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On the sectional geometric genus of multi‐polarized
manifolds and its application
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Abstract

In this paper, we will give an application of the sectional geometric genus of multi‐polarized
manifolds. In order to do that, first we will recall the definition of the ith sectional geometric
genus of n‐dimensional multi‐polarized manifolds for every integer i with 0\leq i\leq n and some

fundamental results of this. We will also provide some results about the case where i=1.

Finally we will give an application to the dimension of global sections of adjoint bundles. In

particular, for the case where \dim X=3 ,
we give an affirmative answer for a generalization of

a conjecture proposed by Beltrametti and Sommese.

§1. Introduction

Let X be a projective variety of dimension n which is defined over the field of

complex numbers and let L be an ample line bundle on X . Then the pair (X, L) is

called a polarized variety. Moreover if X is smooth, then (X, L) is called a polarized

manifold. Then the following three invariants of (X, L) are well‐known.

(1) The degree L^{n} (see Definition 2.2 (1)).

(2) The sectional genus g(L) (see Definition 2.2 (2)).

(3) The \triangle‐genus \triangle(L) ,
which is defined by

\triangle(L):=n+L^{n}-h^{0}(L) .
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By using the above invariants, various interesting results about polarized manifolds

are obtained and applied to other researches. But there is a limit to study polarized
manifolds by using only above three invariants.

So, in order to study polarized manifolds more deeply, the author introduced new

invariants of (X, L) . Let i be an integer with 0\leq i\leq n . In [7], [8] and [10], we proposed
invariants of (X, L) ,

the ith sectional geometric genus g_{i}(X, L) (see Definition 2.3),
the ith sectional arithmetic genus p_{a}^{i}(X, L) and the ith sectional H ‐arithmetic genus

$\chi$_{i}^{H}(X, L) (see Remark 2.2). Here we note that the ith sectional geometric genus can be

regarded as a generalization of the degree and the sectional genus of polarized manifolds

(see Remark 2.1 (2) and (3)).
Here we recall the reason why g_{i}(X, L) (resp. p_{a}^{i}(X, L), $\chi$_{i}^{H}(X, L) ) is called the ith

sectional geometric genus (resp. the ith sectional arithmetic genus, the ith sectional H‐

arithmetic genus) of (X, L) . Let (X, L) be a polarized manifold of dimension n\geq 2 with

\mathrm{B}\mathrm{s}|L|=\emptyset ,
where \mathrm{B}\mathrm{s}|L| is the base locus of the complete linear system |L| . Let i be an

integer with 1\leq i\leq n . Let X_{n-i} be the transversal intersection of general n-i members

of |L| . In this case X_{n-i} is a smooth projective variety of dimension i . Then we can

prove that g_{i}(X, L)=h^{i}() (resp. p_{a}^{i}(X, L)=p_{a}(X_{n-i}), $\chi$_{i}^{H}(X, L)= $\chi$(\mathcal{O}_{X_{n-i}}
that is, g_{i}(X, L) (resp. p_{a}^{i}(X, L), $\chi$_{i}^{H}(X, L) ) is the geometric genus of X_{n-i} (resp. the

arithmetic genus of X_{n-i} ,
the arithmetic genus of X_{n-i} in the sense of Hirzebruch).

Furthermore, by this consideration, the ith sectional geometric genus (resp. the

ith sectional arithmetic genus, the ith sectional H‐arithmetic genus) is expected to

have properties similar to those of the geometric genus (resp. the arithmetic genus, the

H‐arithmetic genus) of i‐dimensional projective manifolds (see [8, Section 3

On the other hand, let L_{1} ,
. . .

, L_{n} be (ample) line bundles on X and let \mathcal{F} be a

coherent sheaf on X . In [17], Kleiman defined the intersection number (L_{1}. . .L_{n}, \mathcal{F})
by using the coefficient of polynomial  $\chi$(L_{1}^{\otimes t_{1}}\otimes\cdots\otimes L_{n}^{\otimes t_{n}}\otimes \mathcal{F}) . If L_{1}=\cdots=L_{n}=L

and \mathcal{F}=\mathcal{O}_{X} ,
then (L\cdots L, \mathcal{O}_{X}) is the degree of (X, L) . Namely (L_{1}. . .L_{n}, \mathcal{F}) can

be regarded as a generalization of the degree. So the author thought that we can also

define the ith sectional invariants for (ample) line bundles L_{1} ,
. . .

, L_{n-i} on X . This was

a motivation of the paper [13] and [14]. In [13] and [14], we defined and investigated the

ith sectional geometric genus of multi‐polarized varieties. Main purpose of this paper is

to give an application of this ith sectional geometric genus of multi‐polarized manifolds.

In order to do that, first we will recall the definition and basic properties of the ith

sectional geometric genus of multi‐polarized varieties. Concretely, in section 2 we will

give various sectional invariants of polarized varieties, and we will also define the notion

of a multi‐(pre)polarized variety (see Definition 2.1 below). In section 3, we will define

the ith sectional geometric genus of multi‐(pre)polarized varieties of type n-i for every

integer i with 0\leq i\leq n (see Definition 3.1). We will also give fundamental results
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about this invariant. In section 4, we consider the case where i=1 . We can regard
this case as a generalization of the sectional genus of polarized manifolds, and we can

get results similar to those of the sectional genus. In section 5, which is the main part

of this paper, we will give an application using this invariant. Here we consider the

dimension of global sections of adjoint bundles. In particular, for \dim X=3 ,
we get

an affirmative answer for a generalization of a conjecture proposed by Beltrametti and

Sommese (see Conjecture 5.1 and Theorem 5.2 below). Moreover for \dim X=3 we will

also consider a problem proposed in [12, Problem 3.2].
The author would like to thank the referee for giving him some valuable comments

and suggestions.

