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Vanishing theorems for toric polyhedra

By

Osamu Fujino *

Abstract

A toric polyhedron is a reduced closed subscheme of a toric variety that are partial unions

of the orbits of the torus action. We prove vanishing theorems for toric polyhedra. We also

give a proof of the E_{1} ‐degeneration of Hodge to de Rham type spectral sequence for toric

polyhedra in any characteristic. Finally, we give a very powerful extension theorem for ample
line bundles.
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§1. Introduction

In this paper, we treat vanishing theorems for toric polyhedra. Section 2 is a

continuation of my paper [F1], where we gave a very simple, characteristic‐free approach
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to vanishing theorems on toric varieties by using multiplication maps. Here, we give a

generalization of Danilov�s vanishing theorem on toric polyhedra.

Theorem 1.1 (Vanishing Theorem). Let Y=Y( $\Phi$) be a projective toric poly‐
hedron defined over a field k of arbitrary characteristic. Then

H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)=0 fori\neq 0

holds for every ample line bundle L on Y.

Note that a toric polyhedron is a reduced closed subscheme of a toric variety that

are partial unions of the orbits of the torus action. Once we understand Ishida�s de

Rham complexes on toric polyhedra, then we can easily see that the arguments in [F1]
works for toric polyhedra with only small modifications. Moreover, we give a proof of

the E_{1} ‐degeneration of Hodge to de Rham type spectral sequence for toric polyhedra.

Theorem 1.2 ( E_{1} ‐degeneration). Let Y=Y( $\Phi$) be a complete toric polyhedron

defined over a field k of any characteristic. Then the spectral sequence

E_{1}^{a,b}=H^{b}(Y,\overline{ $\Omega$}_{Y}^{a})\Rightarrow \mathbb{H}^{a+b}(Y,\overline{ $\Omega$}_{Y})

degenerates at the E_{1} ‐term.

It seems to be new when the characteristic of the base field is positive. So, Section

2 supplements [BTLM], [D], and [I]. In Section 3, we will give the following two results

supplementary to [F1].

Theorem 1.3 (cf. [F1, Theorem 1.1]). Let X be a toric variety defined over a

field k of any characteristic and let A and B be reduced torus invariant Weil divi‐

sors on X without common irreducible components. Let L be a line bundle on X. If

H^{i}(X,\overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A)\otimes L^{\otimes l})=0 for some positive integerl, then H^{i}(X,\overline{ $\Omega$}_{X}^{a}(\log(A+
B))(-A)\otimes L)=0.

It is a slight generalization of [F1, Theorem 1.1].

Theorem 1.4. Let X be a complete toric variety defined over a field k of any

characteristic and let A and B be reduced torus invariant Weil divisors on X without

common irreducible components. Then the spectral sequence

E_{1}^{a,b}=H^{b}(X,\overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A))\Rightarrow \mathbb{H}^{a+b}(X,\overline{ $\Omega$}_{\dot{X}}(\log(A+B))(A))

degenerates at the E_{1} ‐term.
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One of the main results of this paper is the next theorem, which is a complete

generalization of [ \mathrm{M}
,

Theorem 5.1]. For the precise statement, see Theorem 4.5 below.

We will give a proof of Theorem 1.5 as an application of our new vanishing arguments
in Section 4. The technique in Section 4 is very powerful and produces Kollár type

vanishing theorem in the toric category, which is missing in [F1].

Theorem 1.5 (Extension Theorem). Let X be a projective toric variety defined
over a field k of any characteristic and let L be an ample line bundle on X. Let Y

be a toric polyhedron on X and let \mathcal{I}_{Y} be the defining ideal sheaf of Y on X. Then

H^{i}(X, \mathcal{I}_{Y}\otimes L)=0 for any i>0 . In particular, the restriction map  H^{0}(X, L)\rightarrow
 H^{0}(Y, L) is surjective.

We state a special case of the vanishing theorems in Section 4 for the reader�s

convenience.

Theorem 1.6 (cf. Theorem 4.3). Let f : Z\rightarrow X be a toric morphism between

projective toric varieties and let A and B be reduced torus invariant Weil divisors on

Z without common irreducible components. Let L be an ample line bundle on X. Then

H^{i}(X, L\otimes R^{j}f_{*}\overline{ $\Omega$}_{Z}^{a}(\log(A+B))(-A))=0 for any i>0, j\geq 0 ,
and a\geq 0.

In the final section: Section 5, we treat toric polyhdera as quasi‐log varieties and

explain the background and motivation of this work.

Acknowledgments. I was partially supported by the Grant‐in‐Aid for Young
Scientists (A) ] 17684001 from JSPS. I was also supported by the Inamori Foundation.
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couragement. I thank Hiroshi Sato and the referee for their comments. I also thank

Takeshi Abe for answering my question.

Notation. Let N be a free \mathbb{Z}‐module of rank n\geq 0 and let M be its dual

Zmodule. The natural pairing \langle, \rangle :  N\times M\rightarrow \mathbb{Z} is extended to the bilinear form

\langle, \rangle :  N_{\mathbb{R}}\times M_{\mathbb{R}}\rightarrow \mathbb{R} , where N_{\mathbb{R}}=N\otimes_{\mathbb{Z}}\mathbb{R} and M_{\mathbb{R}}=M\otimes_{\mathbb{Z}} R. A non‐empty subset

 $\sigma$ of  N_{\mathbb{R}} is said to be a cone if there exists a finite subset \{n_{1}, \cdots, n_{S}\} of N such that

