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Uno�s conjecture for the exceptional Iwahori‐Hecke

algebras

By

Hyohe Miyachi *

Abstract

In this paper we settle Uno�s conjecture [Uno92] on representation types of 1‐parameter
Iwahori‐Hecke algebra for the (crystallographic) exceptional Weyl groups by using mainly two

different involutions of these algebras.

§1. Introduction

In early 90 �s Uno [Uno92] determined the representation type of the (1‐parameter)
Iwahori‐Hecke algebras for the Coxeter groups with rank 2 and the finite Weyl groups

of type A . Recently, by Ariki‐Mathas[AM04] and Ariki[Ari05] we can know all the

representation types of classical (1‐parameter) Hecke algebras. (In [AM04] the rep‐

resentation type of Iwahori‐Hecke algebras of type B with unequal parameters were

also discussed. ) Motivated by these works, we determine the representation type of

the (1‐parameter) Iwahori‐Hecke algebras for the (crystallographic) exceptional Weyl

groups. In particular, we can settle Uno�s conjecture (see below Conjecture 1.1).
Let \mathcal{A}=\mathbb{Z}[v^{\frac{1}{2}}, v^{-\frac{1}{2}}] be the ring of Laurent polynomials over \mathbb{Z} in an indeterminate

v^{1/2} . The generic Iwahori‐Hecke algebra \mathcal{H}_{\mathcal{A},v}(W) of W over \mathcal{A} with 1‐parameter v is

a free \mathcal{A}‐module with (standard) basis \{T_{w}|w\in W\}.
We can consider a field \mathrm{K} as an \mathcal{A}‐module via the map \mathcal{A}\rightarrow \mathrm{k} sending v^{1/2} to

a square root of  q\in K. For  0\neq q\in \mathrm{K} ,
let e be the least natural number such that

[e]_{q}=1+q+q^{2}+\cdots+q^{e-1}=0 in K. Set  e=\infty
,
if no such number exists. We consider

the case \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) is not semisimple.
Uno�s conjecture [Uno92, p.288 Question] on representation types of Hecke algebras

is as follows:
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Conjecture 1.1 (K.Uno).
Assume that \mathrm{K} is a splitting field of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) . \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) is of finite type and not

semisimple if and only if q is a simple root of the Poincaré polynomial equation P_{W}(v)=
0 of \mathcal{H}_{\mathcal{A},v}(W) . Here, the Poincaré polynomial P_{W}(v) is defined by

P_{W}(v)=\displaystyle \sum_{w\in W}v^{l(w)}
where l(w) is the length function on W.

The main purpose of this paper is to settle Uno�s conjecture above.

For simplicity and becasue the number of the page given to the author is limited, we

assume the following, to prove Uno�s conjecture for crystallographic exceptional Hecke

algebras:

Assumption 1.2.

(i) If e=4
, 6 and ch(\mathrm{k})\neq 2 , 3, then the decomposition matrix of the principal $\Phi$_{e}- block

of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(F) doesn�t depend upon ch(k) and depends only upon e.

(ii) If e=6 and ch(k)\neq 2 , 3, then the decomposition matrix of the principal $\Phi$_{6^{-}} block

of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(E) doesn�t depend upon ch(k) and depends only upon e.

(iii) If e\in\{5 , 8, 10, 12 \} and ch(\mathrm{k})\neq 2 , 3, 5, then the decomposition matrix of the princi‐

pal $\Phi$_{e}- block of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(E) doesn�t depend upon ch(k) and depends only upon e.

Now, we can state the main result in this paper as follows:

Theorem 1.3. Suppose that the characteristic of \mathrm{K} is zero or good for a finite

(crystallographic) exceptional Weyl group W. Then, under Assumption 1.2, Uno�s con‐

jecture is true for the 1‐parameter Iwahori‐Hecke algebras for W.

To show the above Theorem 1.3, we shall show the following theorem, which will

cover all the cases of finite representation type:

Theorem 1.4. Let W be Weyl group.

(i) Suppose that ch(k) is not bad for W. Then, all the decomposition numbers in any

$\Phi$_{e} ‐block B of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) with $\Phi$_{e} ‐defe ct 1 doesn�t depend upon ch(k) and depends only

upon e.

(ii) In the case of (i), the block B is a Brauer line tree algebra without any multiplicities.
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Since for the main result we will mainly investigate the structure of Iwahori‐Hecke

algebras of type F_{4}, E_{6} and E_{8} ,
we choose the labellings of simple reflections of the

Weyl groups of type F_{4} and type E_{8} as in the Dynkin diagrams in Table F_{4} and

Table E_{8} respectively.
For type E_{6} ,

we choose the simple reflections \{s_{1}, s_{2}, \cdots, s_{6}\} of type E_{8} to give the

set of simple reflections of type E_{6} . Moreover, W(X) (resp. \mathcal{H}_{R,v}(X) ) denotes the Weyl

group (resp. the 1‐parameter Iwahori‐Hecke algebra over R) of type X.

The paper is structured as follows: In Section 2 we review some general notions

and notation on finite dimensional symmetric algebras and Iwahori‐Hecke algebras. In

Section 3, for Iwahori‐Hecke algebras we mimic representation theory of finite groups

in positive characteristics. There, we review the \mathrm{k}‐dual and its effects on induced

modules. The �fixed� modules by this duality will be used to find indecomposable
modules M' and M'' such that Soc(M) \cong Soc(M) and  M'\not\cong M. gluing M' and

M'' at their socles will be used later to find representation types. In Section 4 we recall

certain criteria for determining the representation types of finite dimensional algebras.
In Section 5, we recall some properties on Goldman involution of Iwahori‐Hecke algebras.

