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Infinite Pre-dominant Integral Weights for Affine
Types

By

KENTO NAKADA®

Abstract

We study infinite pre-dominant integral weights for affine Kac-Moody Lie algebras. Fur-
thermore, we determine the W-orbit of an infinite pre-dominant integral weight.

§1. Introduction

The purpose of the present paper is to study infinite pre-dominant integral weights
for affine Kac-Moody Lie algebras. The notion of pre-dominant integral weights is
introduced in [4]. Our motivation of this study is the following:

Let A be a partition of d, and Y the Young (or Ferrers) diagram of shape A. In [6],
R. P. Stanley studied the generating fuction U(Y);q) for the reverse plane partitions of
shape Y, and proved the ¢-hook formula:

(L.1) U¥aa) = ][]

where h, denotes the hook-length at v € Y. In a forthcoming paper [5], we have
succeeded in proving a generalization of (1.1) by using a root system for a Kac-Moody
Lie algebra. Let A be a pre-dominant integral weight, and D(A)” be the shape of A
(a certain subset of positive real coroots). These are defined in section 3. A map
o :D(A)Y — Z>¢ is called a D(\)Y-partition [5] if

L If B¥ avY (BY,vY € D(A)), then o(8Y) = a(v"),
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2. There exists at most finitely many 3* € D(\) such that o(5") # 0,

where 3Y < vY means 3Y < ~Y and (v, 8Y) > 1. The generating function U(D(\)Y;q)
for D(A\)Y-partitions is defined by

U(D()‘)\/§Q) = Z quVED(A)V U(ﬁv).

o:D(A)Y —partition

In [5], the following statement is shown:

Theorem 1.1 (g-hook formula [5]).  Let A be a pre-dominant integral weight sat-
isfying #D(N)Y < oco. Then we have:
1

A% — -
BYED(A)

where ht (3) denotes the height of (3.

We stress that almost all part of the proof [5] of the g-hook formula (1.2) is true
even if #D(\)Y = oo. (The condition “#D(A)¥ < oo” is necessary only for certain
inductive argument.) The author thinks that, by a suitable modification of formulation
of (1.2), the g-hook formula should hold also for infinite pre-dominant integral weights.

In the present paper, we study several properties of infinite pre-dominant integral
weights for affine Kac-Moody Lie algebras. Let P2 (T) denote the set of infinite pre-
dominant integral weights. Here, I denotes the index set of simple roots as in TABLE
2. Then, as is shown in Proposition 5.8, we have:

(1.3) Po(I) U PE (I) = Rig(I),

where the sets Py(I) and Rig(I) are defined in Section 3. An element of Rig([) is called
a signature integral weight. The equation (1.3) shows that classification of infinite pre-
dominant integral weights reduces to that of signature integral weights. It is easy to see
the set Rig([) is closed under the Weyl group action.

In Section 5, we study the set Ri,(I) for a Cartan matrix of affine type and, our
main result (Theorem 5.15) gives the classification of signature integral weights in the
form of W (I)-orbit decomposition of Rig([):

Rig(I)= || W) P(i,*1),
1€(I)y

where W(I) denotes the Weyl group, * is a distiguished index in I, (I); is a certain
subset of I, P(i,*,I) is a set of integral weights with a certain condition. See Section 5
for unexplained notion and further details.
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In Section 4, we study the set Rig([) for a Cartan matrix of finite type. In Propo-
sition 4.6, we determine the W (I)-orbit decomposition of Rig([):

Rig(I)=Py(H)u | | W(I)-P(i,I).
i€(I)o

This result is used in the proof of the main result. See Section 4, for the definition of
(I)o and P(i,I).