 $\sigma$=\mathbb{R}_{\geq 0}n_{1}+\cdots+\mathbb{R}_{\geq 0}n_{s} ,
where \mathbb{R}_{\geq 0}=\{r\in \mathbb{R};r\geq 0\} ,

and that  $\sigma$\cap(- $\sigma$)=\{0\},
where - $\sigma$=\{-a;a\in $\sigma$\} . A subset  $\rho$ of a cone  $\sigma$ is said to be a face of  $\sigma$ and we

denote  $\rho$\prec $\sigma$ if there exists an element  m of M_{\mathbb{R}} such that \langle a, m\rangle\geq 0 for every  a\in $\sigma$

and  $\rho$=\{a\in $\sigma$;\langle a, m\rangle=0\} . A set \triangle of cones of  N_{\mathbb{R}} is said to be a fan if (1)
 $\sigma$\in\triangle and  $\rho$\prec $\sigma$ imply  $\rho$\in\triangle ,

and (2)  $\sigma$,  $\tau$\in\triangle and  $\rho$= $\sigma$\cap $\tau$ imply  $\rho$\prec $\sigma$ and

 $\rho$\prec $\tau$ . We do not assume that \triangle is finite, that is, \triangle does not always consist of a finite

number of cones. For a cone  $\sigma$ of  N_{\mathbb{R}}, $\sigma$^{\vee}= { x\in M_{\mathbb{R}};\langle a, x\rangle\geq 0 for every  a\in $\sigma$ }
and  $\sigma$^{\perp}= { x\in M_{\mathbb{R}};\langle a, x\rangle=0 for every  a\in $\sigma$ }. Let  X=X() be the toric variety
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associated to a fan \triangle . Note that  X is just locally of finite type over k in our notation,
where k is the base field of X Each cone  $\sigma$ of \triangle uniquely defines an (n-\dim $\sigma$)-
dimensional torus T_{N( $\sigma$)}= Speck [ M\cap$\sigma$^{\perp}] on X() . The closure of T_{N( $\sigma$)} in X() is

denoted by V( $\sigma$) .

§2. Vanishing theorem and E_{1} ‐degeneration

We will work over a fixed field k of any characteristic throughout this section.

§2.1. Toric polyhedra

Let us recall the definition of toric polyhedra. See [I, Definition 3.5].

Definition 2.1.1. For a subset  $\Phi$ of a fan \triangle
,

we say that  $\Phi$ is star closed if

 $\sigma$\in $\Phi$,  $\tau$\in\triangle and  $\sigma$\prec $\tau$ imply  $\tau$\in $\Phi$.

Definition 2.1.2 (Toric polyhedron). For a star closed subset  $\Phi$ of a fan \triangle
,

we

denote by  Y=Y( $\Phi$) the reduced subscheme \displaystyle \bigcup_{ $\sigma$\in $\Phi$}V( $\sigma$) of X=X() ,
and we call it

the toric polyhedron associated to  $\Phi$.

Example 2.1.3. Let X=\mathbb{P}^{2} and let T\subset \mathbb{P}^{2} be the big torus. We put Y=

\mathbb{P}^{2}\backslash T . Then Y is a toric polyhedron, which is a circle of three projective lines.

The above example is a special case of the following one.

Example 2.1.4. Let X=X() be an n‐dimensional toric variety. We put

$\Phi$_{m}=\{ $\sigma$\in\triangle;\dim $\sigma$\geq m\} for 0\leq m\leq n . Then $\Phi$_{m} is a star closed subset of \triangle and

the toric polyhedron  Y_{m}=Y($\Phi$_{m}) is pure (n-m) ‐dimensional.

Example 2.1.5. We consider X=\mathrm{A}_{k}^{3}= Speck [x_{1}, x_{2}, x_{3}] . Then the subvariety

Y=(x_{1}=x_{2}=0)\cup(x_{3}=0)\simeq \mathrm{A}_{k}^{1}\cup \mathrm{A}_{k}^{2} of X is a toric polyhedron, which is not pure

dimensional.

Remark 2.1.6. Let Y be a toric polyhedron. We do not know how to describe

line bundles on Y by combinatorial data. Note that a line bundle L on Y can not

necessarily be extended to a line bundle \mathcal{L} on X.

In [I], Ishida defined the de Rham complex \overline{ $\Omega$}_{Y} of a toric polyhedron Y . When Y

is a toric variety, Ishida�s de Rham complex is nothing but Danilov�s de Rham complex

(see [\mathrm{D} , Chapter I. §4 For the details, see [I]. Here, we quickly review \overline{ $\Omega$}_{Y} when X is

affine.
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2.1.7 (Ishida�s de Rham complex). We put \triangle=\{ $\pi$ ,
its faces, where  $\pi$ is a cone

in  N_{\mathbb{R}} . Then X=X(\triangle) is an affine toric variety Speck [ M\cap$\pi$^{\vee}] . Let  $\Phi$ be a star closed

subset of \triangle and let  Y be the toric polyhedron associated to  $\Phi$ . In this case, \overline{ $\Omega$}_{Y}^{a} is an

\displaystyle \mathcal{O}_{Y}=k[M\cap$\pi$^{\vee}]/k[M\cap($\pi$^{\vee}\backslash (\bigcup_{ $\sigma$\in $\Phi$}$\sigma$^{\perp}))] ‐module generated by x^{m}\otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}},
where m\displaystyle \in M\cap($\pi$^{\vee}\cap(\bigcup_{ $\sigma$\in $\Phi$}$\sigma$^{\perp})) and m_{$\alpha$_{1}}, \cdots, m_{$\alpha$_{a}}\in M[ $\rho$(m)] ,

for any a\geq 0 . Note that

 $\rho$(m)= $\pi$\cap m^{\perp} is a face of  $\pi$ when  m\in M\cap$\pi$^{\vee} ,
and that M[ $\rho$(m)]=M\cap $\rho$(m)^{\perp}\subset M.

§2.2. Multiplication maps

In this subsection, let us quickly review the multiplication maps in [F1, Section 2].

2.2.1 (Multiplication maps). For a fan \triangle in  N_{\mathbb{R}} ,
we have the associated toric

variety X=X We put N'=\displaystyle \frac{1}{l}N and M'=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(N', \mathbb{Z}) for any positive integer l.