Then, combining the results in Section 3 and Section 4 with the effects by Goldman

involution, we find a condition giving two indecomposable modules M' and M'' with

the above properties. In Section 6 we recall (mainly) Geck�s theorems on decomposition
numbers for 1‐parameter Iwahori‐Hecke algebras in not bad characteristics. In Section 7

we recall known results on representation types for 1‐parameter Iwahori‐Hecke algebras
and prove Theorem 1.3 by mainly finding two such indecomposables M' and M

The result of this paper was stated in LMS Durham Symposium: Representations
of Finite Groups and Related Algebras (1‐11 July 2002). The first draft of this paper

was much longer, like 63 pages. This included some explicit calculations and matrix
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representations, and also included Scott�s permutation module theory and a solution

for James�s conjecture for some $\Phi$_{e} ‐weight 2 blocks in exceptional Hecke algebras. The

result about a solution of James�s conjecture for the $\Phi$_{e} ‐weight 2 blocks is probably
contained in [GM] and its forthcomming second version as a minor part of them. So, in

this paper we shall take those results as Assumption 1.2.

§2. Symmetric algebras

Let A be a finite dimensional associative symmetric algebra over a field K. For an

A‐module M we denote the \mathrm{k}‐dual of M (i.e. \mathrm{H}\mathrm{o}\mathrm{m}_{$\beta$_{\mathrm{k}}}(M, \mathrm{K})) via the given symmetrizing
form by M^{*} . Suppose that A‐modules M and N are such that Soc (M)\cong \mathrm{S}\mathrm{o}\mathrm{c}(N) .

Let V_{M,N} be the sum M+N as a submodule of the injective hull of Soc (M) . R(A)
denotes the Grothendieck group of the category of finite dimensional A‐modules. The

class of an A‐module V in the Grothendieck group will be denoted by [V]. We denote

by [M: S] the multiplicity of a simple module S in M as composition factors.

It is known that any Iwahori‐Hecke algebra \mathcal{H} of a finite Weyl group with invertible

parameters is symmetric (see for example [GR97]). The elements in the dual basis of

\{\} are given by \{T_{w}^{\vee}\} ,
where T_{w}^{\vee}=\mathrm{i}\mathrm{n}\mathrm{d}(T_{w})^{-1}T_{w-1} . Moreover, any block ideal of

Iwahori‐Hecke algebra is also symmetric thanks to the restriction of symmetrizing form

to the block ideal. Moreover, any simple \mathcal{H}‐module is selfdual since any irreducible

character of a finite Weyl group is selfdual, any character corresponding to some pro‐

jective indecomposable module is a linear combination of some irreducible characters

and so any projective indecomposable module is selfdual. Let \mathcal{H}' be a subalgebra of \mathcal{H}

corresponding to a parabolic subgroup. Then, it is known that \mathcal{H} is free as a \mathcal{H}' ‐module.

If V is a \mathcal{H}' ‐module, then V\uparrow^{\mathcal{H}}:=V\otimes_{\mathcal{H}'}\mathcal{H} is defined to be the induced module. For

a block ideal B of \mathcal{H} , we denote V\uparrow^{\mathcal{H}}\otimes_{\mathcal{H}}B by V\uparrow^{B} . We also use this kind of no‐

tation for the restriction. We denote by P(S) the projective indecomposable module

corresponding to a simple module S over a finite dimensional associative symmetric

algebra. Let $\zeta$_{e} be a primitive e‐th root of unity in C. Let \mathrm{K}_{0} be a field such that \mathrm{K}_{0}
has characteristic 0 and contains $\zeta$_{2e} . Let

—

be a specialization \mathcal{A}\rightarrow \mathbb{C} defined by

\overline{v^{\frac{1}{2}}}=$\zeta$_{2e} . Let a triple (K, \mathcal{O}, \mathrm{K}_{0}\subset \mathbb{C}) be a $\Phi$_{e} ‐modular system associated with —.

Here, \mathcal{O} is c.d.v.r and \mathrm{K}_{0}\subset C. We may assume that this $\Phi$_{e} ‐modular system is large

enough for \mathcal{H}_{$\beta$_{\mathrm{K}_{0}}$\zeta$_{\mathrm{e}}}(W) . We say that a set B of irreducible characters  $\phi$ �s of \mathcal{H}_{\mathbb{Q}(u),u}(W)
is a $\Phi$_{e}- block of \mathcal{H}_{\mathbb{Q}(u),u}(W) if B is the minimal subset which satisfies the condition

that if  $\phi$\in B and \overline{ $\phi$} and \overline{ $\phi$}' have a common composition factor then $\phi$'\in B . We also

call a centrally primitive orthogonal idempotent \mathrm{e} of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) a $\Phi$_{e} ‐block idempotent
of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) . We mean that a $\Phi$_{e} ‐block ideal of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) is \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W)\mathrm{e} for some $\Phi$_{e} ‐block

idempotent \mathrm{e} of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) . The principal $\Phi$_{e} ‐block idempotent (resp. ideal) of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W)
is the block idempotent (resp. ideal) which dose not annihilate the index representation
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of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) . And we denote the principal $\Phi$_{e} ‐block ideal by B_{0}(\mathcal{H}_{$\beta$_{\mathrm{K}}q}(W)) . We should

mention that we also use some terminologies similar to the above for a general modular

system (K , \mathrm{k}) by replacing $\Phi$_{e}- by \mathfrak{p} which is given by the kernel of a specialization
of \mathcal{A}\rightarrow \mathrm{K} . We will denote more precise setting in 6.2. Denote by \langle $\lambda$,  $\mu$\rangle the usual Hermi‐

tian product for characters  $\lambda$,  $\mu$ of \mathcal{H}_{\mathbb{Q}(v),v}(W)\cong \mathbb{Q}(v)[W] . Moreover, for a \mathcal{H}‐module

V we often identify the character $\chi$_{V} of V with [V] if \mathcal{H} is semisimple.

§3. Induced modules and duality

In this section we shall mimic some arguments in Alperin�s text book [Alp86]. The

consequences will be useful for considering the (Loewy) structures of modules over any

Hecke algebras for finite Weyl groups with invertible parameters. In this section we

always assume the following setting up:

(i) Let W be a finite Weyl group with a set of simple reflections S.

