Infinite Pre-dominant Integral Weights for Affine Types

By

Kento Nakada*

Abstract

We study infinite pre-dominant integral weights for affine Kac-Moody Lie algebras. Furthermore, we determine the W-orbit of an infinite pre-dominant integral weight.

§ 1. Introduction

The purpose of the present paper is to study *infinite pre-dominant* integral weights for affine Kac-Moody Lie algebras. The notion of *pre-dominant* integral weights is introduced in [4]. Our motivation of this study is the following:

Let λ be a partition of d, and Y_{λ} the Young (or Ferrers) diagram of shape λ . In [6], R. P. Stanley studied the generating function $U(Y_{\lambda};q)$ for the reverse plane partitions of shape Y_{λ} , and proved the q-hook formula:

(1.1)
$$U(Y_{\lambda};q) = \prod_{v \in Y_{\lambda}} \frac{1}{1 - q^{h_v}},$$

where h_v denotes the hook-length at $v \in Y$. In a forthcoming paper [5], we have succeeded in proving a generalization of (1.1) by using a root system for a Kac-Moody Lie algebra. Let λ be a *pre-dominant* integral weight, and $D(\lambda)^{\vee}$ be the *shape* of λ (a certain subset of positive real coroots). These are defined in section 3. A map $\sigma: D(\lambda)^{\vee} \longrightarrow \mathbb{Z}_{\geq 0}$ is called a $D(\lambda)^{\vee}$ -partition [5] if

1. If
$$\beta^{\vee} \triangleleft \gamma^{\vee} \ (\beta^{\vee}, \gamma^{\vee} \in D(\lambda)^{\vee})$$
, then $\sigma(\beta^{\vee}) \ge \sigma(\gamma^{\vee})$,

Received February 8, 2008. Accepted February 13, 2009.

2000 Mathematics Subject Classification(s): Primary 05E10; Secondary 17B67

Key Words: Weyl group orbit, affine Kac-Moody Lie algebra

Partially supported by GCOE, Kyoto University.

^{*}Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, JAPAN. e-mail: nakada@kurims.kyoto-u.ac.jp

^{© 2009} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

2. There exists at most finitely many $\beta^{\vee} \in D(\lambda)^{\vee}$ such that $\sigma(\beta^{\vee}) \neq 0$,

where $\beta^{\vee} \triangleleft \gamma^{\vee}$ means $\beta^{\vee} < \gamma^{\vee}$ and $\langle \gamma, \beta^{\vee} \rangle \ge 1$. The generating function $U(D(\lambda)^{\vee}; q)$ for $D(\lambda)^{\vee}$ -partitions is defined by

$$U(\mathrm{D}(\lambda)^{\vee};q) := \sum_{\sigma:\mathrm{D}(\lambda)^{\vee}-\mathrm{partition}} q^{\sum_{\beta^{\vee}\in\mathrm{D}(\lambda)^{\vee}} \sigma(\beta^{\vee})}.$$

In [5], the following statement is shown:

Theorem 1.1 (q-hook formula [5]). Let λ be a pre-dominant integral weight satisfying $\#D(\lambda)^{\vee} < \infty$. Then we have:

(1.2)
$$U(D(\lambda)^{\vee};q) = \prod_{\beta^{\vee} \in D(\lambda)^{\vee}} \frac{1}{1 - q^{\operatorname{ht}(\beta)}},$$

where $ht(\beta)$ denotes the height of β .

We stress that almost all part of the proof [5] of the q-hook formula (1.2) is true even if $\#D(\lambda)^{\vee} = \infty$. (The condition " $\#D(\lambda)^{\vee} < \infty$ " is necessary only for certain inductive argument.) The author thinks that, by a suitable modification of formulation of (1.2), the q-hook formula should hold also for *infinite* pre-dominant integral weights.

In the present paper, we study several properties of *infinite* pre-dominant integral weights for affine Kac-Moody Lie algebras. Let $P_{\geq -1}^{\inf}(I)$ denote the set of infinite pre-dominant integral weights. Here, I denotes the index set of simple roots as in TABLE 2. Then, as is shown in Proposition 5.8, we have:

(1.3)
$$P_0(I) \sqcup P_{\geq -1}^{\inf}(I) = P_{\text{sig}}(I),$$

where the sets $P_0(I)$ and $P_{\text{sig}}(I)$ are defined in Section 3. An element of $P_{\text{sig}}(I)$ is called a *signature* integral weight. The equation (1.3) shows that classification of infinite predominant integral weights reduces to that of signature integral weights. It is easy to see the set $P_{\text{sig}}(I)$ is closed under the Weyl group action.

In Section 5, we study the set $P_{\text{sig}}(I)$ for a Cartan matrix of affine type and, our main result (Theorem 5.15) gives the classification of signature integral weights in the form of W(I)-orbit decomposition of $P_{\text{sig}}(I)$:

$$P_{\text{sig}}(I) = \bigsqcup_{i \in (I)_1} W(I) \cdot P(i, *, I),$$

where W(I) denotes the Weyl group, * is a distinguished index in I, $(I)_1$ is a certain subset of I, P(i, *, I) is a set of integral weights with a certain condition. See Section 5 for unexplained notion and further details.

In Section 4, we study the set $P_{\text{sig}}(I)$ for a Cartan matrix of finite type. In Proposition 4.6, we determine the W(I)-orbit decomposition of $P_{\text{sig}}(I)$:

$$P_{\operatorname{sig}}(I) = P_0(I) \sqcup \bigsqcup_{i \in (I)_0} W(I) \cdot P(i, I).$$

This result is used in the proof of the main result. See Section 4, for the definition of $(I)_0$ and P(i, I).

§ 2. Preliminaries

Let $A = (a_{i,j})_{i,j \in I}$ be a Cartan matrix of a Levi subalgebra \mathfrak{g}_I of a Kac-Moody Lie algebra [2][3] defined over \mathbb{R} . We denote the Cartan subalgebra by \mathfrak{h} . Then, we have two sets of linearly independent elements $\Pi = \{\alpha_i \mid i \in I\} \subset \mathfrak{h}^*$ and $\Pi^{\vee} = \{\alpha_i^{\vee} \mid i \in I\} \subset \mathfrak{h}$ such that $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{i,j}$. An element $\lambda \in \mathfrak{h}^*$ is said to be an *integral weight* if

$$\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}, \quad i \in I.$$

The set of integral weights is denoted by P(I). An integral weight $\lambda \in P(I)$ is said to be dominant if

$$\langle \lambda, \, \alpha_i^{\vee} \rangle \ge 0, \quad i \in I.$$

The set of dominant integral weights is denoted by $P_{\geq 0}(I)$. For each $i \in I$, we define $s_i \in GL(\mathfrak{h}^*)$ by:

$$s_i: \lambda \mapsto \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i, \quad \lambda \in \mathfrak{h}^*.$$