We note that M'=lM . Since N_{\mathbb{R}}=N_{\mathbb{R}}', \triangle is also a fan in  N_{\mathbb{R}}' . We write \triangle' to express

the fan \triangle in  N_{\mathbb{R}}' . Let X'=X(\triangle') be the associated toric variety. We note that X\simeq X'

as toric varieties. We consider the natural inclusion  $\varphi$ :  N\rightarrow N' . Then  $\varphi$ induces a

finite surjective toric morphism  F:X\rightarrow X' . We call it the l ‐times multiplication map

of X.

Remark 2.2.2. The l‐times multiplication map F:X\rightarrow X' should be called

the l‐th power map of X . However, we follow [F1] in this paper.

2.2.3 (Convention). Let \mathcal{A} be an object on X . Then we write \mathcal{A}' to indicate the

corresponding object on X' . Let  $\Phi$ be a star closed subset of \triangle and let  Y be the toric

polyhedron associated to  $\Phi$ . Then  F:X\rightarrow X' induces a finite surjective morphism
F:Y\rightarrow Y'

2.2.4 (Split injections on the big torus). By fixing a base of M
,

we have  k[M]\simeq
 k[x_{1}, x_{1}^{-1}, \cdots, x_{n}, x_{n}^{-1}] . We can write x^{m}=x_{1}^{m_{1}}x_{2}^{m_{2}}\cdots x_{n}^{m_{n}} for  m=(m_{1}, \cdots, m_{n})\in
\mathbb{Z}^{n}=M . Let T be the big torus of X . Then we have the isomorphism of \mathcal{O}_{T}=k[M]-
modules k[M]\otimes_{\mathbb{Z}}\wedge^{a}M\rightarrow$\Omega$_{T}^{a} for any a\geq 0 induced by

x^{m}\displaystyle \otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}}\mapsto x^{m}\frac{dx^{m_{$\alpha$_{1}}}}{x^{m_{$\alpha$_{1}}}}\wedge\cdots\wedge\frac{dx^{m_{$\alpha$_{a}}}}{x^{m_{$\alpha$_{a}}}},
where m, m_{$\alpha$_{1}}, \cdots, m_{$\alpha$_{a}}\in \mathbb{Z}^{n}=M . Therefore, F_{*}$\Omega$_{T}^{a} corresponds to a k[M'] ‐module

k[M]\otimes_{\mathbb{Z}}\wedge^{a}M . We consider the k[M'] ‐module homomorphisms  k[M']\otimes_{\mathbb{Z}}\wedge^{a}M'\rightarrow
 k[M]\otimes_{\mathbb{Z}}\wedge^{a}M given by x^{m_{ $\beta$}}\otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}}\mapsto x^{lm_{ $\beta$}}\otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}} ,

and k[M]\otimes_{\mathbb{Z}}
\wedge^{a}M\rightarrow k[M']\otimes_{\mathbb{Z}}\wedge^{a}M' induced by x^{m_{ $\gamma$}}\otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}}\mapsto x^{m_{ $\beta$}}\otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}}
if m_{ $\gamma$}=lm_{ $\beta$} and x^{m_{ $\gamma$}}\otimes m_{$\alpha$_{1}}\wedge\cdots\wedge m_{$\alpha$_{a}}\mapsto 0 otherwise. Thus, these k[M'] ‐module

homomorphisms give split injections $\Omega$_{T}^{a}, \rightarrow F_{*}$\Omega$_{T}^{a} for any a\geq 0.
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§2.3. Proof of the vanishing theorem and E_{1} ‐degeneration

Let us start the proof of the vanishing theorem and E_{1} ‐degeneration. The next

proposition plays a key role in the proof.

Proposition 2.3.1. Let X be a toric variety and let Y\subset X be a toric polyhe‐
dron. Let F : X\rightarrow X' be the l ‐times multiplication map and let F : Y\rightarrow Y' be the

induced map. Then there exists a split injection \overline{ $\Omega$}_{Y}^{a}, \rightarrow F_{*}\overline{ $\Omega$}_{Y}^{a} for any a\geq 0.

Proof. We write X=X() and Y=Y( $\Phi$) . Then Y( $\Phi$) has the open covering

\{Y( $\Phi$)\cap U( $\pi$); $\pi$\in $\Phi$\} ,
where U( $\pi$)= Speck [ M\cap$\pi$^{\vee}] . We put Z=Z( $\Psi$)=Y( $\Phi$)\cap U( $\pi$) .

Then, by the description of \overline{ $\Omega$}_{Z}^{a} in [I, Section 2] or 2.1.7, we have natural embeddings

\mathcal{O}_{Z}\subset k[M] and \overline{ $\Omega$}_{Z}^{a}\subset k[M]\otimes_{\mathbb{Z}}\wedge^{a}M for any a>0 as k‐vector spaces. Note that

O_{Z} is spanned by \displaystyle \{x^{m};m\in M\cap($\pi$^{\vee}\cap(\bigcup_{ $\sigma$\in $\Psi$}$\sigma$^{\perp}))\} as a k‐vector space. In 2.2.4, we

constructed split injections k[M']\otimes_{\mathbb{Z}}\wedge^{a}M'\rightarrow k[M]\otimes_{\mathbb{Z}}\wedge^{a}M for any a\geq 0 . This split

injections induce split injections

\overline{ $\Omega$}_{Z'}^{a}\cap \rightarrow F_{*}\overline{$\Omega$_{Z}^{a}\cap}
k[M']\otimes_{\mathbb{Z}}\wedge^{a}M'\rightarrow k[M]\otimes_{\mathbb{Z}}\wedge^{a}M

for all a\geq 0 as k‐vector spaces. However, it is not difficult to see that \overline{ $\Omega$}_{Z}^{a}, \rightarrow F_{*}\overline{ $\Omega$}_{Z}^{a} and

its split F_{*}\overline{ $\Omega$}_{Z}^{a}\rightarrow\overline{ $\Omega$}_{Z}^{a} , are \mathcal{O}_{Z'} ‐homomorphisms for any a\geq 0 . The above constructed

split injections for Y( $\Phi$)\cap U( $\pi$) can be patched together. Thus, we obtain split injections

\overline{ $\Omega$}_{Y}^{a}, \rightarrow F_{*}\overline{ $\Omega$}_{Y}^{a} for any a\geq 0. \square 

The following theorem is one of the main theorems of this paper. It is a general‐
ization of Danilov�s vanishing theorem for toric varieties (see [\mathrm{D}, 7.5.2 . Theorem]).