§2. Preliminaries.

Definition 2.1. Let X be a complex projective variety of dimension n
,

and let

L_{1}, \cdots, L_{k} be ample line bundles (resp. line bundles) on X . Then (X, L_{1}, \cdots, L_{k}) is

called a multi‐polarized (resp. multi‐prepolarized) variety of type k . If k=1
,

then it is

called a polarized (resp. prepolarized) variety.
If X is smooth, then we say that (X, L_{1}, \cdots, L_{k}) is a multi‐polarized (resp. multi‐

prepolarized) manifold of type k.

Here we will give the definition of the degree and the sectional genus of prepolarized
varieties.

Definition 2.2. Let (X, L) be a prepolarized variety of dimension n . Then the

Euler‐Poincaré characteristic  $\chi$(tL) is a polynomial in t of total degree at most n . We

set

 $\chi$(tL)=\displaystyle \sum_{j=0}^{n}$\chi$_{j}(L)\left(\begin{array}{lll}
t+ & j & -1\\
 & j & 
\end{array}\right).
(1) The degree L^{n} of (X, L) is defined by L^{n}:=$\chi$_{n}(L) .

(2) The sectional genus g(L) of (X, L) is defined by g(L) :=1-$\chi$_{n-1}(L) .

Here we will define the ith sectional geometric genus of prepolarized varieties.

Definition 2.3. ([7]) Let (X, L) be a prepolarized variety of dimension n and

let i be an integer with 0\leq i\leq n . Then the ith sectional geometric genus g_{i}(X, L) is

defined by the following:

g_{i}(X, L)=(-1)^{i}($\chi$_{n-i}(L)- $\chi$(\displaystyle \mathcal{O}_{X}))+\sum_{j=0}^{n-i}(-1)^{n-i-j}h^{n-j} 
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Remark 2.1.

(1) Since $\chi$_{j} () \in \mathbb{Z} for every integer j with 0\leq j\leq n , by definition we get g_{i}(X, L)\in \mathbb{Z}
for every integer i with 0\leq i\leq n.

(2) If i=0 ,
then g_{0}(X, L)=L^{n}.

(3) If i=1
,

then g_{1}(X, L)=g(L) . Moreover if X is smooth, then g_{1}(X, L) can be

written as follows:

g_{1}(X, L)=1+\displaystyle \frac{1}{2}(K_{X}+(n-1)L)L^{n-1},
where K_{X} is the canonical line bundle on X.

(4) If i=n
,

then g_{n}(X, L)=h^{n}

Remark 2.2. In [7] and [8], we defined the ith sectional arithmetic genus p_{a}^{i}(X, L)
and the ith sectional H ‐arithmetic genus $\chi$_{i}^{H}(X, L) of n‐dimensional prepolarized vari‐

eties (X, L) for every integer i with 0\leq i\leq n as follows:

p_{a}^{i}(X, L):=(-1)^{i}($\chi$_{n-i}(L)-h^{0}(\mathcal{O}_{X})) ,

$\chi$_{i}^{H}(X, L):=$\chi$_{n-i}(L) .

§3. Definition and fundamental properties.

In this section, we will give the definition of the ith sectional geometric genus of

multi‐prepolarized varieties and some fundamental properties.

Notation 3.1. Let X be a projective variety of dimension n
,

let i be an integer
with 0\leq i\leq n-1 ,

and let L_{1} ,
. . .

, L_{n-i} be line bundles on X . Then  $\chi$(L_{1}^{t_{1}}\otimes\cdots\otimes L_{n-i}^{t_{n-i}}) is

a polynomial in t_{1} ,
. . .

, t_{n-i} of total degree at most n . So we can write  $\chi$(L_{1}^{t_{1}}\otimes\cdots\otimes L_{n-i}^{t_{n-i}})
uniquely as follows.

 $\chi$(L_{1}^{t_{1}}\otimes\cdots\otimes L_{n-i}^{t_{n-i}})

=\displaystyle \sum_{p=0}^{n} \displaystyle \sum_{p_{1}\geq 0.'.\cdot,p_{n-i}\geq 0,p_{1}+\cdot+p_{n-i}=p}$\chi$_{p_{1}}, p_{n-i} (L_{1}, . . . , L_{n-i})\left(\begin{array}{l}
t_{1}+p_{1}-1\\
p_{1}
\end{array}\right) . . . \left(\begin{array}{l}
t_{n-i}+p_{n-i}-1\\
p_{n-i}
\end{array}\right).
Definition 3.1. Let (X, Ll, . . .

, L_{n-i} ) be an n‐dimensional multi‐prepolarized

variety of type n-i for i\in \mathbb{Z} with 0\leq i\leq n-1.

(1) We set
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if 0\leq i\leq n-1,

$\chi$_{i}^{H}(X, L_{1}, . .

if i=n.

(2) The ith sectional geometric genus g_{i}(X, L_{1}, \ldots, L_{n-i}) is defined by the following:

g_{i}(X, L_{1}, \ldots, L_{n-i})=(-1)^{i} ( $\chi$_{i}^{H} (X , L\mathrm{l} ,
. . .

, L_{n-i})- $\chi$(\mathcal{O}_{X}) )

+\displaystyle \sum_{j=0}^{n-i}(-1)^{n-i-j}h^{n-j}() .

