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A-discriminants and Euler obstructions of toric
varieties

By

Yutaka MATSUT* and Kiyoshi TAKEUCHI**

Abstract

In this short note, we introduce our recent results on the explicit description of the degrees
of A-discriminant varieties introduced by Gelfand-Kapranov-Zelevinsky [10]. Our formulas can
be applied also to the case where the A-discriminant varieties are higher-codimensional and
their degrees are described by the geometry of the configurations A. For the detail, see [23].

§1. Degree formulas for A-discriminants

In this section, we first introduce the formula for the degrees of A-discriminants
obtained by Gelfand-Kapranov-Zelevinsky [10] and announce our generalization in [23].

Let M ~ 7™ be a Z-lattice (free Z-module) of rank n and Mg := R ®z M the real
vector space associated with M. Let A C M be a finite subset of M and denote by P its
convex hull in Mg. In this note, such a polytope P will be called an integral polytope
in Mg. If A = {a(l),a(2),...,a(N + 1)}, we can define a morphism p4: T — PV
from an algebraic torus T := (C*)" to a complex projective space PV (N := 4 —1) by

(1.1) T = (T, 22, ..., xn) — [z go@ . o goNHD]

where for each a(i) € A C M ~ 7" we set 2%() = xf(i)lxg(i)z s as usual.

Definition 1.1 ([10]). Let X4 :=1im @4 be the closure of the image of
oa: T — PN. Then the dual variety X% C (PV)* of X, is called the discriminant
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variety associated with A. If moreover X is a hypersurface in the dual projective
space (PY)*, then the defining homogeneous polynomial of X* (which is defined up to
non-zero constant multiples) is called the A-discriminant.

Note that the discriminant variety X7 is naturally identified with the set of Laurent
polynomials f: T = (C*)" — C of the form f(z) = > .4 ca?® (ca € C) such that
{z € T'| f(z) = 0} is a singular hypersurface in 7. In order to introduce the degree
formula for A-discriminants proved by Gelfand-Kapranov-Zelevinsky [10], we need the
following.

Definition 1.2 ([10]).  For a finite set B C M ~ Z", we define an affine Z-
sublattice Affz(B) of M by

(1.2) Aff7(B) = {Z Cy U

veEB

Cy €1, chzl}.

veEB

In this note, we sometimes denote the affine sublattice Aff;(B) C M by M (B). Now
let A be a face of P and denote by L(A) the smallest affine subspace of Mg containing
A. Then M(ANA) = Affz(ANA) is a Z-lattice of rank dimA = dimL(A) in L(A) and
we have M(A N A)r ~ L(A). Let vol be the Lebesgue measure of (L(A), M(AN A))
by which the volume of the fundamental domain by the action of M(ANA) on L(A) is
measured to be 1. For a subset K C L(A), we set

(1.3) Volz(K) := (dimA)! - vol(K).

We call it the normalized volume of K with respect to the lattice M (ANA). Throughout
this note, we use this normalized volume Voly, instead of the usual one.

The following formula is obtained by Gelfand-Kapranov-Zelevinsky [10, Chapter 9,
Theorem 2.8].

Theorem 1.3 ([10]).  Assume that X4 C PV is smooth and X is a hypersurface
in (PN)*. Then the degree of the A-discriminant is given by the formula:

(1.4) deg X7 = Y (=1)®M™MA(1 + dimA) Vol (A).
A<P

In order to state our generalization of Theorem 1.3 to the case where X’} may be
higher-codimensional, recall the basic correspondence (0 < k < n = dimP):

(1.5) {k-dimensional faces of P} LN {k-dimensional T-orbits in X 4}

proved by [10, Chapter 5, Proposition 1.9]. For a face A < P of P, we denote by
TA the corresponding T-orbit in X 4. We denote the value of the Euler obstruction
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Eux,: X4 — Z of X4 on Ta by Eu(A) € Z. The precise definition of the Euler
obstruction will be given later in Section 3. Here we simply recall that the Euler
obstruction of X 4 takes the value 1 on the smooth part of X 4. In particular, for A = P
the T-orbit T is open dense in X4 and Eu(A) = 1.