Theorem 2.3.2 (cf. Theorem 1.1). Let Y=Y( $\Phi$) be a projective toric polyhe‐
dron defined over a field k of any characteristic. Then

H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)=0 fori\neq 0

holds for every ample line bundle L on Y.

Proof. We assume that l=p>0 ,
where p is the characteristic of k . In this case,

F^{*}L'\simeq L^{\otimes p} . Thus, we obtain

H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)\simeq H^{i}(Y',\overline{ $\Omega$}_{Y}^{a}\prime \otimes L')
\subset H^{i}(Y', F_{*}\overline{ $\Omega$}_{Y}^{a}\otimes L')
\simeq H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L^{\otimes p}) ,
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where we used the split injection in Proposition 2.3.1 and the projection formula. By

iterating the above arguments, we obtain H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)\subset H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L^{\otimes p^{r}}) for any

positive integer r . By Serre�s vanishing theorem, we obtain  H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)=H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes
 L^{\otimes p^{r}})=0 for i>0 . When the characteristic of k is zero, we can assume that everything
is defined over R ,

where R(\supset \mathbb{Z}) is a finitely generated ring. By the above result, the

vanishing theorem holds over R/P ,
where P is any general maximal ideal of R ,

since

R/P is a finite field and the ampleness is an open condition. Therefore, we have the

desired vanishing theorem over the generic point of SpecR. Of course, it holds over

k. \square 

If Y is a toric variety, then Theorem 2.3.2 is nothing but Danilov�s vanishing the‐

orem. For the other vanishing theorems on toric varieties, see [F1] and the results in

Sections 3 and 4. The next corollary is a special case of Theorem 2.3.2.

Corollary 2.3.3. Let Y=Y( $\Phi$) be a projective toric polyhedron and L an ample
line bundle on Y. Then we obtain H^{i}(Y, L)=0 for any i>0.

Proof. It is sufficient to remember that \overline{ $\Omega$}_{Y}^{0}\simeq \mathcal{O}_{Y}. \square 

Remark 2.3.4. Let X be a projective toric variety. Then, it is obvious that

H^{i}(X, \mathcal{O}_{X})=0 for i>0 . However, H^{i}(Y, \mathcal{O}_{Y}) is not necessarily zero for some i>0

when Y is a projective toric polyhedron. See Example 2.1.3. More explicitly, let X

be an n‐dimensional non‐singular complete toric variety. We put Y=X\backslash T ,
where T

is the big torus. Then H^{n-1}(Y, \mathcal{O}_{Y}) is dual to H^{0}(Y, \mathcal{O}_{Y}) since K_{Y}\sim 0 . Therefore,

H^{n-1}(Y, \mathcal{O}_{Y})\neq\{0\}.

The following theorem is a supplement to Theorem 2.3.2.

Theorem 2.3.5. Let Y be a toric polyhedron on a toric variety X. Let L be a

line bundle on Y. Assume that L=\mathcal{L}|_{Y} for some line bundle \mathcal{L} on X. If  H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes
 L^{\otimes l})=0 for some positive integer l

,
then H^{i}(Y, \overline{ $\Omega$}_{Y}^{a}\otimes L)=0.

Proof. Let F:X\rightarrow X' be the l‐times multiplication map. Then F^{*}\mathcal{L}'\simeq \mathcal{L}^{\otimes l}.

Therefore, F^{*}L'\simeq L^{\otimes l} . By the same argument as in the proof of Theorem 2.3.2, we

obtain the desired statement. \square 

By the construction of the split injections in Proposition 2.3.1 and the definition

of the exterior derivative, we have the following proposition.

Proposition 2.3.6. We assume that l=p>0 ,
where p is the characteristic of

k . Then there exist morphisms of complexes

 $\phi$:\displaystyle \bigoplus_{a\geq 0}\overline{ $\Omega$}_{Y'}^{a}[-a]\rightarrow F_{*}\overline{ $\Omega$}_{Y}



88 Osamu Fujino

and

 $\psi$:F_{*}\displaystyle \overline{ $\Omega$}_{Y}\rightarrow\bigoplus_{a\geq 0}\overline{ $\Omega$}_{Y'}^{a}[-a]
such that  $\psi$ 0 $\phi$ is a quasi‐isomorphism. Note that the complex \oplus_{a\geq 0}\overline{ $\Omega$}_{Y}^{a}, [a] has zero

differentials.

Proof. We consider the following diagram.

\overline{ $\Omega$}_{Y'}^{a} \rightarrow^{$\phi$_{a}} F_{*}\overline{ $\Omega$}_{Y}^{a} \rightarrow^{$\psi$_{a}} \overline{ $\Omega$}_{Y'}^{a}

0\downarrow \downarrow d \downarrow 0
\overline{ $\Omega$}_{Y}^{a+1}\rightarrow^{$\phi$_{a+1}}F_{*}\overline{ $\Omega$}_{Y}^{a+1}\rightarrow^{$\psi$_{a+1}}\overline{ $\Omega$}_{Y}^{a+1}

Here, $\phi$_{i} and $\psi$_{i} are \mathcal{O}_{Y'} ‐homomorphisms constructed in Proposition 2.3.1 for any i.

Since we assume that l=p ,
the above diagram is commutative. Therefore, we obtain

the desired morphisms of complexes  $\phi$ and  $\psi$. \square 

As an application of Proposition 2.3.6, we can prove the E_{1} ‐degeneration of Hodge
to de Rham type spectral sequence for toric polyhedra.

