap. This \(k \)-space inhomogeneity model predicts that superfluid density and \(J_{c} \) in a \(d \)-wave superconductor drastically decrease when the \(\Delta(k) \) around the antinodal, \((\pi, 0)\) and \((0, \pi)\), directions in the \(k \) space disappears. ARPES experiments have revealed that \(\Delta \) grows in regions of \(k \) space where the Fermi arc exists. As \(p \) decreases, the Fermi arc shrinks in the nodal \((\pi, \pi)\) direction. This model sufficiently explains the anomalous \(J_{c} \) suppression in underdoped Bi2212. According to the \(k \)-space inhomogeneity model, the enlarged \(J_{c}/J_{c}^{AB} \) found in BiPb2212 implies a longer Fermi arc for BiPb2212 than that for Bi2212. Suzuki et al. found that the length of Fermi arc influences the observed tunneling spectra; as Fermi arc increases, the heights of superconducting peaks increase and the dip-hump characteristic becomes less pronounced. Figure 6 shows the comparison between normalized tunneling spectra of a Bi2212 and a BiPb2212 sample with similar doping. The increase in the height of the superconducting peak and the repression of the dip-hump structure in BiPb2212 (indicated by red arrows) are consistent with the simulations of Suzuki et al. Therefore, we argue that the Pb substitution expands the length of the Fermi arc, which raises the \(J_{c}/J_{c}^{AB} \) in the underdoped region.

IV. CONCLUSIONS

We have analyzed the BiPb2212 system in the underdoped region by intrinsic tunneling spectroscopy. The \(\Delta \) are identical to those of Bi2212, although the \(J_{c} \)’s are significantly higher. The deviation of \(J_{c} \) from \(J_{c}^{AB} \) was found to be smaller than that for Bi2212. By comparing the tunneling spectra between BiPb2212 and Bi2212 with the numerical results, we conclude that the observed \(J_{c} \) increase in Pb-substituted Bi cuprates results from not merely the reduced tunnel barrier but also elongation of the Fermi arc in the \(k \) space.
ACKNOWLEDGMENTS

This work has been partly supported by the Global COE program at Department of Electronic Science and Engineering of Kyoto University. We thank Professor Osamu Sakai for allowing us to use the electron-beam lithography facility.

1HITOSHI KAMBARA, ITSUHIRO KAKEYA, AND MINORU SUZUKI PHYSICAL REVIEW B 87, 214521 (2013)

ACKNOWLEDGMENTS

This work has been partly supported by the Global COE program at Department of Electronic Science and Engineering of Kyoto University. We thank Professor Osamu Sakai for allowing us to use the electron-beam lithography facility.

1HITOSHI KAMBARA, ITSUHIRO KAKEYA, AND MINORU SUZUKI PHYSICAL REVIEW B 87, 214521 (2013)

ACKNOWLEDGMENTS

This work has been partly supported by the Global COE program at Department of Electronic Science and Engineering of Kyoto University. We thank Professor Osamu Sakai for allowing us to use the electron-beam lithography facility.