(ii) Let \mathcal{H} be the Iwahori‐Hecke algebra for W over a field \mathrm{K} with parameters \{q^{c_{\mathrm{s}}}\}_{s\in \mathcal{S}}.

(iii) We assume that q is a unit in K.

(iv) Let S' be a subset of S, W' :=\langle S'\rangle be the corresponding standard parabolic

subgroup of  W ,
and \mathcal{H}' be the subalgebra of \mathcal{H} corresponding to W'

Remark. Note that we need the condition that \mathcal{H}' is not only parabolic but also

standard parabolic for a suitable Mackey system.

§3.1. Duality

For a vector space V over \mathrm{K} let V^{*} be the dual space \mathrm{H}\mathrm{o}\mathrm{m}_{$\beta$_{\mathrm{k}}}(V, \mathrm{K}) (the space of

linear maps from V to k). We can regard V^{*} as a \mathcal{H}‐module if V is a \mathcal{H}‐module by

defining the action of T_{w}, w\in W,
on  $\psi$\in V^{*} by

( $\psi$\cdot T_{w})(x)= $\psi$(x\cdot T_{w-1})

for any x\in V . It is one of the strongest and group like properties of the Hecke algebra
for Coxeter groups that there exists an anti‐involution  $\alpha$ :  T_{w}\rightarrow T_{w-1} . Then, we know

a reflexive property V\cong V^{**} for any finitely generated \mathcal{H}‐modules V. (Note that \mathcal{H} is

a finite dimensional symmetric algebra over K.)

Definition 3.1. We say that an \mathcal{H}‐module V is selfd ual if V\cong V^{*} as an \mathcal{H}-

module.
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Now, we would like to consider selfdual modules. First, we consider the most typical
cases. Since \mathcal{H} is symmetric, all the injective indecomposable modules are projective.
Let D be a simple \mathcal{H}‐module, and P\rightarrow D\rightarrow 0 be the projective cover of D . It is known

that P is selfdual. Hence, so is D.

Thanks to Frobenius reciprocity and the characterization of induced modules in

terms of relatively free modules, we can easily prove the following proposition, which

will be a useful tool of investigating some structures of induced modules.

Proposition 3.2. Let V be an \mathcal{H}' ‐module. Then,

(V^{*})\uparrow^{\mathcal{H}}\cong(V\uparrow^{\mathcal{H}})^{*}

as an \mathcal{H} ‐module.

Lemma 3.3. Let V, V_{1}, V_{2} be \mathcal{H}' ‐modules.

(i) If V is fr ee (projective) then V\uparrow^{\mathcal{H}} is fr ee (projective).

(ii) (V_{1}\oplus V_{2})\uparrow^{\mathcal{H}}\cong V_{1}\uparrow^{\mathcal{H}}\oplus V_{2}\uparrow^{\mathcal{H}}.

Proof. Use Proposition 3.2 and copy [Alp86, pp.54‐58]. \square 

Lemma 3.4. Let \mathrm{e} be a block idempotent of \mathcal{H}. M be a selfd ual \mathcal{H} ‐module.

Then, Me is selfd ual.

Proof. Clear by \mathrm{e}^{*}=\mathrm{e}. \square 

Proposition 3.5. Any simple \mathcal{H} ‐module is selfd ual.

Proof. Take a simple \mathcal{H}‐module S and its projective cover P\rightarrow S\rightarrow 0 . Consier a

suitable modular system (K , \mathrm{k}) where \mathcal{O} is a complete discrete valuation ring. P is

uniquely lifted over \mathcal{H}_{\mathcal{O}} , say P_{\mathcal{O}} . Write P_{K} for P_{\mathcal{O}}\otimes_{\mathcal{O}}K . Note that taking \mathrm{k}‐dual (-)
*

and K‐dual \mathrm{H}\mathrm{o}\mathrm{m}_{K} K ) (we still use * for this operation with abuse) are compatible
with taking modular reductions at least for the unique lifed module of any projective
\mathcal{H}‐module. So, it suffices to show that P_{K}^{*}=\mathrm{H}\mathrm{o}\mathrm{m}_{K}(P_{K}, K)\cong P_{K} as an \mathcal{H}_{K} ‐module,
which is equivalent to the character multiplicity condition

\langle[P_{K}^{*}],  $\chi$\rangle=\langle[P_{K}],  $\chi$\rangle for any  $\chi$\in \mathrm{I}\mathrm{r}\mathrm{r}(KW) .

Since W is a Coxeter group, the character value of any irreducible character  $\chi$ of  KW

is real, which leads  $\chi$=$\chi$^{*} where $\chi$^{*} is the K‐dual of  $\chi$ . So, we are done. \square 

Conjecture 3.6. Let M be a selfd ual simple \mathcal{H}' ‐module. Then, any direct sum‐

mand of M\uparrow^{\mathcal{H}} is selfd ual.
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§4. Fundamental lemmas

In this section we always assume that A is a symmetric algebra over a field K.

Definition 4.1. We say that A is of finite representation type if there are at

most finitely many isomorphism classes of indecomposable A‐modules. Also, we say

that A is of infinite representation type if A is not of finite representation type.

As in [AM04, Sect.2 Lemma 2.2], in order to show that A is of infinite type, we

just find a suitable projective indecomposable module whose endomorphism ring is

isomorphic to none of truncated polynomial rings over K. More precisely, we recall the

following:

Lemma 4.2. Let P be a projective indecomposable A ‐module.

(i) If \mathrm{E}\mathrm{n}\mathrm{d}_{A}(P) is of infinite representation type, then so is A.

(ii) \mathrm{E}\mathrm{n}\mathrm{d}_{A}(P) is of finite representation type if, and only if \mathrm{E}\mathrm{n}\mathrm{d}_{A}(P)\cong \mathrm{K}[x]/\langle x^{m}\rangle for
some non‐negative integer  m.