Theorem 1.4 ([23]). For1<i<N, set
(1.6) = (—1)cdima { (dim? a 1) + (=) i+ 1)} Volz(A) - Eu(A).
A<P
Then the codimension r = codimX} = N — dimX} and the degree of the dual variety
X, are given by
(1.7) r = codimX} = min{i | §; # 0},
(1.8) deg X} =9,.

Remark.

1. For p € Z and q € Z>¢, we used the generalized binomial coefficient

(p) _pp=Dp=2)---(p=g+1)

q q!

(1.9)

imA — 1 -1 ,
For example, for a vertex A = {v} < P, we have (dlmi > = ( > =(-1)".

2. Note that the number codimX’ — 1 is called the dual defect of X 4.

Corollary 1.5.  Assume that X is a hypersurface in (PN)*. Then the degree
of the A-discriminant is given by

(1.10) deg X3 = Y (—1)®mA(1 + dimA)Vol(A) - Eu(A).
A<P

The above theorem is proved by using Ernstrom’s class formula in [7] (see [22] for
another proof and its generalizations). Note that if the dual defect of X 4 is zero the
degree formula of X7 for singular X4’s was also obtained by Dickenstein-Feichtner-
Sturmfels [5]. In their paper, they express the degree of X% by some combinatorial
invariants of A. Our formulas seem to be more directly related to the geometry of the
convex polytope P.

In Section 3, we will give two combinatorial formulas for the Euler obstruction
Eux,: X4 — Z of X4. The first one is simpler and can be applied only to the
very special but important case where the integral polytope P is sufficiently large and
A=PNM (ie. Aissaturated), whereas the second one can be applied to the general

case.
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To end this section, we shall briefly explain an important case to which our first
formulas can be applied. Let N := Homy(M,Z) = M* be the dual Z-lattice of M and
set Ng := R®y N. Since Ny is the dual vector space of Mg, a point u € Ng can be
considered as a linear functional on My and we can define the following subset of P.

Definition 1.6.  In the setting above, we define the supporting face A(P,u) of
u in P by

(1.11) A(P,u) := {v eP

(u,v) = 1r&n};(u,w) } .
Note that for u = 0 € Ng we have A(P,u) = P. Now for each face A < P of P let
us set

(1.12) on:={u € Nr | A(P,u) = A}.
Then we obtain a decomposition of Ng:

(1.13) Ne = | | oa,
A<P

where A ranges through the set of faces of P. Each ox is a strongly convex rational
polyhedral cone in Ng and Xp := {Ga | A < P} defines a complete fan in Ni (see
[9], [26] and so on for the definitions). We call ¥p the normal fan of P. Then by [26,
Theorem 2.13] if P is sufficiently large and A = PN M, ¢4 is an embedding and X 4
is naturally identified with the image of the projective embedding of the complete toric
variety X, associated with ¥p and A C P. In particular, X4 is a normal variety in
this case.

§2. Milnor fibers over singular toric varieties

In this section, we give some explicit formulas for the monodromy zeta functions
of non-degenerate polynomials over possibly singular toric varieties. These formulas
are considered to be natural generalizations of the previous results by Varchenko [31],
Kirillov [16] and Oka [27], [28] and so on and will be used for the explicit computation
of the Euler obstructions of toric varieties in the next section.

First, we recall the definitions of Milnor fibers and Milnor monodromies over sin-
gular varieties (see for example [30] for a review on this subject). Let X C CV be a
possibly singular subvariety such that 0 € X and f: X — C be a polynomial function
on X . For simplicity, we assume that Y = f~1(0) is a hypersurface in X containing the
origin. Then the following lemma is well-known (see for example [18, Definition 1.4]).
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Lemma 2.1.  For sufficiently small € > 0, there exists ng > 0 with 0 < ny < €
such that for 0 < Vn < ng the restriction of f:

(2.1) X N B(0:e) N fHD(0;7) \ {0}) — D(0;n) \ {0}

is a topological fiber bundle over the punctured disk D(0;n)\{0} :={z € C|0 < |z] < n},
where B(0;¢) is the open ball in CN with radius ¢ centered at the origin.

Definition 2.2. A fiber of the above fibration is called the Milnor fiber of the
function f: X — C at 0 € X and we denote it by Fj.