§2. Preliminaries

Let A = (a; ;)i jer be a Cartan matrix of a Levi subalgebra g of a Kac-Moody Lie
algebra [2][3] defined over R. We denote the Cartan subalgebra by §. Then, we have two
sets of linearly independent elements IT = {ai |z € I} C b* and IIV = {aiv s I} Ch
such that (o, ) = a; ;. An element A € h* is said to be an integral weight if

\olyezZ, iel

The set of integral weights is denoted by P(I). An integral weight A € P(I) is said to
be dominant if
A\ af) >0, iel

The set of dominant integral weights is denoted by P>((I). For each ¢ € I, we define
s; € GL(h*) by:

sit A= A=\ of )i, Aebr
The group W = W(I) generated by {si
b by:

1el } is called the Weyl group, which acts on

(wN),w(h)) = (\h), weW,Xeh* heb.

We define the real root system (resp. real coroot system) by ® := WII (resp. ®Y :=
WIIY) (or, expressing the index set explicitly, ®(I) (resp. ®Y(I)) ). We denote by &
and ®_ the sets of positive and negative roots of ®, respecively. The dual (Y € ®V of
a root O € ® is defined by the property

w(B) =w(@)Y, weW.
For a subset S of ®, we define a subset SV of ®V by:

SV = {ﬁv cdV|ge S}.
For each 3 € ®, we define sg € W by:

sp(A) =A— (X, BY)B, Aeb™.
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Then, sg acts on h by:
sp(h) =h— (8, M)B", heh.
Let oy, a; € 11.

If (a;, o)) = —1, and (a;, ;') = —1, then we denote j

v
(2
If (i, ) = =2, and (ay, @) = —1, then we denote > j
v
K3

If (i, ) = =3, and (ay, @) = —1, then we denote z j

§3. Pre-dominant Integral Weights and Signature Integral Weights

Definition 3.1.  An integral weight A is said to be pre-dominant if:
(A, 3Y) > —1,for each 8¥ € <I>Yr.
The set of pre-dominant integral weights is denoted by P>_1(I).
Definition 3.2.  For A € P>_;, the set D(A\)” defined by
DO = {BV e dY[(\BY) = —1}

is called the shape of A. We say that a pre-dominant integral weight \ is finite if
#D(N\)Y < 00, infinite otherwise. The set of finite (resp. infinite) pre-dominant integral
weights is denoted by Pzﬁfl(f ) (resp. Pzin_f1 (I)).

Lemma 3.3 (See [4]Lemma 4.1).  Let A € P>_1(I) and ¥ € D(\)Y. Then we
have sg(\) € P>_1(I).

Definition 3.4. An integral weight A is said to be a signature integral weight
if:
(A, 7Yy € {1,0,—1}, for each v € ®.

The set of signature integral weights is denoted by Rig(I). We note Rig(l) € P>_1(I).
The following is clear.
Lemma 3.5. Let A € Rig(I) and § € ®(I). Then we have sg(\) € Rig(I).
Since the Weyl group W (I) is generated by II = {s,- |z € I}, we get:

Corollary 3.6.  The set Rig(I) of signature integral weights is closed under the
W (I)-action.
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Definition 3.7.  We define a set Py(I) by
Po(1) = {\ € P| (), ay) =0, for cach i € I}.

We note that D(A\)Y = @ for A € Py(I) so that we have Py(I) C PZﬁEI(I) and Py(I) N
P (I)=w.
Proposition 3.8.  The set Py(I) is closed under the W (I)-action.

Proof. Let A € Py(I), w € W(I), and @ € I. Then we have (w(
(A, w™Hay)V). Since w™!(a) is a linear combination of elements of TIV = {
we have (A, w™t(a;)V) = 0. Hence, w(\) € Py(I).

)

EI"_'II

§4. Classification for Finite Types

Through this section, we suppose the Cartan matrix A = (a; ;); jer is of finite type.
The index set I is given as in TABLE 1. The purpose of this section is to determine
the W (I)-orbit decomposition of Rig([).

Definition 4.1.  Let 3/, € ®¥ denote the highest coroot. The integers dy (i € I)

are defined by 3y, = >, d/ o

Definition 4.2.  Let ), € ®” denote the dual of the highest root. The integers

¢/ (i € I) are defined by 8, = >, ¢/

We note that if the Cartan matrix A is simply-laced, then we have 3/, = 3, and
that if multiply-laced, then 3/, > 8y,
When the Cartan matrix A is of type B;,C;, Fy, or Ga, the coroot system ®V is
decomposed as:
®Y =/ UP/, (disjoint union),

where ®; is the set of long roots and @ is the set of short roots. We note that we have
By, € ®/ and 3/, € ®/, and that &) and @) are the dual of &y and P, respectively.