Theorem 2.3.7 (cf. Theorem 1.2). Let Y=Y( $\Phi$) be a complete toric polyhe‐
dron. Then the spectral sequence

E_{1}^{a,b}=H^{b}(Y,\overline{ $\Omega$}_{Y}^{a})\Rightarrow \mathbb{H}^{a+b}(Y,\overline{ $\Omega$}_{Y})

degenerates at the E_{1} ‐term.

Proof. The following proof is well known. See, for example, the proof of Theorem

4 in [BTLM]. We assume that l=p>0 ,
where p is the characteristic of k . Then, by

Proposition 2.3.6,

\displaystyle \sum_{a+b=n}\dim_{k}E_{\infty}^{a,b}=\dim_{k}\mathbb{H}^{n}(Y,\overline{ $\Omega$}_{Y})=\dim_{k}\mathbb{H}^{n}(Y, F_{*}\overline{ $\Omega$}_{Y})
\displaystyle \geq\sum_{a+b=n}\dim_{k}H^{b}(Y',\overline{ $\Omega$}_{Y'}^{a})=\sum_{a+b=n}\dim_{k}E_{1}^{a,b}

In general, \displaystyle \sum_{a+b=n}\dim_{k}E_{\infty}^{a,b}\leq\sum_{a+b=n}\dim_{k}E_{1}^{a,b} . Therefore, E_{\infty}^{a,b}\simeq E_{1}^{a,b} holds and

the spectral sequence degenerates at E_{1} . When the characteristic of k is zero, we

can assume that everything is defined over Q. Moreover, we can construct a toric

polyhedron \mathcal{Y} defined over \mathbb{Z} such that Y=\mathcal{Y}\times \mathrm{s}_{\mathrm{p}\mathrm{e}\mathrm{c}\mathbb{Z}} SpecQ. By applying the above

E_{1} ‐degeneration on a general fiber of f : \mathcal{Y}\rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathbb{Z} and the base change theorem, we
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obtain that \displaystyle \sum_{-}\dim_{\mathbb{Q}}E^{a,b}=\dim_{\mathbb{Q}}\mathbb{H}^{n}(Y,\overline{ $\Omega$}_{Y}) . In particular, \displaystyle \sum_{a+b=n}\dim_{k}E_{1}^{a,b}=
\dim_{k}\mathbb{H}^{n}(Y, $\Omega$_{Y}) and we have the desired E_{1} ‐degeneration over k. \square 

We close this section with the following two remarks on Ishida�s results.

Remark 2.3.8. If k=\mathbb{C} and \triangle consists of a finite number of cones, then Ishida�s

de Rham complex \overline{ $\Omega$}_{Y} is canonically isomorphic to the Du Bois complex =$\Omega$_{Y} (see The‐

orem 4.1 in [I]). Therefore, the E_{1} ‐degeneration in Theorem 2.3.7 was known when

k=\mathbb{C} . We note that \mathbb{H}^{a+b}(Y,\overline{ $\Omega$}_{Y}) is isomorphic to H^{a+b}(Y, \mathbb{C}) in this case.

Remark 2.3.9. Let Y=Y( $\Phi$) be a toric polyhedron. In [I, p.130], Ishida

introduced a complex C^{\cdot}($\Phi$^{(2)}, \mathcal{O}\otimes$\Lambda$^{a}) . For the definition and the basic properties, see

[I, Sections 2 and 3]. Note that \overline{ $\Omega$}_{Y}^{a}\rightarrow C^{0}($\Phi$^{(2)}, \mathcal{O}\otimes$\Lambda$^{a})\rightarrow\cdots\rightarrow C^{j}($\Phi$^{(2)}, \mathcal{O}\otimes$\Lambda$^{a})\rightarrow\cdots
is a resolution of \overline{ $\Omega$}_{Y}^{a} ,

that is, \overline{ $\Omega$}_{Y}^{a}\simeq \mathcal{H}^{0}(C^{\cdot}($\Phi$^{(2)}, \mathcal{O}\otimes\ovalbox{\tt\small REJECT}^{a})) and \mathcal{H}^{i}(C^{\cdot}($\Phi$^{(2)}, \mathcal{O}\otimes\ovalbox{\tt\small REJECT}^{a}))=0
for i\neq 0 (cf. [I, Proposition 2.4]). Assume that Y is complete. Let L be a nef line

bundle on Y . Then it is not difficult to see that \overline{ $\Omega$}_{Y}^{a}\otimes L\rightarrow C^{\cdot}($\Phi$^{(2)}, \mathcal{O}\otimes$\Lambda$^{a})\otimes L is a

 $\Gamma$‐acyclic resolution of \overline{ $\Omega$}_{Y}^{a}\otimes L . Therefore, if L is ample, then Theorem 2.3.2 implies
that H^{0}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)=H^{0}(D) and H^{i}(Y,\overline{ $\Omega$}_{Y}^{a}\otimes L)=H^{i}(D)=0 for i\neq 0 ,

where D

is a complex of k‐vector spaces  $\Gamma$(Y, C^{\cdot}($\Phi$^{(2)}, \mathcal{O}\otimes$\Lambda$^{a})\otimes L) .

§3. Suppplements

In this section, we make some remarks on my paper [F1]. Let X=X() be a

toric variety defined over a field k of any characteristic. Note that \triangle is not assumed

to be finite in this section. First, we define \overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A) ,
which is a slight

generalization of \overline{ $\Omega$}_{X}^{a}(\log B) in [F1, Definition 1.2].

Definition 3.1. Let X be a toric variety and let A and B be reduced torus

invariant Weil divisors on X without common irreducible components. We put W=

X\backslash Sing (X) ,
where Sing(X) is the singular locus of X . Then we define \overline{ $\Omega$}_{X}^{a}(\log(A+

B))(-A)=$\iota$_{*}($\Omega$_{W}^{a}(\log(A+B))\otimes \mathcal{O}_{W}(A)) for any a\geq 0 ,
where  $\iota$ :  W\mapsto X is the

natural open immersion.