As in the same way as the case of polynomials over CV (see [25]), we can define
the Milnor monodromy operators

(2.2) ®;: HI(Fy;C) — H’(Fy;C) (j=0,1,...)

and the zeta-function

(2.3) Cr(t) == ﬁ det(id — t®,)’

Jj=0

associated with it. Since the above product is in fact finite, (%) is a rational function
of t and its degree in t is the topological Euler characteristic x(Fy) of the Milnor fiber
Fp.

Now we return to the toric case. Let M ~ Z™ be a Z-lattice of rank n and set
Mg := R®y M. We take a finitely generated subsemigroup S of M such that 0 € §
and denote by K (S) the convex hull of S in Mg. For simplicity, assume that K(S) is a
strongly convex polyhedral cone in Mg of the maximal dimension (i.e. dimK(S) = n).
Then the group algebra C[S] is finitely generated over C and X (S) := Spec(CIS]) is a
(not necessarily normal) toric variety of dimension n (see [9], [10] and [26] and so on for
the detail). Indeed, let M(S) be the Z-sublattice of rank n in M generated by S and
consider the algebraic torus T := Spec(C[M (S)]) ~ (C*)™. Then the affine toric variety
X (S) admits a natural action of T' = Spec(C[M(S)]) and has a unique 0-dimensional
orbit. We denote this orbit point by 0 and call it the special point of X (S). Recall that a
polynomial function f: X (S) — C on X(S) corresponds to an element f = > _say-v
(a, € C) of C[S].

Definition 2.3. Let f =) _sa,-v € C[S] be a polynomial function on X(S).

(i) We define the support supp(f) of f by

(2.4) supp(f) ={veS|a, #0} CS.
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(ii) We define the Newton polygon I';.(f) of f to be the convex hull of U, cqupp(p) (v +
K(S)) in K(S).

(iii) The union of compact faces of I'; (f) is called the Newton diagram of f. We denote
it by T'(f).

Now let us fix a function f € C[S] such that 0 ¢ supp(f) (i.e. f: X(S) — C
vanishes at the special point 0) and consider its Milnor fiber Fy at 0 € X (S). Choose
a Z-basis of M(S) and identify M (S) with Z". Then each element v of S C M(S) is
identified with a Z-vector v = (vy,...,v,) and to any g = >, b, - v € C[S] we can
associate a Laurent polynomial L(g) = >, .gby-2” on T = (C*)". One can easily prove
that the following definition does not depend on the choice of the Z-basis of M (S).

Definition 2.4. We say that f = ) _sa, -v € C[S] is non-degenerate if for
any compact face v in I'; (f) the complex hypersurface

(2.5) {z=(21,...,2n) € (C)" | L(f5)(z) = 0}

in (C*)™ is smooth and reduced, where we set f := " ay * .

veEYNS

For each face A < K(S) of K(S) such that T (f) N A # 0, let v&,42,. ..,fy?f(A)
be the compact faces of I'y (f) N A of the maximal dimension (i.e. dimy? = dimA —1).
In order to define the lattice distance from v to the origin 0 € Mg ~ M (S)g, we take
the unique smallest linear subspace LL(A) of My containing A and consider the Z-lattice
M (S N A) of rank dimA such that M(SNA)r = R®z M(SNA) ~L(A). Then there
exists a unique primitive vector uf* in the dual lattice M (S N A)* of M(S N A) whose
supporting face in T (f) N A is exactly v2.

Definition 2.5. We define the lattice distance d(0,72) € Zs¢ from v2 to the
origin 0 € Mg to be the value of uf on v2.

Then by using the normalized volume Volz(’)/iA) of ’yiA with respect to the lattice
M(SNA)NL(yA) we have the following result.

Theorem 2.6 ([24]).  Assume that f = ) _ga, - v € C[S] is non-degenerate.
Then the monodromy zeta function (¢(t) of f: X(S) — C at 0 € X(S) is given by

(2:6) Gm= I <
T (/)NA£0
where for each face A < K(S) of K(S) such that T (f) N A # 0 we set

n(A)

(2.7) Ca(t) = H (1 _ td(o,wf))

i=1

(—1)mA=1Vol, (vi)
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Let T'2 be the convex hull of y2U{0} in A. Then the normalized volume Volz(T'®) €
7 of T® with respect to the lattice M (S N A) is equal to d(0,v2) - Volz(72) and we
obtain the following result.