To find such a projective indecomposable module with the property (ii) above, the

following lemma is fundamental:

Lemma 4.3. Let M and N be non‐projective, non‐simple and indecomposable
A ‐modules satisfy ing the following:

(i) S:=\mathrm{S}\mathrm{o}\mathrm{c}(M)\cong \mathrm{S}\mathrm{o}\mathrm{c}(N) ,
which is simple,

(ii) S\cong \mathrm{T}\mathrm{o}\mathrm{p}(M)\cong \mathrm{T}\mathrm{o}\mathrm{p}(N) ,

(iii) M\not\cong N,

(iv) Both M and N have the same Loewy length.

Then, the following holds:

(1) Soc (V_{M,N})\cong S.

(2) Top (V_{M,N})\cong S\oplus S.

(3) \mathrm{E}\mathrm{n}\mathrm{d}_{A}(V_{M,N}^{*})\not\cong \mathrm{K}[x]/(x^{n}) for any n.

(4) \mathrm{E}\mathrm{n}\mathrm{d}_{A}(P(S))\not\cong \mathrm{K}[x]/(x^{n}) for any n.
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Proof. By definition, (1) is clear. Suppose that Top (V_{M,N})\cong S . We prove that

M and N are proper submodules of V_{M,N} . Since the argument is the same, it suffices to

show that M is a proper submodule of V_{M,N} . Assume to the contrary that M=V_{M,N}.
Then N\subset M . Since M\not\simeq N and M has a simple top, we have that N\subset \mathrm{R}\mathrm{a}\mathrm{d}(M) ,

which

contradicts the assumption that M and N have the same Loewy length. Therefore, M

and N are proper submodules of V_{M,N} . Then, V_{M,N} has the unique maximal submodule

Rad (V_{M,N}) . So, we get M+N\subset \mathrm{R}\mathrm{a}\mathrm{d}(V_{M,N}) ,
a contradiction. Hence, Top (V_{M,N})\cong

 S\oplus S . (3) and (4) are clear by considering maps from Top ((V_{M,N})^{*})\cong \mathrm{S}\mathrm{o}\mathrm{c}(V_{M,N}) to

Soc ((V_{M,N})^{*})\cong \mathrm{T}\mathrm{o}\mathrm{p}(V_{M,N}) . \square 

As the above theorem says, we need to investigate some Loewy structures of projec‐
tive indecomposable modules. In particular, we want to know extension groups among

simple A‐modules. For this aim we need the following lemma, which is related to the

structure of the hearts of indecomposable projective A‐modules:

Lemma 4.4. Let A be a finite dimensional symmetric algebra over a field. Let

M be an A ‐module. Let S be a simple submodule of M. If [Top (M) : S ] \neq 0 and

[Top (M/S) : S ] =0 ,
then S is a direct summand of M.

Proof. Suppose that S is a submodule of Rad (M) . Then, Rad (M/S)\cong \mathrm{R}\mathrm{a}\mathrm{d}(M)/S.
So, Top (M/S)\cong \mathrm{T}\mathrm{o}\mathrm{p}(M) . However, this contradicts the property : [\mathrm{T}\mathrm{o}\mathrm{p}(M) : S]\neq 0.
Hence, S is not contained in Rad (M) as a submodule. Therefore, S\cap \mathrm{R}\mathrm{a}\mathrm{d}(M)=0 . Let

M' be S\oplus \mathrm{R}\mathrm{a}\mathrm{d}(M) . So, there exists an A‐submodule M'' of M satisfying the following:

(M'/\mathrm{R}\mathrm{a}\mathrm{d}(M))\oplus(M''/\mathrm{R}\mathrm{a}\mathrm{d}(M))\cong M/\mathrm{R}\mathrm{a}\mathrm{d}(M) ,

M'+M''=M, M'\cap M''=\mathrm{R}\mathrm{a}\mathrm{d}(M) .

Hence, M=S+\mathrm{R}\mathrm{a}\mathrm{d}(M)+M Moreover, Rad (M) is contained in M So, M=

S+M

On the other hand,

S\cap M''=(S\cap M')\cap M''=S\cap(M'\cap M =S\cap \mathrm{R}\mathrm{a}\mathrm{d}(M)=0.

Therefore, M=S\oplus M \square 

Corollary 4.5. Let A be a finite dimensional symmetric algebra over a field. Let

M be a selfd ual A ‐module. Let S be a simple selfd ual submodule of M. Let s:=[M : S]
be the composition multiplicity of S in M. Suppose that S^{\oplus s} is a direct summand of
Soc (M) . Then, S^{\oplus s} is a direct summand of M.
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§5. Goldman involution

Let \mathcal{H} be the Iwahori‐Hecke algebra of a finite Weyl group W over K. There is

an automorphism  $\sigma$ of \mathcal{H} defined by  $\sigma$(T_{S}) :=-u^{c_{\mathrm{s}}}T_{S}^{-1}, s\in S (see [CR87, (67.4)] to

check the defining relations, and [Gec92, (8.4)] for the operations on block idempotents

) .  $\sigma$ is an algebras automorphism, which is called Goldman involution1, in particular,
a self Morita equivalence. For any \mathcal{H}‐module M

,
we can get an \mathcal{H}‐module M^{ $\sigma$} by the

following compositions of algebras homomorphisms:

\mathcal{H}\rightarrow^{ $\sigma$}\mathcal{H}\rightarrow \mathrm{E}\mathrm{n}\mathrm{d}(M) .

Since  $\sigma$ is an equivalence, we know the following lemma:

Lemma 5.1.

[P:S]=[P^{ $\sigma$}:S^{ $\sigma$}]

for any P and S such that P is a projective \mathcal{H}_{$\beta$_{\mathrm{k}}} ‐module (resp. is a unique \mathcal{O} ‐liftt for a

projective \mathcal{H}_{$\beta$_{\mathrm{k}}} ‐module) and S is a simple \mathcal{H}_{$\beta$_{\mathrm{k}}}-(resp. \mathcal{H}_{K^{-}}) module.