Proposition 4.3.  Let A € P(I). Then there exists a unique element A € W (I)\
such that A € P>o(I). Furthermore, if A\ € Rig(I), then such a A € W(I)-\ is also a
signature integral weight.

Proof. Note that A is of finite type in this section. The first part of the proposition
is a well-known fact. The second part follows from Corollary 3.6. O
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Definition 4.4.  We suppose that a Cartan matrix A = (a;,;)i jer is of finite
type. We define a subset (I)g of I by:

uh::{ieldy=1}.

The highest coroot and the set (1) for each finite type are listed in TABLE 1.

Definition 4.5. Let i € I. We define a subset P(i; ) of P(I) by:
P(i; 1) = {x € P(D)] (A, ) =81 (G € D)},

where §; ; denotes the Kronecker’s delta. An element of P(i;1) is called an i-th funda-

mental weight (over I ).

Remark. If dimbh = #I, then the set P(i;1) contains a unique element. In
Section 5, we deal with a Cartan matrix A = (a;)i,jer of affine type, and we restrict
the index set I to a subset .J, which is of finite type. In such a situation, we have
dim b > #J. Hence, we have #P(i;J) # 1.

Remark.  When a Cartan matrix A = (a; ;)i jer is of finite type, a dominant
integral weight A is said to be minuscule if (A, 8¥) <1 for all 3 € &, and there exists
i € I such that (A, onV) = ¢;,; for j € I. Equivalently, A is minuscule if

there exists an index i € (1) such that A € P(i;1).
Let A be a minuscule weight. By Corollary 3.6, it A € W(I) - A, then A € B (I).
The following proposition shows the converse of the previous remark.
Proposition 4.6. We have:

gd”:%UﬂJUIWDP@D (disjoint union),
iE(I)O

Proof. Let A\ € Rig(I). By Proposition 4.3, we may assume A € Riz([) is domi-
nant. Since (A, 3)/) € {0,1}, we have >, ., d} (X, o) € {0,1}. Since (A, ) € {0,1},
we have either:

. (A, of)=0(iel), or
2. there exists a unique index i € (I)o such that (A, ) = d;; (j € I).
Hence, we have:
(4.1) Rig(I) C Ry(I)u | | W(I)-P(i; I).
i€(I)o

The opposite inclusion is by the previous remark. O
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Remark (How to read TABLE 1).  In TABLE 1, we list the following information
from the top:

the type of Cartan matrix A,

the Dynkin and our indexing of the nodes,

the dual )/, of the highest root and the highest coroot )/,

the set (I)o,
e the cardinality #(W (I) - \) of W(I)-orbit for A € P(i;1) (i € (I)o),

as indicated at the end of the table. The cardinality of W ([I)-orbit for a minuscule A is
equal to the dimension of the irreducible highest weight module V() so that the Weyl
dimension formula gives the cardinality.

8§5. Classification for Affine Types

In this section, we suppose a Cartan matrix A = (a; ;)i jer is of affine type. We
choose the index set I as in TABLE 2. In particular, the distinguished index * is
specified as in the table. The purpose of this section is to determine the W (I)-orbit
decomposition of R (I).

§5.1. Coroots

Definition 5.1. Let K denote the null coroot (the canonical central element)
defined by
(i, K) =0, iel.

The integers a; (i € I) are defined by K =", ; a;'}.

Remark. Put J := 1T\ {*}. Note that we have a) = 1. Through this section, we
always fix this subset J of I. Then we note that the Cartan matrix A(J) := (@i )i jes
is of finite type.