Remark 3.1.

(1) $\chi$_{i}^{H}(X, L_{1}, \ldots, L_{n-i}) in Definition 3.1 (1) is called the ith sectional H ‐arithmetic

genus of (X, Ll, . . .

, L_{n-i} ).

(2) We can also define the ith sectional arithmetic genus of multi‐prepolarized varieties

of type n-i for every integer i with 0\leq i\leq n ,
where n=\dim X . Namely, the ith

sectional arithmetic genus p_{a}^{i} (X , Ll, . . .

, L_{n-i} ) is defined by the following:

p_{a}^{i} (X , L\mathrm{l} ,
. . .

, L_{n-i} ) :=(-1)^{i} ( $\chi$_{i}^{H} (X , L\mathrm{l} ,
. . .

, L_{n-i})-h^{0}(\mathcal{O}_{X}) ).

(3) Let X be a smooth projective variety of dimension n and let \mathcal{E} be an ample vector

bundle of rank r on X with 1\leq r\leq n . Then in [6, Definition 2.1], we defined the ith

c_{r} ‐sectional geometric genus g_{i}(X, \mathcal{E}) of (X, \mathcal{E}) for every integer i with 0\leq i\leq n-r.

Let i be an integer with 0\leq i\leq n-1 and let L_{1} ,
. . .

, L_{n-i} be ample line bundles

on X . By setting \mathcal{E}:=L_{1}\oplus\cdots\oplus L_{n-i} ,
we see that g_{i}(X, \mathcal{E})=g_{i} (X , Ll, . . .

, L_{n-i} ).

Remark 3.2.

(1) We can prove that $\chi$_{p_{1}} , p_{n-i} (Ll, . . .

, L_{n-i} ) is an integer for every non‐negative

integers p_{1} ,
. . .

, p_{n-i} with 0\leq p_{1}+\cdots+p_{n-i}\leq n . So in particular we see that

g_{i} (X , Ll, . . .

, L_{n-i} ) is an integer.

(2) If i=0 ,
then g_{0} (X , Ll, . . .

, L_{n} ) =L_{1}\cdots L_{n}.

(3) If i=n-1
,
then g_{n-1}(X, L_{1}) in Definition 3.1 (2) is equal to the (\mathrm{n}\mathrm{l})\mathrm{t}\mathrm{h} sectional

geometric genus of (X, L_{1}) in Definition 2.3.

(4) If i=n
,

then g_{n}(X)=h^{n}() .

(5) In [13, Definition 2.1], we proposed more general definition of the ith sectional

geometric genus of multi‐polarized varieties. For details, see [13].
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Here we will see a relationship between the ith sectional geometric genus of multi‐

polarized varieties in Definition 3.1 (2) and that of polarized varieties in Definition 2.3.

By [13, Lemma

Proposition 3.1. Let X be a projective variety of dimension n and let L be a

line bundle on X. Let i be an integer with 0\leq i\leq n . Then

\mathrm{g}(\mathrm{X}, \mathrm{L}, . . . , \mathrm{L}

n-i

Proposition 3.1 shows that the ith sectional geometric genus of multi‐polarized
varieties in Definition 3.1 (2) is more general than that of polarized varieties in Definition

2.3, and the author believe that the ith sectional geometric genus of multi‐polarized
varieties is much more useful.

The following result makes us possible to calculate the ith sectional geometric genus

of several multi‐polarized manifolds.

Theorem 3.1. Let X be a smooth projective variety of dimension n
,

and let i

be an integer with 0\leq i\leq n-1 . Let L_{1} ,
. . .

, L_{n-i} be nef and big line bundles on X.

Then

g_{i} (X , Ll, . . .

, L_{n-i} )

=\displaystyle \sum_{u=1}^{n-i}\{(-1)^{n-i-u}\sum_{(p_{1},\cdots,p_{n-i})\in S(n-i)_{u}}h^{0}(K_{X}+p_{1}L_{1}+\cdots+p_{n-i}L_{n-i})\}
+\displaystyle \sum_{j=0}^{n-i}(-1)^{n-i-j}h^{n-j} 

Here

S(n-i)_{u}=\{(p_{1}, \cdots,p_{n-i})|p_{m}\in \mathbb{Z}, 0\leq p_{m}\leq 1, \#\{p_{m}|p_{m}=1\}=u\}.

Proof. See [13, Corollary 2.3]. \square 

Here we will give notation used in Theorem 3.2 below. Let X be a smooth projective

variety of dimension n and let i be an integer with 1\leq i\leq n-1 . Let L_{1} ,
. . .

, L_{n-i} be

ample line bundles on X . Assume that \mathrm{B}\mathrm{s}|L_{j}|=\emptyset for every integer  j with 1\leq j\leq n-i.
Then by Bertini�s theorem, for every integer j with 1\leq j\leq n-i ,

there exists a general
member X_{j}\in|L_{j}|_{X_{j-1}}| such that X_{j} is a smooth projective variety of dimension n-j.

(Here we set X_{0}:=X. )
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Theorem 3.2. Let n and i be integers with n\geq 2 and 1\leq i\leq n-1 . Let

(X, Ll, . . .

, L_{n-i} ) be an n ‐dimensional multi‐polarized manifold of type (n-i) .

(1) Assume that \mathrm{B}\mathrm{s}|L_{1}|=\emptyset . Then

 g_{i} (X , Ll, . . .

, L_{n-i} ) =g_{i}(X_{1}, L_{2}|_{X_{1}}, \ldots, L_{n-i}|_{X_{1}}) .

