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The geometric structure of a virtual turning point
and the model of the Stokes geometry

By

Naofumi HONDA *

§1. Introduction

The notion of a virtual turning point was first introduced by Aoki‐Kawai‐Takei

[AKT1] to describe the complete Stokes geometry associated with a higher order linear

dierential equation with a large parameter. It is well known that we could not describe

the correct Stokes geometry without it even for a simple third order equation (see
[BNR]), and hence, it is essential and indispensable for the description of the Stokes

geometry.

Figure 1. The Stokes geometry. Figure 2. Our Ansatz has been applied.

One of notable facts for a virtual turning point is that the Stokes phenomenon
does not necessarily occur on every portion of a new Stokes curve, i.e., a Stokes curve
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emanating from a virtual turning point. Hence an Ansatz was also given in the same

paper [AKT1] to determine the inert portions of a new Stokes curve, on which the

Stokes phenomena never occur.

Let us present an example which indicates the importance of the Ansatz concretely.

Fig. 1 is a Stokes geometry for the Lax pair \mathrm{N}\mathrm{Y}\mathrm{L}_{2} of the Noumi‐Yamada system \mathrm{N}\mathrm{Y}_{2}

(see [NY] and [T1] for the denitions of these systems) where a small dot denotes a

virtual turning point and all the Stokes curves are drawn by solid lines. In describing
this figure, as the system \mathrm{N}\mathrm{Y}\mathrm{L}_{2} has innitely many virtual turning points, we have

chosen finitely many virtual turning points, and the Stokes geometry is described only
with them. If more and more virtual turning points were taken into account, then finally
the figure would be blacked out because all the new Stokes curves form dense orbits in

the complex plane.

Fig. 2 is the Stokes geometry to which the Ansatz has been applied. We draw by
dotted line the portions on which the Stokes phenomena never occur, and moreover, in

this figure we omit a new Stokes curve and its virtual turning point if the entire portion
of the curve is inert in the above sense. We see that almost all the virtual turning points
are inert in this example, and that the Ansatz is quite eective in determining these

points.

Now to treat those inert portions of Stokes curves in an appropriate manner, we

will introduce a boolean valued function called a state function of the Stokes geometry.
The state function takes the zero value on the inert portions of Stokes curves, which

are drawn by dotted lines in the figure, and otherwise it takes the value 1. Hence the

Stokes geometry is, in our sense, the geometrical data (the turning points and the Stokes

curves) equipped with the state function that satises our Ansatz. To avoid possible

confusions, however, the word \backslash \backslash \mathrm{t}\mathrm{h}\mathrm{e} Stokes geometry� simply implies the geometrical

data, and the data equipped with the state function will be called \backslash \backslash \mathrm{t}\mathrm{h}\mathrm{e} model of the

Stokes geometry� in this paper.

Then in studying the model of the Stokes geometry, the most fundamental problem
is its unique existence. This is not evident for the general Stokes geometry because we

might solve a system of innitely many equations given by the Ansatz.

The second problem is the following: Since the number of the turning points might
be innite, we usually calculate the state function for a finite subset of the turning

points, and it is often said to be \backslash \backslash \mathrm{t}\mathrm{h}\mathrm{e} finite mode \mathrm{l}^{\backslash \backslash } of the Stokes geometry. It is not

known, however, that this finite model certainly gives an approximation of the true

model.

The purpose of this paper is to answer these problems. As we see in Section 5,
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under some geometrical conditions, we show that the model of the Stokes geometry

uniquely exists (Theorem 5.6 and Theorem 5.16), and that the finite model gives an

approximation of the true model in the sense of Theorem 5.8 and Theorem 5.17.

The content of each section is as follows: Section 2 gives the denition of a virtual

turning point. Then to describe the geometric structure underlying a virtual turning

point, in Section 3, we introduce the Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
in which our Stokes ge‐

ometry (a turning point and a Stokes curve) is dened. This manifold has an important
real analytic function that is deeply concerned with the conguration of the Stokes ge‐

ometry. Hence we also give its several properties that are needed later on. Our Ansatz

is explained with some examples in Section 4.

Section 5 is devoted to the study of our main problems. We first clarify the geomet‐
ric situation where our study is undertaken. Then, in Subsection 5.2, we establish the

main results for the special, but important case (Theorems 5.6 and 5.8). We construct

a depth function of the Stokes geometry, which is a key in proving our results. The

main results for the general case (Theorems 5.16 and 5.17) are in Subsection 5.3. The

idea of the proof is to consider a Stokes path tree and its depth. We give, however, only
sketches of proofs for the general case in this paper. The details are given in the paper

[H4] which we are now preparing.

The author is deeply indebted to the members of the Kawai‐Takei seminar. The

paper is based on discussions in the seminar and their previous works. Especially Prof.

T. Kawai gave me many valuable ideas and suggestions.

§2. Virtual Turning Points

We will consider a linear dierential equation with a large parameter  $\eta$ of the form:

(2.1)  Pu=($\eta$^{-1}\displaystyle \frac{d}{dx}+A(x; $\eta$))u=0.
Here A(x; $\eta$) designates an n\times n matrix of formal power series of $\eta$^{-1} in the form:

A(x; $\eta$)=A_{0}(x)+A_{1}(x)$\eta$^{-1}+A_{2}(x)$\eta$^{-2}+ . :.

and each matrix A_{j}(x)(j=0,1, . ::) consists of polynomial components of the variable

x . Let  $\Lambda$( $\lambda$, x) denote the characteristic polynomial of the leading matrix A_{0}(x) ,
i.e.

(2.2)  $\Lambda$( $\lambda$, x) :=\det( $\lambda$ I-A_{0}(x)) ,

and D(x) designates the discriminant of the equation  $\Lambda$( $\lambda$, x)=0 of the variable  $\lambda$.

Remember that a root of D(x)=0 is called an ordinary turning point.
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In what follows we always assume the following conditions (A‐1) and (A‐2):

\bullet (A‐1): All the roots of  D(x)=0 are simple, that is, the equation (2.1) has only

simple turning points.

\bullet (A‐2): The analytic set \{( $\lambda$, x)\in \mathbb{C}^{2}; $\Lambda$( $\lambda$, x)=0\} is connected.

.

\cdot

 z_{1}

x_{\dot{0}}

z_{2}

H

Figure 3. The cut space H.

Let Z=\{z_{1}, z_{2}, . . . , z_{m}\} be the set of the ordinary turning points of (2.1), and

let H be the complex plane \mathbb{C} equipped with cut lines as follows: We first take a point

x_{0}\in \mathbb{C}\backslash Z such that any line passing through dierent ordinary turning points never

passes the point x_{0} ,
and we fix it. Then we determine the cut lines in H so that for

every ordinary turning point z_{j}\in Z ,
there exists a cut line emanating from z_{j} that

tends to innity, and that it is contained in the line passing through x_{0} and z_{j} as we

see in Fig. 3.

In this cut space H
,

we denote the roots of the equation  $\Lambda$( $\lambda$, x)=0 of the variable

 $\lambda$ by:

(2.3)  $\lambda$_{1}(x) , $\lambda$_{2}(x) ,
. :.

; $\lambda$_{n-1}(x) , $\lambda$_{n}(x) .

Then it follows from the denition of an ordinary turning point that for any point z_{l}\in Z
some roots $\lambda$_{i}(x) and $\lambda$_{j}(x)(i\neq j) merge at z_{l} ,

and in this case z_{l} is said to be of type

(i, j) .

Now let us recall the denition of a virtual turning point. It was first introduced in

[AKT1] as a self‐intersection point of a bicharacteristic curve for the partial dierential

equation which is the Borel transform of the equation (2.1). The following equivalent
denition is due to [AKKSST] and [T1]: Let \mathbb{Z}_{n} (resp. \mathbb{Z}_{n,\neq} ) denote the set of integers
from 1 to n (resp. \{(i, j)\in \mathbb{Z}_{n}^{2};i\neq j\} ) respectively.
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Denition 2.1. A point v\in \mathbb{C} is said to be a virtual turning point of type

(i, j)\in \mathbb{Z}_{n,\neq} if there exist a piecewise smooth path C_{v}() : [0, 1]\rightarrow \mathbb{C} with C_{v}(0)=
C_{v}(1)=v and a continuous function  $\mu$(x) on C_{v} for which the following conditions are

satised:

1. The function  $\mu$(x) is a root of the equation  $\Lambda$( $\mu$, x)=0 for any x\in C_{v} ,
and it

satises

(2.4)  $\mu$(C_{v} =$\lambda$_{i}(C_{v} near  $\theta$=0 and  $\mu$(C_{v} =$\lambda$_{j}(C_{v} near  $\theta$=1.

2. The function  $\mu$(x) satises the integral relation:

(2.5) \displaystyle \int_{C_{v}} $\mu$(z)dz=0.
Note that an ordinary turning point is, from the logical viewpoint, a virtual turning

point in the above sense. But, for the sake of convenience, we exclude ordinary turning

points from the denition of virtual turning points. In what follows, a turning point
means either an ordinary turning point or a virtual turning point. We can dene a

Stokes curve that emanates from a virtual turning point in the same way as in the case

of an ordinary turning point. A Stokes curve emanating from a virtual turning point is

often called a new Stokes curve.

Remark. Since every ordinary turning point considered in this paper is simple

by (A‐1), the path C_{v} in Denition 2.1 can be taken away from the ordinary turning

points (see Fig. 4). Hence the function  $\mu$(x) is nothing but an analytic continuation of

$\lambda$_{i} along C_{v} in our case.

§3. The Riemann Manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}

Taking Denition 2.1 into account, we may regard a virtual turning point as a zero

point of some holomorphic function. To be more precise, let us dene \mathrm{a} (multi‐valued)
holomorphic function  $\varphi$(x) by replacing v in (2.5) with the variable x :

(3.6)  $\varphi$(x)=\displaystyle \int_{C_{x}}$\lambda$_{i}(z)dz
where C_{x} is some closed smooth path in \mathbb{C}\backslash Z that starts from x

,
and the integration is

done for an analytic continuation of $\lambda$_{i}(z) along C_{x} . We assume that the consequence of

the analytic continuation of $\lambda$_{i}(z) is $\lambda$_{j}(z)(i\neq j) . Then a zero point of  $\varphi$(x) certainly

gives a virtual turning point of type (i, j) ,
and moreover, we will know in Sections 4

and 5 that  $\varphi$(x) is closely related to the global conguration of the Stokes geometry.
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Figure 4. The path C_{v}.

The function  $\varphi$(x) , however, depends on the path C_{x} ,
and we cannot regard it as a

function dened on the base space C. Hence, in [H3], we had introduced the Riemann

manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} on which  $\varphi$(x) can be lifted as a single‐valued holomorphic function. In

this section, we briey review the denition of \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} and its properties that we need in

the later section. See [H3] for the details and the proofs.

Let l_{x} be the segment from x_{0} to x in H (see Fig. 5). Noticing the following
deformation of the path C_{x}

C_{x}=l_{x}+(-l_{x}+C_{x_{0}}+l_{x})+(-l_{x}) ,

we obtain

(3.7)  $\varphi$(x)=\displaystyle \int_{x_{0}}^{x}($\lambda$_{j}(z)-$\lambda$_{i}(z))dz+\int_{C_{x_{0}}}$\lambda$_{i}(z)dz.
Here the paths of integration in (3.7) satisfy the following conditions:

(P‐1): The path of integration of the first integral is taken in H.

(P‐2): The path C_{x_{0}} in the second integral is a closed path starting from x_{0} such that

the analytic continuation of $\lambda$_{i}(x) along C_{x_{0}} is $\lambda$_{j}(x)(j\neq i) .

Therefore  $\varphi$(x) is a sum of two integrals which have completely dierent structures.

While the first integral in (3.7) depends on the analytic structure of the multi‐valued

holomorphic function $\lambda$_{j}(z)-$\lambda$_{i}(z) ,
the second one depends on the algebraic structure

of the set of paths which satisfy the condition (P‐2). Such a structure of paths is

concretely described by the type diagram introduced in [H3]. For the convenience

of the reader, let us briey recall its denition. See [H3] for details. First remember
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x

Figure 5. The deformation of the path.

that the (abstract) directional graph consists of two sets: the set of nodes and the set

of edges. Here each edge is an ordered pair of nodes.

Denition 3.1. The type diagram of the Stokes geometry associated with the

system (2.1) is a directional graph consisting of the data 1. and 2. below:

1. Each node is an integer 1; 2;:. :;
n where n is the order of the polynomial  $\Lambda$( $\lambda$, x)

of the variable  $\lambda$.

2. Each edge is indexed by an ordinary turning point. If v\in Z is of type (i, j) ,
then

the edge indexed by v is either an ordered pair \{i, \{j\}\} or \{j, \{i\}\}.

Remark. In [AKT2] a similar graphical notion called ( (\mathrm{a} bicharacteristic graph�
was introduced, and it is, in a sense, a dual notion of the type diagram.

From now on, the symbol i\rightarrow vj (or j\rightarrow vi ) denotes the edge indexed by an ordinary

turning point v of type (i, j) . Let L_{0} (resp. L_{1} ) be the free \mathbb{Z} module generated by the

nodes (resp. the edges) of the type diagram respectively. We dene the complex \dot{L} by:

(3.8) \dot{L} : 0\leftarrow L_{0}\leftarrow\partial L_{1}\leftarrow 0,
where the morphism @ is dened by

(3.9) \partial(i\rightarrow vj)=\{j\}-\{i\} (i\rightarrow vj\in L_{1}) .

Then it is easy to see that the homology group H_{1}(\dot{L}) is a free \mathbb{Z} module, and

(3.10) \dim_{\mathbb{Z}}(H_{1}(\dot{L}))=1+\# Z-n.
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Figure 6. An example of the type diagram.

Example 3.2. Fig. 6 is an example of the type diagram associated with a 5\times 5

system that has 6 ordinary turning points. It consists of 5 nodes {1, 2, . .

:; 5} and 6

edges indexed by the ordinary turning points \{v_{1}, v_{2}, . . :; v_{6}\} . The edge indexed by v_{1}

(resp. v2, . . .

, v_{6} ) corresponds to an ordinary turning point v_{1} (resp. v2, . . .

, v_{6} ) of

type (2, 4) (resp. (2, 5), \ldots, (3,5) ) respectively. We have \dim_{\mathbb{Z}}(H_{1}(\dot{L}))=2 by (3.10),
and its basis is, for example, given by

D_{1}:2\rightarrow 4v_{1}\rightarrow 2v_{3},

and

D_{2}:2\rightarrow 3v_{5}\rightarrow 5v_{6}\rightarrow 2v_{2}

For any (i, j)\in \mathbb{Z}_{n,\neq} we set

(3.11) L_{1}(i, j)=\{ $\sigma$\in L_{1};\partial $\sigma$=\{j\}-\{i\}\},

that is, L_{1}(i, j) is the set of paths from the node i to the node j of the type diagram.

Denition 3.3. We say that a family of paths \{$\alpha$_{ij}\}_{(i,j)\in \mathbb{Z}_{n,\neq}} satises the 1‐

cocycle condition in the type diagram if the following conditions are satised:

1. (anti‐symmetric) For any (i, j)\in \mathbb{Z}_{n,\neq},

(3.12) $\alpha$_{ij}\in L_{1}(i, j) and $\alpha$_{ij}=-$\alpha$_{ji}.

2. (1‐cocycle condition) For mutually dierent indices i, j, k\in \mathbb{Z}_{n} we have

(3.13) $\alpha$_{ij}+$\alpha$_{jk}+$\alpha$_{ki}=0.
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Note that such a family of paths always exists. Let \{$\alpha$_{ij}\} be a family of paths that

satises the 1‐cocycle condition, and we fix it in what follows.