The group W = W(I) generated by $\{s_i | i \in I\}$ is called the Weyl group, which acts on \mathfrak{h} by:

$$\langle w(\lambda), w(h) \rangle = \langle \lambda, h \rangle, \quad w \in W, \lambda \in \mathfrak{h}^*, h \in \mathfrak{h}.$$

We define the real root system (resp. real coroot system) by $\Phi := W\Pi$ (resp. $\Phi^{\vee} := W\Pi^{\vee}$) (or, expressing the index set explicitly, $\Phi(I)$ (resp. $\Phi^{\vee}(I)$)). We denote by Φ_{+} and Φ_{-} the sets of positive and negative roots of Φ , respectively. The dual $\beta^{\vee} \in \Phi^{\vee}$ of a root $\beta \in \Phi$ is defined by the property

$$w(\beta^{\vee}) = w(\beta)^{\vee}, \quad w \in W.$$

For a subset S of Φ , we define a subset S^{\vee} of Φ^{\vee} by:

$$S^{\vee} := \left\{ \beta^{\vee} \in \Phi^{\vee} \,\middle|\, \beta \in S \right\}.$$

For each $\beta \in \Phi$, we define $s_{\beta} \in W$ by:

$$s_{\beta}(\lambda) = \lambda - \langle \lambda, \beta^{\vee} \rangle \beta, \quad \lambda \in \mathfrak{h}^*.$$

Then, s_{β} acts on \mathfrak{h} by:

$$s_{\beta}(h) = h - \langle \beta, h \rangle \beta^{\vee}, \quad h \in \mathfrak{h}.$$

Let $\alpha_i, \alpha_j \in \Pi$.

If
$$\langle \alpha_i, \, \alpha_j^{\vee} \rangle = -1$$
, and $\langle \alpha_j, \, \alpha_i^{\vee} \rangle = -1$, then we denote $i \quad j$
If $\langle \alpha_i, \, \alpha_j^{\vee} \rangle = -2$, and $\langle \alpha_j, \, \alpha_i^{\vee} \rangle = -1$, then we denote $i \quad j$
If $\langle \alpha_i, \, \alpha_j^{\vee} \rangle = -3$, and $\langle \alpha_j, \, \alpha_i^{\vee} \rangle = -1$, then we denote $i \quad j$

§ 3. Pre-dominant Integral Weights and Signature Integral Weights

Definition 3.1. An integral weight λ is said to be *pre-dominant* if:

$$\langle \lambda, \beta^{\vee} \rangle \geq -1$$
, for each $\beta^{\vee} \in \Phi_{+}^{\vee}$.

The set of pre-dominant integral weights is denoted by $P_{\geq -1}(I)$.

Definition 3.2. For $\lambda \in P_{\geq -1}$, the set $D(\lambda)^{\vee}$ defined by

$$D(\lambda)^{\vee} := \left\{ \beta^{\vee} \in \Phi_{+}^{\vee} \, \middle| \, \langle \lambda, \beta^{\vee} \rangle = -1 \right\}$$

is called the shape of λ . We say that a pre-dominant integral weight λ is finite if $\#\mathrm{D}(\lambda)^\vee < \infty$, infinite otherwise. The set of finite (resp. infinite) pre-dominant integral weights is denoted by $P_{\geq -1}^{\mathrm{fin}}(I)$ (resp. $P_{\geq -1}^{\mathrm{inf}}(I)$).

Lemma 3.3 (See [4]Lemma 4.1). Let $\lambda \in P_{\geq -1}(I)$ and $\beta^{\vee} \in D(\lambda)^{\vee}$. Then we have $s_{\beta}(\lambda) \in P_{\geq -1}(I)$.

Definition 3.4. An integral weight λ is said to be a *signature* integral weight if:

$$\langle \lambda, \gamma^{\vee} \rangle \in \{1, 0, -1\}, \text{ for each } \gamma \in \Phi.$$

The set of signature integral weights is denoted by $P_{\text{sig}}(I)$. We note $P_{\text{sig}}(I) \subseteq P_{\geq -1}(I)$.

The following is clear.

Lemma 3.5. Let $\lambda \in P_{\text{sig}}(I)$ and $\beta \in \Phi(I)$. Then we have $s_{\beta}(\lambda) \in P_{\text{sig}}(I)$.

Since the Weyl group W(I) is generated by $\Pi = \{s_i \mid i \in I\}$, we get:

Corollary 3.6. The set $P_{\text{sig}}(I)$ of signature integral weights is closed under the W(I)-action.

Definition 3.7. We define a set $P_0(I)$ by

$$P_0(I) := \left\{ \lambda \in P \, \middle| \, \langle \lambda, \, \alpha_i^{\vee} \rangle = 0, \text{ for each } i \in I \right\}.$$

We note that $D(\lambda)^{\vee} = \emptyset$ for $\lambda \in P_0(I)$ so that we have $P_0(I) \subseteq P_{\geq -1}^{\text{fin}}(I)$ and $P_0(I) \cap P_{\geq -1}^{\text{inf}}(I) = \emptyset$.

Proposition 3.8. The set $P_0(I)$ is closed under the W(I)-action.

Proof. Let $\lambda \in P_0(I)$, $w \in W(I)$, and $i \in I$. Then we have $\langle w(\lambda), \alpha_i^{\vee} \rangle = \langle \lambda, w^{-1}(\alpha_i)^{\vee} \rangle$. Since $w^{-1}(\alpha_i^{\vee})$ is a linear combination of elements of $\Pi^{\vee} = \{\alpha_j^{\vee} \mid j \in I\}$, we have $\langle \lambda, w^{-1}(\alpha_i)^{\vee} \rangle = 0$. Hence, $w(\lambda) \in P_0(I)$.

§ 4. Classification for Finite Types

Through this section, we suppose the Cartan matrix $A = (a_{i,j})_{i,j \in I}$ is of finite type. The index set I is given as in TABLE 1. The purpose of this section is to determine the W(I)-orbit decomposition of $P_{\text{sig}}(I)$.

Definition 4.1. Let $\beta_{hs}^{\vee} \in \Phi^{\vee}$ denote the *highest coroot*. The integers d_i^{\vee} $(i \in I)$ are defined by $\beta_{hs}^{\vee} = \sum_{i \in I} d_i^{\vee} \alpha_i^{\vee}$.

Definition 4.2. Let $\beta_{hl}^{\vee} \in \Phi^{\vee}$ denote the *dual of the highest root*. The integers $c_i^{\vee} (i \in I)$ are defined by $\beta_{hl}^{\vee} = \sum_{i \in I} c_i^{\vee} \alpha_i^{\vee}$.