By the same argument as in [F1, Section 2] (see also Subsection 2.2), the split

injection $\Omega$_{T}^{a}, \rightarrow F_{*}$\Omega$_{T}^{a} induces the following split injection.

Proposition 3.2. Let F:X\rightarrow X' be the l ‐times multiplication map. Then the

split injection $\Omega$_{T}^{a}, \rightarrow F_{*}$\Omega$_{T}^{a} naturally induces the following split injection $\Omega$_{X}^{a}, (\log(A'+
B (-A')\rightarrow F_{*}\overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A) for any a\geq 0.

The next proposition is obvious by the definition of the exterior derivative and the

construction of the split injections in Proposition 3.2 (cf. Proposition 2.3.6).
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Proposition 3.3. We assume that l=p>0 ,
where p is the characteristic of k.

Then there exist morphisms of complexes

 $\phi$:\displaystyle \bigoplus_{a\geq 0}\overline{ $\Omega$}_{X'}^{a}(\log(A'+B (-A')[-a]\rightarrow F_{*}\overline{ $\Omega$}_{\dot{X}}(\log(A+B))(A)
and

 $\psi$:F_{*}\displaystyle \overline{ $\Omega$}_{\dot{X}}(\log(A+B))(-A)\rightarrow\bigoplus_{a\geq 0}\overline{ $\Omega$}_{X'}^{a}(\log(A'+B (-A')[a]
such that the composition  $\psi$\circ $\phi$ is a quasi‐isomorphism. We note that the complex

\oplus_{a\geq 0}\overline{ $\Omega$}_{X}^{a}, (\log(A'+B (-A')[a] has zero differentials.

The following E_{1} ‐degeneration is a direct consequence of Proposition 3.3. See the

proof of Theorem 2.3.7.

Theorem 3.4 (cf. Theorem 1.4). Let X be a complete toric variety and let A

and B be reduced torus invariant Weil divisors on X without common irreducible com‐

ponents. Then the spectral sequence

E_{1}^{a,b}=H^{b}(X,\overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A))\Rightarrow \mathbb{H}^{a+b}(X,\overline{ $\Omega$}_{\dot{X}}(\log(A+B))(A))

degenerates at the E_{1} ‐term.

Remark 3.5. If k=\mathbb{C} and X is non‐singular and complete, then it is well

known that \mathbb{H}^{a+b}(X, $\Omega$_{\dot{X}})=H^{a+b}(X, \mathbb{C}) , \mathbb{H}^{a+b}(X, $\Omega$_{\dot{X}}(\log B))=H^{a+b}(X\backslash B, \mathbb{C}) ,
and

\mathbb{H}^{a+b}(X, $\Omega$_{\dot{X}}(\log A)\otimes \mathcal{O}_{X}(-A))=H_{c}^{a+b}(X\backslash A, \mathbb{C}) ,
where H_{c}^{a+b}(X\backslash A, \mathbb{C}) is the coho‐

mology group with compact support.

Finally, we state a generalization of [F1, Theorem 1.1]. The proof is obvious. See

also Theorem 4.3 below.

Theorem 3.6 (cf. Theorem 1.3). Let X be a toric variety and let A and B be

reduced torus invariant Weil divisors on X without common irreducible components. Let

L be a line bundle on X. If H^{i}(X,\overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A)\otimes L^{\otimes l})=0 for some positive

integer l
,

then H^{i}(X,\overline{ $\Omega$}_{X}^{a}(\log(A+B))(-A)\otimes L)=0.

Some other vanishing theorems in [F1] can be generalized by using Theorem 3.6.

We leave the details for the reader�s exercise.

§4. Kollár type vanishing theorems and extension theorem

In this section, we treat a variant of the method in [F1]. Here, every toric variety
is defined over a field k of any characteristic and a fan is not necessarily finite. Let
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f : Z\rightarrow X be a toric morphism of finite type. Then we have the following commutative

diagram of l‐times multiplication maps.

Z\rightarrow^{F^{Z}}Z'

f\downarrow \downarrow f'
X\rightarrow^{F^{X}}X'

This means that F^{X} : X\rightarrow X' and F^{Z} : Z\rightarrow Z' are the l‐times multiplication maps

explained in 2.2 and that F^{X}\circ f=f'\circ F^{Z} . Let \mathcal{F} be a coherent sheaf on Z such that

there exists a split injection  $\alpha$ : \mathcal{F}'\rightarrow F_{*}^{Z}\mathcal{F} . Then we have an obvious lemma.

Lemma 4.1. We have a split injection

 $\beta$=R^{j}f_{*}' $\alpha$:R^{j}f_{*}'\mathcal{F}'\rightarrow F_{*}^{X}R^{j}f_{*}\mathcal{F}

for any j.

Proof. Since F^{X} and F^{Z} are finite, we have the following isomorphisms

F_{*}^{X}R^{j}f_{*}\mathcal{F}\simeq R^{j}(F^{X}\circ f)_{*}\mathcal{F}\simeq R^{j}(f'\circ F^{Z})_{*}\mathcal{F}\simeq R^{j}f_{*}'(F_{*}^{Z}\mathcal{F})

by Leray�s spectral sequence. Therefore, we obtain a split injection

 $\beta$=R^{j}f_{*}' $\alpha$:R^{j}f_{*}'\mathcal{F}'\rightarrow F_{*}^{X}R^{j}f_{*}\mathcal{F}

for any j. \square 

Let L be a line bundle on X . Then we obtain the following useful proposition.

Proposition 4.2. If H^{i}(X, R^{j}f_{*}\mathcal{F}\otimes L^{\otimes l})=0 for some positive integer l
,

then

H^{i}(X, R^{j}f_{*}\mathcal{F}\otimes L)=0.