Let \mathcal{H}' be a subalgebra of \mathcal{H} corresponding to a parabolic subgroup.

Lemma 5.2. Let \mathcal{H}' be a parabolic subalgebra of \mathcal{H} . Let P be a projective inde‐

composable \mathcal{H}' ‐module. Let T be the top of P (i.e. ,
T is also isomorphic to the socle

of P) . Let B be a block ideal of \mathcal{H}.

(i) If P\uparrow^{B} is a projective indecomposable module, then

(a) Top (T\uparrow^{B})\cong \mathrm{S}\mathrm{o}\mathrm{c}(T\uparrow^{B}) ,

(b) Top (T\uparrow^{B}) is simple.

(ii) Let Q and Q' be projective indecomposable \mathcal{H} ‐modules. If the character of Q is

coincident with that of Q' ,
then Q\cong Q'

(iii) (M\uparrow^{\mathcal{H}})^{ $\sigma$}\cong M^{ $\sigma$}\uparrow^{\mathcal{H}} for any \mathcal{H}' ‐module M.

(iv) Suppose that P is not simple, P\uparrow^{B} is indecomposable, P\uparrow^{B}\cong(P\uparrow^{B})^{ $\sigma$} and  T\uparrow^{B}\not\cong
 T^{ $\sigma$}\uparrow^{B} . Put M:=T\uparrow^{B} and S:=\mathrm{T}\mathrm{o}\mathrm{p}(M) .

(a) M and M^{ $\sigma$} are selfd ual.

(b) The projective cover of V_{M,M^{ $\sigma$}}^{*} is P\uparrow^{B}.

(c) Top (V_{M,M^{ $\sigma$}}^{*})\cong S.
lThe naming is due to N. Iwahori
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(d) Soc (V_{M,M^{ $\sigma$}}^{*})\cong S\oplus S.

(e) \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{H}}(V_{M,M^{ $\sigma$}}^{*})\not\cong \mathrm{K}[x]/(x^{n}) for any non‐negative integer n.

Proof. (i) (a)(b): By Lemma 3.3, P\uparrow^{B} is surely projective. Clear by the property
that any projective indecomposable module has a unique top and socle and T\uparrow^{B} is

a submodule and a quotient of P\uparrow^{B} . (ii): This follows from the linear independence
of the characters corresponding to the projective indecomposable modules for Hecke

algebras. (\mathrm{i}\mathrm{i}\mathrm{i}):( Let $\sigma$_{\mathcal{H}}( resp. $\sigma$_{\mathcal{H}'}) be the Goldman involution of \mathcal{H} (resp. \mathcal{H}' ). Clearly,
the restriction of $\sigma$_{\mathcal{H}} to \mathcal{H}' is $\sigma$_{\mathcal{H}'} . So, we need not care the subindex of  $\sigma$. ) For any

\mathcal{H}‐module U, U^{ $\sigma$} is an \mathcal{H}' ‐module as well. Hence, by Frobenius reciprocity and the fact

that  $\sigma$ is an equivalence, we get the following equation:

\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}'}(V^{ $\sigma$}, U)
\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}'}(V, U^{ $\sigma$})
\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}}(V\uparrow^{\mathcal{H}}, U^{ $\sigma$})
\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}}((V\uparrow^{\mathcal{H}})^{ $\sigma$}, U) .

Therefore, by the characterization of induced module, namely (V\uparrow^{\mathcal{H}})^{ $\sigma$} is relatively free

modules with respect to \mathcal{H} and \mathcal{H}' as \dim(V\uparrow^{\mathcal{H}})^{ $\sigma$}=[\mathcal{H} : \mathcal{H}']\dim V^{ $\sigma$} ,
we deduce that

(V\uparrow^{\mathcal{H}})^{ $\sigma$}\cong(V\uparrow^{ $\sigma$})^{\mathcal{H}} . (iv): By Proposition 3.2 and the property  $\sigma$ is an equivalence, we

get (a). The others are clear by Lemma 4.3 and (i). \square 

Definition 5.3. We call an \mathcal{H}‐module M  $\sigma$‐stable if  M\cong M^{ $\sigma$}.

Lemma 5.4. Suppose that there exists an \mathcal{H} ‐module M such that

(1) M is selfd ual,

(2) Top(M) is  $\sigma$ ‐stable,

(3) Top (M) is a direct sum of non‐isomorphic simple modules  S and S',

(4) The Cartan invariant c_{S,S'} is not more than 1,

(5) [Rad(M)] is multiplicity‐free,

(6) [M] is not  $\sigma$ ‐stable,

(7) [M:S]=[M:S']=2,

(8) [M]\neq[S]+[P(S')], [S']+[P(S)],

Then, there exist indecomposable \mathcal{H} ‐modules M' and M'' such that

(i) Top (\mathrm{M})\cong \mathrm{S}\mathrm{o}\mathrm{c}(M')\cong \mathrm{S}\mathrm{o}\mathrm{c}(M'')\cong \mathrm{T}\mathrm{o}\mathrm{p}(\mathrm{M}) is simple,
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(ii) M'\not\cong M

(iii) Both M' and M'' have Loewy length 3.

Proof. By (3) we know that M is indecomposable or M is a direct sum of two

non‐isomorphic indecomposable modules.