We note that if the Cartan matrix A is simply-laced, then we have $\beta_{hs}^{\vee} = \beta_{hl}^{\vee}$, and that if multiply-laced, then $\beta_{hs}^{\vee} > \beta_{hl}^{\vee}$.

When the Cartan matrix A is of type B_l, C_l, F_4 , or G_2 , the coroot system Φ^{\vee} is decomposed as:

$$\Phi^{\vee} = \Phi_{\ell}^{\vee} \sqcup \Phi_{s}^{\vee}, \quad \text{(disjoint union)},$$

where Φ_{ℓ} is the set of long roots and Φ_s is the set of short roots. We note that we have $\beta_{hl}^{\vee} \in \Phi_{\ell}^{\vee}$ and $\beta_{hs}^{\vee} \in \Phi_s^{\vee}$, and that Φ_{ℓ}^{\vee} and Φ_s^{\vee} are the dual of Φ_{ℓ} and Φ_s , respectively.

Proposition 4.3. Let $\lambda \in P(I)$. Then there exists a unique element $\Lambda \in W(I)$. such that $\Lambda \in P_{\geq 0}(I)$. Furthermore, if $\lambda \in P_{\operatorname{sig}}(I)$, then such a $\Lambda \in W(I) \cdot \lambda$ is also a signature integral weight.

Proof. Note that A is of finite type in this section. The first part of the proposition is a well-known fact. The second part follows from Corollary 3.6.

Definition 4.4. We suppose that a Cartan matrix $A = (a_{i,j})_{i,j \in I}$ is of finite type. We define a subset $(I)_0$ of I by:

$$(I)_0 := \left\{ i \in I \,\middle|\, d_i^{\lor} = 1 \right\}.$$

The highest coroot and the set $(I)_0$ for each finite type are listed in TABLE 1.

Definition 4.5. Let $i \in I$. We define a subset P(i;I) of P(I) by:

$$P(i;I) := \left\{ \lambda \in P(I) \, \middle| \, \langle \lambda, \, \alpha_j^{\vee} \rangle = \delta_{i,j} \, (j \in I) \right\},\,$$

where $\delta_{i,j}$ denotes the Kronecker's delta. An element of P(i;I) is called an *i-th fundamental weight (over I)*.

Remark. If dim $\mathfrak{h} = \#I$, then the set P(i;I) contains a unique element. In Section 5, we deal with a Cartan matrix $A = (a_{i,j})_{i,j \in I}$ of affine type, and we restrict the index set I to a subset J, which is of finite type. In such a situation, we have dim $\mathfrak{h} > \#J$. Hence, we have $\#P(i;J) \neq 1$.

Remark. When a Cartan matrix $A = (a_{i,j})_{i,j \in I}$ is of finite type, a dominant integral weight Λ is said to be minuscule if $\langle \Lambda, \beta^{\vee} \rangle \leq 1$ for all $\beta \in \Phi_+$ and there exists $i \in I$ such that $\langle \Lambda, \alpha_j^{\vee} \rangle = \delta_{i,j}$ for $j \in I$. Equivalently, Λ is minuscule if

there exists an index $i \in (I)_0$ such that $\Lambda \in P(i; I)$.

Let Λ be a minuscule weight. By Corollary 3.6, if $\lambda \in W(I) \cdot \Lambda$, then $\lambda \in P_{\text{sig}}(I)$.

The following proposition shows the converse of the previous remark.

Proposition 4.6. We have:

$$P_{\text{sig}}(I) = P_0(I) \sqcup \bigsqcup_{i \in (I)_0} W(I) \cdot P(i;I)$$
 (disjoint union),

Proof. Let $\lambda \in P_{\text{sig}}(I)$. By Proposition 4.3, we may assume $\lambda \in P_{\text{sig}}(I)$ is dominant. Since $\langle \lambda, \beta_{hs}^{\vee} \rangle \in \{0, 1\}$, we have $\sum_{i \in I} d_i^{\vee} \langle \lambda, \alpha_i^{\vee} \rangle \in \{0, 1\}$. Since $\langle \lambda, \alpha_i^{\vee} \rangle \in \{0, 1\}$, we have either:

- 1. $\langle \lambda, \alpha_i^{\vee} \rangle = 0 \ (i \in I), \quad \text{or}$
- 2. there exists a unique index $i \in (I)_0$ such that $\langle \lambda, \alpha_j^{\vee} \rangle = \delta_{i,j} \ (j \in I)$.

Hence, we have:

(4.1)
$$P_{\operatorname{sig}}(I) \subseteq P_0(I) \sqcup \bigsqcup_{i \in (I)_0} W(I) \cdot P(i;I).$$

The opposite inclusion is by the previous remark.

$A_{l-1} (l \ge 2)$	$B_l (l \ge 2)$
$\alpha_1^{\vee} + \dots + \alpha_{l-1}^{\vee}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$I = \{1, \cdots, l-1\}$	$\Phi_{\ell}^{\vee} := W\{\alpha_{1}^{\vee}, \cdots, \alpha_{l-1}^{\vee}\} , \Phi_{s}^{\vee} := W\{\alpha_{l}^{\vee}\}$ $\{l\}$
$lC_i \qquad (1 \le i \le l-1)$	2^l
$D_{l+2} (l \ge 2)$	$C_l (l \ge 2)$
	8 1 2 - l 2 l - 1
$\alpha_0^{\vee} + 2\alpha_1^{\vee} + \dots + 2\alpha_{l-1}^{\vee} + \alpha_+^{\vee} + \alpha^{\vee}$	$\alpha_0^{\vee} + \alpha_1^{\vee} + \dots + \alpha_{l-2}^{\vee} + \alpha_{l-1}^{\vee} 2\alpha_0^{\vee} + 2\alpha_1^{\vee} + \dots + 2\alpha_{l-2}^{\vee} + \alpha_{l-1}^{\vee}$ $\Phi_{\ell}^{\vee} := W\{\alpha_0^{\vee}\} \qquad , \Phi_s^{\vee} := W\{\alpha_1^{\vee}, \dots, \alpha_{l-1}^{\vee}\}$ $\{l-1\}$
$ \begin{array}{ c c c c c c c } \hline 2(l+2), & 2^{l+1}, & 2^{l+1} \end{array} $	
	$2 \cdot l$
E_6	F_4
0-2" 1 2 3 2' 1'	7 2 3 4
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + 3\alpha_3^{\vee}$	$2\alpha_{1}^{\lor} + 3\alpha_{2}^{\lor} + 2\alpha_{3}^{\lor} + \alpha_{4}^{\lor} \qquad 2\alpha_{1}^{\lor} + 4\alpha_{2}^{\lor} + 3\alpha_{3}^{\lor} + 2\alpha_{4}^{\lor}$
$\frac{+2\alpha_{2'}^{\vee} + \alpha_{1'}^{\vee} + 2\alpha_{2''}^{\vee}}{\{1, 1'\}}$	$\Phi_{\ell}^{\vee} := W\{\alpha_1^{\vee}, \alpha_2^{\vee}\} \qquad , \Phi_s^{\vee} := W\{\alpha_3^{\vee}, \alpha_4^{\vee}\} $
27,27	_
E_7	G_2
2" 1 2 3 4 3' 2'	
$\alpha_1^{\vee} + 2\alpha_2^{\vee} + 3\alpha_3^{\vee} + 4\alpha_4^{\vee}$	$2\alpha_1^{\vee} + \alpha_2^{\vee} \qquad \qquad 3\alpha_1^{\vee} + 2\alpha_2^{\vee}$
$+3\alpha_{3'}^{\lor}+2\alpha_{2'}^{\lor}+2\alpha_{2''}^{\lor}$	$\Phi_{\ell}^{\vee} := W\{\alpha_1^{\vee}\} \qquad , \qquad \Phi_s^{\vee} := W\{\alpha_2^{\vee}\}$
{ 1 } 56	Ø
E_8	The type
3"	Dynkin diagram
2 3 4 5 6 4' 2'	with indexes of vertices
$2\alpha_2^{\vee} + 3\alpha_3^{\vee} + 4\alpha_4^{\vee} + 5\alpha_5^{\vee} + 6\alpha_6^{\vee}$	the dual of the highest root the highest coroot
$+4\alpha_{4''}^{\lor}+2\alpha_{2''}^{\lor}+3\alpha_{3''}^{\lor}$	definition of Φ_ℓ^{\vee} , definition of Φ_s^{\vee}
Ø	$(I)_0$ $(I)_0$
_	$\# (W \cdot \lambda) \qquad (\lambda \in (i; I), i \in (I)_{\theta})$