To link the type diagram to the function  $\varphi$(x) dened by (3.7), we will introduce

the morphism I:L_{1}\rightarrow \mathbb{C} of \mathbb{Z} modules as follows: For any edge k\rightarrow wl\in L_{1} with w\in Z

of type (k, l) ,
the morphism I is dened by:

(3.14) I(k\displaystyle \rightarrow wl)=\int_{x_{0}}^{w}($\lambda$_{k}(z)-$\lambda$_{l}(z))dz
where the path of integration is taken in H

,
that is, the path never crosses any cut lines

in H . Let Fi
; j(x) denote the first integral of (3.7), i.e.,

(3.15) F_{i,j}(x) :=\displaystyle \int_{x_{0}}^{x}($\lambda$_{j}(z)-$\lambda$_{i}(z))dz
where the path of integration is again taken in H

,
and we set for any cycle  $\alpha$\in H_{1}(\dot{L})

(3.16) f_{i,j},  $\alpha$(x) :=F_{i}, j(x)+I($\alpha$_{ij})+I()_{:}

Note that Fi
; j(x) and f_{i,j},  $\alpha$(x) are single‐valued holomorphic functions on H . Then we

have:

Proposition 3.4 (Proposition 4.15 [H3]). There exists a cycle  $\alpha$\in H_{1}(\dot{L}) such

that we have

(3.17)  $\varphi$(x)=f_{i,j},  $\alpha$(x) (x\in H) .

In particular, v is a turning point of type (i, j)\in \mathbb{Z}_{n,\neq}if and only if v is a root of the

equation

(3.18) f_{i}, j,  $\alpha$(x)=0

for some  $\alpha$\in H_{1}(\dot{L}) .

To construct the Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
we need to know the structure of an

analytic continuation of each f_{i,j},  $\alpha$(x) ,
and it is systematically described by the shift

vectors.

Denition 3.5. The shift vector r_{k^{w}\rightarrow l} is dened by:

(3.19) r_{k^{w}\rightarrow l}=[k\rightarrow wl+$\alpha$_{lk}]\in H_{1}(\dot{L})
for any edge k\rightarrow wl with w\in Z of type (k, l) . Note that r_{k^{w}\rightarrow l}=-r_{l^{w}\rightarrow k} holds.

Note that the set of the shift vectors is finite. Hence, thanks to Proposition 3.6

below, we can describe every analytic continuation of f_{i}, j,  $\alpha$(x) completely once we

obtain all the shift vectors using the type diagram.
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Proposition 3.6 (Proposition 4.17 [H3]). Let v\in Z. Suppose that a curve C

crosses the cut line emanating from v only once, and that C never crosses any other

cut line in H. Then the consequence of an analytic continuation of f_{i}, j,  $\alpha$(x) along C

has the same form f(x) where the index  $\xi$\in \mathbb{Z}_{n,\neq}\times H_{1}(\dot{L}) is given as follows:

1. If the type of v is (i, j) ,
then  $\xi$=(j, i,  $\alpha$-2r_{i\rightarrow j}v) .

2. If v is of type (j, k) for some k\not\in\{i, j\} ,
then  $\xi$=(i, k,  $\alpha$+r_{j^{v}\rightarrow k}) .

3. If v is of type (i, k) for some k\not\in\{i, j\} ,
then  $\xi$=(k, j,  $\alpha$-r_{i\rightarrow k}v) .

Taking Proposition 3.6 into account, we first construct the Riemann manifold $\pi$_{R} :

\mathcal{R}\rightarrow \mathbb{C} as follows: We denote by the set of indices:

(3.20) --- :=(\mathbb{Z}_{n,\neq}\times H_{1}(\dot{L}))
and set

(3.21) X=\displaystyle \mathbb{C}\backslash (\bigcup_{v\in Z}h_{v})
Here h_{v} designates the cut line in H emanating from v\in Z (see Fig. 3). Note that h_{v}
is an open half line in \mathbb{C} , i.e., v\not\in h_{v} . Let us now consider the cut space H to be the set

(3.22) H=X\displaystyle \sqcup(\bigcup_{v\in Z}(h_{v}^{R}\sqcup h_{v}^{L}))
where h_{v}^{R} and h_{v}^{L} are copies of h_{v} ,

and the symbol \sqcup denotes the disjoint union of sets.

We make  H a topological space so that h_{v}^{R} (resp. h_{v}^{L} ) becomes the right (resp. left)
side boundary of X along h_{v} . For any point x\in H ,

let x^{*} denote the opposite point
in $\pi$_{H}^{-1}($\pi$_{H}(x)) where $\pi$_{H} : H\rightarrow \mathbb{C} denotes the canonical projection, that is, if x\in h_{v}^{R},
then x^{*} is the point in h_{v}^{L} with $\pi$_{H}(x^{*})=$\pi$_{H}(x) . Note that v^{*}=v holds for every

v\in Z . We set

(3.23) H_{ $\Xi$}= $\xi$\in_{-}^{--}\sqcup H_{ $\xi$}
where  H_{ $\xi$}( $\xi$\in designates a copy of  H

,
and $\pi$_{H\underline{=}} : H_{ $\Xi$}\rightarrow H denotes the canonical

projection. Now we are ready to construct the Riemann manifold \mathcal{R} over \mathbb{C} by gluing

H_{ $\xi$} �s (see Fig. 7 also).

Denition 3.7. We dene the involution map \mathcal{J} : H_{ $\Xi$}\rightarrow H_{ $\Xi$} as follows:

1. If x\in h_{v}^{R}\cup h_{v}^{L}\cup\{v\} with v\in Z of type (i, j) ,
then

\bullet \mathcal{J}(x, i, j,  $\alpha$)=(x^{*}, j, i,  $\alpha$-2r_{i\rightarrow j}v)\mathrm{a}\mathrm{n}\mathrm{d}\mathcal{J}(x, j, i,  $\alpha$)=(x^{*}, i, j,  $\alpha$-2r_{j^{v}\rightarrow i})
for any  $\alpha$\in H_{1}(\dot{L}) ,
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\bullet \mathcal{J}(x, k, j,  $\alpha$)=(x^{*}, k, i,  $\alpha$+r_{j^{v}\rightarrow i}) and

\mathcal{J}(x, k, i,  $\alpha$)=(x^{*}, k, j,  $\alpha$+r_{i\rightarrow j}v) for each  $\alpha$\in H_{1}(\dot{L}) and any k\not\in\{i, j\},
\bullet \mathcal{J}(x, i, k,  $\alpha$)=(x^{*}, j, k,  $\alpha$-r_{i\rightarrow j}v) and

\mathcal{J}(x, j, k,  $\alpha$)=(x^{*}, i, k,  $\alpha$-r_{j^{v}\rightarrow i}) for each  $\alpha$\in H_{1}(\dot{L}) and any k\not\in\{i, j\},
2. For any point \hat{x}=(x, k, l,  $\alpha$)\in H_{ $\Xi$} that does not appear in 1., we dene \mathcal{J}(\hat{x})=

(X; k, l,  $\alpha$) .

(i, j,  $\alpha$) (j, i,  $\alpha$-2r. v.)
 $\iota$\rightarrow g

Figure 7. Gluing H_{ $\xi$}' \mathrm{s}.

Since \mathcal{J} is an involution map on H_{ $\Xi$} (i.e. \mathcal{J}\circ \mathcal{J}=\mathrm{I}\mathrm{d}_{H\underline{=}} ), it induces the equivalence
relation \sim \mathcal{J} in H_{ $\Xi$} by:

(3.24) \hat{x}\sim \mathcal{J}\hat{y} if and only if \hat{x}=\mathcal{J}(\hat{y}) or \hat{x}=\hat{y}.

Denition 3.8. The Riemann manifold \mathcal{R} over \mathbb{C} is the set of equivalence classes

H_{ $\Xi$}/\sim \mathcal{J} ,
and $\pi$_{R}:\mathcal{R}\rightarrow \mathbb{C} denotes the canonical projection.

Then, by the denition of \mathcal{R} , a family of functions

(3.25) \{f_{i,j},  $\alpha$(x)\}_{(i,j, $\alpha$)\in $\Xi$} (resp. \{$\lambda$_{j}(x)-$\lambda$_{i}(x)\}_{(i,j, $\alpha$)\in $\Xi$} )
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denes a single‐valued holomorphic function on \mathcal{R} , and we denote it by F(\hat{x}) (resp.
$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})) respectively. We can easily prove the following integral relation:

(3.26) F(\displaystyle \hat{x}_{2})-F(\hat{x}_{1})=\int_{\hat{x}_{1}}^{\hat{x}_{2}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})d$\pi$_{R}(\hat{x})
for any points \hat{x}_{1} and \hat{x}_{2} in the same connected component of \mathcal{R} . Indeed, if \hat{x}_{2} is

in a suciently small neighborhood of \hat{x}_{1} ,
then (3.26) follows from the from (3.16) of

f_{i,j},  $\alpha$(x) ,
and this entails the relation for any \hat{x}_{2} by the unique continuation property

of a holomorphic function.

A turning point (resp. a Stokes curve) in \mathcal{R} is now simply dened by a zero point of

F(\hat{x}) (resp. a smooth locus of the zero set of {\rm Im} F(\hat{x}) emanating from a turning point)
respectively. The space \mathcal{R} is, however, a little bit large for our purpose. In fact, the

holomorphic function F(\hat{x}) has an extra symmetry

(3.27) F(x, i, j,  $\alpha$)=-F(x, j, i, - $\alpha$) ,

and thus, the same turning point appears twice in \mathcal{R} . Hence we introduce the involution

map \mathcal{I} on \mathcal{R} as:

(3.28) \mathcal{I}(x, i, j,  $\alpha$)=(x, j, i, - $\alpha$) ,

and we dene the Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} as follows: Note that since \mathcal{I} and \mathcal{J} commute,

the map \mathcal{I} is well‐dened on \mathcal{R} , and it induces the equivalence relation \sim \mathcal{I} in \mathcal{R}.

Denition 3.9. The Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} over \mathbb{C} is the set of equivalence

classes \mathcal{R}/\sim \mathcal{I} . We denote by $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}:\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\rightarrow \mathbb{C} the canonical projection.

Then, by (3.27), the zero set of F(\hat{x}) (resp. {\rm Im} F(\hat{x}) ) is well‐dened on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}
respectively, and hence we can dene a turning point and a Stokes curve in the same

way as in \mathcal{R} : Set

(3.29) \hat{Z} :=fv; i, j,  $\alpha$)\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}};v\in Z, \mathrm{f}^{\mathrm{h}\mathrm{e}} type of v } \cap\{i, j\}\neq $\phi$} \subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}.

Denition 3.10. A point in the zero set of F is said to be a turning point,
in particular, the point (v, i, j, r_{i\rightarrow j}v)\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} with v\in Z of type (i, j) is called an

ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . A Stokes curve in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} emanating from a turning

point \hat{v}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} is a connected component in the set

(3.30) \{\hat{x}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}};{\rm Im} F(\hat{x})=0\}\backslash (\hat{Z}\mathrm{U} {the turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} } )
whose closure contains \hat{v}.
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Note that each Stokes curve is open in the zero set of {\rm Im} F(\hat{x}) ,
and that each

turning point has at least two Stokes curves emanating from it. We also note that, if

the boundary of a Stokes curve consists of two points, one of them is, needless to say,

a turning point from which the Stokes curve emanates, but that the other one is never

a turning point due to the fact that |F(\hat{x})| is strictly increasing along the Stokes curve

(see (3.35) below).
A Stokes curve can be also dened as an integral curve as usual: We denote by  $\omega$

the holomorphic 1‐form on \mathcal{R}

(3.31)  $\omega$ :=$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})d$\pi$_{R}(\hat{x}) ,

and the non‐degenerate real analytic vector field \mathcal{V}_{ $\omega$} on the set \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \hat{Z} is well‐dened

by:

(3.32) \mathcal{V}_{ $\omega$}:=\{{\rm Im} $\omega$=0\} on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \hat{Z}.
Then a Stokes curve emanating from \hat{v} is nothing but the maximal integral curve of \mathcal{V}_{ $\omega$}

emanating from \hat{v}.

To understand the structure of the Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} concretely, we will

briey explain its local structure:

\bullet At any point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \hat{Z} , the Riemann manifold \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} is locally isomorphic to the

base space \mathbb{C} with respect to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}},

\bullet At a point \hat{x} in \hat{Z} except for an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} (see Denition 3.10),
it is locally a double covering space over \mathbb{C} and \hat{x} is its ramication point of degree
2.

\bullet It is, however, locally isomorphic to \mathbb{C} with respect to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}} at an ordinary turning

point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}.

Note that the zero set of {\rm Im} F(\hat{x}) is smooth outside \hat{Z}
,

and hence, every Stokes curve

is real analytic smooth and connected.

Although the holomorphic functions F(\hat{x}) and $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x}) themselves are not well‐

dened on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
the functions

(3.33) F^{\mathrm{a}}(\hat{x}) :=|F(\hat{x})| and $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x}) :=|$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})|.

are still well‐dened on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
and they play an important role in the later section. Let

s be a Stokes curve emanating from a turning point \hat{v} in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . We set

(3.34) l(s;\hat{x}) := �the length of the portion of s between \hat{v} and x (\hat{x}\in s) .

Here the length of the curve is estimated by the metric induced from the base space.



76 Naofumi Honda

Lemma 3.11. We have

(3.35) F^{\mathrm{a}}(\displaystyle \hat{x}_{1})-F^{\mathrm{a}}(\hat{x}_{2})=\int_{\hat{x}_{2}}^{\hat{x}_{1}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x})
for any points \hat{x}_{1} and \hat{x}_{2} in a Stokes curve s in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}.

Proof. We may assume l(s;\hat{x}_{1})\geq l(s;\hat{x}_{2}) . Let  $\pi$ : \mathcal{R}\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} be the canonical

projection. Since  s\cap\hat{Z}= $\phi$ ,
we have a lift \mathfrak{s} of s in \mathcal{R} with respect to  $\pi$ . Let \tilde{v} be

a turning point in \mathcal{R} from which \mathfrak{s} emanates, and we parameterize the curve \mathfrak{s} by the

length of the curve \mathfrak{s} from \tilde{v} :

(3.36)  $\theta$=l(\mathfrak{s};\hat{x}) (\hat{x}\in \mathfrak{s}) .

Then, in \mathcal{R} , there exists a constant c being either 1 or -1 such that we have

(3.37) \displaystyle \tilde{s}^{*}d$\pi$_{R}(\hat{x})=c\frac{\overline{$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})}}{|$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})|}d $\theta$ (for \hat{x}=\mathfrak{s}( $\theta$) ).

We use the same symbol \hat{x}_{i} to denote the corresponding point in the curve \mathfrak{s}(i=1,2) .

It follows from the integral relation (3.26) that we have

(3.38) F(\displaystyle \hat{x}_{1})-F(\hat{x}_{2})=c\int_{\hat{x}_{2}}^{\hat{x}_{1}}|$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})|dl(\tilde{s};\hat{x}) .

Noticing F(\tilde{v})=0 and (3.38), the function F(\hat{x}) takes a constant signature at every

point in \hat{x}\in \mathfrak{s} , and moreover, we have |F(\hat{x}_{1})|\geq|F(\hat{x}_{2})| . Hence we obtain

F^{\mathrm{a}}(\hat{x}_{1})-F^{\mathrm{a}}(\hat{x}_{2})=||F(\hat{x}_{1})|-|F(\hat{x}_{2})||=|F(\hat{x}_{1})-F(\hat{x}_{2})|

(3.39)

=|c\displaystyle \int_{\hat{x}_{2}}^{\hat{x}_{1}}|$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x})|dl(\tilde{s};\hat{x})|=\int_{\hat{x}_{2}}^{\hat{x}_{1}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x}) .

The proof is now completed. \square 

We will introduce the several important notions of the Stokes geometry in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}.

Denition 3.12. If a triplet of points \hat{x}, \hat{x}_{1} and \hat{x}_{2}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \hat{Z} is given by a

coordinates representation of the following form:

\hat{x}=(x, i, j,  $\alpha$)

(3.40) \hat{x}_{1}=(x, j, k, $\alpha$_{1}) (x\in H,  $\alpha,\ \alpha$_{1}, $\alpha$_{2}\in H_{1}(\dot{L}))
\hat{x}_{2}=(x, k, i, $\alpha$_{2})

for mutually dierent integers i, j, k in \mathbb{Z}_{n} ,
then we say that these points form a circuit

index triplet.
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Note that the coordinates representation (3.40) is not unique, that is, the other

coordinates representation in the form (3.40) may give the same triplet of points in

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
the following denition is, however, independent of such a choice of coordinates

representations. Let \hat{x}, \hat{x}_{1} and \hat{x}_{2} be points in Stokes curves s, s_{1} and s_{2} in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}
respectively.