Suppose that M is decomposable. For X\in\{S, S'\} and L\in\{M, M^{ $\sigma$}\} let L_{X} be

the unique direct summand of L such that Soc(L) \cong X . Then, by selfduality of M,

M_{S} is isomorphic to either (M_{S})^{*} or (M_{S'})^{*} . Suppose that M_{S} is isomorphic to (M_{S'})^{*}
. So, M_{S'} is isomorphic to (M_{S})^{*} and Top(M) \cong S' . By (6), We know that either

(M^{ $\sigma$})_{S}\not\simeq M_{S} or (M^{ $\sigma$})_{S'}\not\simeq M_{S'} . Since  $\sigma$ preserves the Loewy structure of modules,

Top ((M^{ $\sigma$})_{S})\cong Top(M). Considering  V_{(M^{ $\sigma$})_{S},M_{S}} ,
we get c_{S,S'}\geq 2 . This contradicts

c_{S,S'}\leq 1 . Hence, both M_{S} and M_{S'} are selfdual. Suppose that M_{S} is simple. Then,

using the property (5) and (7), and applying Corollary 4.5 to Rad (M_{S'})/\mathrm{S}\mathrm{o}\mathrm{c}(M_{S'}) ,
we

know that M_{S'} has Loewy length 3 and S Rad (M_{S'})/\mathrm{S}\mathrm{o}\mathrm{c}(M_{S'}) . Since M_{S'} is a

submodule of P(S') , by (8) we get S is a direct summand of Soc2(P(S�))/Soc(P(S�)).
By Corollary 4.5, S is a direct summand of H(P(S')) . In particular, by c_{S,S'}=1 ,

if

there exists a submodule Z of H(P(S)) such that Soc (Z) contains S ,
then S is a direct

summand of Z . On the other hand, since M_{S'}\not\cong P(S) by (8), M_{S'}/S' is a submodule

of H(P(S)) and has the unique maximal submodule Rad(M/S), which contains S.

However, S is not a direct summand of M_{S'}/S' . We get a contradiction. Hence, we

deduce that both M_{S} and M_{S'} are not simple. Therefore, both M_{S} and M_{S'} have

Loewy length 3, unique top and socle. By (2) and (6) we have either (M^{ $\sigma$})_{S}\not\simeq M_{S} or

(M^{ $\sigma$})_{S'}\not\simeq M_{S'} . So, we are done.

Suppose that M is indecomposable. By the selfduality and indecomposablity of M,
and Corollary 4.5, we know that Soc (M) is a submodule of Rad (M) . Moreover, by using
the property Top (M)\cong \mathrm{T}\mathrm{o}\mathrm{p}(M)^{*}\cong \mathrm{S}\mathrm{o}\mathrm{c}(M) and the dual argument taking the heart of

M
,

we know that H(M) :=\mathrm{R}\mathrm{a}\mathrm{d}(M)/\mathrm{S}\mathrm{o}\mathrm{c}(M)\cong(\mathrm{R}\mathrm{a}\mathrm{d}(M)/\mathrm{S}\mathrm{o}\mathrm{c}(M))^{*} . Moreover, by the

condition (6) we know that M can not have Loewy length 2. Hence, the Loewy length
of M is greater than or equal to 3. By applying Lemma 4.4 to H(M) repeatedly due

to (5), we know that H(M) is semisimple. Hence, we know that Soc (M)=\mathrm{R}\mathrm{a}\mathrm{d}(\mathrm{M})
and M has Loewy length 3.

Let N be M^{ $\sigma$} . Then, N satisfies the same assumption from (1) to (8) with M . Put

Rad (M)/\mathrm{R}\mathrm{a}\mathrm{d}^{2}(M)=\oplus_{i=1}^{m}M_{i} where each M_{i} is simple. Let I:=\{1, 2, . . . , m\} . For

L\in\{M, N\} and X\in\{S, S'\} let $\pi$_{L,X} be a canonical epimorphism from M to X. (If
both \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{M,S})/S and \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{N,S})/S are indecomposable, then we are done. Suppose
that \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{M,S})/S is decomposable.) We may write

\displaystyle \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{M,S})/S=V\oplus\bigoplus_{i\in J}M_{i}.
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with Top(V) \cong \mathrm{S}\mathrm{o}\mathrm{c}(V)\cong S' for some subset J of I
,

and

\displaystyle \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{N,S})/S=U\oplus\bigoplus_{i\in J'}M_{i}^{ $\sigma$}
with Top (U)\cong \mathrm{S}\mathrm{o}\mathrm{c}(U)\cong S' for some subset J' of I . If U\not\cong V ,

then we are done.

So, we may assume that U\cong V . By (6) we deduce that both \oplus_{i\in J}M_{i} and

\oplus_{i\in J}, M_{i}^{ $\sigma$} are not  $\sigma$‐stable. In particular, there exists  j\in J such that M_{j}^{ $\sigma$}\not\cong M_{i} for

any i\in I . So, there exists a uniserial submodule T of Rad (M) such that Top (T)\cong M_{j}
and Soc (T)\cong S . Moreover, we emphasize a property of M_{j} as follows:

(1) [M : M_{j}]=1, [N : M_{j}]=0.

Clearly, T is a submodule of \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{M,S'}) .

Now we consider the projection \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{N,S'})\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{N,S'})/S' and denote the image
of T by T' . As Soc (T)=S\not\cong S', T' is isomorphic to T.

Let M' (resp. M be the unique indecomposable direct summand of \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{M,S'})/S'
(resp. \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{N,S'})/S' ) such that Top(M) \cong \mathrm{S}\mathrm{o}\mathrm{c}(M')\cong S (resp. Top(M) \cong \mathrm{S}\mathrm{o}\mathrm{c}(M'')\cong
 S) . Note that M' must have a submodule T�.Clearly, both M' and M'' have Loewy

length 3.

Since we have [M' : M_{j}]=1,[M'' : M_{j}]=0 by 1, we deduce that M'\not\cong M'' as

desired. \square 

§6. Decomposition matrices and Geck�s theorem

In this section we will discuss decomposition matrices of Hecke algebras.

§6.1. The a‐functions and Geck�s theorem

First we recall Geck�s results [\mathrm{G}\mathrm{e}\mathrm{c}98\mathrm{a}] on labellings of the simple modules over

Hecke algebras by a‐functions and their property on decomposition numbers.

Definition 6.1. Let \mathcal{H} be \mathcal{H}_{\mathbb{Z}[v^{\frac{1}{2}},v^{-\frac{1}{2}}],v}(W) for a finite Weyl group. Let \{C_{w}|w\in

 W\} be Kazhdan‐Lusztig basis of \mathcal{H} . Namely,

C_{w}=\displaystyle \sum_{y\leq w}(-1)^{l(w)-l(y)}v^{\frac{l(w)-2l(y)}{2}}P_{y,w}(v^{-1})T_{y}(w\in W) .