(Here X_{1}\in|L_{1}| is a smooth member.)
(2) Assume that \mathrm{B}\mathrm{s}|L_{j}|=\emptyset for every integer  j with 1\leq j\leq n-i . Then

g_{i} (X , Ll, . . .

, L_{n-i} ) =h^{i}(\mathcal{O}_{X_{n-i}}) .

Proof. See [13, Theorem 2.3]. \square 

Finally we will give the following formula about g_{i} (X , Ll, . . .

, L_{n-i} ) using intersec‐

tion numbers. This result is very useful to investigate this invariant more deeply.

Theorem 3.3. Let n and i be integers with n\geq 2 and 0\leq i\leq n-1 . Let

(X, Ll, . . .

, L_{n-i} ) be an n ‐dimensional multi‐prepolarized manifold. Then

g_{i} (X , Ll, . . .

, L_{n-i} )

=\left\{\begin{array}{l}
L_{1}\cdots L_{n} if i=0,\\
\sum_{k=0}^{i}(\sum_{(t_{1},\cdots,t_{n-i})\in S(n-i)_{n-k}^{+}}\frac{(.-.1)^{k}}{(t_{1})!\cdot(t_{n-i})!}L_{1}^{t_{1}}\cdots L_{n-i}^{t_{n-i}})T_{k}(X)\\
+\sum_{j=0}^{i-1}(-1)^{i-j-1}h^{j}(\mathcal{O}_{X}) if i\neq 0.
\end{array}\right.
Here S(u)_{r}^{+}:= { (t_{1}, \ldots, t_{u})\in \mathbb{Z}^{\oplus u} \displaystyle \sum_{j=1}^{u}t_{j}=r and t_{k}\geq 1 for any k }, and T(X) is

the Todd polynomial of weight k of the tangent bundle \mathcal{T}_{X} of X.

Proof. See [13, Theorem 2.4 and Corollary 2.7]. \square 

For further informations about the sectional geometric genus of multi‐polarized

varieties, see [13].

§4. The case where i=1.

In this section, we will investigate the case where i=1 . (Here we always assume

that X is smooth.) This case can be regarded as a generalization of the sectional genus

of polarized manifolds. So it is expected that g_{1} (X , Ll, . . .

, L_{n-1} ) has some properties
similar to those of sectional genus of polarized manifolds.

First we will provide the following results which will be needed later.

Theorem 4.1.



104 YOSHIAKI Fukuma

(1) Let (X, Ll, . . .

, L_{n+1} ) be an n ‐dimensional multi‐polarized manifold of type n+1.

Then K_{X}+L_{1}+\cdots+L_{n+1} is nef.

(2) Let (X, Ll, . . .

, L_{n} ) be an n ‐dimensional multi‐polarized manifold of type n . Then

K_{X}+L_{1}+\cdots+L_{n} is nef unless

(X, L_{1}, \ldots, L_{n})\cong(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(1)) .

(3) Let (X, Ll, . . .

, L_{n-1} ) be an n ‐dimensional multi‐polarized manifold of type n-1

with n\geq 2 . If K_{X}+L_{1}+L_{2}+\cdots+L_{n-1} is not nef, then there exists  $\sigma$\in \mathfrak{S}_{n-1}
such that (X, L_{ $\sigma$(1)}, L_{ $\sigma$(2)}, \ldots, L_{ $\sigma$(n-1)}) is one of the following: (Here \mathfrak{S}_{n-1} denotes

the symmetric group of degree n-1. )

(A) (\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1), \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(1)) .

(B) (\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(2), \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(1)) .

(C) (\mathbb{Q}^{n}, \mathcal{O}_{\mathbb{Q}^{n}}(1), \mathcal{O}_{\mathbb{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{Q}^{n}}(1)) .

(D) X is a \mathbb{P}^{n-1} ‐bundle over a smooth projective curve B and L_{j}|_{F}=\mathcal{O}_{\mathbb{P}^{n-1}}(1)
for any fiber F and every integer j with 1\leq j\leq n-1.

Proof. See [14, Theorem 5.1.1 and Theorem 5.2.1]. Here we note that this is a

direct consequence of [19, Theorems 1, 2 and 3]. \square 

By Theorem 3.3 we can get the following formula using intersection numbers.

Proposition 4.1. Let X be a smooth projective variety of dimension n
,

and let

L_{1} ,
. . .

, L_{n-1} be line bunldes on X. Then

g_{1} (X , L\mathrm{l} ,
. . .

, L_{n-1} ) =1+\displaystyle \frac{1}{2}(K_{X}+\sum_{j=1}^{n-1}L_{j})L_{1} . . . L_{n-1}.

By using Proposition 4.1 we can prove the non‐negativity of g_{1}(X, L_{1}, \ldots, L_{n-1})
and get a classification of (X, Ll, . . .

, L_{n-1} ) with g_{1} (X , Ll, . . .

, L_{n-1} ) =0.

Theorem 4.2. Let X be a smooth projective variety of dimension n\geq 2 . Let

L_{1} ,
. . .

, L_{n-1} be ample line bundles on X. Then

(1) g_{1} (X , Ll, . . .

, L_{n-1} ) \geq 0 holds.

(2) If g_{1}(X, L_{1}, \ldots, L_{n-1})=0 ,
then (X, L_{ $\sigma$(1)}, L_{ $\sigma$(2)}, \ldots, L_{ $\sigma$(n-1)}) is one of the follow‐

ing: (Here  $\sigma$\in \mathfrak{S}_{n-1}. )

(A) (\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1), \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(1)) .
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(B) (\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(2), \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(1)) .