Table 1. Finite Types

Remark (How to read TABLE 1). In TABLE 1, we list the following information from the top:

- the type of Cartan matrix A,
- the Dynkin and our indexing of the nodes,
- the dual β_{hl}^{\vee} of the highest root and the highest coroot β_{hs}^{\vee} ,
- the set $(I)_0$,
- the cardinality $\#(W(I) \cdot \lambda)$ of W(I)-orbit for $\lambda \in P(i;I)$ $(i \in (I)_0)$,

as indicated at the end of the table. The cardinality of W(I)-orbit for a minuscule λ is equal to the dimension of the irreducible highest weight module $V(\lambda)$ so that the Weyl dimension formula gives the cardinality.

§ 5. Classification for Affine Types

In this section, we suppose a Cartan matrix $A = (a_{i,j})_{i,j \in I}$ is of affine type. We choose the index set I as in TABLE 2. In particular, the distinguished index * is specified as in the table. The purpose of this section is to determine the W(I)-orbit decomposition of $P_{\text{sig}}(I)$.

§ 5.1. Coroots

Definition 5.1. Let K denote the null coroot (the canonical central element) defined by

$$\langle \alpha_i, K \rangle = 0, \quad i \in I.$$

The integers $a_i^{\vee} (i \in I)$ are defined by $K = \sum_{i \in I} a_i^{\vee} \alpha_i^{\vee}$.

Remark. Put $J := I \setminus \{*\}$. Note that we have $a_*^{\vee} = 1$. Through this section, we always fix this subset J of I. Then we note that the Cartan matrix $A(J) := (a_{i,j})_{i,j \in J}$ is of finite type.

If the Cartan matrix A is of type $A_{l-1}^{(1)}$ (resp. $D_{l+2}^{(1)}$, $E_6^{(1)}$, $E_7^{(1)}$, $E_8^{(1)}$, $D_{l+1}^{(2)}$, $A_{2l-1}^{(2)}$, $E_6^{(2)}$, $D_4^{(3)}$), then the Cartan matrix $A(J) := (a_{i,j})_{i,j \in J}$ is of type A_{l-1} (resp. D_{l+2} , E_6 , E_7 , E_8 , B_l , C_l , F_4 , G_2). We note that we have $a_i^{\vee} = d_i^{\vee}$ for each $i \in J$.

If the Cartan matrix A is of type $B_l^{(1)}$, $C_l^{(1)}$, $F_4^{(1)}$, $G_2^{(1)}$, then the Cartan matrix $A(J) := (a_{i,j})_{i,j\in J}$ is of type B_l , C_l , F_4 , G_2 . We note that we have $a_i^{\vee} = c_i^{\vee}$ for each $i \in J$.

Observe that $1 \leq c_i^{\vee} \leq d_i^{\vee}$ for $i \in I$. Thus, if $d_i^{\vee} = 1$, then $a_i^{\vee} = 1$ for all types except $A_{2l}^{(2)}$.

If the Cartan matrix A is of type $A_{2l}^{(2)}$, then the Cartan matrix $A(J) := (a_{i,j})_{i,j \in J}$ is of type B_l . In this case, we have $a_i^{\vee} = 2$ for each $i \in J$.

Lemma 5.2 (See[2]). The set $\Phi^{\vee}_{+}(I)$ is decomposed as follows:

1. If I is of type $A_{l-1}^{(1)}, D_{l+2}^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, D_{l+1}^{(2)}, A_{2l-1}^{(2)}, E_6^{(2)}, D_4^{(3)}$, then:

$$\Phi_+^\vee(I) = \Phi_+^\vee(J) \sqcup \bigsqcup_{n \geq 1} \left(\Phi^\vee(J) + nK \right), \quad \text{(disjoint union)}.$$

2. If I is of type $B_l^{(1)}, C_l^{(1)}, F_4^{(1)}$, then:

$$\Phi_+^{\vee}(I) = \Phi_+^{\vee}(J) \sqcup \bigsqcup_{n \geq 1} \left(\Phi_{\ell}^{\vee}(J) + 2nK \right) \sqcup \bigsqcup_{m \geq 1} \left(\Phi_s^{\vee}(J) + mK \right).$$

3. If I is of type $G_2^{(1)}$, then:

$$\Phi_+^{\vee}(I) = \Phi_+^{\vee}(J) \sqcup \bigsqcup_{n \geq 1} \left(\Phi_\ell^{\vee}(J) + 3nK \right) \sqcup \bigsqcup_{m \geq 1} \left(\Phi_s^{\vee}(J) + mK \right).$$

4. If I is of type $A_{2l}^{(2)}$, then:

$$\Phi_+^\vee(I) = \Phi_+^\vee(J) \sqcup \bigsqcup_{n \geq 1} \frac{1}{2} \left(\Phi_\ell^\vee(J) + (2n-1)K \right) \sqcup \bigsqcup_{n \geq 1} \left(\Phi_s^\vee(J) + nK \right) \sqcup \bigsqcup_{n \geq 1} \left(\Phi_\ell^\vee(J) + 2nK \right).$$

Lemma 5.3. We have:

1. If A is not of type $A_{2l}^{(2)}$ $(l \ge 1)$, then:

$$\Phi^{\vee}_+(I) \subseteq \bigsqcup_{n>0} (\Phi^{\vee}(J) + nK).$$

2. If A is of type $A_{2l}^{(2)}$ $(l \ge 1)$, then:

$$\Phi_+^{\vee}(I) \subseteq \bigsqcup_{n \ge 0} \frac{1}{2} \left(\Phi^{\vee}(J) + (2n-1)K \right) \sqcup \bigsqcup_{n \ge 0} \left(\Phi^{\vee}(J) + nK \right).$$

Proof. This follows from Lemma 5.2.