Proof. Let F^{X} be the l‐times multiplication map. As usual, we have

H^{i}(X, R^{j}f_{*}\mathcal{F}\otimes L)\simeq H^{i}(X', R^{j}f_{*}'\mathcal{F}'\otimes L')

\subset H^{i}(X', F_{*}^{X}R^{j}f_{*}\mathcal{F}\otimes L')
\simeq H^{i}(X, R^{j}f_{*}\mathcal{F}\otimes L^{\otimes l})

because (F^{X})^{*}L'\simeq L^{\otimes l} . So, we obtain the desired statement. \square 

Therefore, we get a very powerful vanishing theorem.
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Theorem 4.3. Let f : Z\rightarrow X be a proper toric morphism and let A and B

be reduced torus invariant Weil divisors on Z without common irreducible components.

Assume that  $\pi$ :  X\rightarrow S is a projective toric morphism and L is a  $\pi$ ‐ample line bundle

on X. Then  R^{i}$\pi$_{*}(L\otimes R^{j}f_{*}\overline{ $\Omega$}_{Z}^{a}(\log(A+B))(-A))=0 for any i>0, j\geq 0 ,
and a\geq 0.

Proof. The problem is local. So, we can assume that S is affine. We put \mathcal{F}=

\overline{ $\Omega$}_{Z}^{a}(\log(A+B))(-A) . Then, this is a direct consequence of Proposition 3.2 and Propo‐
sition 4.2 by Serre�s vanishing theorem. \square 

We obtain Kollár type vanishing theorem for toric varieties as a special case of

Theorem 4.3.

Corollary 4.4 (Kollár type vanishing theorem). Let f : Z\rightarrow X be a proper

toric morphism and let B be a reduced torus invariant Weil divisor on Z. Assume that X

is projective and L is an ample line bundle on X. Then H^{i}(X, R^{j}f_{*}\mathcal{O}_{Z}(K_{Z}+B)\otimes L)=0
for any i>0 and j\geq 0.

Proof. It is sufficient to put a=\dim Z in Theorem 4.3. \square 

The next theorem is one of the main results of this paper. See also Theorem 5.3.

Theorem 4.5 (cf. [\mathrm{M} , Theorem 5.1]). Let  $\pi$ :  X\rightarrow S be a proper toric mor‐

phism and Y=Y( $\Phi$) a toric polyhedron on X=X() . Let L be a  $\pi$ ‐ample line bundle

on X. Let \mathcal{I}_{Y} be the defining ideal sheaf of Y on X. Then R^{i}$\pi$_{*}(\mathcal{I}_{Y}\otimes L)=0 for any

i>0 . Since R^{i}$\pi$_{*}L=0 for any i>0 ,
we have that R^{i}( $\pi$|_{Y})_{*}(L|_{Y})=0 for any i>0

and that the restriction map $\pi$_{*}L\rightarrow( $\pi$|_{Y})_{*}(L|_{Y}) is surjective.

Proof. If Y=X
,

then there is nothing to prove. So, we can assume that Y\subseteq X.
Let f : V\rightarrow X be a toric resolution such that K_{V}+E=f^{*}(K_{X}+D) and that

\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(f^{-1}(Y)) is a simple normal crossing divisor on V . We decompose E=E_{1}+E_{2},
where E_{1}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(f^{-1}(Y)) and E_{2}=E-E_{1}.

Claim. We have an isomorphism \mathcal{I}_{Y}\simeq f_{*}\mathcal{O}_{V}(-E_{1}) .

Proof of Cl aim. By the definition of E_{1}, f : V\rightarrow X induces a morphism f :  E_{1}\rightarrow

 Y . We consider the following commutative diagram.

\mathrm{o}-\mathcal{I}_{Y-\mathcal{O}_{X-\mathcal{O}_{Y}}}\rightarrow 0

 0\rightarrow f_{*}\mathcal{O}_{V}(-E_{1})\downarrow\rightarrow \mathcal{O}_{X}\downarrow\simeq\rightarrow f_{*}\mathcal{O}_{E_{1}}\downarrow\rightarrow\cdots
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Since \mathcal{O}_{Y}\rightarrow f_{*}\mathcal{O}_{E_{1}} is injective, we have \mathcal{I}_{Y}\simeq f_{*}\mathcal{O}_{V}(-E_{1}) . \square 

By the vanishing theorem (cf. Theorem 4.3 and Corollary 4.4), we obtain that

R^{i}$\pi$_{*}(f_{*}\mathcal{O}_{V}(-E_{1})\otimes L)\simeq R^{i}$\pi$_{*}(\mathcal{I}_{Y}\otimes L)=0

for any i>0 because -E_{1}\sim K_{V}+E_{2} . The other statements are obvious by exact

sequences. \square 

§5. Toric polyhedra as quasi‐log varieties

In this section, all (toric) varieties are assumed to be of finite type over the complex
number field \mathbb{C} to use the results in [F2]. We will explain the background and motivation

of the results obtained in the previous sections. Note that this section is independent of

the other sections. We quickly review the notation of the \log minimal model program.

Notation. Let  V be a normal variety and let B be an effective \mathbb{Q}‐divisor on V

such that K_{V}+B is \mathbb{Q}‐Cartier. Then we can define the discrepancy a(E, V, B)\in \mathbb{Q}
for any prime divisor E over V . If a(E, V, B)\geq-1 for any E

,
then (V, B) is called log

canonical. Let (V, B) be a \log canonical pair. If  E is a prime divisor over V such that

a(E, V, B)=-1 ,
then C_{V(E)} is called log canonical center of (V, B) ,

where C_{V(E)} is the

closure of the image of E on V.

Let X=X() be a toric variety and let D be the complement of the big torus.

Then the next proposition is well known. So, we omit the proof.

Proposition 5.1. The pair (X, D) is log canonical and K_{X}+D\sim 0 . Let W

be a closed subvariety of X. Then, W is a log canonical center of (X, D) if and only if

W=V( $\sigma$) for some  $\sigma$\in\triangle\backslash \{0\}.

By Proposition 5.1 and adjunction in [ \mathrm{A}
,
Theorem 4.4] and [F3, Theorem 3.12], we

have the following useful theorem.