Corollary 2.7 ([24]). Assume that f = ) _ga,-v € C[S] is non-degenerate.
Then the Euler characteristic of the Milnor fiber Fy of f: X(S) — C at 0 € X(S) is
given by

n(A)
(2.8) X(Fo)= > (=1)ImA N Voly (TP,
T (/)NA£D i=1

Now recall the following correspondence (0 < k < n):
(2.9) {k-dimensional faces in K(S)} LN {k-dimensional T-orbits in X (S)}.

For a face A of K(S), we denote by Ta the corresponding T-orbit in X (S). Then we
obtain the following local version of Bernstein-Khovanskii-Kushnirenko’s theorem which
expresses the Euler characteristic of FyNTa in terms of the Newton diagram of f. Note
that Fp NTa is a locally closed subset of Ta.

Theorem 2.8 ([24]).  Assume that f = ) _ga, - v € C[S] is non-degenerate.
Then we have
' n(A)
(2.10) X(FoNTa) = (=)0 " Vol (T7).
i=1
In the rest of this section, we extend our results to non-degenerate complete
intersection subvarieties in the affine toric variety X(S). Let fi, fo,..., fr € C[S]
(1 <k <n=dimX(S)) and consider the following subvarieties of X (S):

(2.11) V:={f1=---=fk_1kaZO}CWZZ{fl="'=fk_1=0}.

Assume that 0 € V. Our objective here is to study the Milnor fiber Gy of g :=
fiklw: W — Cat 0 € V = ¢g71(0) € W and its monodromy zeta function (,(t).
We call (,4(t) the k-th principal monodromy zeta function of V = {f; =--- = f; = 0}.
For each face A < K(S) of K(S) such that ' (fx) N A # 0, we set

(2.12) IA) :={je{l,2,... k—1} | T (f) NA£O}C{1,2,...  k—1}

and m(A) = 4I(A) + 1. Let L(A), M(SNA), M(SNA)* be as before and L(A)*
the dual vector space of L(A). Then M (SN A)* is naturally identified with a subset of
L(A)* and the polar cone

(2.13) AY ={u e L(A)* | (u,v) >0 for any v € A}
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of A in L(A)* is a rational polyhedral convex cone with respect to M(SNA)* C L(A)*.
For j € I(A)U{k} and u € IntAY N M (SN A)*, we define the u-part f}* € C[SNA] of
fi by

(2.14) fr= Y a,rweCSnA]
vel(filasu)

where f; = ZU€F+(fj) a, - v in C[S] and we set f;|a = Zven(fj)rm a, -v € ClSNA]
and

(u,0) = min (u,w) } .

wel4 (f;)NA

(215) F(fj|A;’U,) = {U S F+(fj) NnA

Now recall the following definition.

n

Definition 2.9.  Let g1, 92,...,gp, be Laurent polynomials on (C*)".
say that the subvariety {z € (C*)" | gi(z) = g2(x) = -+ = gp(x) = 0} of (C*)" is
non-degenerate complete intersection if the p-form dg; Adgs A - - - A dg, does not vanish

Then we

on it.

By taking a Z-basis of M (S) and identifying the u-parts [ with Laurent polyno-
mials L(f}') on T' = (C*)" as before, we have the following definition which does not
depend on the choice of the Z-basis of M (S).

Definition 2.10.  We say that (fi,..., fi) is non-degenerate if for any face A <
K(S) such that Ty (fx) N A # 0 (including the case where A = K(S)) and any u €
IntAY N M (SNA)* the following two subvarieties of (C*)™ are non-degenerate complete

intersections.
(2.16) {z € (C)" | L(fj')(z) = 0 for any j € I(A)}
(2.17) {x e (C)" | L(fj")(x) = 0 for any j € I(A) U{k}}.

Remark.  The above definition is slightly different from the one in [28] and so on,
since our result (Theorem 2.11 below) generalizes the ones in [16], [27] and [28].

For each face A < K(S) of K(S) such that T';(fi) N A # 0, let us set
(2.18) far=1{ 11 #]- fxeCl8]
JEI(A)

and consider its Newton polygon T'y (fa) C K(S). Let v, 44, ..., ’yf(A) be the compact
faces of Ty (fa) N A (# 0) such that dimy® = dimA — 1. Then for each 1 < i < n(A)
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there exists a unique primitive vector uiA € IntAY N M (SN A)* whose supporting face
in Ty (fa) N A is exactly v2. For j € I(A) U {k}, set

219) A= {venipna [ = i (],
(2.20) d(vay(fJ)zA) = wEFI&iE)ﬁA<uiA’w>.