Denition 3.13. We say that \hat{x} is coherent with respect to \hat{x}_{1} and \hat{x}_{2} if \hat{x}, \hat{x}_{1}

and \hat{x}_{2} form a circuit index triplet with the coordinates representation (3.40) for which

the following conditions are satised:

1. {\rm Re} F(\hat{x}_{1}){\rm Re} F(\hat{x}_{2})>0.

2. The sum of indices of these points is zero, that is,

(3.41)  $\alpha$+$\alpha$_{1}+$\alpha$_{2}=0

holds.

The lemma below is easy to prove, but it will play the most fundamental role in

the subsequent arguments.

Lemma 3.14. If \hat{x} is coherent with respect to \hat{x}_{1} and \hat{x}_{2} , then we have

(3.42) F^{\mathrm{a}}(\hat{x})=F^{\mathrm{a}}(\hat{x}_{1})+F^{\mathrm{a}}(\hat{x}_{2}) .

Proof. Suppose that the triplet has the coordinates representation (3.40). In \mathcal{R}

we have the following identity:

F(\hat{x})+F(\hat{x}_{1})+F(\hat{x}_{2})=f_{i,j, $\alpha$}(x)+f_{j,k,$\alpha$_{1}}(x)+f_{k,i,$\alpha$_{2}}(x)
(3.43)

=F_{i,j}(x)+F_{j,k}(x)+F_{k,i}(x)+I($\alpha$_{ij}+$\alpha$_{jk}+$\alpha$_{ki})+I( $\alpha$+$\alpha$_{1}+$\alpha$_{2}) .

Since Fi_{i,j}(x) has the form (3.15), we get

F_{i,j}(x)+F_{j,k}(x)+F_{k,i}(x)=0,

and we also have

I($\alpha$_{ij}+$\alpha$_{jk}+$\alpha$_{ki})=0
because \{$\alpha$_{ij}\} satises the 1‐cocycle condition. Then the equality

F(\hat{x})=-F(\hat{x}_{1})-F(\hat{x}_{2})

follows from (3.41). Noticing that F(\hat{x}) , F(\hat{x}_{1}) and F(\hat{x}_{2}) are real numbers because the

points are in Stokes curves, and that the pair F(\hat{x}_{1}) and F(\hat{x}_{2}) has the same signature

by the condition 1. of Denition 3.13, we finally obtain the conclusion in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} :

F^{\mathrm{a}}(\hat{x})=|F(\hat{x})|=|F(\hat{x}_{1})+F(\hat{x}_{2})|=|F(\hat{x}_{1})|+|F(\hat{x}_{2})|=F^{\mathrm{a}}(\hat{x}_{1})+F^{\mathrm{a}}(\hat{x}_{2}) .
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\square 

§4. The Algorithm to Determine the State Function

Let V be a subset of the set of turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
and let S(V) denote the set

of the Stokes curves emanating from a point in V . We designate by G(V) the Stokes

geometry consisting of the geometric data V and S(V) .

§4.1. The Ansatz

Let \hat{x}, \hat{x}_{1} and \hat{x}_{2} be points in Stokes curves s, s_{1} and s_{2}\in S(V) respectively.

Denition 4.1. If \hat{x} is coherent with respect to \hat{x}_{1} and \hat{x}_{2} ,
then we say that \hat{x}

is a coherent point of s in G(V) ,
and \hat{x}_{1} and \hat{x}_{2} is a co‐coherent pair of \hat{x} in G(V) .

Note that a coherent point \hat{x} may have innitely many co‐coherent pairs. Let

|S(V)|\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} denote the set of the points in the union of all the Stokes curves in

S(V) .

Denition 4.2. A function  $\mu$(\hat{x}) on |S(V)| is said to be a state function of the

Stokes geometry G(V) if the function  $\mu$(\hat{x}) satises the conditions below:

1.  $\mu$(\hat{x}) takes boolean values, i.e., either 1 or 0.

2. The set \{\hat{x}\in|S(V)|; $\mu$(\hat{x})=0\} is open in |S(V)| ,
and each connected component

of the set \{\hat{x}\in|S(V)|; $\mu$(\hat{x})=1\} has an interior point in |S(V)|.

3. For any Stokes curve s\in S(V) ,
the set of the discontinuous points of  $\mu$|_{s}(\hat{x}) is

discrete in the closure of s . Here  $\mu$|_{s} denotes the restriction of  $\mu$(\hat{x}) to s.

4.  $\mu$(\hat{x}) satises the Ansatz (Denition 4.3) that will be given below.

The following Ansatz was first given in Aoki‐Kawai‐Takei [AKT1], and it was ex‐

tended by Y. Umeta [U] so that it may be applicable to some degenerate Stokes geom‐

etry.
Let \hat{x} be a point in a Stokes curve s

,
then we denote by \mathrm{s}\mathrm{t}(\hat{x}) the unique Stokes

curve passing through \hat{x} (i.e., \mathrm{s}\mathrm{t}(\hat{x})=s ). For any coherent point \hat{x}_{0} and any co‐coherent

pair \hat{x}_{1} and \hat{x}_{2} of \hat{x}_{0} ,
we designate by

(4.1.1) \mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2}) .

the intersection multiplicity at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) of the local projection images $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{1})_{\hat{x}_{1}})
(i.e., the projection of the portion of \mathrm{s}\mathrm{t}(\hat{x}_{1}) near \hat{x}_{1} ) and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{2})_{\hat{x}_{2}}) (i.e., that of

\mathrm{s}\mathrm{t}(\hat{x}_{2}) near \hat{x}_{2} ), and it is said to be the intersection multiplicity at the coherent point

\hat{x}_{0} (with respect to the co‐coherent pair \hat{x}_{1} and \hat{x}_{2} ).
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Denition 4.3 (Ansatz about the state function). A state function  $\mu$(\hat{x}) of

G(V) satises the following axiom: Let s\in S(V) be any Stokes curve emanating from

a turning point \hat{v}\in V.

1. In some neighborhood of \hat{v} we have

(4.1.2)  $\mu$|_{s}(\hat{x})=\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} \hat{v} \mathrm{i}\mathrm{s} \mathrm{a} \mathrm{v}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{u}\mathrm{a}\mathrm{l} \mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t};\\
1 & \mathrm{i}\mathrm{f} \hat{v} \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{n} \mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y} \mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}:
\end{array}\right.
2. If \hat{x}_{0}\in s is not a coherent point of s in G(V) ,

then the function  $\mu$|_{s}(\hat{x}) is continuous

at \hat{x}_{0}.

3. If \hat{x}_{0}\in s is a coherent point of s in G(V) ,
then the function  $\mu$|_{s}(\hat{x}) is discontinuous

at \hat{x}_{0} if and only if the following relation holds:

(4.1.3) \displaystyle \sum \mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2}) $\mu$(\hat{x}_{1}) $\mu$(\hat{x}_{2})\equiv 1 (mod2).

Here the sum is taken over all co‐coherent pairs (\hat{x}_{1},\hat{x}_{2}) of \hat{x}_{0} in G(V) .

Note that in considering the sum in (4.1.3) we encounter two diculties. The first

one is that the innitely many terms may appear in the sum. This diculty will be

overcame in the next section.

The second one is the following: The intersection multiplicity \mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2}) at

a coherent point \hat{x}_{0} may become \infty
,

that is, two local curves $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{1})_{\hat{x}_{1}}) and

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{2})_{\hat{x}_{2}}) in the base space identically coincide near $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) . This happens only
for a quite degenerate system because the local curves $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{1})_{\hat{x}_{1}}) and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{2})_{\hat{x}_{2}})
have mutually dierent types (i, j) and (j, k) at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) respectively. Note that these

local projection images are the integral curves dened by:

(4.1.4) {\rm Im}(($\lambda$_{i}(z)-$\lambda$_{j}(z))dz)=0 and {\rm Im}(($\lambda$_{j}(z)-$\lambda$_{k}(z))dz)=0

respectively. Hence, in this paper, we only consider the Stokes geometry that satises

the following condition:

\bullet (A‐3): For any coherent point \hat{x}_{0} and every co‐coherent pair \hat{x}_{1} and \hat{x}_{2} of \hat{x}_{0} ,
we

have

(4.1.5) |\mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2})|<\infty,

that is, the local projection images $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{1})_{\hat{x}_{1}}) and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{2})_{\hat{x}_{2}}) properly
intersect at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) in the base space.
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We also note that the condition (4.1.3) becomes much simpler for the non‐degenerate

case, that is, if only one co‐coherent pair (\hat{x}_{1},\hat{x}_{2}) of \hat{x}_{0} exists and if $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{1})_{\hat{x}_{1}})
and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{s}\mathrm{t}(\hat{x}_{2})_{\hat{x}_{2}}) transversally intersect at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) ,

then (4.1.3) is nothing but

(4.1.6)  $\mu$(\hat{x}_{1}) $\mu$(\hat{x}_{2})=1,

and hence the function  $\mu$(\hat{x}) is discontinuous at \hat{x}_{0} if and only if  $\mu$(\hat{x}_{1})=1 and  $\mu$(\hat{x}_{2})=1
hold.

Figure 8. The Ansatz.

This is equivalent to saying, in the figure of the Stoke geometry (see Fig. 8), that

the state (dotted or solid) of the Stokes curve \mathrm{s}\mathrm{t}(\hat{x}_{0}) reverts at \hat{x}_{0} if and only if the

Stokes curves \mathrm{s}\mathrm{t}(\hat{x}_{1}) and \mathrm{s}\mathrm{t}(\hat{x}_{2}) are drawn by solid lines near \hat{x}_{1} and \hat{x}_{2} respectively.

Even if every coherent point in G(V) is non‐degenerate, the existence and the

uniqueness of the state function of G(V) is not so clear. In fact, unless we care about

the analyticity that the Stokes geometry possesses, then we could easily find an example
that has no model of G(V) ,

or that has many models of G(V) . The following example
was first found by A. Shudo and K. Ikeda [SI].

Figure 9. The example given in [SI].
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Figure 10. The model1. Figure 11. The model 2.

Fig. 9 is the projection image of some Stokes geometry in the base space C. Its

conguration is as follows:

\bullet \hat{x}_{1}, \hat{x}_{2} and \hat{x}_{3} are virtual turning points, and \hat{w}_{1}, \hat{w}_{2} and \hat{w}_{3} are ordinary turning

points.

\bullet The first intersection point of the Stoke curve emanating from \hat{x}_{i}(i=1,2,3) is a

coherent point of this Stokes curve.

\bullet No coherent points exist in the Stokes curve emanating from \hat{w}_{i}(i=1,2,3) .

Then applying the Ansatz (Denition 4.3) to Fig. 9, we can find two models Fig. 10 and

Fig. 11. The example has certainly the state function, but the uniqueness of the state

function does not hold. Hence the readers might think that the Ansatz would be too

weak to determine the state function uniquely. However that is not true. As we will

see below, this Stoke geometry is not associated with a system of dierential equations
because the system impose the specic local conguration upon the Stokes geometry.
One of such restrictions on the Stokes geometry is given in Lemma 4.4 below.

Let \hat{x}, \hat{x}_{1} and \hat{x}_{2} be points in Stokes curves s, s_{1} and s_{2} in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} respectively, and

let \hat{x} be a coherent point of s
,

and \hat{x}_{1} and \hat{x}_{2} its co‐coherent pair. We designate by t\rightarrow,  t_{1}\rightarrow
and  t_{2}\rightarrow\in \mathbb{C} the tangent vectors of the local projection images $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{\hat{x}}) , $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{1,\hat{x}_{1}})
and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{2,\hat{x}_{2}}) at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}) respectively. Here we equip a Stokes curve  $\rho$ in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} with

the orientation so that l(; \hat{x})(\hat{x}\in $\rho$) decreases, and the direction of a tangent vector

is determined by the induced orientation on the local projection image of the Stokes

curve (see Fig. 12).

Lemma 4.4. We assume that the local projection images $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{1,\hat{x}_{1}}) and

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{2,\hat{x}_{2}}) transversally intersect at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}) in the base space. Then we have

(4.1.7) t\in\rightarrow\{ $\alpha$ t_{1}\rightarrow+ $\beta$ t_{2};\rightarrow $\alpha$>0,  $\beta$>0\}.
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Figure 12. The local conguration.

Proof. Although this fact is well‐known to those who are familiar with the Stokes

geometry, there seems no good reference for it. For the reader�s convenience I provide a

complete proof here. Suppose that the triplet \hat{x}, \hat{x}_{1} and \hat{x}_{2} is represented by coordinates

(3.40). We denote by \tilde{x} (resp. \tilde{x}_{1} and \tilde{x}_{2} ) a point in \mathcal{R} given by the coordinates (3.40)
respectively. The curve \mathfrak{s} designates a unique lift of s in \mathcal{R} passing through \tilde{x}.

We may assume F(\tilde{x}_{1})<0 . Since \hat{x} is coherent with respect to \hat{x}_{1} and \hat{x}_{2} ,
we have

in \mathcal{R}

(4.1.8) F(\tilde{x})+F(\tilde{x}_{1})+F(\tilde{x}_{2})=0

and

(4.1.9) F(\tilde{x}_{1})<0, F(\tilde{x}_{2})<0 and F(\tilde{x})>0.

Then F(ỹ) is an increasing function on the Stokes curve \mathfrak{s} when l ( \mathfrak{s} ; ỹ) increases due to

the fact F(\tilde{x})>0 . Hence, as  $\lambda$ diff(ỹ) =($\lambda$_{j} - $\lambda$ i) ((ỹ)) holds near \tilde{x}
,

the direction of

 t\mathrm{i}\mathrm{s}\rightarrow given by

(4.1.10)  t=\rightarrow c\overline{($\lambda$_{i}-$\lambda$_{j})}($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}))

for a positive constant c>0 . In the same way we have

(4.1.11) t_{1}\rightarrow=-c_{1}\overline{($\lambda$_{j}-$\lambda$_{k})}($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x})) and t_{2}\rightarrow=-c_{2}\overline{($\lambda$_{k}-$\lambda$_{i})}($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}))

for some positive constants c_{1}, c_{2}>0 . Finally we obtain:

(4.1.12) t=\displaystyle \rightarrow\frac{c}{c_{1}}t_{1}\rightarrow+\frac{c}{c_{2}}t_{2}\rightarrow.
\square 

Note that if the local projection images $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}} (s_{1}, \hat{x}_{1}) and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{2,\hat{x}_{2}}) transversally
intersect at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}) ,

then the local projection images $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s_{i,\hat{x}_{i}}) and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(s) also

transversally intersect at the same point (i=1,2) .
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The local conguration shown in the right figure of Fig. 12 is never observed in

the Stokes geometry associated with a system of dierential equations. Let us consider

the example given by Fig. 9 again. Thus the local conguration of Fig. 9 is clearly
inconsistent with Lemma 4.4, and hence the example cannot be associated with the

system (2.1).

Figure 13. Another example.

Let us consider another example given in Fig. 13. Note that Fig. 13 is also the projection

image of the Stokes geometry in the base space. The conguration of Fig. 13 is as follows:

\bullet Each \hat{w}_{i} is an ordinary turning point (i=1,2,3) .

\bullet The first intersection point of the Stoke curve emanating from \hat{x}_{i}(i=1,2,3) is a

coherent point of this Stokes curve.

\bullet No coherent points exist in the Stokes curve emanating from \hat{w}_{i}(i=1,2,3) .

Note that the local conguration of Fig. 13 is consistent with Lemma 4.4. Still we

observe the following facts:

1. If \hat{x}_{1}, \hat{x}_{2} and \hat{x}_{3} are virtual turning points, then two models exist in the same way

as in the previous example.

2. If \hat{x}_{1}, \hat{x}_{2} and \hat{x}_{3} are ordinary turning points, then no model exists!

Logically speaking, the second example implies the inconsistency of our Ansatz.

However, we have never encountered this kind of the Stokes geometry through the study
of a huge number of concrete systems of dierential equations. As a matter of fact, we

can prove that no system realizes this example by using a Stokes path introduced in the

next subsection.
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§4.2. A Stokes Path

We now introduce the notion of a Stokes path in G(V) that is the most fundamental

tool to investigate the unique existence of the model of the Stokes geometry. Let \hat{y} be

a point in |S(V)|.