If the Cartan matrix A is of type Al(l_)1 (resp. Dl(i)za Eél), Eél), Eél), Dl(i)l, Ag)_l, Eéz),
Df)), then the Cartan matrix A(J) := (a;)i jes is of type A;_y (resp. Dita, Es, Er,
Es, By, Ci, Fy, G3). We note that we have a; = d; for each i € J.

If the Cartan matrix A is of type Bl(l), C’l(l), F4(1), Ggl), then the Cartan matrix A(J) :=
(a; ;)i jes is of type By, Ci, Fu, Go. We note that we have a; = ¢,/ for each i € J.
Observe that 1 < ¢/ < dY for i € I. Thus, if d/ = 1, then o = 1 for all types except
A,

If the Cartan matrix A is of type Ag), then the Cartan matrix A(J) := (ai ;)i jes is of
type B;. In this case, we have ) = 2 for each i € J.
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Lemma 5.2 (See[2]). The set ®Y(I) is decomposed as follows:

B, BY B DY A | ES DY, then:

. If I is of type Al(i)l, pY 1+1°

+2°

() =Y (J)u | | (@V(])+nK), (disjoint union).

n>1

. If I is of type Bfl),Cl(l),Fil), then:

() =Y (J)u | | (®/ () +2mK)u | | (BY(]) +mK).

n>1 m>1

. If I is of type Ggl), then:

() =Y (J)u | | (@) () +3nK)u | | (BY(])+mK).

n>1 m>1
. If I is of type Ag), then:

oY (1) =Y (J)u| | % (®/(J) + 2n—D)E)u| | (@Y (J) +nK)u| | (2/(J) + 2nK).

n>1 n>1 n>1

Lemma 5.3. We have:

. If A is not of type Ag) (1>1), then:

Proof. This follows from Lemma 5.2. U
Definition 5.4. We define an integer r¥ by:

1 if Tisof type AV, DIV, BV BN B, DX A | B, DY
Vo o7 (1) ~Q) (1) 4(2)
=192 if Iisof type B;",C;", F, 7, A,
3 if I is of type Ggl)
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(p\/( )-
+ l

Proof. This follows from Lemma 5.2. O

Proposition 5.6.  Let A € P>_;. Then we have:
1. (A, K)>0.
2. If (\, K) > 1, then we have \ € Pzﬁfl(I) \ Po(I).

3. If (A, K) =0, then we have X € Pzin_fl(l) L Py().

Proof. (1) Fix an arbitrary 8 € ®Y(I). By Proposition 5.5, for each n > 0, we
have:
BY +r'nK € ®(I).

If (\, K) < —1, then, for a sufficiently large n, we have (\, 3V + r¥nK) < —2. This
contradicts A € P>_;. This proves Part (1).
(2) If X € Py(I), then we have (A, K) = > ,.;a/(\, o) = 0. Hence, we have
A & Py(I). If the Cartan matrix A is not of type Ag) (I > 1), then, by Lemma 5.3 (1),
we have:

DO € || (DO N (@Y(]) +nK)),

n>0

Since (A, K) > 1, we have D(A)V N (®Y(J) + nK) = @ for n > 0. Since the set ®Y(J)
is finite, D(A)Y is finite.
If the Cartan matrix A is of type Ag) (I > 1), then, by Lemma 5.3 (2), we have:

DO C || (DO = (@V() + @n— 1K) ) u | | DOV 1 (@Y(J) +nk)).
2

n>0 n>0

Since (\, K)>1, we have D()\)Vﬂ% (@V(J)+ (2n—1)K)=2 and DIA\)'N(PY(J) + nK)=
@ for n > 0. Since the set ®V(J) is finite, D(A)" is finite.

(3) Suppose A € Py(I). Then, there exists an index ¢ € I such that (A, ;) # 0. Since
(A, K) =0, there exists an index ip € I such that (A, o)) < 0. Since (A, o) > —1, we
have (), a;)) = —1. Hence, we have o) € D(A)”. By Proposition 5.5, for each n > 0,
we have o) +7rVnK € ®Y(I). Since

A al, +r'nK) =\ of ) +r'n\, K) = =14r'n-0=—1,

we have ) +rYnK € D(A)Y, for each n > 0. Hence, we have #D()\)" = oco. O
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Proposition 5.7.  Let A € Pzin_f1 (I). Then we have \ € Rig(I).