For j € {1,2,...,k—1}\ I(A), we also set y(f;)5 := 0. Note that we have

(2.21) W=D A,
FENA)U{k}
2.22 dim y(f)A | = dimy? = dimA — 1
J/1 7
JENA)U{k}

for any face A < K(S) such that T'y (fx) NA # 0 and 1 < i < n(A). For each face
A < K(S) such that T'y (fx) N A # 0, dimA > m(A) and 1 <17 < n(A), we set
(2.23)

A A A A A
K= Z VOlZ(y(fjl)i 7"'77(fj1)i17"'77(fjm(A))’L‘ 7--'77(fjm(A))i )
a1+t ay=dimA—1 o ;i,mes N Vtimes

ag > 1for g <m(A) — 1, apa)>0 m(A)

Here we set I(A)U{k} = {j1,J2,.- -,k = Jm(a)} and

(2'24) VOlZ(:V(fﬁ)z’Av SRR ’Y(fjl)iAj cee 7:)/(fjm(A))iA7 SRR FY(fjm(A))iAj)

D ~

a1 times Qp(a) times

is the normalized (dimA — 1)-dimensional mixed volume of

(2'25) ’Y(fjl)iAv s ’Y(fjl)iAj s ’Y(fjm(A))z'Av s ’Y(fjm(A))A

7
2

h "'

oy times Qm(a) times
(see [28, Chapter IV]) with respect to the lattice M (S N A) NL(v2).

Remark.

1. If dimA — 1 =0, we set

(2.26) K = Vol (y(fr)2, -y (fi)?) =1

v~

0 times

(in this case y(fx)2 is a point).
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2. Let Q1,Q2,...,Q, be integral polytopes in (RP,ZP). Then their normalized p-
dimensional mixed volume Volz(Q1,Qs2, ..., Q)p) € Z is given by the formula

(2.27) p!Volz(Q1,Q2, ..., Qp)
=V012(Q1 + Q2 + -+ Qp)
P
—ZVOIZ(Ql +o F Qi1 + Qi+ + Q)
i=1
4 Z Volz(Qr1+ -+ Qi1 + Qi1+ + Q1 + Qjp1 + -+ Qp)
1<i<j<p

p
o (1) ZVOlz(Qi),
i=1

where Volz( - ) € Z is the normalized p-dimensional volume.

Theorem 2.11 ([24]).  Assume that (f1,..., fx) is non-degenerate. Then the
k-th monodromy zeta function (4(t) (9 = fulw: W — C) is given by

(2.28) G = I <,

Ty (fx)NAZD
dimA>m(A)

where for each face A < K(S) of K(S) such that T (fx) N A # 0 and dimA > m(A)
we set

n(A) (—1)dimA—m(A) A
7

(2.29) =] (1_td<o,w<fk>f>)

i=1

In particular, the Euler characteristic of the Milnor fiber Gy of g = frlw: W — C at
0€V =g 10) is given by

n(A)
(2.30) X(Go) = > (=1)ImATANT a0,y (fi)f) - K
Ty (fr)NA#D i=1
dimA>m(A)

§3. Euler obstructions of toric varieties

In this section, we give an algorithm to compute the Euler obstructions of toric
varieties. A beautiful formula for the Euler obstructions of 2-dimensional toric varieties
was proved by Gonzalez-Sprinberg [11]. Our result can be considered as a natural
generalization of his formula.

First we recall the definition of Euler obstructions (for the detail see [13] and so
on). Let X be an algebraic variety over C. Then the Euler obstruction Eux of X is
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a Z-valued function on X defined as follows. The value of Eux on the smooth part of
X is defined to be 1. In order to define the value of Fux at a singular point p € X,
we take an affine open neighborhood U of p in X and a closed embedding U «—— CV.
Next we choose a Whitney stratification U = | |, .4 Uy of U in CN. Then the values
Eux (U,) of Eux on the strata U, are defined by induction on codimensions of U, as
follows.

(i) If U, is contained in the smooth part of U, we set Eux(U,) = 1.