Denition 4.5. A Stokes path in G(V) starting from \hat{y} is generated by tracing
the following walking in |S(V)|\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} :

1. We start from \hat{y}.

2. We proceed on a Stokes curve s\in S(V) so that l(s;\hat{x}) decreases, where \hat{x} denotes

our current position in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}.

3. If we arrive at some coherent point \hat{x} of a Stokes curve in G(V) ,
then we may jump

to one of co‐coherent points of \hat{x} in G(V) .

4. We reach some turning point by repeating either 2. or 3. finite times. If we are at

a turning point, then this walking must be terminated.

A Stokes path can be also formulated by the following schematic diagram:

p_{k} \rightarrow\hat{q}_{k}

1

\rightarrow\hat{q}_{k-1}

\rfloor

\mathrm{W}_{k-1}

p_{2}\rightarrow. . .

(4.2.1)
1

p_{1}\rightarrow\hat{q}_{1}

1 \rfloor

\hat{y}=p_{0}\rightarrow\hat{q}_{0} \mathrm{W}_{1}

\rfloor

\mathrm{W}_{0}

The diagram (4.2.1) implies that:

\bullet The Stokes path starts from \hat{y} , and it terminates at the turning point \hat{q}_{k} . The points

p_{i} and \hat{q}_{i} (i=0,1,2, . . :; k) belong to the same Stokes curve s_{i} with  l(s_{i;}p_{i})\geq
 l(s_{i};\hat{q}_{i}) ,

and the horizontal arrow p_{i}\rightarrow\hat{q}_{i} indicates that we proceed on s_{i} from p_{i}
to \hat{q}_{i}.

\bullet The point \hat{q}_{i} (i=0,1, . ::, k-1) is coherent with respect to \hat{w}_{i} and p_{i+1} ,
and the

vertical arrow \hat{q}_{i}\rightarrow p_{i+1} indicates that we jump from the coherent point \hat{q}_{i} to its

co‐coherent point p_{i+1}.
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Note that p_{i} and \hat{q}_{i} might be the same point. In this case, we jump after jumping in

the same fiber of $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}} successively.

Denition 4.6. Let D be a Stokes path represented by the schematic diagram

(4.2.1). Then the number k of the diagram is said to be the depth of the Stokes path
D

,
and we denote it by \mathrm{d}\mathrm{e}\mathrm{p}(D) .

For any points \hat{x}_{1} and \hat{x}_{2} in a Stokes curve s
, taking the integral relation (3.35)

into account, we dene the function  $\varphi$(\hat{x}_{1},\hat{x}_{2}) by:

(4.2.2)  $\varphi$(\displaystyle \hat{x}_{1},\hat{x}_{2})=F^{\mathrm{a}}(\hat{x}_{1})-F^{\mathrm{a}}(\hat{x}_{2})=\int_{\hat{x}_{2}}^{\hat{x}_{1}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x}) .

Here l(s;\hat{x}) denotes the length of the portion in s from its turning point to \hat{x} . Note

that if l(s;\hat{x}_{1})>l(s;\hat{x}_{2}) ,
then we have  $\varphi$(\hat{x}_{1},\hat{x}_{2})>0.

Lemma 4.7. Let D be a Stokes path starting from \hat{y} represented by the schematic

diagram (4\cdot 2.1) . Then the function F^{\mathrm{a}}(\hat{x}) is strictly decreasing on the Stokes path D if
\hat{x} moves from \hat{y} to \hat{q}_{k} along D. Moreover we have

(4.2.3) F^{\mathrm{a}}(\displaystyle \hat{y})=\sum_{j=0}^{k} $\varphi$(\hat{p}_{j},\hat{q}_{j})+\sum_{j=0}^{k-1}F^{\mathrm{a}}(\hat{w}_{j}) .

Proof. It follows from (3.35) that F^{\mathrm{a}}(\hat{x}) is strictly decreasing on each Stokes

curve s when l(s;\hat{x}) decreases. Since \hat{q}_{j} is coherent with respect to \hat{w}_{j} and \hat{p}_{j+1}
(j=0,1, \ldots, k-1) , by Lemma 3.14, we have

(4.2.4) F^{\mathrm{a}}(\hat{q}_{j})=F^{\mathrm{a}}(\mathrm{W}_{j})+F^{\mathrm{a}}(\hat{p}_{j+1})>F^{\mathrm{a}}(\hat{p}_{j+1}) (j=0,1, . . :, k-1) .

Hence F^{\mathrm{a}}(\hat{x}) is strictly decreasing on the Stokes path D . To obtain (4.2.3), we first note

that

F^{\mathrm{a}}(\hat{y})=F^{\mathrm{a}}(p_{0})

= $\varphi$(p_{0},\hat{q}_{0})+F^{\mathrm{a}}(\hat{q}_{0}) ( \hat{q}_{0} is coherent with respect to \hat{w}_{0} and p_{1} )

= $\varphi$(p_{0},\hat{q}_{0})+F^{\mathrm{a}}(\mathrm{W}_{0})+F^{\mathrm{a}}(p_{1})

= $\varphi$(p_{0},\hat{q}_{0})+F^{\mathrm{a}}(\hat{w}_{0})+ $\varphi$(p_{1},\hat{q}_{1})+F^{\mathrm{a}}(\hat{q}_{1}) .

Then by repeating the same argument as above, we have

k-1 k-1

F^{\mathrm{a}}(\displaystyle \hat{y})=\sum $\varphi$(\hat{p}_{j},\hat{q}_{j})+\sum F^{\mathrm{a}}(\mathrm{W}_{j})+ $\varphi$(p_{k},\hat{q}_{k})+F^{\mathrm{a}}(\hat{q}_{k})
j=0 j=0

=\displaystyle \sum_{j=0}^{k} $\varphi$(\hat{p}_{j},\hat{q}_{j})+\sum_{j=0}^{k-1}F^{\mathrm{a}}(\hat{w}_{j}) . ( \hat{q}_{k} is a turning point):
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This completes the proof. \square 

Now we are ready to prove that the example given in Fig. 13 cannot be associated

with a system of dierential equations. Note that Fig. 14 is the same Stokes geometry
as Fig. 13. We denote by s_{i} the Stokes curve emanating from \hat{x}_{i}(i=1,2,3) ,

and

we designate by b_{i} the projection image of the coherent point of the Stokes curve s_{i}

(i=1,2,3) .

Figure 14. The same Stokes geometry as in Fig. 13

Let us consider the Stokes path D by tracing the following walking: We start from

the point \hat{y} (see Fig. 13) in the Stokes curve s_{1} ,
and we proceed on s_{1} to its turning

point \hat{x}_{1} . When we reach the coherent point of s_{1} in the fiber $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (b1), we jump to the

co‐coherent point in the Stokes curve S3. Then we proceed on S3 to its turning point

\hat{x}_{3} ,
and if we reach the coherent point of S3 in the fiber $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (b3), then we jump to the

Stokes curve s_{2} and proceed on s_{2} to \hat{x}_{2} . Finally when we reach the coherent point of

s_{2} in the fiber $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (b2), then we jump to the Stokes curve s_{1} ,
and this time we come

to the turning point \hat{x}_{1} along the curve s_{1} . Note that the depth of the Stokes path D

is 3.

The key feature of D is that the starting point \hat{y} appears again in the middle of

the path D
,

and with the help of Lemma 4.7 we then find a contradiction. In fact, it

follows form Lemma 4.7 that the function F^{\mathrm{a}}(\hat{x}) is strictly decreasing along the Stokes

path D
,

and which implies F^{\mathrm{a}}(\hat{y})<F^{\mathrm{a}}(\hat{y}) . Hence we conclude that the conguration
of this example is never given by the zero set of F(\hat{x}) and that of {\rm Im} F(\hat{x}) . Otherwise

stated, the conguration of Fig. 13 is not associated with the system (2.1).
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We also note that we can extend the Stokes path D to that with arbitrary depth;
for example, if we turn around the loop in Fig. 13 twice before we reach \hat{x}_{1} ,

then we get
the Stoke path D with \mathrm{d}\mathrm{e}\mathrm{p}(D)=6 ,

and therefore we have

\displaystyle \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}):= \sup \mathrm{d}\mathrm{e}\mathrm{p}(D)=+\infty.
\mathrm{D} : any Stokes path from y

As we will see in the next section, if the Stokes geometry satises some conditions, the

function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) always takes a finite value, and this fact plays a key role in proving the

unique existence of the model of the Stokes geometry.

§5. The Unique Existence of a Model

We are considering, in this paper, the Stokes geometry associated with the system

(2.1) that satises the conditions (A‐1) and (A‐2) given in Section 2, and moreover, we

also assume the condition (A‐3) in Section 4 so that our Ansatz is applicable to the

Stokes geometry.
Let V be a subset of the set of the turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Recall that S(V)

denotes the totality of the Stokes curves emanating from a point in V ,
and that G(V)

designates the Stokes geometry consisting of the geometric data V and S(V) .

§5.1. The Geometric Conditions for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}

We first recall that any point \hat{x}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} has the (not necessarily unique) coordinates

representation:

(5.1.1) \hat{x}=(x, i, j,  $\alpha$) , x\in H, (i, j,  $\alpha$)\in \mathbb{Z}_{n,\neq}\times H_{1}(\dot{L})

where the precise denition of H was given by (3.22). Since H_{1}(\dot{L}) is a free \mathbb{Z} module

of rank

(5.1.2)  $\kappa$=1+\# Z-n,

we identify, from now on, H_{1}(\dot{L}) with the set \mathbb{Z}^{ $\kappa$} of integer vectors, and for any  $\alpha$=

($\alpha$_{1}, $\alpha$_{2}, \ldots, $\alpha$_{ $\kappa$})\in H_{1}(\dot{L}) we set | $\alpha$|=\displaystyle \sum_{i=1}^{ $\kappa$}|$\alpha$_{i}| . Then we designates by \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k)
(k=0,1,2, . ::) the set of every point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} that is represented by the coordinates

(5.1.1) with | $\alpha$|\leq k . We say that the indices of the subset  E\subset Rym are bounded if

 E\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(\mathrm{k}) holds for some k.

We will introduce the following geometric conditions (GA‐1), (GA‐2) and (GA‐3)
for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} :

\bullet (GA‐1) The irregular singularity at \infty
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There exist positive constants  C, R>0 and a constant d>-1 such that we have

(5.1.3) $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})\geq C|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x})|^{d} (|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x})|>R) .

Another way of describing the situation in the base space is as follows: the Puiseux

expansion of $\lambda$_{i}(x)-$\lambda$_{j}(x) at  x=\infty can be written in the form:

(5.1.4) $\lambda$_{i}(x)-$\lambda$_{j}(x)=x^{d}(c_{0}+c_{1}x^{-d_{1}}+c_{2}x^{-d_{2}}+\ldots) (c_{0}\neq 0,0<d_{1}<d_{2}<. . . )

with d>-1 for any (i, j)\in \mathbb{Z}_{n,\neq}.

\bullet (GA‐2): No geometric loops

Any maximal integral curve of the vector field \mathcal{V}_{ $\omega$} (dened by (3.32)) on \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \hat{Z}
either terminates at some point in \hat{Z} or tends to innity with respect to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}} ,

that

is,

\displaystyle \lim_{ $\theta$\rightarrow 1-0} $\tau$( $\theta$)\in\hat{Z} or \displaystyle \lim_{ $\theta$\rightarrow 1-0}|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}( $\tau$( $\theta$))|=+\infty,
(5.1.5)

\displaystyle \lim_{ $\theta$\rightarrow 0+0} $\tau$( $\theta$)\in\hat{Z} or \displaystyle \lim_{ $\theta$\rightarrow 0+0}|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}( $\tau$( $\theta$))|=+\infty
holds for any maximal integral curve  $\tau$( $\theta$) : (0,1)\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \hat{Z} of \mathcal{V}_{ $\omega$} . In the base

space, this is equivalent to saying that any maximal integral curve of the (multi‐
valued) vector field dened by

(5.1.6) {\rm Im}(($\lambda$_{i}(x)-$\lambda$_{j}(x))dx)=0 ((i, j)\in \mathbb{Z}_{n,\neq})

either terminates at some ordinary turning point or tends to x=\infty.

Figure 15. The transversality at an ordinary turning point.

\bullet (GA‐3): The transversality at an ordinary turning point

For any ordinary turning point  x_{0}\in Z of type (i, j) and any k\not\in\{i, j\} ,
we have

\displaystyle \lim\underline{$\lambda$_{i}(x)-$\lambda$_{j}(x)}
(5.1.7) \displaystyle \frac{x\rightarrow x_{0}\sqrt{x-x_{0}}}{($\lambda$_{k}(x_{0})-$\lambda$_{j}(x_{0}))^{\frac{3}{2}}}\not\in\{\mathbb{R}, \sqrt{-1}\mathbb{R}\}.
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A geometric implication of this condition is that for any Stokes curve s emanating
from x_{0} and for any bifurcated curve b emanating from x_{0} ,

the curves s and b are

not tangent each other at x_{0}.

To exemplify this assumption we show Fig. 15. Here b_{1},b_{2},b_{3} and b_{4} are bifurcated

curves and s_{1}, s_{2} and S3 are ordinary Stokes curves. Clearly the tangent line of b_{p}
(p=1,2,3,4) and that of s_{q}(q=1,2,3) at x_{0} are mutually dierent. Hence the

condition (GA‐3) is satised in this figure.

We need the following geometric finiteness lemma. Let \hat{x}_{1} and \hat{x}_{2} be points in a

Stokes curve s in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
and we denote by [\hat{x}_{1}, \hat{x}_{2}] the closed portion in s between \hat{x}_{1}

and \hat{x}_{2} . We also denote by l(s;\hat{x}_{1},\hat{x}_{2}) the length of the portion [\hat{x}_{1}, \hat{x}_{2}] of s.

Lemma 5.1 (The geometric finiteness lemma). We assume the first two con‐

ditions (GA‐1) and (GA‐2) for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Then we have:

1. The number of turning points belonging to \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(\mathrm{k}) is finite for any k.

2. There exists a positive integer m such that if some point of a Stokes curve s belongs
to \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k) , then we have s\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k+m) .

3. For any compact set K\subset \mathbb{C} there exists a compact set \tilde{K}\subset \mathbb{C} such that we have

[\hat{x}_{1}, \hat{x}_{2}]\subset$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K})
for any Stokes curve s and any points \hat{x}_{1} and \hat{x}_{2} in s\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K) .

4. For any compact set K\subset \mathbb{C} there exists a constant C_{K}>0 satisfy ing that we have

(5.1.8) l(s;\hat{x}_{1},\hat{x}_{2})\leq C_{K}

for any Stokes curve s and any points \hat{x}_{1} and \hat{x}_{2} in s\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K) ,

Proof. For the assertion 1.: Since turning points are the images of the roots of

the holomorphic F(\hat{x}) in \mathcal{R} , they are discrete in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
and thus, it is sucient to show

that f_{i,j},  $\alpha$(x) dened by (3.16) has no roots near  x=\infty in  H for any (i, j)\in \mathbb{Z}_{n,\neq} and

for any | $\alpha$|\leq k . Then it follows from the condition (GA‐1) that there exists a positive
constant R such that we have

(5.1.9) |F_{i,j}(x)|>(i,j)\displaystyle \in \mathbb{Z}_{n,\neq}\max_{| $\alpha$|\leq k}|I($\alpha$_{ij})+I( $\alpha$)| (x\in H, |x|>R) .

Hence we obtain assertion 1.

For the assertions 2., 3. and 4.: It follows from the conditions (GA‐1) and (GA‐2)
that, in the base space, each Stokes curve tending to innity is tangent to some line at \infty
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and the other Stokes curve (i.e., those contained in some compact set in the base space)
terminates at some ordinary turning point. Hence for any Stokes curve  s in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,

the

length of the portion $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K)\cap s is uniformly bounded. By these observations, the

assertions are intuitively clear. We need, however, some preparations for the geometry
to prove these facts precisely, and we refer the reader to [H4] for the details. \square 

§5.2. The Unique Existence of the Model for the Special Case

Let V be a subset of the set of the turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . In this subsection, we

will consider the unique existence of the model of the Stokes geometry for the special

case, that is, the geometric conditions (GA‐1) and (GA‐2) for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} (see Subsection

5.1) are satised, and moreover, the condition () for V that will be given below is also

assumed. The important example of this case is that the number of the turning points
in V is finite.