Theorem 5.2. Let Y=Y( $\Phi$) be a toric polyhedron on X. Then, the log canon‐

ical pair (X, D) induces a natural quasi‐log structure on (Y, 0) . Note that (Y, 0) has only

qlc singularities.

Here, we do not explain the definition of quasi‐log varieties. It is because it is very

difficult to grasp. See the introduction of [F3] and 5.6 below. The essential point of

the theory of quasi‐log varieties is contained in the proof of Theorem 5.3 below. The

following theorem: Theorem 5.3 is my motivation for Theorem 4.5. It depends on the

deep results obtained in [F2].
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Theorem 5.3 (cf. [\mathrm{M} , Theorem 5.1]). Let  $\pi$ :  X\rightarrow S be a proper toric mor‐

phism and Y=Y( $\Phi$) a toric polyhedron on X=X() . Let M be a Cartier divisor on

X such that M is  $\pi$-nef and  $\pi$ ‐big and  M|_{V( $\sigma$)} is  $\pi$ ‐big for any  $\sigma$\in\triangle\backslash  $\Phi$ . Let \mathcal{I}_{Y} be

the defining ideal sheaf of Y on X. Then R^{i}$\pi$_{*}(\mathcal{I}_{Y}\otimes \mathcal{O}_{X}(M))=0 for any i>0 . Since

R^{i}$\pi$_{*}\mathcal{O}_{X}(M)=0 for any i>0 ,
we have that R^{i}$\pi$_{*}\mathcal{O}_{Y}(M)=0 for any i>0 and that

the restriction map $\pi$_{*}\mathcal{O}_{X}(M)\rightarrow$\pi$_{*}\mathcal{O}_{Y}(M) is surjective.

Sketch of the proof. If Y=X
,

then there is nothing to prove. So, we can assume

that Y\subseteq X . Let f : V\rightarrow X be a toric resolution such that K_{V}+E=f^{*}(K_{X}+D)
and that \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(f^{-1}(Y)) is a simple normal crossing divisor on V . We decompose E=

E_{1}+E_{2} ,
where E_{1}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(f^{-1}(Y)) and E_{2}=E-E_{1} . We consider the short exact

sequence

0\rightarrow \mathcal{O}_{V}(-E_{1})\rightarrow \mathcal{O}_{V}\rightarrow \mathcal{O}_{E_{1}}\rightarrow 0.

Then we obtain the exact sequence

 0\rightarrow f_{*}\mathcal{O}_{V}(-E_{1})\rightarrow \mathcal{O}_{X}\rightarrow f_{*}\mathcal{O}_{E_{1}}\rightarrow R^{1}f_{*}\mathcal{O}_{V}(-E_{1})\rightarrow\cdots

Since -E_{1}\sim K_{V}+E_{2}, R^{1}f_{*}\mathcal{O}_{V}(-E_{1})\simeq R^{1}f_{*}\mathcal{O}_{V}(K_{V}+E_{2}) and every non‐zero local

section of R^{1}f_{*}\mathcal{O}_{V}(E) contains in its support the f‐image of some strata of (V, E_{2})
(see, for example, [\mathrm{A} , Theorem 7.4] or [F3, Theorem 3.13]). Note that W is a stratum

of (V, E_{2}) if and only if W is V or a \log canonical center of (V, E_{2}) . On the other hand,
the support of f_{*}\mathcal{O}_{E_{1}} is contained in Y . Therefore, the connecting homomorphism

f_{*}\mathcal{O}_{E_{1}}\rightarrow R^{1}f_{*}\mathcal{O}_{V}(E) is a 0‐map. Thus, we obtain

0\rightarrow f_{*}\mathcal{O}_{V}(-E_{1})\rightarrow \mathcal{O}_{X}\rightarrow \mathcal{O}_{Y}\rightarrow 0

and \mathcal{I}_{Y}\simeq f_{*}\mathcal{O}_{V}(-E_{1}) . We consider f^{*}M\sim f^{*}M-E_{1}-(K_{V}+E_{2}) . By the vanish‐

ing theorem (see [F2] and [F3, Theorem 3.13]), we obtain  R^{i}$\pi$_{*}(f_{*}\mathcal{O}_{V}(f^{*}M-E_{1}))\simeq
 R^{i}$\pi$_{*}(\mathcal{I}_{Y}\otimes \mathcal{O}_{X}(M))=0 for any i>0 . The other statements are obvious by exact

sequences. \square 

Remark 5.4. In Theorem 5.3, by the Lefschetz principle, we can replace the

base field \mathbb{C} with a field k of characteristic zero. I believe that Theorem 5.3 holds true

for toric varieties defined over a field k of any characteristic. However, I did not check

it.

Remark 5.5. In the proof of Theorem 5.3, we did not use the fact that  $\pi$ :  X\rightarrow

 S is toric. We just needed the properties in Proposition 5.1.

5.6 (Comments on Theorem 5.2). We freely use the notation in the proof of The‐

orem 5.3. We assume that Y\subseteq X . Then we have the following properties.
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1. g^{*}0\sim K_{E_{1}}+E_{2}|_{E_{1}} ,
where g=f|_{E_{1}}:E_{1}\rightarrow Y.

2. E_{2}|_{E_{1}} is reduced and g_{*}\mathcal{O}_{E_{1}}\simeq \mathcal{O}_{Y}.

3. The collection of subvarieties \{V( $\sigma$)\}_{ $\sigma$\in $\Phi$} coincides with the image of torus invariant

irreducible subvarieties of V which are contained in E_{1}.

Therefore, Y is a quasi‐log variety with the quasi‐log canonical class 0 and the subvari‐

eties V( $\sigma$) for  $\sigma$\in $\Phi$ are the qlc centers of  Y . We sometimes call g : (E_{1}, E_{2}|_{E_{1}})\rightarrow Y\mathrm{a}
quasi‐log resolution. For the details, see [F3].
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