Definition 5.4. We define an integer r^{\vee} by:

$$r^{\vee} := \begin{cases} 1 & \text{if } I \text{ is of type } A_{l-1}^{(1)}, D_{l+2}^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, D_{l+1}^{(2)}, A_{2l-1}^{(2)}, E_6^{(2)}, D_4^{(3)} \\ 2 & \text{if } I \text{ is of type } B_l^{(1)}, C_l^{(1)}, F_4^{(1)}, A_{2l}^{(2)} \\ 3 & \text{if } I \text{ is of type } G_2^{(1)} \end{cases}$$

Kento Nakada

Proposition 5.5. Let $\beta^{\vee} \in \Phi_{+}^{\vee}(I)$ and $n \geq 0$. Then we have $\beta^{\vee} + r^{\vee}nK \in \Phi_{+}^{\vee}(I)$.

Proof. This follows from Lemma 5.2.

Proposition 5.6. Let $\lambda \in P_{\geq -1}$. Then we have:

1. $\langle \lambda, K \rangle \geq 0$.

188

- 2. If $\langle \lambda, K \rangle \geq 1$, then we have $\lambda \in P_{\geq -1}^{fin}(I) \setminus P_0(I)$.
- 3. If $\langle \lambda, K \rangle = 0$, then we have $\lambda \in P_{\geq -1}^{\inf}(I) \sqcup P_0(I)$.

Proof. (1) Fix an arbitrary $\beta^{\vee} \in \Phi_{+}^{\vee}(I)$. By Proposition 5.5, for each $n \geq 0$, we have:

$$\beta^{\vee} + r^{\vee} nK \in \Phi_+^{\vee}(I).$$

If $\langle \lambda, K \rangle \leq -1$, then, for a sufficiently large n, we have $\langle \lambda, \beta^{\vee} + r^{\vee} nK \rangle \leq -2$. This contradicts $\lambda \in P_{\geq -1}$. This proves Part (1).

(2) If $\lambda \in P_0(I)$, then we have $\langle \lambda, K \rangle = \sum_{i \in I} a_i^{\vee} \langle \lambda, \alpha_i^{\vee} \rangle = 0$. Hence, we have $\lambda \notin P_0(I)$. If the Cartan matrix A is not of type $A_{2l}^{(2)}$ $(l \geq 1)$, then, by Lemma 5.3 (1), we have:

$$D(\lambda)^{\vee} \subseteq \bigsqcup_{n>0} (D(\lambda)^{\vee} \cap (\Phi^{\vee}(J) + nK)),$$

Since $\langle \lambda, K \rangle \geq 1$, we have $D(\lambda)^{\vee} \cap (\Phi^{\vee}(J) + nK) = \emptyset$ for $n \gg 0$. Since the set $\Phi^{\vee}(J)$ is finite, $D(\lambda)^{\vee}$ is finite.

If the Cartan matrix A is of type $A_{2l}^{(2)}$ $(l \ge 1)$, then, by Lemma 5.3 (2), we have:

$$\mathrm{D}(\lambda)^\vee \subseteq \bigsqcup_{n \ge 0} \left(\mathrm{D}(\lambda)^\vee \cap \frac{1}{2} \left(\Phi^\vee(J) + (2n-1)K \right) \right) \sqcup \bigsqcup_{n \ge 0} \left(\mathrm{D}(\lambda)^\vee \cap \left(\Phi^\vee(J) + nK \right) \right).$$

Since $\langle \lambda, K \rangle \ge 1$, we have $D(\lambda)^{\vee} \cap \frac{1}{2} (\Phi^{\vee}(J) + (2n-1)K) = \emptyset$ and $D(\lambda)^{\vee} \cap (\Phi^{\vee}(J) + nK) = \emptyset$ for $n \gg 0$. Since the set $\Phi^{\vee}(J)$ is finite, $D(\lambda)^{\vee}$ is finite.

(3) Suppose $\lambda \notin P_0(I)$. Then, there exists an index $i \in I$ such that $\langle \lambda, \alpha_i^{\vee} \rangle \neq 0$. Since $\langle \lambda, K \rangle = 0$, there exists an index $i_0 \in I$ such that $\langle \lambda, \alpha_{i_0}^{\vee} \rangle < 0$. Since $\langle \lambda, \alpha_{i_0}^{\vee} \rangle \geq -1$, we have $\langle \lambda, \alpha_{i_0}^{\vee} \rangle = -1$. Hence, we have $\alpha_{i_0}^{\vee} \in D(\lambda)^{\vee}$. By Proposition 5.5, for each $n \geq 0$, we have $\alpha_{i_0}^{\vee} + r^{\vee} nK \in \Phi_+^{\vee}(I)$. Since

$$\langle \lambda, \, \alpha_{i_0}^{\vee} + r^{\vee} n K \rangle = \langle \lambda, \, \alpha_{i_0}^{\vee} \rangle + r^{\vee} n \langle \lambda, \, K \rangle = -1 + r^{\vee} n \cdot 0 = -1,$$

we have $\alpha_{i_0}^{\vee} + r^{\vee} nK \in D(\lambda)^{\vee}$, for each $n \geq 0$. Hence, we have $\#D(\lambda)^{\vee} = \infty$.

Proposition 5.7. Let $\lambda \in P^{\inf}_{>-1}(I)$. Then we have $\lambda \in P_{\operatorname{sig}}(I)$.