Denition 5.2 (The condition () for V). We say that V satises the con‐

dition () if the projection image $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(V) of V is discrete in the base space.

Note that the condition () is satised if one of the following conditions holds:

1. The set V is finite, or equivalently, the indices of V are bounded.

2. \mathrm{R}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathbb{Z}}H_{1}(\dot{L})\leq 2.

3. We have I( $\sigma$)\in \mathbb{Q}[\sqrt{-1}]=\mathbb{Q}+\mathbb{Q}\sqrt{-1} for every cycle  $\sigma$\in H_{1}(\dot{L}) . Here I was

dened by (3.14).

We have already introduced the depth of a Stokes path (Denition 4.6). Now we

will dene the depth for every point in |S(V)| by a depth function that will be given in

the following proposition: Let K be a compact subset in \mathbb{C} , and we set

(5.2.1) |S(K;V)|=|S(V\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K))|\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K) .

Proposition 5.3. We assume the geometric conditions (GA‐1) and (GA‐2) for

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} and the condition () for V. Then there exists a function dep : |S(V)|\rightarrow \mathbb{Z}_{\geq 0}
that satises the fo llowing conditions 1., 2., 3. and 4., and we call it a depth function

of the Stokes geometry G(V) .

1. The set |S(V)|_{\leq k}:=\{\hat{x}\in|S(V)|;\mathrm{d}\mathrm{e}\mathrm{p}(\hat{x})\leq k\} is open in |S(V)| for any k\in \mathbb{Z}_{\geq 0},
and for any Stokes curve s emanating fr om \hat{v}\in V we have dep |_{s}(\hat{x})=0 in some

neighborhood of \hat{v} . Here dep |_{s}(\hat{x}) designates the restriction of \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) to s.

2. We have \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{1})\geq \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{2}) for any points \hat{x}_{1} and \hat{x}_{2} with l(s;\hat{x}_{1})\geq l(s;\hat{x}_{2}) in a

Stokes curve s\in S(V) .
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3. If \hat{x}_{0} is a coherent point of a Stokes curve in G(V) ,
then we have

(5.2.2) \displaystyle \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{0})>\max\{\mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{1}), \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{2})\}

for every co‐coherent pair \hat{x}_{1} and \hat{x}_{2} of \hat{x}_{0} in G(V) .

4. For any compact set K\subset \mathbb{C} , the function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) is uniformly bounded on |S(K;V)|.

Proof. Let \hat{y}\in|S(V)| ,
and we set

(5.2.3) D(\hat{y}) := {Any Stokes path starting from \hat{y} in G(V) }.

Noticing  D(\hat{y})\neq $\phi$ ,
we dene the function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) by:

(5.2.4) \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y})= \displaystyle \sup dep(D) (\hat{y}\in|S(V)|) .

D\in D(y)

First we will show that \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) takes a finite value for every \hat{y}\in|S(V)| . We have two

lemmas:

Lemma 5.4. Let s\in S(V) . Then the set of coherent points of s in G(V) is

discrete in the closure of s.

Lemma 5.5. For any compact set K\subset \mathbb{C} the function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) dened by (5.2.4)
is uniformly bounded on the set |S(K;V)|.

For any point \hat{x} of a Stokes curve s
,
let us denote by \mathrm{t}\mathrm{p}(\hat{x}) (resp. \mathrm{s}\mathrm{t}(\hat{x}) ) the turning

point from which s emanates (resp. the Stokes curve s) respectively, and recall that

[\hat{x}, \mathrm{t}\mathrm{p}(\hat{x})] designates the portion of s between \hat{x} and \mathrm{t}\mathrm{p}(\hat{x}) .

Proof. We will prove Lemma 5.4 and Lemma 5.5 in four steps:

(Step 1): We first prove that the function F^{\mathrm{a}}(\hat{y}) is uniformly bounded on |S(K;V)|,
that is, there exists a constant M>0 such that we have

(5.2.5) F^{\mathrm{a}}(\hat{y})\leq M (\hat{y}\in|S(K;V)|) .

Let us take a compact set \tilde{K}\subset \mathbb{C} given by 3. of Lemma 5.1. It follows from

the denition (3.25) of $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}(\hat{x}) that the function $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x}) does not depend on indices

 $\alpha$\in H_{1}(\dot{L}) ,
and thus, there exists a constant C_{1} satisfying

(5.2.6) $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})\leq C_{1} (\hat{x}\in$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K})) .

Let s be a Stokes curve in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Then, by the integral relation (3.35), we have

(5.2.7) F^{\mathrm{a}}(\displaystyle \hat{y})=\int_{\mathrm{t}\mathrm{p}(y)}^{\hat{y}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x}) (\hat{y}\in s) .
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Thanks to 4. of Lemma 5.1, there exists a positive constant C_{K^{-}} that satises

(5.2.8) l(s;\hat{y})\leq C_{K^{-}}

for any Stokes curve s\in S(V\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K})) and any point \hat{y}\in s\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K}) ,
and thus,

the estimate (5.2.5) follows from (5.2.6), (5.2.7) and (5.2.8).

(Step 2): We will prove the assertion that there exists a compact set K_{1}\subset \mathbb{C} such

that every relevant portion of any Stokes path starting from |S(K;V)| is contained in

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (K1); to be more precise, if such a Stokes path D is represented by the diagram

(4.2.1), then [p_{i}, \mathrm{t}\mathrm{p}(p_{i})], [q_{i}, \mathrm{t}\mathrm{p}(\hat{q}_{i})], [w_{i}, \mathrm{t}\mathrm{p}(w)] and D itself are contained in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (K1).

By the condition (GA‐1), there exist positive constants C_{2}, R_{1}>0 and a constant

d>-1 such that

(5.2.9) $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})\geq C_{2}|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x})|^{d} (|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x})|\geq R_{1}) .

Then we take a constant R>R_{1} suciently large so that it satises the conditions

(5.2.10) K\subset B_{R} :=\{x\in \mathbb{C};|x|\leq R\}

and

(5.2.11) C_{2}\displaystyle \int_{R}^{2R}r^{d}dr>M
where M is the constant given in (Step 1). Then it follows from Lemma 4.7 that for a

Stokes path D starting from a point \hat{y}\in|S(K;V)| which is represented by (4.2.1), we

obtain

M\displaystyle \geq F^{\mathrm{a}}(\hat{y})=\sum_{j=0}^{k} $\varphi$(\hat{p}_{j},\hat{q}_{j})+\sum_{j=0}^{k-1}F^{\mathrm{a}}(\mathrm{W}_{j})
(5.2.12) \displaystyle \geq\sum_{j=0}^{k} $\varphi$(\hat{p}_{j},\hat{q}_{j})=\sum_{j=0}^{k}\int_{\hat{q}_{j}}^{\hat{p}_{j}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl (st (\hat{p}_{j});\hat{x} )

\displaystyle \geq C_{2}\int_{R}^{ $\psi$(\hat{q}_{k})}r^{d}dr
where  $\psi$(\displaystyle \hat{q}_{k})=\max\{|$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{q}_{k})|, R\} . Hence, taking (5.2.11) into account, D itself is

contained in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(B_{2R}) . Since F^{\mathrm{a}}(\hat{x}) is a decreasing function along a Stokes path, we

have

(5.2.13) M\displaystyle \geq F^{\mathrm{a}}(\hat{y})\geq\max\{F^{\mathrm{a}}(p_{i}), F^{\mathrm{a}}(\hat{q}_{i}), F^{\mathrm{a}}(\hat{w}_{i})\}.
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Hence, by the same argument as above, we conclude that the relevant portions are also

contained in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(B_{3R}) .

(Step 3): We will prove Lemma 5.4.

We set

(5.2.14) E_{tp}(K_{1}) :=K_{1}\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(V)

where K_{1} was determined in (Step 2). Then the fact that E_{tp}(K) is a finite set follows

from the condition () . Let us denote by E_{st}(K) the Stokes curves in the base space

emanating from every point in E_{tp}(K_{1}) . Here a Stokes curve in the base space implies
the projection image of that in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,

and it coincides with that of the usual denition in

the base space. Note that a Stokes curve in the base space might have self‐intersection

points. The set E_{int}(K) designates all the points in K_{1} at which some Stokes curves in

E(K) properly intersect each other, or at which a Stokes curve in E_{st}(K) intersects

itself (a self‐intersection point). We can easily see that E_{st}(K) and E_{int}(K) are finite

sets by 4. of Lemma 5.1, and thus, we get

(5.2.15) $\epsilon$_{1}:=\displaystyle \inf_{x,y\in E(K_{1})}, x\neq y|x-y|>0
where E(K_{1})=E_{tp}(K_{1})\cup E_{int}(K_{1}) .

Let D be a Stokes path in G(V) starting from some point in |S(K;V)| ,
and let

\hat{x}_{0} be a coherent or co‐coherent point that appears in D . Then we can easily observe

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0})\in E_{int}(K_{1}) . Indeed, the relevant portion of D are contained in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K_{1})
by (Step 2), in particular, all the relevant turning points $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{t}\mathrm{p}(p_{i})) , $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{t}\mathrm{p}(\hat{q}_{i}))
and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{t}\mathrm{p}(w)) belong to E_{tp}(K_{1}) . We have, thus, obtained $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0})\in E_{int}(K)
by the condition (A‐3) (this condition implies, in particular, that $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) is either

a proper intersection point of dierent Stokes curves or a self‐intersection point of a

Stokes curve).
Then there exists a constant  $\epsilon$>0 such that we have

(5.2.16) l(\mathrm{s}\mathrm{t}(\hat{x}_{0});\hat{x}_{0})\geq $\epsilon$>0

for every coherent or co‐coherent point \hat{x}_{0} in any Stokes path in G(V) starting from

|S(K;V)| . This is clear by (5.2.15) if $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{t}\mathrm{p}(\hat{x}_{0}))\neq$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) because $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{t}\mathrm{p}(\hat{x}_{0}))
\in E(K) and $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0})\in E_{int}(K) hold by the above observations. If $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\mathrm{t}\mathrm{p}(\hat{x}_{0}))=

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0}) ,
then (5.2.16) follows from the trivial fact: Let s\in E(K) and v\in E(K)

be its turning point. Then the point v appears in the curve s at most finitely many

times by 4. of Lemma 5.1.
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Now we will prove Lemma 5.4. Let s be a Stokes curve emanating from a turning

point in V\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K) ,
and let \hat{x}_{0}\in$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K) be a coherent point of s in G(V) . It is

enough to show $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0})\in E_{int}(K) because E_{int}(K) is a finite set. Let \hat{x}_{1} and \hat{x}_{2}

be a co‐coherent pair of \hat{x}_{0} in G(V) . Then the diagram:

\hat{x}_{2}\rightarrow \mathrm{t}\mathrm{p}(\hat{x}_{2})
1

(5.2.17) \hat{x}_{0}\rightarrow\hat{x}_{0}

\rfloor

\hat{x}_{1}

is a Stokes path in G(V) starting from |S(K;V)| . This entails $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{0})\in E_{int}(K_{1}) .

(The Final Step): We are ready to prove Lemma 5.5. First we will prove that there

exists a positive constant $\delta$_{K_{1}}>0 such that

(5.2.18) \displaystyle \int_{\hat{x}_{2}}^{\hat{x}_{1}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x})\geq$\delta$_{K_{1}}l(s;\hat{x}_{1},\hat{x}_{2})^{\frac{3}{2}}
for any Stokes curve s and for any points \hat{x}_{1} and \hat{x}_{2} in s\cap$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K) with  l(s;\hat{x}_{1})\geq
 l(s;\hat{x}_{2}) . This estimate can be proved in the following way: For any  $\rho$>0 ,

we set

(5.2.19) Z_{ $\rho$}:=\{x\in \mathbb{C}; dist (x, Z)< $\rho$\}

where dist Z ) denotes the distance in \mathbb{C} from the set Z . Noticing that the zero set of

$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x}) in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} is given by

(5.2.20) { (v, i, j,  $\alpha$)\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}};v\in Z, \{i, j\}= �the type of v
�

},

we let \hat{U}_{ $\rho$} denote the open set given by the union of the connected components of

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(Z) that contains a zero point of $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x}) . Since the estimate (5.2.18) clearly
holds outside of \hat{U}_{ $\rho$} , taking  $\rho$>0 suciently small, we may consider the estimate in \hat{U}_{ $\rho$}.
Then, since every ordinary turning point is simple by the condition (A‐1), there exist

positive constants C_{3} and C_{4} such that we have

(5.2.21) $\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})\geq C_{3} dist ($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}), Z)^{\frac{1}{2}} (\hat{x}\in\hat{U}_{ $\rho$}) ,

and for any Stokes curve s and for any points \hat{x}_{1} and \hat{x}_{2} in the same connected component

of s\cap\hat{U}_{ $\rho$} ,
we also have

(5.2.22) \displaystyle \max {dist ( $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{1}), Z) ,
dist ($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{2}), Z) } \geq C_{4}l(s;\hat{x}_{1},\hat{x}_{2}) .
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Let s be a Stokes curve, and let \hat{x}_{1} and \hat{x}_{2} be points in the same connected com‐

ponent of s\cap\hat{U}_{ $\rho$} with l(s;\hat{x}_{1})\geq l(s;\hat{x}_{2}) ,
and set

(5.2.23)  $\epsilon$:=\displaystyle \max {dist ( $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{1}), Z) ,
dist ($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{2}), Z) }.

Note that, by (5.2.22), we have  $\epsilon$\geq C_{4}l(s;\hat{x}_{1},\hat{x}_{2}) . If there exists a point \hat{x}_{3}\in[\hat{x}_{1}, \hat{x}_{2}]
satisfying dist ($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{3}), Z)<- $\epsilon$ then we have

2�

\displaystyle \int_{\hat{\mathrm{x}}_{1}}^{\hat{x}_{2}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x})\geq C_{3}\int_{\frac{ $\epsilon$}{2}}^{ $\epsilon$}r^{\frac{1}{2}}dr\geq\frac{2C_{3}}{3}(\frac{ $\epsilon$}{2})^{\frac{3}{2}}\geq C_{5}l(s;\hat{x}_{1},\hat{x}_{2})^{\frac{3}{2}}
for some positive constant C_{5} . If not, we have

\displaystyle \int_{\hat{\mathrm{x}}_{1}}^{\hat{x}_{2}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl(s;\hat{x})\geq C_{3}(\frac{ $\epsilon$}{2})^{\frac{1}{2}}l(s;\hat{x}_{1},\hat{x}_{2})\geq C_{6}l(s;\hat{x}_{1},\hat{x}_{2})^{\frac{3}{2}}
for some positive constant C_{6} . This entails (5.2.18).

Then it follows from (5.2.16) and (5.2.18) that there exists a positive constant  $\delta$>0

that satises

(5.2.24) F^{\mathrm{a}}(\displaystyle \mathrm{W})=\int_{\mathrm{t}\mathrm{p}(\hat{w})}^{\hat{w}}$\lambda$_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}^{\mathrm{a}}(\hat{x})dl (st (\hat{w});\hat{x} ) \displaystyle \geq$\delta$_{K_{1}}\min 1_{;} l(st (\hat{w});\hat{w})^{\frac{3}{2}}\}\geq $\delta$.
for any coherent or co‐coherent point \mathrm{W} in a Stokes path D starting from |S(K;V)|.
Suppose that D is represented by the diagram (4.2.1), then we have

M\displaystyle \geq F^{\mathrm{a}}(\hat{y})=\sum_{i=0}^{k} $\varphi$(p_{i},\hat{q}_{i})+\sum_{i=0}^{k-1}F^{\mathrm{a}}(\mathrm{W}_{i})
(5.2.25)

\displaystyle \geq\sum_{i=0}^{k-1}F^{\mathrm{a}}(\hat{w}_{i})\geq k $\delta$,
and thus, we have obtained

(5.2.26) dep(D) =k\displaystyle \leq\frac{M}{ $\delta$}.
The proof has been completed. \square 

Remark. Lemmas 5.4 and 5.5 do not hold without the condition () ,
and there‐

fore, we need to take another strategy to establish the similar lemmas for the general
case. This will be the main subject in the next subsection.