(ii) Assume that for £ > 0 the values of Eux on the strata U, such that codimU, < k
are already determined. Then for a stratum Ug such that codimUsz = k + 1 the
value Eux (Ug) is defined by

(3.1) Eux(q)= Y x(Uanf '(n)NB(ge)) - Bux(Ua)
UsCUo

for sufficiently small e > 0 and 0 < n < ¢, where ¢ € Ug and f is a holomorphic
function defined in an open neighborhood of ¢ in C¥ such that Ug C f~1(0) and

(¢; gradf(q)) € Ty, CV \ (Uvﬁgf_a Ty, CN)-

Now let us return to the toric case. Let N ~ Z™ be a Z-lattice of rank n and o a
strongly convex rational polyhedral cone in Ng = R®yz N. Taking the dual Z-lattice M
of N and the polar cone oV of o in Mg = R®y M, we obtain a semigroup S, := o” N M
and an affine toric variety X := U, = Spec(C[S,]). If we denote by T, the T-orbit
which corresponds to a face A, of 0¥, we obtain a decomposition X = | | An<ov Lo of
X = U, into T-orbits. By the above recursive definition (ii) of Eux, in order to compute
the Fuler obstruction Eux: X — Z it suffices to determine the following numbers.

Definition 3.1.  For two faces A,, Ag of 0¥ such that Ag 2 A, (ie. T € To),
we define the linking number {, 3 € Z of T, along Tz as follows. First we choose a
reference point ¢ € T and a closed embedding ¢: X = U, — CY. Then we set

(3.2) log == Xx(To O 1 (n) N B(g;e))

for sufficiently small € > 0 and 0 < n < ¢, where f is a holomorphic function defined in
an open neighborhood of ¢ in C¥ such that Tg C f~1(0) and (¢; gradf(q)) € 17, CN\

(UA/;;AK T?HCN)-

Note that the above definition of the linking number [/, g3 does not depend on the
choice of ¢ € T3, ¢, €, n and f and so on. Since this linking number [, 3 can be defined
also by taking a normal slice of T3 at a point ¢ € Tj3, we can apply our Theorem 2.8
to a generic linear form on the normal slice and express [, g in terms of the geometry



160 Y. MaTsul AND K. TAKEUCHI

of the cones A, and Ag as follows. First take the smallest linear subspace L(Ap)
of Mg containing Ag and consider the Z-lattice Mg := M NL(Ag) of rank dimAg.
Next set L(Ag)’ := Mg/L(Ag) and let pg: Mr — L(Ag)" be the natural projection.
Then Mj = pg(M) C L(Ap)" is a Z-lattice of rank n — dimAg in L(Ag)". By the
condition Ag 2 A,, the set K, g := pg(Ay) C L(Ag)" is a proper convex cone with
apex 0 € L(Ag)" in L(Ag)'.

Definition 3.2.  We define the normalized relative subdiagram volume
RSVz(Aq, Ag) of A, along Ag by

(3.3) RSVz(Aa, Ag) := Volz(Ka,p \ ©a,p),

where O, is the convex hull of K, g N (M} \ {0}) in the closed convex cone K, 5 C
L(Ag) =~ R®dmAs and Voly(Ky 5\ Oa,s) is the (dimA, — dimAg)-dimensional nor-
malized volume of Ko g\ O, with respect to the lattice Mj NIL(Kq,p).

Theorem 3.3 ([23]).  For any pair (A, Ag) of faces of oV such that Ag 2 A,,
the linking number 1, g of T, along T is given

(34) la,ﬁ = (—1)dimA°‘_dimAﬂ_lRSVZ(Aa, Aﬁ)

Now let us consider the case of projective toric varieties associated with lattice
points. We inherit the situation and the notations in Section 1. First assume that the
polytope P is sufficiently large and A = PNM so that the line bundle on Xs;, associated
with P is very ample and X 4 ~ Xy, (see the end of Section 1 and [26, Theorem 2.13]).
In this case, X4 is normal. If we denote by T, the T-orbit in X4 which corresponds
to a face A, of P, we obtain a decomposition X4 = | | A, <p Lo of X4 into T-orbits.
Now let A, Ag be two faces of P such that Ag = A,. Since there exists a T-invariant
affine open subset of X4 containing both 717, and T3, we can define the linking number
lo,p of T, along T by the previous arguments. For example, if we choose a vertex
v € Ag of the smaller face Ag, for the maximal cone ¢ € ¥p in the normal fan ¥p
which corresponds to the 0-dimensional face {v} < P of P, we have T,, T3 C U,. In
order to give a formula for [, g, let us fix such v € P and o € X p. Then, by the dilation
action of the multiplicative group R~¢ on Mg, we have the equality Ry (P —v) = ¢ in
Mg which gives rise to the natural correspondence:

(3.5) {faces of P containing v} AL {faces of 0" }.