Let h_{x,y,z} be the structure constant defined by C_{x}C_{y}=\displaystyle \sum_{z}h_{x,y},{}_{z}C_{z}.

Definition 6.2 (Lusztig). We call the function a(z) :=\displaystyle \min\{i\in \mathbb{N}|v^{\frac{i}{2}}h_{x,y,z}\in
\mathbb{Z}[v^{\frac{1}{2}}]\} on W the a‐fu nction for W . For an \mathcal{H}‐module V let a_{V} be maxa(w) |C_{w}\cdot V\neq
 0\}.
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Theorem 6.3 (Geck). [ Gec98a , p.270 Theorem 3.3] Suppose that the charac‐

teristic of \mathrm{K} is 0 or a good prime for W. Then, there exist a unique subset B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} of
Irr() such that there exists a bijection \mathrm{g} between B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} and Irr(k) such that for any

M\in \mathrm{I}\mathrm{r}\mathrm{r}(\mathcal{H}_{$\beta$_{\mathrm{k}}})

(a) \mathrm{g}(V)=M for \exists!V\in B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}}.

(b) a_{V}=a_{M}.

(c)
(2) [\displaystyle \overline{V}]-[M]\in\sum_{U}\mathbb{Z}_{\geq 0} [U]

Here, in the sum U runs over simple \mathcal{H}_{$\beta$_{\mathrm{k}}} ‐modules satisfy ing a_{U}<a_{V}.

Put d_{V,M}:=[V:M] ,
which is called a decomposition number.

Corollary 6.4 (Geck).

a_{M}=\displaystyle \min\{a_{V}|d_{V,M}\geq 1, V\in B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}}\}.

The following lemma is taken from [ \mathrm{G}\mathrm{e}\mathrm{c}98\mathrm{a} , Lemma 4.2].

Lemma 6.5 (Geck). Suppose that d_{V_{1},M}\geq 1, d_{V_{2},M}\geq 1 and a_{V_{1}}=a_{M} . Then,

(i) a_{V_{1}}\leq a_{V_{2}} and a_{ $\sigma$(V_{2})}\leq a_{ $\sigma$(V_{1})}.

(ii) a_{V_{1}}<a_{V_{2}} if and only if a_{ $\sigma$(V_{2})}<a_{ $\sigma$(V_{1})}.

Definition 6.6. For any union C of $\Phi$_{e^{-}} or \mathfrak{p} ‐blocks, we denote by C_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} the

restriction C\cap B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} . For a finite Weyl group W ,
a splitting field \mathrm{K} of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) with a

good or zero characteristic for W and an invertible element q of \mathrm{K} with multiplicative
order e . We call the map \mathrm{g}=\mathrm{g}_{e,W} between B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} and the totality of simple \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W)-
modules Geck bijection. The Geck bijection depends only on e and W if \mathrm{K} is a splitting
field for \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) and dose not have a bad characteristic for W.

§6.2. The numbers of simple modules of \mathcal{H}_{$\beta$_{\mathrm{K}}} and decomposition maps

Let us recall some known facts on the numbers of non‐isomorphic simple modules of

Iwahori‐Hecke algebras. (see [Gec00, Theorem 1.1] and references there for the details

on the following results.)

Theorem 6.7 ( \mathrm{D}\mathrm{i}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r}-\mathrm{J}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{s}/\mathrm{A}\mathrm{r}\mathrm{i}\mathrm{k}\mathrm{i}-\mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{s}/\mathrm{G}\mathrm{e}\mathrm{c}\mathrm{k}‐Rouquier/Geck).
Suppose that the characteristic \ell of \mathrm{K} is zero or a good prime for W. Then, the

number of non‐isomorphic simple modules of \mathcal{H}_{$\beta$_{\mathrm{K}}} only depends upon e . Namely,

|\mathrm{I}\mathrm{r}\mathrm{r}(\mathcal{H}_{$\beta$_{\mathrm{k}}q}(W))|=|\mathrm{I}\mathrm{r}\mathrm{r}(\mathcal{H}_{\mathbb{Q}($\zeta$_{\mathrm{e}}),$\zeta$_{\mathrm{e}}}(W))|

where $\zeta$_{e} is a primitive e‐th root of unity in C.
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Let \mathrm{K}^{-} be an algebraically closed field with characteristic \ell>0 . Fix a q\in \mathrm{K}^{-}\backslash \{0\}.
Assume that e is equal to the multiplicative order of q\in \mathrm{K}^{-} . As in Introduction, let

 $\theta$ : \mathcal{A}\rightarrow \mathrm{K}^{-} be the unique ring homomorphism such that  $\theta$(v)=q^{\frac{1}{2}}\in \mathrm{K}^{-} . Following

[Gec00, §2] let us recall some canonical decomposition maps. Let \mathrm{K} be the field of

fractions of the image of  $\theta$ (which contains the square root of  q in order to keep \mathcal{H}_{$\beta$_{\mathrm{K}}}

split). Let \mathfrak{p} be the kernel of  $\theta$ . We may regard \mathrm{K} as the field of fractions of \mathcal{A}/\mathfrak{p} and

may also regard  $\theta$ as the canonical map \mathcal{A}\rightarrow \mathcal{A}/\mathfrak{p}\subset \mathrm{K} . We can assume that $\Phi$_{2e}(v)\in \mathfrak{p}.
Let \mathrm{q} be ($\Phi$_{2e}(v)) . So, we get the following coefficient rings:

(i) 0\neq \mathrm{q}\subset \mathfrak{p}\subset \mathcal{A},

(ii) F:=\mathbb{Q}[$\zeta$_{2e}]\subset \mathbb{C},

(iii) \mathcal{A}/\mathrm{q}=\mathbb{Z}[$\zeta$_{2e}] is the ring of algebraic integers in F.