Let us come back to the proof of Proposition 5.3. We will make sure that the

function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) dened by (5.2.4) satises the conditions 1., 2. and 3. of this proposition:
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The condition 1. follows from Lemma 5.4. The condition 2. is clear by the denition

(5.2.4). We will show the condition 3. Let \hat{x}_{0} be a coherent point, and \hat{x}_{1} and \hat{x}_{2}\mathrm{a}

co‐coherent pair of \hat{x} . If D is the schematic diagram of a Stokes path starting from \hat{x}_{1}

with \mathrm{d}\mathrm{e}\mathrm{p}(D)=k ,
then the diagram D_{1} :

D

1

(5.2.27) \hat{x}_{0}\rightarrow\hat{x}_{0}

\rfloor

\hat{x}_{2}

represents a Stokes path starting from \hat{x}_{0} with dep(D) =k+1 ,
and from which the

condition 3. follows. \square 

Remark. A depth function of the Stokes geometry G(V) is not necessarily unique.
We usually adopt \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) dened by (5.2.4) as a depth function of G(V) . However only

properties of \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) described by conditions 1., 2., 3. and 4. in the proposition will be

used in the subsequent arguments.

The main theorem for the special case is:

Theorem 5.6. We assume the geometric conditions (GA‐1) and (GA‐2) for

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} which were given in Subsection 5.1, and we also assume the condition () for V

given by Denition 5.2. Then the unique model M(V) of the Stokes geometry G(V)
exists.

Proof. We fix a depth function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) of the Stokes geometry G(V) ,
and we set

|S(V)|_{k}:=\{\hat{y}\in|S(V)|;\mathrm{d}\mathrm{e}\mathrm{p}(\hat{y})=k\},
(5.2.28)

|S(V)|_{\leq k}:=\{\hat{y}\in|S(V)|;\mathrm{d}\mathrm{e}\mathrm{p}(\hat{y})\leq k\} (k=0,1,2, . . :) :

We first prove the existence of the model: Let us construct the state function  $\mu$(\hat{x}) on

|S(V)| . By the induction with respect to k\in \mathbb{Z}_{\geq 0} ,
we will construct the function  $\mu$(x)

on each set |S(V)|_{k} successively, and we will simultaneously prove that the set V_{\leq k}^{E} is

finite for each k . Here the set V_{\leq k}^{E} is dened as follows: Suppose that  $\mu$(\hat{x}) has been

constructed on the set |S(V)|_{\leq k} ,
then we dene the set |S(V)|_{\leq k}^{E} by

(5.2.29) |S(V)|_{\leq k}^{E} :=\{\hat{y}\in|S(V)|_{\leq k}; $\mu$(\hat{y})=1\},

and

(5.2.30) V_{\leq k}^{E}:=\{\mathrm{t}\mathrm{p}(\hat{y})\in V;\hat{y}\in|S(V)|_{\leq k}^{E}\}



The model oF the Stokes geometry 97

where \mathrm{t}\mathrm{p}(\hat{y}) denotes the turning point from which the Stokes curve passing through \hat{y}
emanates.

First let us construct  $\mu$(\hat{x}) on |S(V)|_{0} . Let s be a Stokes curve emanating from

\hat{v}\in V ,
and set

(5.2.31) s_{0} :=s\cap|S(V)|_{0}.

Then by the condition 2. of Proposition 5.3 the set s_{0} is connected, and it follows from

(5.2.2) that in s_{0} no coherent point of s exists. Hence  $\mu$(x) is a constant function in s_{0}

due to the condition 2. of the Ansatz (Denition 4.3), and thus, its constant value is

determined by (4. 1.2), i.e:

(5.2.32)  $\mu$(\hat{x})=\{
0 if \hat{v} is a virtual turning point;

1 if \hat{v} is an ordinary turning point:
(\hat{x}\in s_{0}) .

Then V_{0}^{E} is a subset of the set of ordinary turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} ,
and thus, it is finite.

Now suppose that the function  $\mu$(\hat{x}) has been constructed on |S(V)|_{k-1} and that

the set V_{\leq k-1}^{E} is finite (k\geq 1) . Let s() : (0,1)\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} be a Stokes curve emanating
from \hat{v}\in V ,

and set

(5.2.33) s_{k}:=s\cap|S(V)|_{k}, S<k:=s\cap|S(V)|_{\leq k-1} and s_{\leq k}:=s\cap|S(V)|_{\leq k}.

We will first construct  $\mu$(\hat{x}) on the portion s_{k} . We set

(5.2.34) $\theta$_{k}=\displaystyle \inf\{ $\theta$\in(0,1);\mathrm{d}\mathrm{e}\mathrm{p}(s( $\theta$))=k\} and \hat{x}_{k}=s($\theta$_{k}) .

Note that since s<k is non‐empty, we have $\theta$_{k}>0 and \hat{x}_{k}\in s_{k} by the condition 1. of

Proposition 5.3. Since the coherent points of s in G(V) is discrete by Lemma 5.4,
and since a discontinuous point of  $\mu$|_{s}(\hat{x}) is a coherent point of s in G(V) ,

the set of

discontinuous points of  $\mu$|_{s}(\hat{x}) is discrete in the closure of s.

If we want to know whether  $\mu$|_{s}(\hat{x}) is discontinuous or continuous at the point

\hat{x}_{k} ,
then it suces to construct  $\mu$|_{s}(\hat{x}) near \hat{x}_{k} because s<k is non‐empty and  $\mu$(\hat{x}) is

already dened on s<k by the induction hypothesis. If we want to know, moreover, all

the discontinuous points of  $\mu$|_{s}(\hat{x}) in s_{k} ,
then we determine  $\mu$|_{s}(\hat{x}) on s_{k} successively

because s_{k} is connected. Hence it suces to show that these discontinuous points are

determined by  $\mu$(\hat{x}) in |S(V)|_{<k} ,
which has already constructed there.

Let \hat{x}_{0}\in s_{k} be a coherent point of s in G(V) ,
and let us consider the sum in (4.1.3).

If \hat{x}_{1} and \hat{x}_{2} form a co‐coherent pair of \hat{x}_{0} in G(V) ,
then by (5.2.2) we have

(5.2.35) \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{1})<k and \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{2})<k,
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and we can calculate each term

(5.2.36) \mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2}) $\mu$(\hat{x}_{1}) $\mu$(\hat{x}_{2})

in (4.1.3), where  $\mu$(\hat{x}_{1}) and  $\mu$(\hat{x}_{2}) are determined by (5.2.35). Note that the number of

terms in the sum may be innite, and hence, we need to make sure that the number of

those pairs satisfying the condition

(5.2.37)  $\mu$(\hat{x}_{1})=1 and  $\mu$(\hat{x}_{2})=1

is finite.

Let \hat{x}_{1} and \hat{x}_{2} be a co‐coherent pair of \hat{x}_{0} in G(V) that satises (5.2.37). By

(5.2.35) and (5.2.37), the turning points \mathrm{t}\mathrm{p}(\hat{x}_{1}) and \mathrm{t}\mathrm{p}(\hat{x}_{2}) belong to V_{\leq k-1}^{E} . It follows

from the condition (A‐3) and 4. of Lemma 5.1 that dierent Stokes curves give an only
finite number of co‐coherent pairs of \hat{x}_{0} . Note that dierent points in the same Stokes

curve may form a co‐coherent pair of \hat{x}_{0} ,
and the number of those pairs is also finite.

Since V_{\leq k-1}^{E} is a finite set by the induction hypothesis, we conclude that the number

of non‐zero terms in the sum is finite; hence the sum makes sense. This entails that we

have constructed  $\mu$(\hat{x}) on s_{k} ,
and thus, on |S(V)|_{\leq k}.

Now we will show that V_{\leq k}^{E} is a finite set. Since the set V_{\leq k-1}^{E} is finite due to the

induction hypothesis, the indices of V_{\leq k-1}^{E} are bounded. It follows from 2. of Lemma

5.1 that there exists a positive integer m such that we have

(5.2.38) |S(V)|_{\leq k-1}^{E}\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(m) .

Let \hat{v} be a turning point in V_{\leq k}^{E} that is not an ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Then we

can find a Stokes curve s emanating from \hat{v}\in V with  $\mu$(\hat{y})=1 for some point \hat{y}\in s_{\leq k}.
Since \hat{v} is a virtual turning point, the function  $\mu$|_{s}(\hat{x}) is discontinuous at some point

\hat{x}_{0}\in s_{\leq k} due to the fact  $\mu$(\hat{y})=1 . Hence there exists a co‐coherent pair \hat{x}_{1} and \hat{x}_{2} of

\hat{x}_{0} in G(V) satisfying (5.2.37). Since \hat{x}_{1} and \hat{x}_{2} are points in |S(V)|_{\leq k-1}^{E} , they belong
to \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(m) by (5.2.38). Since \hat{x}_{0} is coherent with respect to \hat{x}_{1} and \hat{x}_{2} ,

the sum of

indices of these points is zero (see Denition 3.13 and (3.41)). Therefore we have

(5.2.39) \hat{x}_{0}\in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(2m+2 $\tau$)

where  $\tau$ is given by the maximum of |r| for all the shift vectors r\in H_{1}(\dot{L}) (Denition
3.5). Hence it follows from 2. of Lemma 5.1 that the indices of V_{\leq k}^{E} are bounded, and

thus, V_{\leq k}^{E} is a finite set by 1. of the same lemma. The construction of the state function

has been completed.
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Since a depth function itself is not unique, we need to prove the uniqueness of the

state function: Let $\mu$_{1}(\hat{x}) and $\mu$_{2}(\hat{x}) be arbitrary state functions on |S(V)| ,
and let us

show

(5.2.40) $\mu$_{1}(\hat{x})=$\mu$_{2}(\hat{x}) (\hat{x}\in|S(V)|) .

Suppose $\mu$_{1}(\hat{x})\neq$\mu$_{2}(\hat{x}) at some point. We set

Y:=\{\hat{y}\in|S(V)|;$\mu$_{1}(\hat{y})\neq$\mu$_{2}(\hat{y})\}\neq $\phi$,

and

(5.2.41) k:=\displaystyle \min_{\hat{y}\in Y}\mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) .

Let \hat{y}\in Y be a point with \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y})=k in a Stokes curve s() : (0,1)\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . By the

denition of k
,

we have

(5.2.42) $\mu$_{1}(\hat{x})=$\mu$_{2}(\hat{x}) (\hat{x}\in|S(V)|_{\leq k-1})

where |S(V)|_{-1}= $\phi$ . Set

(5.2.43)  $\theta$_{0}=\displaystyle \inf\{ $\theta$\in(0,1);$\mu$_{1}(s( $\theta$))\neq$\mu$_{2}(s( $\theta$))\} and \hat{x}_{0}=s($\theta$_{0}) .

Since $\mu$_{1}(s( $\theta$))=$\mu$_{2}(s()) holds near  $\theta$=0 ,
we have $\theta$_{0}>0 . Then either $\mu$_{1}|_{s}(\hat{x}) or

$\mu$_{2}|_{s}(\hat{x}) is discontinuous at \hat{x}_{0} ,
and hence, \hat{x}_{0} is a coherent point of s in G(V) . It follows

from (5.2.35) and (5.2.42) that we have

\displaystyle \sum \mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2})$\mu$_{1}(\hat{x}_{1})$\mu$_{1}(\hat{x}_{2})=\sum \mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2})$\mu$_{2}(\hat{x}_{1})$\mu$_{2}(\hat{x}_{2})
where the both sums are taken over all co‐coherent pairs (\hat{x}_{1},\hat{x}_{2}) of \hat{x}_{0} in G(V) . This im‐

plies that the both $\mu$_{1}(\hat{x}) and $\mu$_{2}(\hat{x}) coincide near \hat{x}_{0} ,
and that contradicts the denition

of \hat{x}_{0} . Hence (5.2.40) holds. \square 

We have the following corollary.

Corollary 5.7. We assume the geometric conditions (GA‐1) and (GA‐2) for

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} and the condition () for V. Then the unique model M(V) of the Stokes geometry

G(V) satises the fo llowing compactication condition: For any compact set K\subset \mathbb{C},
there exists a positive integer k such that the state function is identically zero in the set

(5.2.44) |S(K;V)|\cap(\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k)) .

Proof. It follows from the condition 4. of Proposition 5.3 that the depth of every

point in |S(K;V)| is uniformly bounded, and thus, we have

\{\hat{x}\in|S(K;V)|; $\mu$(\hat{x})=1\}\subset|S(V)|_{\leq k}^{E}
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for some k where |S(V)|_{\leq k}^{E} was given by (5.2.29). Then the set V_{\leq k}^{E} is finite as it was

shown in the proof of Theorem 5.6, and the indices of |S(V)|_{\leq k}^{E} are bounded. Therefore

we obtain the result. \square 

We assume that V is the set of all the turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Note that V is a

countable set. Let

(5.2.45)  V_{1}\subset V_{2}\subset V_{3}\subset\ldots

be an increasing sequence of subsets of  V such that each V_{i} is a finite set. We suppose

that the sequence is exhaustive, that is, for any finite subset W of V there exists a

positive integer k such that W\subset V_{k} . Let  $\mu$(\hat{x}) (resp. $\mu$_{k}(\hat{x}) ) be the state function of

the Stokes geometry G(V) (resp. G(V) ) respectively. We regard the function $\mu$_{k}(\hat{x}) as

a function on |S(V)| by the zero extension.

Theorem 5.8. We assume the geometric conditions (GA‐1) and (GA‐2) for

\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} and the condition () for V. Then we have

(5.2.46) \displaystyle \lim_{i\rightarrow\infty}M(V_{i})=M(V) ,

that is, for any \hat{x}\in|S(V)| we have

(5.2.47) $\mu$_{i}(\hat{x})\rightarrow $\mu$(\hat{x}) (i\rightarrow\infty) .

This convergence is uniform in |S(K;V)| for any compact set K\subset \mathbb{C}.

Proof. Let \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) be a depth function of G(V) . Since the restriction of \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) to

|S(V_{i})| is also a depth function of G(V_{i}) ,
we take, in what follows, \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) as a depth

function for all the Stokes geometries G(V) and G(V) .

By (Step‐2) in the proof of Lemma 5.5, there exists a compact set K_{1}\subset \mathbb{C} such

that every relevant portion of any Stokes path starting from |S(K;V)| is contained in

$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (K1). We denote by D_{K}^{E} the set of every Stokes path D starting from |S(K;V)|
with  $\mu$(\hat{x}_{0})=1 for some point \hat{x}_{0}\in D . Set

(5.2.48) V_{K}:=\{\mathrm{t}\mathrm{p}(\hat{x}_{0});\hat{x}_{0}\in|D_{K}^{E}|,  $\mu$(\hat{x}_{0})=1\}.

Since we have |D_{K}^{E}|\subset|S(K_{1};V)| ,
it follows from Corollary 5.7 that there exists a

positive constant m such that

(5.2.49) \{\hat{x}\in|D_{K}^{E}|; $\mu$(\hat{x})=1\}\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(m) .

Hence the indices of V_{K} are bounded, and thus, V_{K} is a finite set.
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We take an integer i_{K} sUciently large so that V_{K}\subset V_{i_{K}} is satiSed. Now we want

to claim

(5.2.50)  $\mu$(\hat{x})=$\mu$_{i_{K}}(\hat{x}) (\hat{x}\in|D_{K}^{E}|) .

The claim can be proved by an argument similar to the proof of Theorem 5.6, but we

need much more precise argument: Set

Y:=\{\hat{x}\in|D_{K}^{E}|; $\mu$(\hat{x})\neq$\mu$_{i_{K}}(\hat{x})\},

and suppose that Y were non‐empty. Let us take a point \hat{y}\in Y such that \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) achieve

a minimal value k\geq 0 . Let s() : (0,1)\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} be a Stokes curve passing through \hat{y},
and we set

(5.2.51) $\theta$_{0}=\displaystyle \inf\{ $\theta$\in(0,1); $\mu$(s( $\theta$))\neq$\mu$_{i_{K}}(s( $\theta$))\} and \hat{x}_{0}=s($\theta$_{0}) .