Proof. Let A € P>_; and § € ®. By Proposition 5.6, we have (A, K) = 0.
First, suppose 8 € ®,. Then we have (A, 3¥) > —1. Since there exists a positive
integer m such that 8V < rVmK, we have rVmK — 3" € ®Y. Since A € P>_;, we have:

—-1< <)‘7 r'mK — ﬁv> = Tvm<)‘7 K> - <)‘7 5v> = _<)‘7 ﬁv>

Hence, we have (), 8¥) < 1. This proves (A, 5Y) € {1,0,—1} for 8 € ®.

Suppose, on the other hand, g € ®_, then we have —(3 € ®,. By the above argument,
we have (A, (—0)Y) € {1,0,—1}. This proves (), 8¥) € {1,0,—1} for 3 € ®_.

Thus, we always have (A, 8¥) € {1,0,—1}, for 8 € ®. O

Proposition 5.8.  We have Py(I) U Pzin_f1 (I) = Rig(I).

Proof. Tt is trivial that Py(I) C Rig(I). By Proposition 5.7, we have Pdrf (1) C
Rig(I). Hence, we have Py(I)UPI™M, (I) C Rig(I). Now, we prove the converse inclusion.
Let A € Rig(I). Suppose (A, I_Q # 0. If 5V € ®Y, then, by Propositon 5.5, we
have 8V + rVnK € ®V, for each n > 0. Hence, for a sufficient large n, we have
(A, BY +1rVnK) ¢ {1,0,—1}. This contradicts A € Ri(I). Hence, we have (\, K) = 0.
By Proposition 5.6 (3), we have Py(I) U P (1) D Rig(I). O

§5.2. An invariant of W-Orbit
Definition 5.9. Let I' be an abelian group. A map v : I — I is said to satisfy
Condition (A) if:
ny(j)<°""o‘zy> =1, for each i € I.
jel
Let A € P(I). We define an element a(\) € I" as:
a) = [ ™).
jel
Proposition 5.10.  Suppose that v : I — T satisfies Condition (A). Then, for
A€ P(I) and w € W(I), we have a(\) = a(w(N)).

Proof. We may assume that w is a simple reflection s;. Then we have:
a(si(V) = [[ 7)) = [T () esimtedienen
jerl jel
_<>‘7 CVY)

=[Tv@™ e T e =[I+m)™7 =aln).

Jjel jerl jerl
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This proves the statement. O

This proposition shows that the map a : P(I) 5 A — a(\) € I' is a W ([)-invariant
function on P(I).
Recall that J =TI\ {*} and (J)g = {z € J|div = 1}. We explained that if i € (J)g

then a; = 1. Note that if A is of type Ag) then (J)g = @.
Definition 5.11.  We define a subset (I); of I by:
(1), = {x}U(J)p if A is not of type Ag),
R ! if A is of type A,
Definition 5.12. A map map «: [ — T is said to satisfy Condition (B) if

V(@) # (), forid,j(i # 7)€ (D

We shall construct v; : I — T’y which satisfies Condition (A) and (B).

5.2.1. Case of Al(l_)1 (I >2) Suppose that the Cartan matrix A is of type Al(i)l.
We denote the cyclic group C; = {1,g,---,¢' "'} of degree | by T';. We define a map
v1: I — T’y by:
* — 1,
i (1<i<l-1)r— g

5.2.2. Case of D(l)

12 (I >2,1:even) Suppose that the Cartan matrix A is of

type Dl(}r)2(l : even).
We denote the Klein four-group Ky = {1, z,y,zy} by I';. We defineamapy;, : I — I'y
by:
%0 (1 <i<l-1,i:0dd)+— 1,
+ —x,
— y,
0,i (1 <i<Il—1,i:even)— xy.
5.2.3. Case of Dl(Jlr)2
type D{1, (1 2 0dd).
We denote the cyclic group Cy = {1,g, g%, ¢} by I'y. We define a map v, : I — T'; by:

(I > 2,1:0dd) Suppose that the Cartan matrix A is of

x,0 (1 <i<l-1,i:0dd)+— 1,
++—g,
0,i (1 <i<l—1,i:even) — g2,

—I—)g3_
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5.2.4. Case of Eél) Suppose that the Cartan matrix A is of type Eél).
We denote the cyclic group C3 = {1,g,9°} by I'y. We define a map v, : [ — T'; by:

2", 83— 1,
1,2+ g,
1,2 — g%
5.2.5. Case of E§1) Suppose that the Cartan matrix A is of type E§1).
We denote the cyclic group Cy = {1, g} of degree 2 by I';. We defineamap v, : [ — I'y
by:
*7 2/7 3/7 47 2 — 17
1,3,2" —g.
5.2.6. Case of Bl(l) Suppose that the Cartan matrix A is of type Bl(l).
We denote the cyclic group Cy = {1, g} of degree 2 by I'y. We defineamapy; : I — I'y
by:
1 (1<i<l—1)r—1,
l—g.

5.2.7. Case of Dl(i)l Suppose that the Cartan matrix A is of type Dl(i)l.

We denote the cyclic group Cy = {1, g} of degree 2 by I';. We defineamap vy, : I — I'y
by:
1 (1<i<l—1)r—1,
l—g.
5.2.8. Case of C’l(l) Suppose that the Cartan matrix A is of type C’l(l).
We denote the cyclic group Co={1, g} of degree 2 by I'y. We define a map vy, : [ — I'y
by:
%, (0<i<Il-1,l—1i:even) — 1,
i (0<i<l-1,l—i: odd)—g.
5.2.9. Case of Ag?)_l Suppose that the Cartan matrix A is of type Ag)_l.
We denote the cyclic group Co={1, g} of degree 2 by I'y. We define amap vy, : I — I'y
by:
%, (0<i1<l-1,i:even) — 1,
i (0<i<l—1,i: odd )+ g.

In each case written above, it is straightforward to see that v, satisfies Condition

(A) and (B).
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5.2.10. Other Cases : Eél),Fil),EéQ),Ggl),Df), or Ag) We do not need
construct y; because (I); = {x}.
Definition 5.13. Let 4,5 € I. We define a set P(,j; 1) by:

P(i, ;1) = {)\ e P(I)| (N, o)) = 6i — 855, for each k € 1} .
Note that if i« = j then P(i,5;1) = Po(1).

Proposition 5.14.  Let 71 as above, and let a : P(I) — T’y be the invariant
function on P(I) associated with ~,. Let i € (I)1. Then, for any A € W(I) - P(i,*; 1),
we have a(X) = v1(7).

Proof. By our assumption, there exists w € W (I) such that w=1(\) € P(i,*; ).
Hence, by Proposition 5.10, we have a(\) = a(w™!()\)). Then, since w™1(\) € P(i,*;I),
we have a(w™1(\)) = v1(i)y1(x)L. Observe that v;(*) = 1 in all cases. Then we get
a(A) = 7(3). 0

§5.3. Main Theorem

We now state the main result of this paper.

Theorem 5.15.  We suppose that the Cartan matriz A is of affine type. Then
we have

Rig(I)= | | W(I)- P(i,*1).
1e€(I);

Theorem 5.15 follows from Proposition 5.17 and Proposition 5.18 below.
First, we suppose that A is not of type Ag).

Lemma 5.16. We have:
1. Py(I) = Py(J) N Rig(I).