Note that this correspondence is compatible with the ones introduced before. Therefore,
by taking the two faces of 0¥ which correspond to A, and Ag through this correspon-
dence, we can define the normalized relative subdiagram volume RSVz(A,, Ag) of A,
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along Ag. Hence by Theorem 3.3 we can calculate the linking number [, g by the
combinatorial formula

(3.6) lo,p = (—1)HmBe—dMATIRSV, (AL, Ap).

Consequently, the Euler obstruction Eux,: X4 — Z of X4 is calculated as follows.
Since Eux, is constant on each stratum T,, we denote by Eu(A,) the value of Eux,
on T,. Then all the values Eu(A,) are determined by induction on codimensions of
faces of P by the rule:

(i) Eu(P) := Eux,(T) =1,
(i) Fu(As) = Xa, <, (—1)m8a—0imds RSV, (A, Ag) - Bu(Aa).

Combining these results with the combinatorial description of the intersection co-
homology complexes of toric varieties obtained by Denef-Loeser [4], Fieseler [8], Stanley
[29] and so on, we can easily compute the characteristic cycle of the intersection coho-
mology complex of arbitrary normal toric variety (see [2] for another approach to this
problem). For the definition of intersection cohomology complexes, see [12] and so on.
We can also compute the Chern-Mather classes of complete toric varieties by using the
results of Ehlers (unpublished) and Barthel-Brasselet-Fieseler [1]. See [23] for the detail.

From now on, we give a combinatorial geometric description of Euy, for general
finite subsets A C M ~ Z™. Without loss of generality, we may assume that the rank of
the Z-lattice M(A) generated by A is n. For each face A, of P, consider the smallest
affine subspace L(A,) of Mg containing A, and the Z-lattice M, = M(AN A,)
generated by AN A, in L(A,). Now let us fix two faces A,, Ag of P such that
Ag 2 A,. By taking a suitable affine transformation of the lattice M (A), we may
assume that the origin of M(A) is a vertex of the smaller face Ag. By using this
choice of the origin 0 € Ag C M(A), let us consider the subsemigroup S, of M,
generated by AN A,. Although S, depends also on Ag and so on, we denote it by S,
to simplify the notation. Denote by M,/Ag the quotient lattice M, /(M. NL(Ag)) of
rank dimA, — dimAg. Then the following definitions are essentially due to [10].

Definition 3.4 ([10]).
(i) We denote by S,/Ag the image of S, C M, in the quotient Z-lattice M, /Ag.

(ii) We denote by K(S,/Ap) (resp. K4 (So/Apg)) the convex hull of S,/Ap (resp.
(Su/Bg) \ {01) i (Mo/Ap)e and set K (Su/Ap) i= K(Sa/Bg)\ Ko (SafAg).
We call K_(S,/Ag) the subdiagram part of the semigroup S,/Ag and denote by
u(Sq/Ap) its normalized volume with respect to the Z-lattice My /Ag C (Ma/AB)R.
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Finally let us recall the definition of the index i(A,,Ag) € Zs¢ given by [10,
Chapter 5, (3.1)].

Definition 3.5 ([10]).  For two faces A,, Ag of P such that Ag 2 A, we define
i(Aq, Ag) as the index

(3.7) i(Aa, Ap) = [Ma NL(Ag): Mg].

Now recall that by [10, Chapter 5, Proposition 1.9] we have the basic correspon-
dence:
(3.8) {faces of P} AL {T-orbits in X 4}.