(C) (\mathbb{Q}^{n}, \mathcal{O}_{\mathbb{Q}^{n}}(1), \mathcal{O}_{\mathbb{Q}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{Q}^{n}}(1)) .

(D) X is a \mathbb{P}^{n-1} ‐bundle over a projective line \mathbb{P}^{1} and L_{j}|_{F}=\mathcal{O}_{\mathbb{P}^{n-1}}(1) for any

fiber F and j with 1\leq j\leq n-1.

Proof. (See [14, Theorem 6.1.1].) Here we will give a sketch of proof of this

theorem.

If K_{X}+L_{1}+\cdots+L_{n-1} is \mathrm{n}\mathrm{e}\mathrm{f}
,

then by Proposition 4.1 we have

g_{1} (X , Ll, . . .

, L_{n-1} ) \geq 1.

So we may assume that K_{X}+L_{1}+\cdots+L_{n-1} is not \mathrm{n}\mathrm{e}\mathrm{f} . Then (X, Ll, . . .

, L_{n-1} ) is

one of the types in Theorem 4.1 (3). In each case, we can calculate g_{1} (X , Ll, . . .

, L_{n-1} )
and we get its non‐negativity.

Moreover, by the above proof, we see that if g_{1} (X , Ll, . . .

, L_{n-1} ) =0 ,
then K_{X}+

L_{1}+\cdots+L_{n-1} is not \mathrm{n}\mathrm{e}\mathrm{f} . By calculating g_{1} (X , Ll, . . .

, L_{n-1} ), we can get a classification

of (X, Ll, . . .

, L_{n-1} ) with g_{1} (X , Ll, . . .

, L_{n-1} ) =0. \square 

Furthermore we can also prove the following:

Theorem 4.3. Let X be a smooth projective variety of dimension n\geq 2 and let

L_{1} ,
. . .

, L_{n-1} be ample line bundles on X. Assume that g_{1}(X, L_{1}, \ldots, L_{n-1})=1 . Then

(X, Ll, . . .

, L_{n-1} ) is one of the following:

(1) (X, Ll, . . .

, L_{n-1} ) satisfies K_{X}+L_{1}+\cdots+L_{n-1}=\mathcal{O}_{X}.

(2) X is a \mathbb{P}^{n-1} ‐bundle over an elliptic curve C and L_{j}|_{F}=\mathcal{O}_{\mathbb{P}^{n-1}}(1) for any integer

j with 1\leq j\leq n-1 ,
where F is a fiber of the bundle.

Proof. See [14, Theorem 6.1.2]. \square 

See the paper [14] for further informations about the case where i=1.

§5. Application

In this section we are going to provide one application to the dimension of global
sections of adjoint bundles. First of all, we will give the following theorem, which shows

the relation between the dimension of global sections of adjoint bundles and the ith

sectional geometric genus, and which is a generalization of [11, Theorem 2.1].
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Theorem 5.1. Let X be a smooth projective variety with \dim X=n\geq 2 ,
let

L_{1}, \cdots, L_{m} be nef and big line bundles on X and let L be a nef line bundle, where

m\geq 1 . Then

h^{0}(K_{X}+L_{1}+\cdots+L_{m}+L)-h^{0}(K_{X}+L_{1}+\cdots+L_{m})

=\displaystyle \sum^{n-1}\displaystyle \sum_{s=0(k_{1},\cdots,k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{m}}g_{s}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L)
-\displaystyle \sum_{s=0}^{n-2}\left(\begin{array}{l}
-m1\\
-n-s2
\end{array}\right)h^{s}(\mathcal{O}_{X}) .

Here A_{t}^{p}:= { (k_{1}, \cdots, k_{t})|k_{l}\in\{1, \cdots, p\}, k_{i}<k_{j} if i<j }, and we set

(k_{1} \displaystyle \sum_{k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{m}}g_{s}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L)=\left\{\begin{array}{ll}
0 & if n-s-1>m,\\
g_{n-1}(X, L) & if s=n-1.
\end{array}\right.
Remark 5.1. In the proof of Theorem 5.1 and Proposition 5.1 we will use the fol‐

lowing for convenience: Let X be a projective variety of dimension n and let H_{1} ,
. . .

, H_{n+1}
be line bundles on X . Then we set g-1 (X , Hl, . . .

, H_{n+1} ) =0 and h^{-1}(\mathcal{O}_{X})=0.

Proof. First we note that we need the following proposition in this proof.

Proposition 5.1. Let X be a projective variety of dimension n and let i be an

integer with 0\leq i\leq n-1 . Let A, B, L_{1}, \cdots, L_{n-i-1} be line bundles on X. Then

g_{i}(X, A+B, L_{1}, \cdots, L_{n-i-1})

=g_{i}(X, A, L_{1}, \cdots, L_{n-i-1})+g_{i}(X, B, L_{1}, \cdots, L_{n-i-1})

+g_{i-1}(X, A, B, L_{1}, \cdots, L_{n-i-1})-h^{i-1}() .

Proof. See [13, Corollary 2.4 and Remark 2.6]. \square 

We are going to prove the formula in Theorem 5.1 by induction on m.