2. P(i,+;1) = P(i;J) N Rig(I), for each i € (J)o.

Proof. (1) It is trivial that we have Py(I) C Py(J) N Rig(1).
Now, we prove Py(I) O Po(J) N Rig(I). Let A € Py(J) N Rig(I). Since A € Py(J), we
have (A, af) = 0 (j € J). Since A € Rig(I), we have (A, K) = 0. (This follows from
Proposition 5.6 and Proposition 5.8.) Since
0= K)=> a/-(\af)=1-(\ o),
i€l
we have (A, @) = 0. Hence, we have A € Py(I).
(2) We show that the required equality holds when a) = 1. First, we prove P(i,*; 1) C
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P(i;J) N Rig(I). Let i € (J)o and A € P(i,*;I). Since i € J and * ¢ J, we have
A € P(i;J). Since

:Za;%)\,a;):a;/~1—|—ai-(—1)—|— Z aj -0=0,

Jjerl jeI\{i,x}

we have (A, K) = 0. By Proposition 5.6 and Proposition 5.7, we have A € Riz(I).
Next, we prove P(i,%;1) D P(i; J)NRig(I). Let A € P(i; J) N Rig(I). Since A € P(i;J),
we have (A, /) = Land (A, af) =0 (j € J\{i}). Since A € Rig(I), we have (A, K) = 0.
Since
=Y al-(\af)=1-(\al)+1-1,
jel
we have (), @) = —1. Hence, we have \ € P(i, ;). O

Proposition 5.17.  We have

31g |_| W Z,*,I)

’LE(I)l

Proof.  First, we prove Rig(I) 2 U;e(py, W) - P(i,%;1). Let A € W(I) - P(i, % I)
for i € (I);. If i = %, then we have A € Py(I) C Rig(I). If i € (J)o, then, by Lemma
5.16 (2), we have A € W(I) - (P(i;J) N Rig(I)) € W(I) - Rig(I) = Rig(I). Thus, we
always have A\ € Riz([).

Next, we prove Rig(I) C U,epy, W) - P(i,*;J). Let A € Rig(I). Then we have
A € Rig(J). Hence, by Proposition 4.6, we have A € Py(J) U |_|Z-€(J)0 W(J) - P(i; J).
Since A € Rig(I), we have A € (Py(J) N Rig(I)) U |_|z.€(J)0 W(J)-(P(i;J) N Rig(I)). By
Lemma 5.16 (1) and (2), we have A € Py(I) U |_|i€(J)0 W(J) - P(i,*;I). Hence, we have
A€ Po(I) Uiy, W) - Pis s I) = Uie(ry, W) - P(i,%; 1)

Finally, we prove the disjointness of the decomposition. Let i,57 € (I); (i # j). Let
A€ W(I)-P(i,x;I) and p € W(I) - P(j,%;I). Then, by Proposition 5.14, we have
a(A) = 71(i) and a(p) = 71(j). Since 7 satisfies Condition (B), we have 71 (i) #
v1(j). Hence, we have (W(I)- P(i,* 1)) N (W(I)- P(j,%; 1)) = @. This proves the
statement. ]

Next, we suppose that A is of type Ag).

Proposition 5.18.  We have Riz(I) = Py(I).

Proof. We prove Riz(I) C Py(I). The opposite inclusion is clear. Let A € Rig(I).
Then the Cartan matrix A(J) := (ai ;)i jes is of type B;. We have A € Riz(J). By
Proposition 4.3, we have w(A) € Rig(J) N P>o(J) for some w € W(J). Hence, by
Proposition 4.6, we have either:
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(a) w(A) € Py(J).
(b) w(A) € P(l;J).
Suppose that the case (a) holds. Since w(A) € Rig([), we have (w(A), K) = 0. Since

0= (w(A), K) = a - (w), &) + D a - (w), &) = (w(A), &),
ieJ

we have (w(\), @) = 0. Since (w(\), o) = 0 for each i € I, we have w(\) € Py(I).

)

Hence, we have A € Py(I). Suppose, on the other hand, the case (b) holds. Since
w(A) € Rig(I), we have (w(X), K) = 0. Since

0= (w(A), K) =a) - (w(\), o)) + Z af - (w), &) = (W), &) + 2(w(N), )
ieJ
= (w(\), &) +2,

we have (w(X), ) = —2. This contradicts A € P>_1(I). Hence, we get Riz(I) =
Po(D). O
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