Proof. Let $\lambda \in P_{\geq -1}$ and $\beta \in \Phi$. By Proposition 5.6, we have $\langle \lambda, K \rangle = 0$. First, suppose $\beta \in \Phi_+$. Then we have $\langle \lambda, \beta^{\vee} \rangle \geq -1$. Since there exists a positive integer m such that $\beta^{\vee} < r^{\vee} mK$, we have $r^{\vee} mK - \beta^{\vee} \in \Phi_+^{\vee}$. Since $\lambda \in P_{\geq -1}$, we have:

$$-1 \le \langle \lambda, \, r^{\vee} m K - \beta^{\vee} \rangle = r^{\vee} m \langle \lambda, \, K \rangle - \langle \lambda, \, \beta^{\vee} \rangle = -\langle \lambda, \, \beta^{\vee} \rangle.$$

Hence, we have $\langle \lambda, \beta^{\vee} \rangle \leq 1$. This proves $\langle \lambda, \beta^{\vee} \rangle \in \{1, 0, -1\}$ for $\beta \in \Phi_{+}$. Suppose, on the other hand, $\beta \in \Phi_{-}$, then we have $-\beta \in \Phi_{+}$. By the above argument, we have $\langle \lambda, (-\beta)^{\vee} \rangle \in \{1, 0, -1\}$. This proves $\langle \lambda, \beta^{\vee} \rangle \in \{1, 0, -1\}$ for $\beta \in \Phi_{-}$. Thus, we always have $\langle \lambda, \beta^{\vee} \rangle \in \{1, 0, -1\}$, for $\beta \in \Phi_{-}$.

Proposition 5.8. We have $P_0(I) \sqcup P_{>-1}^{\inf}(I) = P_{\operatorname{sig}}(I)$.

Proof. It is trivial that $P_0(I) \subseteq P_{\text{sig}}(I)$. By Proposition 5.7, we have $P_{\geq -1}^{\inf}(I) \subseteq P_{\text{sig}}(I)$. Hence, we have $P_0(I) \sqcup P_{\geq -1}^{\inf}(I) \subseteq P_{\text{sig}}(I)$. Now, we prove the converse inclusion. Let $\lambda \in P_{\text{sig}}(I)$. Suppose $\langle \lambda, K \rangle \neq 0$. If $\beta^{\vee} \in \Phi_+^{\vee}$, then, by Propositon 5.5, we have $\beta^{\vee} + r^{\vee}nK \in \Phi^{\vee}$, for each $n \geq 0$. Hence, for a sufficient large n, we have $\langle \lambda, \beta^{\vee} + r^{\vee}nK \rangle \not\in \{1, 0, -1\}$. This contradicts $\lambda \in P_{\text{sig}}(I)$. Hence, we have $\langle \lambda, K \rangle = 0$. By Proposition 5.6 (3), we have $P_0(I) \sqcup P_{\geq -1}^{\inf}(I) \supseteq P_{\text{sig}}(I)$.

$\S 5.2.$ An invariant of W-Orbit

Definition 5.9. Let Γ be an abelian group. A map $\gamma: I \to \Gamma$ is said to *satisfy Condition* (A) if:

$$\prod_{j \in I} \gamma(j)^{\langle \alpha_i, \, \alpha_j^{\vee} \rangle} = 1, \text{ for each } i \in I.$$

Let $\lambda \in P(I)$. We define an element $a(\lambda) \in \Gamma$ as:

$$a(\lambda) := \prod_{j \in I} \gamma(j)^{\langle \lambda, \, \alpha_j^{\vee} \rangle}.$$

Proposition 5.10. Suppose that $\gamma: I \longrightarrow \Gamma$ satisfies Condition (A). Then, for $\lambda \in P(I)$ and $w \in W(I)$, we have $a(\lambda) = a(w(\lambda))$.

Proof. We may assume that w is a simple reflection s_i . Then we have:

$$a(s_{i}(\lambda)) = \prod_{j \in I} \gamma(j)^{\langle s_{i}(\lambda), \alpha_{j}^{\vee} \rangle} = \prod_{j \in I} \gamma(j)^{\langle \lambda, \alpha_{j}^{\vee} \rangle - \langle \lambda, \alpha_{i}^{\vee} \rangle \langle \alpha_{i}, \alpha_{j}^{\vee} \rangle}$$

$$= \prod_{j \in I} \gamma(j)^{\langle \lambda, \alpha_{j}^{\vee} \rangle} \cdot \left(\prod_{j \in I} \gamma(j)^{\langle \alpha_{i}, \alpha_{j}^{\vee} \rangle} \right)^{-\langle \lambda, \alpha_{i}^{\vee} \rangle} = \prod_{j \in I} \gamma(j)^{\langle \lambda, \alpha_{j}^{\vee} \rangle} = a(\lambda).$$

This proves the statement.

This proposition shows that the map $a: P(I) \ni \lambda \longmapsto a(\lambda) \in \Gamma$ is a W(I)-invariant function on P(I).

Recall that $J = I \setminus \{*\}$ and $(J)_0 = \{i \in J \mid d_i^{\vee} = 1\}$. We explained that if $i \in (J)_0$ then $a_i^{\vee} = 1$. Note that if A is of type $A_{2l}^{(2)}$ then $(J)_0 = \varnothing$.

Definition 5.11. We define a subset $(I)_1$ of I by:

$$(I)_1 := \begin{cases} \{*\} \sqcup (J)_0 & \text{if } A \text{ is not of type } A_{2l}^{(2)}, \\ \{*\} & \text{if } A \text{ is of type } A_{2l}^{(2)}. \end{cases}$$

Definition 5.12. A map map $\gamma: I \longrightarrow \Gamma$ is said to satisfy Condition (B) if

$$\gamma(i) \neq \gamma(j)$$
, for $i, j (i \neq j) \in (I)_1$.

We shall construct $\gamma_1: I \longrightarrow \Gamma_1$ which satisfies Condition (A) and (B).

5.2.1. Case of $A_{l-1}^{(1)}$ $(l \ge 2)$ Suppose that the Cartan matrix A is of type $A_{l-1}^{(1)}$. We denote the cyclic group $C_l = \{1, g, \dots, g^{l-1}\}$ of degree l by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$*\longmapsto 1,$$

$$i\ (1\leq i\leq l-1)\longmapsto g^i.$$

5.2.2. Case of $D_{l+2}^{(1)}$ $(l \ge 2, l : \mathbf{even})$ Suppose that the Cartan matrix A is of type $D_{l+2}^{(1)}(l : \mathbf{even})$.

We denote the Klein four-group $K_4 = \{1, x, y, xy\}$ by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$\begin{array}{c} *, i \ (1 \leq i \leq l-1, i : \mathrm{odd}) \longmapsto 1, \\ + \longmapsto x, \\ - \longmapsto y, \\ 0, i \ (1 \leq i \leq l-1, i : \mathrm{even}) \longmapsto xy. \end{array}$$

5.2.3. Case of $D_{l+2}^{(1)}$ $(l \ge 2, l : \text{odd})$ Suppose that the Cartan matrix A is of type $D_{l+2}^{(1)}(l : \text{odd})$.