Assume that m=1 . Here we note that L_{1}+L is nef and big. Then by [7, Theorem
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2.3] and Proposition 5.1, we see that

h^{0}(K_{X}+L_{1}+L)-h^{0}(K_{X}+L_{1})

=g_{n-1}(X, L_{1}+L)+h^{n}(\mathcal{O}_{X})-h^{n-1}(\mathcal{O}_{X})

-g_{n-1}(X, L_{1})-h^{n}(\mathcal{O}_{X})+h^{n-1}(\mathcal{O}_{X})

=g_{n-1}(X, L)+g_{n-2}(X, L_{1}, L)-h^{n-2}(\mathcal{O}_{X})

=\displaystyle \sum^{n-1}s=0(k_{1} \displaystyle \sum_{k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{1}}g_{S}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L)
-\displaystyle \sum_{s=0}^{n-2}\left(\begin{array}{ll}
0 & \\
n-s & -2
\end{array}\right)h^{S}(\displaystyle \mathcal{O}_{X}) .

Next we assume that the formula in Theorem 5.1 is true for m\leq r . We consider

the case where m=r+1 . Here we set A :=L_{r+1}+L . Then A is nef and big. By

assumption

(5.1) h^{0}(K_{X}+L_{1}+\cdots+L_{r}+L_{r+1}+L)-h^{0}(K_{X}+L_{1}+\cdots+L_{r})

=h^{0}(K_{X}+L_{1}+\cdots+L_{r}+A)-h^{0}(K_{X}+L_{1}+\cdots+L_{r})

=\displaystyle \sum^{n-1}s=0(k_{1} \displaystyle \sum_{k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{r}}g_{S}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, A)
-\displaystyle \sum_{s=0}^{n-2}\left(\begin{array}{l}
-r1\\
-n-s2
\end{array}\right)h^{s}(\mathcal{O}_{X}) .

Moreover by assumption we have

(5.2) h^{0}(K_{X}+L_{1}+\cdots+L_{r}+L_{r+1})-h^{0}(K_{X}+L_{1}+\cdots+L_{r})

=\displaystyle \sum^{n-1}\displaystyle \sum_{s=0(k_{1},\cdots,k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{r}}g_{s}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L_{r+1})
-\displaystyle \sum_{s=0}^{n-2}\left(\begin{array}{l}
-r1\\
-n-s2
\end{array}\right)h^{s}(\mathcal{O}_{X}) .
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By (5.1), (5.2) and Proposition 5.1, we have

h^{0}(K_{X}+L_{1}+\cdots+L_{r}+L_{r+1}+L)-h^{0}(K_{X}+L_{1}+\cdots+L_{r}+L_{r+1})

=h^{0}(K_{X}+L_{1}+\cdots+L_{r}+A)-h^{0}(K_{X}+L_{1}+\cdots+L_{r})

-(h^{0}(K_{X}+L_{1}+\cdots+L_{r}+L_{r+1})-h^{0}(K_{X}+L_{1}+\cdots+L_{r}))

=\displaystyle \sum^{n-1}s=0(k_{1} \displaystyle \sum_{k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{r}}(g_{s}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, A)
-g_{S}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L_{r+1}))

=\displaystyle \sum^{n-1}s=0(k_{1} \displaystyle \sum_{k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{r}}(g_{s}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L)
+g_{s-1}(X, L_{k_{1}}, \cdots, L_{k_{n-\mathrm{s}-1}}, L_{r+1}, L)-h^{s-1}(\mathcal{O}_{X}))

=\displaystyle \sum^{n-1} \displaystyle \sum  g_{S}(X, L_{k_{1}}, \displaystyle \cdots, L_{k_{n-\mathrm{s}-1}}, L)-\sum_{s=1}^{n-1}\left(\begin{array}{ll}
r & \\
n-s & -1
\end{array}\right)h^{s-1}(\displaystyle \mathcal{O}_{X})s=0_{(k_{1}} k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{r+1}

=\displaystyle \sum^{n-1} \displaystyle \sum  g_{S}(X, L_{k_{1}}, \displaystyle \cdots, L_{k_{n-\mathrm{s}-1}}, L)-\sum_{s=0}^{n-2}\left(\begin{array}{ll}
r & \\
n-s & -2
\end{array}\right)h^{S}(\displaystyle \mathcal{O}_{X}) .

s=0_{(k_{1}} k_{n-\mathrm{s}-1})\in A_{n-\mathrm{s}-1}^{r+1}

Therefore we get the assertion. \square 

Here we propose the following conjecture which is a generalization of a conjecture

by Beltrametti and Sommese (see [2, Conjecture 7.2.7]).

Conjecture 5.1. Let (X, Ll, . . .

, L_{n-1} ) be a multi‐polarized manifold of type
n-1 with \dim X=n . Assume that K_{X}+L_{1}+\cdots+L_{n-1} is nef. Then h^{0}(K_{X}+L_{1}+
. . . +L_{n-1})>0.

If n=2
,

then this conjecture is true (see [2, Theorem 7.2.6]). By using Theorem

5.1, we can prove this conjecture for \dim X=3.

Theorem 5.2. Let X be a smooth projective 3‐fold. Let L_{1} and L_{2} be ample
line bundles on X. Assume that K_{X}+L_{1}+L_{2} is nef. Then h^{0}(K_{X}+L_{1}+L_{2})>0.

Proof. By Theorem 5.1 we have

h^{0}(K_{X}+L_{1}+L_{2})-h^{0}(K_{X}+L_{2})=g_{2}(X, L_{1})+g_{1}(X, L_{1}, L_{2})-h^{1}(\mathcal{O}_{X}) .