For a face A, < P of P, we denote by T, the corresponding T-orbit in X 4. We also
denote by Eu(A,) the value of the Euler obstruction Eux,: X4 — Z on T, as before.
Then by Theorem 2.8 and [10, Chapter 5, Theorem 3.1] all the values Eu(A,) are
determined by:

(i) Eu(P) =1,

(i) Bu(Ag) = Ya,za, (-1)IMEm a8 4i(A G Ag) - u(Sa/Ap) - Eu(Ag).

§4. An example

In this section, we give an example of integral convex polytopes for which the degree
of the A-discriminant is easily computed by our method.

Consider the 3-dimensional case. For a Z-basis {mi, ma, mg} of M ~ 73, let P be
the 3-dimensional simplex with vertices v1 = my, vo9 = mo, v3 = 2mg, v4 = 0 and set
A:=PnNM = {0,my,mg,ms,2ms}. Then we can easily check that the condition in
[26, Theorem 2.13] is satisfied. Namely the line bundle on Xy, associated with P is
very ample and X4 ~ Xy, in P* in this case.

Let us compute the values of the Euler obstruction Eux, of X4 by our algorithm.

For a C {1,2,3,4}, we denote by A, the face of P whose vertices are {v; | i € a}.

We can easily determine the values of Eux, on the 2 and 3-dimensional 7T-orbits:

(41) EU(P) = Eu(Algg) = EU(A124) = EU(A134) = EU(A234) =1.

Starting from the values (4.1), we can determine the values of the Euler obstruction
Fux, on 1-dimensional T-orbits:

(42) Eu(Alg) = O, Eu(Alg) = EU(A14) = Eu(Agg) = EU(A24) = EU(A34) =1.
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For example, Eu(A12) is computed as follows. Since Mis = Z(my — ma), M, =
Zms + Zms. Therefore we have

(43) Eu(Alg) = —RSVZ(P, Alg)Eu(P) + RSVZ(Algg, Alg)Eu(Algg)
+RSVz(A124, Ar2)Eu(Aras)
(4.4) =—2-14+1-1+1-1=0.

Moreover, the values of the Euler obstruction Eux, on 0-dimensional T-orbits are
determined from the values (4.1) and (4.2):

(4.5) Eu(A;) = Eu(Az) =0, Eu(Asz) =Eu(Ay) =1.
For example, Eu(A;) is computed as follows.

(4.6) Eu(A;) =RSVy(P,A1)Eu(P) — RSVz(Aj23, A1) Eu(Ajes)
—RSV7z(Aj24, A1)Eu(Aj24) — RSVz(Aq34, A1) Eu(Aq34)
+RSVz (A2, A1)Eu(Ar2) + RSVz(Aiz, Ar)Eu(Ags)
+RSV7z (A4, A)Eu(Ayy)

(4.7) =2-1-1-1-1-1-2-14+1-0+1-14+1-1=0.

Now let us compute the codimension and degree of the dual variety X of X 4. By
(1.6), 41, 62 and 3 are computed as follows.

(4.8) 5= (=1)°%™A(1 4 dimA)Volz(A)Eu(A)
A<P
(4.9) =(1+3)-2-1-(1+2)-(1+1+2+2)-1

F(141)-(1-0+1-141-1+1-141-142-1)
—(140)-1-(0+0+1+1)=0,

(4.10) 5y = ST (cpyeodima [ (AT Ly Aymu(a)
= s { (M) -
(4.11) —(1-3)21—(0-3)-(1+1+2+2)-1

+(0=3)-(1-0+1-1+41-1+1-141-142-1)
—(1-3)-1-(0+0+1+1)=0,

. dimA — 1
(4.12) b=y (—1)codima + 4 » Volz(A)Eu(A)
= s () v
(4.13) =(0+4)-2-1-(0+4)-(1+1+2+2)-1

+0+4)-(1-0+1-1+1-14+1-141-142-1)
—(—1+4)-1-(0+0+1+4+1)=2.
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By Theorem 1.4, we obtain
(4.14) codimX) =3, degX) = 2.

In this case, we can easily check these results by direct computation. Indeed, note
that

(4.15) X4 =U,UUs UUs U Uy,
(4.16) Ul ~Us ~ {(x,y,z,w) € C* | xy = 2°}, Uz~ Uy ~C3.

Here U; denotes the affine toric variety which corresponds to a vertex v; of P (i =
1,2,3,4).
For the list of X4 with large dual defect, see the recent results in [3] and [6].
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