We can easily see that the turning point \mathrm{t}\mathrm{p}(\hat{y}) also belongs to V_{i_{K}} . Indeed, if $\mu$_{i_{K}}(\hat{y})=1,
then we have \mathrm{t}\mathrm{p}(\hat{y})\in V_{i_{K}} . If not, then we have  $\mu$(\hat{y})=1 ,

and this entails \mathrm{t}\mathrm{p}(\hat{y})\in V_{K}\subset
 V_{i_{K}} . Therefore we obtain  $\mu$|_{s}(\hat{x})=$\mu$_{i_{K}}|_{s}(\hat{x}) near \mathrm{t}\mathrm{p}(\hat{y}) ,

and hence we get $\theta$_{0}>0 ; in

particular, \hat{x}_{0} is a coherent point of s in G(V) . Let us consider the sums

\displaystyle \sum_{(\hat{x}_{1},\hat{x}_{2})\in \mathrm{C}\mathrm{C}}\mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2}) $\mu$(\hat{x}_{1}) $\mu$(\hat{x}_{2}) and

(5.2.52)

\displaystyle \sum_{(\hat{x}_{1},\hat{x}_{2})\in \mathrm{C}\mathrm{C}_{i_{K}}}\mathrm{m}\mathrm{u}1_{\hat{x}_{0}}(\hat{x}_{1},\hat{x}_{2})$\mu$_{i_{K}}(\hat{x}_{1})$\mu$_{i_{K}}(\hat{x}_{2})
where CC (resp. \mathrm{C}\mathrm{C}_{i_{K}} ) is the set of all the co‐coherent pairs of \hat{x}_{0} in G(V) (resp.
G(V_{i_{K}})) . Apparently we have

(5.2.53) \mathrm{C}\mathrm{C}_{i_{K}}\subset \mathrm{C}\mathrm{C}.

Let (\hat{x}_{1},\hat{x}_{2})\in \mathrm{C}\mathrm{C} . Suppose that \hat{x}_{1} and \hat{x}_{2} belong to |D_{K}^{E}| . Then it follows from (5.2.2)
and the denition of k that we have

(5.2.54)  $\mu$(\hat{x}_{1}) $\mu$(\hat{x}_{2})=$\mu$_{i_{K}}(\hat{x}_{1})$\mu$_{i_{K}}(\hat{x}_{2}) .

Note that if  $\mu$(\hat{x}_{1}) $\mu$(\hat{x}_{2})=1 ,
then we have (\hat{x}_{1},\hat{x}_{2})\in \mathrm{C}\mathrm{C}_{i_{K}} by (5.2.54).

Now suppose that \hat{x}_{1}\not\in|D_{K}^{E}| . Then, by the denition of D_{K}^{E} ,
we have  $\mu$(\hat{x}_{1})=0.

We will prove $\mu$_{i_{K}}(\hat{x}_{1})=0 . If $\mu$_{i_{K}}(\hat{x}_{1})=1 ,
then there exists a Stokes path D in

G(V_{i_{K}}) starting from \hat{x}_{1} that reaches an ordinary turning point thanks to Lemma 5.9

below. Since D is also a Stokes path in G(V) starting from \hat{x}_{1} , by noticing that \hat{x}_{1}

is a co‐coherent point of the coherent point \hat{x}_{0} in G(V) ,
we obtain a Stokes path in

G(V) starting from some point in |S(K;V)| that reach an ordinary turning point, and
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that passes the point \hat{x}_{1} also. Since  $\mu$(\hat{x})=1 holds in a neighborhood of an ordinary

turning point, we have \hat{x}_{1}\in|D_{K}^{E}| ,
which is a contradiction. Hence we have obtained

$\mu$_{i_{K}}(\hat{x}_{1})=0 . This implies that (5.2.54) still holds in this case.

By these observations, the sums in (5.2.52) coincide, and  $\mu$|_{s}(\hat{x}) is equal to $\mu$_{i_{K}}|_{s}(\hat{x})
near \hat{x}_{0} . That contradicts the denition of \hat{x}_{0} ,

and we have obtained (5.2.50).

By employing the same argument as above, we also have

(5.2.55)  $\mu$(\hat{x})=$\mu$_{i_{K}}(\hat{x})=0 (\hat{x}\in|S(K;V)|\backslash |D_{K}^{E}|) ,

and hence, we finally obtain

(5.2.56)  $\mu$(\hat{x})=$\mu$_{i_{K}}(\hat{x}) (\hat{x}\in|S(K;V)|) .

This completes the proof of Theorem 5.8. \square 

Lemma 5.9. Let V be a subset of the turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} , and we assume

the geometric conditions (GA‐1) and (GA‐2) for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} and the condition () for V. Let

\hat{y} be a point in |S(V)| such that  $\mu$(\hat{y})=1 holds for the state function  $\mu$(\hat{x}) of G(V) .

Then there exists a Stokes path D starting fr om \hat{y} such that  $\mu$(\hat{x})=1 holds for every

point \hat{x}\in D ; in particular, it reaches some ordinary turning point in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}.

Proof. Let s() : (0,1)\rightarrow \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} be a Stokes curve that passes thorough \hat{y} . We

may assume that s(0)=\mathrm{t}\mathrm{p}(\hat{y}) and s($\theta$_{1})=\hat{y} for some $\theta$_{1}>0 . If  $\mu$(s( $\theta$))=1 holds

for any  $\theta$\in(0, $\theta$_{1} ], then it suces to take the portion of s from \hat{y} to \mathrm{t}\mathrm{p}(\hat{y}) as a desired

Stokes path. Now suppose  $\mu$($\theta$_{0})=0 for some 0<$\theta$_{0}<$\theta$_{1} . Set

(5.2.57) $\theta$_{0}:=\displaystyle \sup\{ $\theta$\in(0, $\theta$_{1}]; $\mu$(\hat{x})=0\}>0

Then \hat{x}_{0}=s() is a discontinuous point of  $\mu$|_{s}(\hat{x}) ,
and thus, \hat{x}_{0} is a coherent point in

s . Moreover there exists at least one pair of co‐coherent points \hat{x}_{1} and \hat{x}_{2} of \hat{x}_{0} with

 $\mu$(\hat{x}_{1})=1 and  $\mu$(\hat{x}_{2})=1 because the sum in (5.2.52) takes an odd number. Then,

taking the co‐coherent point \hat{x}_{1} as \hat{y} , we will do the same procedure again.
Since the depths of all the Stokes path starting from \hat{y} are uniformly bounded due

to Lemma 5.5, by repeating the above procedure finitely many times, we can reach some

ordinary turning point. This completes the proof. \square 

§5.3. The Unique Existence of the Model for the General Case

In this subsection, we will consider the unique existence of the model of the Stokes

geometry for the general case; that is, we assume the geometric conditions (GA‐1),
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(GA‐2) and (GA‐3) for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} but we do not assume the condition () for V (Denition
5.2) which was supposed in the previous subsection.

For the general case, the set of coherent points in a Stokes curve may be dense in

that curve, and this causes many diculties; for example, the depths of Stoke paths
are not uniformly bounded. One of noticeable facts is that almost all the coherent

points are isolated from the ordinary turning points in the sense that any Stokes path

starting from its co‐coherent point cannot reach an ordinary turning point. To exclude

the isolated coherent points in this sense, we will introduce the notion of a Stokes path
tree as follows: Let \hat{y} be a point in |S(V)|.

Denition 5.10. A Stokes path tree starting from \hat{y} in G(V) is a binary
tree represented by the following schematic diagram:

p_{k}\rightarrow\hat{q}_{k}

1

\rightarrow\hat{q}_{k-1}

\rfloor

 p_{k+1}\rightarrow\hat{q}_{k+1}

 p_{3}\rightarrow\ldots

1

 p_{1}\rightarrow\hat{q}_{1}
(5.3.1)

1 \rfloor

 p_{4}\rightarrow\ldots

\hat{y}=p_{0}\rightarrow\hat{q}_{0}

 p_{5}\rightarrow\ldots

\rfloor ]

p_{2}\rightarrow\hat{q}_{2}

\rfloor

 p_{6}\rightarrow\ldots

(the bottom side)

for which the conditions below are satised:

1. The tree is a finite graph.

2. Every bottom node is an ordinary turning point in  V (i.e. \hat{q}_{k},\hat{q}_{k+1} ,
etc. are ordinary

turning points).

3. Any path from \hat{y} to a bottom node in the diagram (5.3.1) gives a Stokes path

starting from \hat{y} in G(V) ,
and it is called ( (\mathrm{a} Stokes path in the Stokes path tree�
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Then we dene the depth of a Stokes path tree T by:

(5.3.2) \mathrm{d}\mathrm{e}\mathrm{p}(T)= \displaystyle \max dep(D):
 D : a Stokes path in T

Now we have the following lemma whose proof goes in the same way as that for

Lemma 4.7. Remember that the function  $\varphi$(\hat{x}_{1},\hat{x}_{2}) was dened by (4.2.2).

Lemma 5.11. For a Stokes path tree starting from \hat{y} that is represented by the

schematic diagram (5. 3.1), we have

(5.3.3) F^{\mathrm{a}}(\displaystyle \hat{y})=\sum $\varphi$(p_{i},\hat{q}_{i})
where the sum is taken over all the horizontal arrows p_{i}\rightarrow\hat{q}_{i} in (5.3.1).

Note that not every point \hat{x} in |S(V)| has a Stokes path tree starting from \hat{x} itself.

Hence the following notions make sense:

Denition 5.12. Let \hat{x}_{0} be a coherent point of a Stokes curve s in G(V) ,
and let

\hat{x}_{1} and \hat{x}_{2} be a co‐coherent pair of \hat{x}_{0} in G(V) . If there exist Stokes path trees starting
from \hat{x}_{1} and \hat{x}_{2} in G(V) respectively, then we say that \hat{x}_{0} is a strong coherent point
of s in G(V) ,

and that \hat{x}_{1} and \hat{x}_{2} is a strong co‐coherent pair of \hat{x}_{0} in G(V) .

For the general case, we cannot expect the existence of a depth function. Hence we

introduce another notion: a weak depth function given by the following.

Proposition 5.13. We assume the geometric conditions (GA‐1), (GA‐2) and

(GA‐3) for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Then there exists a weak depth function

dep :|S(V)|\rightarrow \mathbb{Z}_{\geq 0}\cup\{-1\}

of the Stokes geometry G(V) foor which the fo llowing conditions are satised:

1. The set |S(V)|_{\leq k}:=\{\hat{x}\in|S(V)|;\mathrm{d}\mathrm{e}\mathrm{p}(\hat{x})\leq k\} is open in |S(V)| for any k\in \mathbb{Z} , and

for any Stokes curve s emanating from \hat{v}\in V we have

(5.3.4) dep |_{s}(\hat{x})=\left\{\begin{array}{ll}
-1 & if \hat{v} is a virtual turning point;\\
0 & if \hat{v} is an ordinary turning point;
\end{array}\right.
in some neighborhood of \hat{v} . Here dep |_{s}(\hat{x}) designates the restriction of \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) to s.

2. We have \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{1})\geq \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{2}) for any points \hat{x}_{1} and \hat{x}_{2} with l(s;\hat{x}_{1})\geq l(s;\hat{x}_{2}) in a

Stokes curve s\in S(V) .

3. If \hat{x}_{0} is a strong coherent point of a Stokes curve in G(V) ,
then we have

(5.3.5) \displaystyle \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{0})>\max\{\mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{1}), \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{2})\}

for every strong co‐coherent pair \hat{x}_{1} and \hat{x}_{2} of \hat{x}_{0} in G(V) .
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4. For any compact set K\subset \mathbb{C} , the function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}) is uniformly bounded on |S(K;V)|.

Proof. For any \hat{y}\in|S(V)| ,
we set

(5.3.6) T(\hat{y})= {Stokes path trees starting from \hat{y} in G(V) },

(5.3.7) \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y})=\left\{\begin{array}{l}
-1\\
\sup_{T\in T(\hat{y})} \mathrm{d}\mathrm{e}\mathrm{p}(T)
\end{array}\right.
and

if  T(\hat{y})= $\phi$

otherwise

Now we have the following two lemmas which are similar to Lemmas 5.4 and 5.5. Note

that Lemma 5.14 explains why we have introduced a strong coherent point.

Lemma 5.14. Let  s\in S(V) . Then the set of strong coherent points of s in

G(V) is discrete in the closure of s.

Lemma 5.15. For any compact set K\subset \mathbb{C} the function \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) dened by

(5.3. 7) is uniformly bounded on the set |S(K;V)|.

We give a sketch of the proofs for Lemmas 5.14 and 5.15. We refer the readers to

[H4] for the details.

Proof. We first prove Lemma 5.15. Let K be a compact set in the base space.

By (Step‐2) of the proof of Lemma 5.5, there exists a compact set \tilde{K}\subset \mathbb{C} such that

relevant portions of a Stokes path tree starting from a point in |S(K;V)| are contained

in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K}) . Here the set of relevant portions of a Stokes path tree T is, by denition,
the union of relevant portions of each Stokes path in T (for the denition of those of a

Stokes path, see (Step‐2) of the proof of Lemma 5.5).
In what follows, we consider a Stokes path tree T starting only from |S(K;V)|.

Hence relevant portions of T are always contained in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K}) .

Let D be a Stokes path in a Stokes path tree T
,

and let us consider a subset B of

D represented by the following diagram:

\hat{p}_{j+3}
1

\hat{p}_{j+2}\rightarrow\hat{q}_{j+2}
1 \rfloor

(5.3.S) \hat{p}_{j+1}\rightarrow\hat{q}_{j+1} \mathrm{W}_{j+2}
1 \rfloor

\hat{q}_{j} \mathrm{W}_{j+1}
\rfloor

\mathrm{W}_{j}
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Here B consists of 3 consecutive strong coherent points of the Stokes path D(\hat{q}_{j},\hat{q}_{j+1}
and \hat{q}_{j+2}) and their strong co‐coherent pairs ( (\hat{w}_{j},\hat{p}_{j+1}) , (\hat{w}_{j+1},\hat{p}_{j+2}) and (\hat{w}_{j+2},\hat{p}_{j+3}) ).
We call such a subset B of D a2‐length block of the Stokes path D . Set

(5.3.9)  $\varphi$(B):= $\varphi$(\hat{p}_{j+1},\hat{q}_{j+1})+ $\varphi$(\hat{p}_{j+2},\hat{q}_{j+2})+F^{\mathrm{a}}(\mathrm{W}_{j})+F^{\mathrm{a}}(\mathrm{W}_{j+1})+F^{\mathrm{a}}(\mathrm{W}_{j+2}) .

Suppose that we can prove the following claim: There exists a positive constant

 $\delta$>0 such that we have

(5.3.10)  $\varphi$(B)\geq $\delta$>0

for any block B of a Stokes path in a Stokes path tree starting from |S(K;V)| . Then

we have

(5.3.11) F^{\mathrm{a}}(y)\displaystyle \geq $\delta$[\frac{\mathrm{d}\mathrm{e}\mathrm{p}(T)}{4}]
for a Stokes path tree T starting from \hat{y}\in|S(K;V)| . We come to the conclusion of

Lemma 5.15 since F^{\mathrm{a}}(\hat{y}) is uniformly bounded on |S(K;V)| . Hence it suces to show

the claim.

To prove the claim we need some preparations. First let T be a Stokes path tree

with \mathrm{d}\mathrm{e}\mathrm{p}(T)=1 . Then T is represented by the schematic diagram:

p_{1}\rightarrow\hat{q}_{1}

1

(5.3.12) y=p_{0}\rightarrow\hat{q}_{0}

\rfloor

 p_{2}\rightarrow\hat{q}_{2}

Here \hat{q}_{1} and \hat{q}_{2} (resp. [\hat{p}_{1},\hat{q}_{1}], [\hat{p}_{2},\hat{q}_{2}] ) are ordinary turning points (resp. portions of

ordinary Stokes curves) respectively. Since we have

(5.3.13) F^{\mathrm{a}}(y)=F^{\mathrm{a}}(p_{0})\geq $\varphi$(p_{1},\hat{q}_{1})+ $\varphi$(p_{2},\hat{q}_{2}) ,

and since the number of ordinary Stokes curves is finite, there exists a positive constant

$\delta$_{1} that satises

(5.3.14) F^{\mathrm{a}}(y)\geq$\delta$_{1}>0

for any Stokes path tree represented by the diagram (5.3.12). This implies that for an

arbitrary Stokes path tree T starting from y\in|S(K;V)| we have

(5.3.15) dep(T) \geq 1\Rightarrow F^{\mathrm{a}}(y)\geq$\delta$_{1}>0
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because T contains at least one Stokes path subtree T' of T with \mathrm{d}\mathrm{e}\mathrm{p}(T')=1 . Note

that there exists a Stokes path tree of any depth that contains only one such a subtree.