We denote the cyclic group $C_4 = \{1, g, g^2, g^3\}$ by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$\label{eq:state_equation} \begin{split} *, i \ (1 \leq i \leq l-1, i : \mathrm{odd}) &\longmapsto 1, \\ &+ \longmapsto g, \\ 0, i \ (1 \leq i \leq l-1, i : \mathrm{even}) &\longmapsto g^2, \\ &- \longmapsto g^3. \end{split}$$

5.2.4. Case of $E_6^{(1)}$ Suppose that the Cartan matrix A is of type $E_6^{(1)}$. We denote the cyclic group $C_3 = \{1, g, g^2\}$ by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$*, 2'', 3 \longmapsto 1,$$

 $1', 2 \longmapsto g,$
 $1, 2' \longmapsto g^2.$

5.2.5. Case of $E_7^{(1)}$ Suppose that the Cartan matrix A is of type $E_7^{(1)}$. We denote the cyclic group $C_2 = \{1, g\}$ of degree 2 by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$*, 2', 3', 4, 2 \longmapsto 1,$$

 $1, 3, 2'' \longmapsto q.$

5.2.6. Case of $B_l^{(1)}$ Suppose that the Cartan matrix A is of type $B_l^{(1)}$. We denote the cyclic group $C_2 = \{1, g\}$ of degree 2 by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$*, i \ (1 \le i \le l-1) \longmapsto 1,$$

$$l \longmapsto g.$$

5.2.7. Case of $D_{l+1}^{(2)}$ Suppose that the Cartan matrix A is of type $D_{l+1}^{(2)}$. We denote the cyclic group $C_2 = \{1, g\}$ of degree 2 by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$*, i \ (1 \le i \le l-1) \longmapsto 1,$$

$$l \longmapsto g.$$

5.2.8. Case of $C_l^{(1)}$ Suppose that the Cartan matrix A is of type $C_l^{(1)}$. We denote the cyclic group $C_2 = \{1, g\}$ of degree 2 by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

$$*, i \ (0 \le i \le l-1, l-i : \text{even}) \longmapsto 1,$$
 $i \ (0 \le i \le l-1, l-i : \text{odd}) \longmapsto g.$

5.2.9. Case of $A_{2l-1}^{(2)}$ Suppose that the Cartan matrix A is of type $A_{2l-1}^{(2)}$. We denote the cyclic group $C_2 = \{1, g\}$ of degree 2 by Γ_1 . We define a map $\gamma_1 : I \longrightarrow \Gamma_1$ by:

*,
$$i (0 \le i \le l-1, i : \text{even}) \longmapsto 1$$
,
 $i (0 \le i \le l-1, i : \text{odd}) \longmapsto q$.

In each case written above, it is straightforward to see that γ_1 satisfies Condition (A) and (B).

5.2.10. Other Cases: $E_8^{(1)}, F_4^{(1)}, E_6^{(2)}, G_2^{(1)}, D_4^{(3)}$, or $A_{2l}^{(2)}$ We do not need construct γ_1 because $(I)_1 = \{*\}$.

Definition 5.13. Let $i, j \in I$. We define a set P(i, j; I) by:

$$P(i,j;I) := \left\{ \lambda \in P(I) \, \middle| \, \langle \lambda, \, \alpha_k^{\vee} \rangle = \delta_{i,k} - \delta_{j,k}, \text{ for each } k \in I \right\}.$$

Note that if i = j then $P(i, j; I) = P_0(I)$.

Proposition 5.14. Let γ_1 as above, and let $a: P(I) \longrightarrow \Gamma_1$ be the invariant function on P(I) associated with γ_1 . Let $i \in (I)_1$. Then, for any $\lambda \in W(I) \cdot P(i, *; I)$, we have $a(\lambda) = \gamma_1(i)$.

Proof. By our assumption, there exists $w \in W(I)$ such that $w^{-1}(\lambda) \in P(i, *; I)$. Hence, by Proposition 5.10, we have $a(\lambda) = a(w^{-1}(\lambda))$. Then, since $w^{-1}(\lambda) \in P(i, *; I)$, we have $a(w^{-1}(\lambda)) = \gamma_1(i)\gamma_1(*)^{-1}$. Observe that $\gamma_1(*) = 1$ in all cases. Then we get $a(\lambda) = \gamma_1(i)$.

§ 5.3. Main Theorem

We now state the main result of this paper.

Theorem 5.15. We suppose that the Cartan matrix A is of affine type. Then we have

$$P_{\operatorname{sig}}(I) = \bigsqcup_{i \in (I)_1} W(I) \cdot P(i, *; I).$$

Theorem 5.15 follows from Proposition 5.17 and Proposition 5.18 below. First, we suppose that A is not of type $A_{2l}^{(2)}$.

Lemma 5.16. We have:

- 1. $P_0(I) = P_0(J) \cap P_{\text{sig}}(I)$.
- 2. $P(i, *; I) = P(i; J) \cap P_{sig}(I)$, for each $i \in (J)_0$.

Proof. (1) It is trivial that we have $P_0(I) \subseteq P_0(J) \cap P_{\text{sig}}(I)$. Now, we prove $P_0(I) \supseteq P_0(J) \cap P_{\text{sig}}(I)$. Let $\lambda \in P_0(J) \cap P_{\text{sig}}(I)$. Since $\lambda \in P_0(J)$, we have $\langle \lambda, \alpha_j^{\vee} \rangle = 0$ $(j \in J)$. Since $\lambda \in P_{\text{sig}}(I)$, we have $\langle \lambda, K \rangle = 0$. (This follows from Proposition 5.6 and Proposition 5.8.) Since

$$0 = \langle \lambda, K \rangle = \sum_{i \in I} a_i^{\vee} \cdot \langle \lambda, \alpha_i^{\vee} \rangle = 1 \cdot \langle \lambda, \alpha_*^{\vee} \rangle,$$

we have $\langle \lambda, \alpha_*^{\vee} \rangle = 0$. Hence, we have $\lambda \in P_0(I)$.

(2) We show that the required equality holds when $a_i^{\vee} = 1$. First, we prove $P(i, *; I) \subseteq$

 $P(i;J) \cap P_{\text{sig}}(I)$. Let $i \in (J)_0$ and $\lambda \in P(i,*;I)$. Since $i \in J$ and $* \notin J$, we have $\lambda \in P(i;J)$. Since

$$\langle \lambda, K \rangle = \sum_{j \in I} a_j^{\vee} \cdot \langle \lambda, \alpha_j^{\vee} \rangle = a_i^{\vee} \cdot 1 + a_*^{\vee} \cdot (-1) + \sum_{j \in I \setminus \{i, *\}} a_j^{\vee} \cdot 0 = 0,$$

we have $\langle \lambda, K \rangle = 0$. By Proposition 5.6 and Proposition 5.7, we have $\lambda \in P_{\text{sig}}(I)$. Next, we prove $P(i, *; I) \supseteq P(i; J) \cap P_{\text{sig}}(I)$. Let $\lambda \in P(i; J) \cap P_{\text{sig}}(I)$. Since $\lambda \in P(i; J)$, we have $\langle \lambda, \alpha_i^{\vee} \rangle = 1$ and $\langle \lambda, \alpha_j^{\vee} \rangle = 0$ $(j \in J \setminus \{i\})$. Since $\lambda \in P_{\text{sig}}(I)$, we have $\langle \lambda, K \rangle = 0$. Since

$$0 = \langle \lambda, K \rangle = \sum_{j \in I} a_j^{\vee} \cdot \langle \lambda, \alpha_j^{\vee} \rangle = 1 \cdot \langle \lambda, \alpha_*^{\vee} \rangle + 1 \cdot 1,$$

we have $\langle \lambda, \alpha_*^{\vee} \rangle = -1$. Hence, we have $\lambda \in P(i, *; I)$.