Here we use the following theorem:

Theorem 5.3. Let (X, L) be a polarized manifold of dimension 3. Assume that

 $\kappa$(K_{X}+L)\geq 0 . Then g_{2}(X, L)\geq h^{1}(\mathcal{O}_{X}) .
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Proof. See [10, Theorem 3.2.1 and Theorem 3.3.1 (2)]. \square 

Assume that  $\kappa$(K_{X}+L_{1})\geq 0 . Then by Theorem 5.3, we see that  g_{2}(X, L_{1})\geq
 h^{1}(\mathcal{O}_{X}) . Hence h^{0}(K_{X}+L_{1}+L_{2})\geq g_{1}(X, L_{1}, L_{2}) .

On the other hand since  $\kappa$(K_{X}+L_{1})\geq 0 and g_{1}(X, L_{1}, L_{2})\in \mathbb{Z} ,
we have

g_{1}(X, L_{1}, L_{2})=1+\displaystyle \frac{1}{2}(K_{X}+L_{1}+L_{2})L_{1}L_{2}\geq 2.
Therefore h^{0}(K_{X}+L_{1}+L_{2})\geq 2.

Assume that  $\kappa$(K_{X}+L_{1})=-\infty . Then in particular  $\kappa$(X)=-\infty . Here we note

that  g_{1}(X, L_{1}, L_{2})\geq 1 because K_{X}+L_{1}+L_{2} is \mathrm{n}\mathrm{e}\mathrm{f} . Furthermore g_{2}(X, L_{1})\geq h^{2}() \geq

 0 by [9, Corollary 2.4].
If h^{1}() =0 ,

then

h^{0}(K_{X}+L_{1}+L_{2})-h^{0}(K_{X}+L_{2})
=g_{2}(X, L_{1})+g_{1}(X, L_{1}, L_{2})-h^{1}(\mathcal{O}_{X})
\geq 1.

Therefore we may assume that h^{1}() >0 . Then we take the Albanese map of X

 $\alpha$ :  X\rightarrow \mathrm{A}\mathrm{l}\mathrm{b}(X) . By taking the Stein factorization, if necessary, we may assume that

there exists a surjective morphism  $\beta$ :  X\rightarrow W with connected fibers, where W is a

normal projective variety. Let F be a general fiber of  $\beta$ . Then \dim F=1 or 2 and

 $\kappa$(F)=-\infty.
Assume that \dim F=2 . Then by Proposition 5.1 we obtain

h^{0}(K_{F}+L_{1}|_{F}+L_{2}|_{F})=g(F, L_{1}|_{F}+L_{2}|_{F})-h^{1}(\mathcal{O}_{F})
=g(F, L_{1}|_{F})+g(F, L_{2}|_{F})+(L_{1}|_{F})(L_{2}|_{F})-1-h^{1}(\mathcal{O}_{F}) .

Since  $\kappa$(F)=-\infty ,
we have  g(F, L_{j}|_{F})\geq h^{1}(\mathcal{O}_{F})\geq 0 for j=1 ,

2 by [5, Theorem 2.1].
Hence we see that if h^{0}(K_{F}+L_{1}|_{F}+L_{2}|_{F})=0 ,

then g(F, L_{1}|_{F})=0, g(F, L_{2}|_{F})=0
and (L_{1}|_{F})(L_{2}|_{F})=1 . So we get (L_{j}|_{F})^{2}=1, h^{1}(\mathcal{O}_{F})=0 and (F, L_{j}|_{F})\cong(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1))
for j=1 ,

2 by [18, 2.3 Corollary]. Hence K_{F}+L_{1}|_{F}+L_{2}|_{F} is not nef and this is a

contradiction because K_{X}+L_{1}+L_{2} is \mathrm{n}\mathrm{e}\mathrm{f} . Therefore h^{0}(K_{F}+L_{1}|_{F}+L_{2}|_{F})>0 and

by [3, Lemma 4.1] we get h^{0}(K_{X}+L_{1}+L_{2})>0.
Assume that \dim F=1 . Then F\cong \mathbb{P}^{1} and g(F)=0 . Hence by the Riemann‐Roch

theorem

h^{0}(K_{F}+L_{1}|_{F}+L_{2}|_{F})= $\chi$(\mathcal{O}_{F})+\deg(K_{F}+L_{1}|_{F}+L_{2}|_{F})

=\deg(K_{F}+L_{1}|_{F}+L_{2}|_{F})+1

\geq 1
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because K_{F}+L_{1}|_{F}+L_{2}|_{F} is \mathrm{n}\mathrm{e}\mathrm{f} . Therefore by [3, Lemma 4.1] we get h^{0}(K_{X}+L_{1}+L_{2})>
0 . This completes the proof of Theorem 5.2. \square 

By Theorem 4.1 (3) and Theorem 5.2 we can prove the following.

Corollary 5.1. Let (X, L_{1}, L_{2}) be a 3‐dimensional multi‐polarized manifold of

type 2. Then the following are equivalent one another.

(1) h^{0}(K_{X}+L_{1}+L_{2})=0.

(2)  $\kappa$(K_{X}+L_{1}+L_{2})=-\infty.

(3) (X, L_{ $\sigma$(1)}, L_{ $\sigma$(2)}) is one of the following: (Here  $\sigma$ is an element of the symmetric

group of degree 2.)

(3.1) (\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(1), \mathcal{O}_{\mathbb{P}^{3}}(1)) .

(3.2) (\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(2), \mathcal{O}_{\mathbb{P}^{3}}(1)) .

(3.3) (\mathbb{Q}^{3}, \mathcal{O}_{\mathbb{Q}^{3}}(1), \mathcal{O}_{\mathbb{Q}^{3}}(1)) .