Therefore the estimate (5.3.11) does not follow from (5.3.14) directly.

Next let B be a 2‐length block represented by the diagram (5.3.8), and set

(5.3.16) \tilde{B}:=B\cup[\hat{w}_{j}, \mathrm{t}\mathrm{p}(\hat{w}_{j})]\cup[\hat{w}_{j+1}, \mathrm{t}\mathrm{p}(\hat{w}_{j+1})]\cup[\hat{w}_{j+2}, \mathrm{t}\mathrm{p}(\hat{w}_{j+2})].

Note that  $\varphi$(B) is equal to the sum of integrals (4.2.2) along all portions of Stokes curves

contained in \tilde{B}
, i.e.,

 $\varphi$(B)= $\varphi$(\hat{p}_{j+1},\hat{q}_{j+1})+ $\varphi$(\hat{p}_{j+2},\hat{q}_{j+2})
(5.3.17)

+ $\varphi$(\hat{w}_{j}, \mathrm{t}\mathrm{p}(\hat{w}_{j}))+ $\varphi$(\hat{w}_{j+1}, \mathrm{t}\mathrm{p}(\hat{w}_{j+1}))+ $\varphi$ ( \hat{w}_{j+2} , tp (\hat{w}_{j+2}) ).

Then it follows from (5.2.18) that for any points \hat{x}_{1} and \hat{x}_{2} in |\tilde{B}| we have

(5.3.18)  $\varphi$(B)\geq$\delta$_{K^{-}} dist ($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{1}), $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}_{2}))^{\frac{3}{2}}
where a positive constant $\delta$_{K^{-}} depends only on \tilde{K} (note that the estimate (5.2.18) has

been obtained independently of the condition

Now we are ready to prove the claim. Let B be a 2‐length block represented by
the diagram (5.3.8). We will consider the following 3 cases:

Case 1: One of turning points \mathrm{t}\mathrm{p}(\hat{w}_{j}) , \mathrm{t}\mathrm{p}(\hat{w}_{j+1}) and \mathrm{t}\mathrm{p}(\hat{w}_{j+2}) is virtual.

We may suppose that \mathrm{t}\mathrm{p}(\hat{w}_{j}) is a virtual turning point. Since B is a subset of

Stokes path tree, there exists a Stokes path tree T^{0} starting from \hat{w}_{j} . Moreover, as

\mathrm{t}\mathrm{p}(\hat{w}_{j}) is a virtual turning point, we have \mathrm{d}\mathrm{e}\mathrm{p}(T')\geq 1 . Hence, by (5.3.15), we obtain

(5.3.19)  $\varphi$(B)\geq F^{\mathrm{a}}(\mathrm{W}_{j})\geq$\delta$_{1}.

Case 2: Turning points \mathrm{t}\mathrm{p}(\hat{w}_{j}) , \mathrm{t}\mathrm{p}(\hat{w}_{j+1}) and \mathrm{t}\mathrm{p}(\hat{w}_{j+2}) are ordinary, and at least two

of them are dierent points.

Applying (5.3.18) to this case, we have

(5.3.20)  $\varphi$(B)\displaystyle \geq$\delta$_{K^{-}}\min_{x,y\in Z,x\neq y} dist (x, y)^{\frac{3}{2}}>0

where Z is the set of the ordinary turning points in the base space.

Case 3: Turning points \mathrm{t}\mathrm{p}(\hat{w}_{j}) , \mathrm{t}\mathrm{p}(\hat{w}_{j+1}) and \mathrm{t}\mathrm{p}(\hat{w}_{j+2}) are ordinary, and they coincide.
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Set

\mathrm{W}:=\mathrm{t}\mathrm{p}(\hat{w}_{j})=\mathrm{t}\mathrm{p}(\hat{w}_{j+1})=\mathrm{t}\mathrm{p}(\hat{w}_{j+2}) ,

and the ordinary turning point \mathrm{W} is assumed to be of type (l, m) . Then the Stokes curve

\mathrm{s}\mathrm{t}(\hat{p}_{j+1}) (resp. \mathrm{s}\mathrm{t}(\mathrm{p}) ) is of type (l, k) (resp. (m, k) ) for some k respectively. Hence,
if the projection image of a coherent point $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{q}_{i})(i=j, j+1, j+2) is suciently
close to $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{w}) ,

then the local projection images of 3 Stokes curves \mathrm{s}\mathrm{t}(\hat{q}_{i}) , \mathrm{s}\mathrm{t}(\hat{w}_{i})
and \mathrm{s}\mathrm{t}(p_{i+1}) intersect transversally at $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{q}_{i}) by the assumption (GA‐3). Since each

intersection in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\tilde{B}) is transversal if $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\tilde{B}) is suciently small, we can obtain

the following fact by applying Lemma 4.4 to the conguration of $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\tilde{B}) : There exists

a suciently small constant  $\epsilon$>0 such that

(5.3.21) $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\tilde{B})\not\subset U_{ $\epsilon$}($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{w})) := { z\in \mathbb{C}; dist (z, $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{w}))< $\epsilon$ }

holds for any 2‐length block  B of Case 3 (see [H4] for the details; these kinds of cong‐

urations of the Stokes geometry were also studied in [U]). Therefore, as \tilde{B} contains a

point \hat{x} with

(5.3.22) dist ($\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{w}), $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}(\hat{x}))\geq $\epsilon$,

the estimate

(5.3.23)  $\varphi$(B)\geq$\epsilon$^{\frac{3}{2}}>0

follows from (5.3.18).

We have obtained the estimate (5.3.10) for all cases, and this completes the proof.
\square 

Lemma 5.14 is deduced from Lemma 5.15 as follows:

Proof. Let K and \tilde{K} be compact sets given in the proof of Lemma 5.15, and let

W be a subset of V . We say that a binary tree T is a W‐Stokes path tree if T satises

the conditions 1. and 3. of Denition 5.10 and the following condition 2

2�. Every bottom node of T belongs to W.

Let O be the set of ordinary turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Then an O‐Stokes path tree is a

usual Stokes path tree.

We dene the subset V_{k}(\tilde{K};W) of V in the following way; A turning point \hat{v}\in V

belongs to V_{k}(\tilde{K};W) if and only if there exist a Stokes curve s emanating from \hat{v} and a

point \hat{y}\in s such that there exists a W‐Stokes path tree T starting from \hat{y} which satises

the conditions 1. and 2. below.
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1. \mathrm{d}\mathrm{e}\mathrm{p}(T)\leq k.

2. Relevant portions of T are contained in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(\tilde{K}) .

Then, by the denition of a Stokes path tree, we have

(5.3.24) V_{k+1}(\tilde{K};W)\subset V_{1}(\tilde{K};V_{k}(\tilde{K};W))

for any k\geq 0 . If W' is a finite set, then V_{1}(\tilde{K};W') is also finite by Lemma 5.1.

Hence V_{k}(\tilde{K};O) is a finite set for any k\geq 0 . Note that an element in V_{k}(\tilde{K};O) is a

constructible turning point of level at most k in the sense of [H2].
Let T be a Stokes path tree starting from |S(K;V)| ,

and set

(5.3.25) k:= \displaystyle \sup \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y})<\infty.
y\in|S(K;V)|

We can obtain

(5.3.26) furning points in relevant portions of T} \subset V_{\mathrm{d}\mathrm{e}\mathrm{p}(T)}(\tilde{K};O)\subset V_{k}(\tilde{K};O) ,

and from which Lemma 5.14 follows. \square 

It is easy to see that \mathrm{d}\mathrm{e}\mathrm{p}(\hat{y}) satises all properties of a week depth function by
these lemmas. The proof of Proposition 5.13 has been completed. \square 

The main theorem for the general case is:

Theorem 5.16. We assume the geometric conditions (GA‐1), (GA‐2) and

(GA‐3) for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} which were given in Subsection 5.1. Then there exists a model M_{c}(V)
of the Stokes geometry G(V) ,

and we call it the compact model of G(V) . The compact
model M_{c}(V) satises the fo llowing compactication condition: For any compact set

K\subset \mathbb{C} , there exists a positive integer k such that the state function is identically zero

in the set

(5.3.27) |S(K;V)|\cap(\mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}\backslash \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k)) .

Conversely any model of the Stoke geometry G(V) that satises the compactication
condition coincides with the compact model M_{c}(V) .

Proof. One of the dierences between a depth function in the special case and a

weak one in this subsection is that the weak one takes the negative value -1 . We cannot

determine uniquely the state function  $\mu$(\hat{x}) on |S(V)|_{-1} by our Ansatz. For example,
let us again consider the example given in Fig. 13 with \hat{x}_{i} being a virtual turning point

(i=1,2,3) ,
which has two models. This example has no depth function, but certainly
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it has a weak one. In fact, if we set \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x})=-1 on the Stokes curve emanating from

\hat{x}_{i}(i=1,2,3) and \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x})=0 on that emanating from \hat{w}_{i}(i=1,2,3) ,
then \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x})

satises every condition of a weak depth function. As Fig. 10 and Fig. 11 suggest us,

the state function is allowed to take dierent values on |S(V)|_{-1}.
Note that the both models given by Fig. 10 and Fig. 11 satisfy the compactication

condition in this theorem, and hence, our theorem does not hold for the uniqueness.
However that is not a contradiction because the example is never associated with a

system of dierential equations (see also the remark after this proof).

Taking these observations into account, we specify an initial value of the state

function at each point in |S(V)|_{-1} ,
and those for the compact model are given by:

(5.3.28)  $\mu$(\hat{x})=0 (\hat{x}\in|S(V)|_{-1}) .

Now it is easy to see that  $\mu$(x) satises the Ansatz at every point in |S(V)|_{-1} by
the following facts:

(F‐1): For any point in \hat{x}\in|S(V)|_{-1}, \mathrm{t}\mathrm{p}(\hat{x}) is a virtual turning point due to the

conditions 1. and 2. of Proposition 5.13.

(F‐2): Let us assume that the state function  $\mu$(\hat{x}) satises the initial condition (5.3.28).
Then for any coherent point \hat{x}_{0} of a Stokes curve s\in S(V) (note that we do not assume

\hat{x}_{0}\in|S(V)|_{-1}) ,
if \hat{x}_{0} is not strong, then the sum in (4.1.3) of the Ansatz takes the zero

value, that is, the state function is continuous at \hat{x}_{0} . This claim can be proved in the

following way: Let \hat{x}_{1} and \hat{x}_{2} be co‐coherent pair of \hat{x}_{0} in G(V) . Then, since \hat{x}_{0} is not

strong, either \hat{x}_{1} or \hat{x}_{2} is a point from which no Stokes path tree starts. We suppose

\hat{x}_{1} to be such a point. Then we have \mathrm{d}\mathrm{e}\mathrm{p}(\hat{x}_{1})=-1 . In fact, this is clear for the weak

depth function dened by (5.3.7), and this also holds for arbitrary weak depth functions

(we omit its details). Now we get  $\mu$(\hat{x}_{1})=0 by (5.3.28). Hence we can conclude that

for every co‐coherent pair (\hat{x}_{1},\hat{x}_{2}) of \hat{x}_{0} in G(V) ,
either  $\mu$(\hat{x}_{1}) or  $\mu$(\hat{x}_{2}) is equal to zero,

and the sum is also zero.

Then we can construct the state function on each |S(V)|_{k}(k\geq 0) by the induction

with respect to k . In fact the above facts imply that, by replacing coherent points with

strong ones in the argument, we can construct the state function for the compact model

as we have constructed one in the proof for Theorem 5.6. We refer the readers to [H4]
for the details of the construction.

Now we will prove the uniqueness with the compactication condition. Let  $\mu$(\hat{x})
be the state function of the compact model, and let $\mu$_{1}(\hat{x}) be a state function satisfying
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the compactication condition.

Suppose that the initial conditions of  $\mu$(\hat{x}) and $\mu$_{1}(\hat{x}) coincide, that is, both state

functions satisfy (5.3.28). Then, since the fact (F‐2) holds for  $\mu$(\hat{x}) and $\mu$_{1}(\hat{x}) because of

the zero initial condition, we obtain  $\mu$(\hat{x})\equiv$\mu$_{1}(\hat{x}) by the same argument as in Theorem

5.6.

Let us suppose  $\mu$(\hat{x})\neq$\mu$_{1}(\hat{x}) for some point in |S(V)|_{-1} . Since  $\mu$(\hat{x})=0 on

|S(V)|_{-1} ,
we get a point \hat{y}\in|S(V)|_{-1} with $\mu$_{1}(\hat{y})=1 . Then we apply the procedure

described in the proof of Lemma 5.9 to the point \hat{y} . Since a path generated by the

procedure can not reach an ordinary turning point due to the fact (F‐1), we obtain an

innite length of a Stokes path D with

(5.3.29) $\mu$_{1}(\hat{x})=1 (\hat{x}\in D) .

Here D consists of the innite coherent points \{\hat{q}_{i}\}_{i=0}^{\infty} and the co‐coherent points \{p_{i}\}_{i=0}^{\infty}
and \{\hat{w}_{i}\}_{i=0}^{\infty} which generate the innite version of the schematic diagram (p_{0}=\hat{y})
dened by (4.2.1) with letting k\rightarrow\infty.

Then there exists a compact set K_{1}\subset \mathbb{C} such that

(5.3.30) felevant portions of D } \subset$\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1} (K1).

Here the precise denition of the relevant portions of D was given in (Step‐2) of the

proof of Lemma 5.5. Note that the fact (5.3.30) also follows from (Step‐2), for which

we do not need the condition () .

It follows from (5.3.29) and the compactication condition that there exists an

integer k_{1} that satises D\subset \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k_{1}) ,
and thus, we have

(5.3.31) felevant portions of D } \subset Rym(k)

for some integer  k . Hence, by 1. of Lemma 5.1, the number of the relevant turning

points

(5.3.32) E_{tp}:=\{\mathrm{t}\mathrm{p}(p_{i})\}_{i=0}^{\infty}\cup\{\mathrm{t}\mathrm{p}(\hat{q}_{i})\}_{i=0}^{\infty}\cup\{\mathrm{t}\mathrm{p}(\hat{w}_{i})\}_{i=0}^{\infty}

is finite. This implies, in particular, that the same turning point appears in the relevant

portions of D innitely many times.

Since the number of coherent points in $\pi$_{R_{\mathrm{s}\mathrm{y}\mathrm{m}}}^{-1}(K_{1})\cap \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}}(k) which are generated

by the Stokes curves emanating from the finite set E_{tp} is again finite, the same coherent

point appears in \{\hat{q}_{i}\}_{i=0}^{\infty} innitely many times. Since the function F^{\mathrm{a}}(\hat{x}) is strictly

decreasing along D
,

the same point never appears twice in D . This is a contradiction

because \{\hat{q}_{i}\}_{i=0}^{\infty}\subset D . Thus the uniqueness with the compactication condition has

been proved. \square 
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If the compactication condition described in Theorem 5.16 would be added in our

Ansatz, then we could obtain the complete answer, that is, the unique model of G(V)
always exists for the Stokes geometry associated with a real system. For such a Stokes

geometry, however, the author does not know whether the compactication condition

is independent of the Ansatz.

The compact model also appears as a limit model of finite approximations for the

Stokes geometry G(V) . Let V be a set of all the turning points in \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} (note that V

is a countable set), and let \{V_{i}\}_{i=1}^{\infty} be an increasing sequence of subsets of V such that

each V_{i} is finite and \{V_{i}\} is exhaustive. Note that since V_{i} is a finite set, the model

M(V) of the Stokes geometry G(V) uniquely exists by Theorem 5.6.

Theorem 5.17. Assume the geometric conditions (GA‐1), (GA‐2) and (GA‐3)
for \mathcal{R}_{\mathrm{s}\mathrm{y}\mathrm{m}} . Then we have

(5.3.33) \displaystyle \lim_{i\rightarrow\infty}M(V_{i})=M_{c}(V) .

The above convergence is uniform in |S(K;V)| for any compact set K\subset \mathbb{C}.

Proof. The proof is the same as that for Theorem 5.8. \square 
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