Proposition 5.17. We have

$$P_{\operatorname{sig}}(I) = \bigsqcup_{i \in (I)_1} W(I) \cdot P(i, *; I).$$

Proof. First, we prove $P_{\text{sig}}(I) \supseteq \bigcup_{i \in (I)_1} W(I) \cdot P(i, *; I)$. Let $\lambda \in W(I) \cdot P(i, *; I)$ for $i \in (I)_1$. If i = *, then we have $\lambda \in P_0(I) \subseteq P_{\text{sig}}(I)$. If $i \in (J)_0$, then, by Lemma 5.16 (2), we have $\lambda \in W(I) \cdot (P(i; J) \cap P_{\text{sig}}(I)) \subseteq W(I) \cdot P_{\text{sig}}(I) = P_{\text{sig}}(I)$. Thus, we always have $\lambda \in P_{\text{sig}}(I)$.

Next, we prove $P_{\operatorname{sig}}(I) \subseteq \bigcup_{i \in (I)_1} W(I) \cdot P(i, *; J)$. Let $\lambda \in P_{\operatorname{sig}}(I)$. Then we have $\lambda \in P_{\operatorname{sig}}(J)$. Hence, by Proposition 4.6, we have $\lambda \in P_0(J) \sqcup \bigsqcup_{i \in (J)_0} W(J) \cdot P(i; J)$. Since $\lambda \in P_{\operatorname{sig}}(I)$, we have $\lambda \in (P_0(J) \cap P_{\operatorname{sig}}(I)) \sqcup \bigsqcup_{i \in (J)_0} W(J) \cdot (P(i; J) \cap P_{\operatorname{sig}}(I))$. By Lemma 5.16 (1) and (2), we have $\lambda \in P_0(I) \sqcup \bigsqcup_{i \in (J)_0} W(J) \cdot P(i, *; I)$. Hence, we have $\lambda \in P_0(I) \cup \bigcup_{i \in (J)_0} W(I) \cdot P(i, *; I) = \bigcup_{i \in (I)_1} W(I) \cdot P(i, *; I)$.

Finally, we prove the disjointness of the decomposition. Let $i, j \in (I)_1$ $(i \neq j)$. Let $\lambda \in W(I) \cdot P(i, *; I)$ and $\mu \in W(I) \cdot P(j, *; I)$. Then, by Proposition 5.14, we have $a(\lambda) = \gamma_1(i)$ and $a(\mu) = \gamma_1(j)$. Since γ_1 satisfies Condition (B), we have $\gamma_1(i) \neq \gamma_1(j)$. Hence, we have $(W(I) \cdot P(i, *; I)) \cap (W(I) \cdot P(j, *; I)) = \emptyset$. This proves the statement.

Next, we suppose that A is of type $A_{2l}^{(2)}$.

Proposition 5.18. We have $P_{\text{sig}}(I) = P_0(I)$.

Proof. We prove $P_{\text{sig}}(I) \subseteq P_0(I)$. The opposite inclusion is clear. Let $\lambda \in P_{\text{sig}}(I)$. Then the Cartan matrix $A(J) := (a_{i,j})_{i,j \in J}$ is of type B_l . We have $\lambda \in P_{\text{sig}}(J)$. By Proposition 4.3, we have $w(\lambda) \in P_{\text{sig}}(J) \cap P_{\geq 0}(J)$ for some $w \in W(J)$. Hence, by Proposition 4.6, we have either:

- (a) $w(\lambda) \in P_0(J)$.
- (b) $w(\lambda) \in P(l; J)$.

Suppose that the case (a) holds. Since $w(\lambda) \in P_{\text{sig}}(I)$, we have $\langle w(\lambda), K \rangle = 0$. Since

$$0 = \langle w(\lambda), K \rangle = a_*^{\vee} \cdot \langle w(\lambda), \alpha_*^{\vee} \rangle + \sum_{i \in J} a_i^{\vee} \cdot \langle w(\lambda), \alpha_i^{\vee} \rangle = \langle w(\lambda), \alpha_*^{\vee} \rangle,$$

we have $\langle w(\lambda), \alpha_*^{\vee} \rangle = 0$. Since $\langle w(\lambda), \alpha_i^{\vee} \rangle = 0$ for each $i \in I$, we have $w(\lambda) \in P_0(I)$. Hence, we have $\lambda \in P_0(I)$. Suppose, on the other hand, the case (b) holds. Since $w(\lambda) \in P_{\text{sig}}(I)$, we have $\langle w(\lambda), K \rangle = 0$. Since

$$\begin{split} 0 &= \langle w(\lambda), \, K \rangle = a_*^\vee \cdot \langle w(\lambda), \, \alpha_*^\vee \rangle + \sum_{i \in J} a_i^\vee \cdot \langle w(\lambda), \, \alpha_i^\vee \rangle = \langle w(\lambda), \, \alpha_*^\vee \rangle + 2 \langle w(\lambda), \, \alpha_l^\vee \rangle \\ &= \langle w(\lambda), \, \alpha_*^\vee \rangle + 2, \end{split}$$

we have $\langle w(\lambda), \alpha_*^{\vee} \rangle = -2$. This contradicts $\lambda \in P_{\geq -1}(I)$. Hence, we get $P_{\text{sig}}(I) = P_0(I)$.

References

- [1] N. Bourbaki, "Eléments de Mathématique, t.XXXVIII, Groupes et Algěbres de Lie," Hermann, Paris, 1975, Chap.VIII.
- [2] V. G. Kac, "Infinite Dimentional Lie Algebras," Cambridge Univ. Press, Cambridge, UK, 1990.
- [3] R. V. Moody and A. Pianzola, "Lie Algebras With Triangular Decompositions," Canadian Mathematical Society Series of Monograph and Advanced Text, 1995.
- [4] K. Nakada, Colored hook formula for a generalized Young diagram, Osaka J. of Math. Vol. 54 No. 4 (2008), 1085-1120.
- [5] K. Nakada, q-Hook formula for a generalized Young diagram, preprint.
- [6] R. P. Stanley, Ordered Structures and Partitions, Ph.D thesis, Harvard University, 1971.

Table 2. Affine Types