(3.4) X is a \mathbb{P}^{2} ‐bundle over a smooth projective curve B and L_{j}|_{F}=\mathcal{O}_{\mathbb{P}^{2}}(1) for any

fiber F and every integer j with 1\leq j\leq 2.

Remark 5.2. Here we give some comments about Conjecture 5.1. Let X be a

smooth projective variety of dimension n\geq 2 and let \mathcal{E} be an ample vector bundle of

rank n-1 on X . Then we propose the following problem related to Conjecture 5.1:

Problem 5.1.

Assume that K_{X}+\det \mathcal{E} is nef. Then is h^{0}(K_{X}+\det \mathcal{E}) positive ?

If n=2
,

then the answer is positive. If n=3 and \mathcal{E}=L_{1}\oplus L_{2} for ample line

bundles L_{1} and L_{2} ,
then the answer is positive by Theorem 5.2. But at present we

don�t have the answer in general. On the other hand, in [1] and [16], Ambro and

Kawamata proposed the following conjecture which is a simple case of the original one

([16, Conjecture 2.1]):

Conjecture 5.2. Let (X, L) be a polarized manifold. Assume that K_{X}+L is

nef. Then h^{0}(K_{X}+L)>0 holds.

Of course if Conjecture 5.2 is true, then the answer of Problem 5.1 is positive. But

we don�t know whether Conjecture 5.2 is true or not for n\geq 3.

Finally we consider the following problem related to Conjecture 5.2 (see [12, Prob‐

lem 3.2]).
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Problem 5.2. For any fixed positive integer n
,

we set

\mathcal{P}_{n}:= { (X, L) : polarized manifold |\dim X=n and  $\kappa$(K_{X}+L)\geq 0},

\mathcal{M}_{n} := { r\in \mathbb{N}|h^{0}(r(K_{X}+L))>0 for any (X, L)\in \mathcal{P}_{n} },

m(n):=\left\{\begin{array}{ll}
\min \mathcal{M}_{n} & \mathrm{i}\mathrm{f} \mathcal{M}_{n}\neq\emptyset,\\
\infty & \mathrm{i}\mathrm{f} \mathcal{M}_{n}=\emptyset.
\end{array}\right.
Then determine m(n) .

Remark 5.3. By [12, Theorem 2.8], we have m(1)=1 and m(2)=1.

For the case where \dim X=3 ,
we obtain the following result.

Theorem 5.4. Let (X, L) be a polarized manifold of dimension 3.

(1) If 0\leq $\kappa$(K_{X}+L)\leq 2 ,
then h^{0}(K_{X}+L)>0.

(2) If  $\kappa$(K_{X}+L)=3 ,
then h^{0}(2(K_{X}+L))\geq 3.

Proof. For a proof of (1), see [15]. Here we give a proof of (2). Assume that

 $\kappa$(K_{X}+L)=3 . By taking a reduction of (X, L) ,
we may assume that K_{X}+L is \mathrm{n}\mathrm{e}\mathrm{f}.

(For the definition of a reduction of (X, L ), see e.g. [7, Definition 1.1 (3)].) By Theorem

5.1 we see that

(5.3) h^{0}(K_{X}+(K_{X}+L)+L)-h^{0}(K_{X}+(K_{X}+L))

=g_{2}(X, L)+g_{1}(X, K_{X}+L, L)-h^{1} () .

By Proposition 4.1 we see that

(5.4) g_{1}(X, K_{X}+L, L)=1+(K_{X}+L)^{2}L.

Since K_{X}+L is \mathrm{n}\mathrm{e}\mathrm{f} and big, we have (K_{X}+L)^{3}>0, (K_{X}+L)^{2}L>0 and (K_{X}+L)L^{2}>
0 . We also note that

(5.5) g_{2}(X, L)\geq h^{1}(\mathcal{O}_{X})

by Theorem 5.3.

Assume that (K_{X}+L)^{2}L=1 . Then by [2, Proposition 2.5.1] we have (K_{X}+
L)L^{2}=1 and L^{3}=1 . Therefore g(L)=2 . By a classification of polarized manifolds

whose sectional genus is equal to two ([4]), we see that (X, L) satisfies the following:

\mathcal{O}_{X}(K_{X})=\mathcal{O}_{X}, h^{1}() =h^{2}(\mathcal{O}_{X})=0 and h^{0}(L)>0 . Hence by (5.3), (5.4) and (5.5)
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we get

h^{0}(2K_{X}+2L)

=h^{0}(2K_{X}+L)+g_{2}(X, L)-h^{1}(\mathcal{O}_{X})+g_{1}(X, K_{X}+L, L)
\geq h^{0}(L)+g_{1}(X, K_{X}+L, L)
\geq 3.

Assume that (K_{X}+L)^{2}L\geq 2 . Then by (5.3), (5.4) and (5.5) we have h^{0}(2K_{X}+2L)\geq 3.
So we get the assertion. \square 

By Theorem 5.4 we obtain the following.

Corollary 5.2. m(3)\leq 2.

Remark 5.4. Let (X, L) be a polarized 3‐fold.

(1) Assume that  $\kappa$(K_{X}+L)=3 . Then we can get the following: (For details, see the

forthcoming paper [15].)

(1.1) A lower bound for h^{0}(m(K_{X}+L)) for every integer m\geq 2.

(1.2) A type of (X, L) with h^{0}(2(K_{X}+L))=3 or 4.

(2) Assume that 0\leq $\kappa$(K_{X}+L)\leq 2 . Then we can also get a lower bound for

h^{0}(m(K_{X}+L)) for every integer m\geq 1 . (For details, see [15].)
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