Then, the natural map \mathcal{A}\rightarrow \mathcal{A}/\mathfrak{p}\subset \mathrm{k} (resp. \mathcal{A}\rightarrow \mathcal{A}/\mathrm{q}\subset F ) defines a decomposi‐
tion map \mathrm{d}_{\mathfrak{p}} : R_{0}(\mathcal{H}_{K})\rightarrow R_{0}(\mathcal{H}_{$\beta$_{\mathrm{K}}}) (resp. \mathrm{d}_{e}:R_{0}(\mathcal{H}_{K})\rightarrow R_{0}(\mathcal{H}_{F}) ). Then, we have the

following factorization of these decomposition maps thanks to the property that \mathcal{A}/\mathrm{q} is

integrally closed:

@R

R_{0}(\mathcal{H}_{\mathrm{k}})

Here, \mathrm{d}_{\mathfrak{p}}^{e} is the decomposition map defined by the canonical map \mathcal{A}/\mathrm{q}\rightarrow \mathcal{A}/\mathfrak{p}.
In this setting up, the matrix \mathrm{D}_{\mathfrak{p}}^{e} of the decomposition map \mathrm{d}_{\mathfrak{p}}^{e} is called the ad‐

justment matrix for \mathcal{H}_{$\beta$_{\mathrm{K}}} (see, [\mathrm{G}\mathrm{e}\mathrm{c}92],[\mathrm{G}\mathrm{e}\mathrm{c}98\mathrm{b}] ). By Theorem 6.3 and Theorem 6.7,
we know that the adjustment matrix \mathrm{D}_{\mathfrak{p}}^{e} is a square k\times k lower unitriangular matrix

with the indices B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} and the factorization \mathrm{D}_{\mathfrak{p}}=\mathrm{D}_{e} \mathrm{D}_{\mathfrak{p}}^{e} where k=|\mathrm{I}\mathrm{r}\mathrm{r}(\mathcal{H}_{F})|=

|\mathrm{I}\mathrm{r}\mathrm{r}(\mathcal{H}_{\mathbb{Q}($\zeta$_{\mathrm{e}}),$\zeta$_{\mathrm{e}}})(W)| and \mathrm{D}_{\mathfrak{p}}=(d_{i,j}^{\mathfrak{p}}) (resp. \mathrm{D}_{e}=(d_{i,j}) ) is the decomposition matrix of

\mathrm{d}_{\mathfrak{p}} (resp. \mathrm{d}_{e} ). Moreover, each entry of \mathrm{D}_{\mathfrak{p}}^{e} is a non‐negative integer thanks to Geck�s

argument in [Gec92]. (The name �adjustment matrix� is first given by James [Jam90].)
In this subsection we consider the possible adjustment matrix appearing in \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W)
when the characteristic \ell>0 of \mathrm{K} is a good prime for W . From now on we always
assume that the Brauer trees appearing in $\Phi$_{e} ‐blocks of \mathcal{H}_{\mathbb{Q}($\zeta$_{\mathrm{e}}),$\zeta$_{\mathrm{e}}}(W) are straight lines

with multiplicity 1. (See [Alp86] for the definition of Brauer graph algebras. ) When

q is in \mathbb{C} or in \mathrm{F}_{\ell}, W is one of E_{6}, E_{7} and E_{8} ,
and q is a simple root of the Poincaré
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polynomial P_{W}(u) of W ,
the Brauer trees appearing in \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) is completely deter‐

mined in [Gec92]. When q is in \mathbb{C} or in \mathrm{F}_{\ell} ,
the Brauer trees appearing in \mathcal{H}_{$\beta$_{\mathrm{K}}q}(F) is

completely determined in [GL91]. In particular we know the following:

Theorem 6.8 (\mathrm{G}\mathrm{e}\mathrm{c}\mathrm{k}-\mathrm{L}\mathrm{u}\mathrm{x}/ Geck) . Suppose that W is one of the Weyl groups

of type F_{4}, E_{6}, E_{7} and E_{8} and $\Phi$_{e}(u) divides P_{W}(u) exactly once. Then, any $\Phi$_{e} ‐block

ideal of \mathcal{H}_{\mathbb{Q}($\zeta$_{\mathrm{e}}),$\zeta$_{\mathrm{e}}}(W) is either $\Phi$_{e} ‐defect zero or a Brauer line tree algebra with multi‐

plicity 1.

Our assumption and setting up in this subsection are as follows:

(i) IrrW =\displaystyle \prod_{i}\prod_{j}B_{ $\phi$,j} is the $\Phi$_{e} ‐block partitions of the irreducible characters of W

where the defect of B_{ $\phi$,j} is j and  $\phi$ has the minimal  a‐values in B_{ $\phi$,j}.

(ii) IrrW =\displaystyle \prod_{i}\prod_{j}B_{i,j}^{\mathfrak{p}} is the \mathfrak{p} ‐block partitions of the irreducible characters of W.

Definition 6.9. Let IrrW =\{$\phi$_{1}, $\phi$_{2}, \cdots, $\phi$_{k}\} . We call  $\phi$ initial (resp. terminal)
if  $\phi$ lies in a  $\Phi$_{e} ‐block B of IrrW,  $\phi$ has the minimal (resp. maximal)  a‐value in B and

a $\Phi$_{e} ‐reduction of  $\phi$ is irreducible. Conversely, for each  $\Phi$_{e} ‐block B of IrrW, there exists

(at least) an initial (resp. terminal) character  $\phi$ . (see, Theorem 6.3.) Let  B_{i} be the

union of $\Phi$_{e} ‐blocks with $\Phi$_{e} ‐defect i . Let I be the subset of \{1, 2, . . . , | IrrW |\} consisting
of those $\phi$_{i} with $\Phi$_{e} ‐defect 1. By Theorem 6.3, we can choose a total order \leq on IrrW

by the  a‐function. So, we can attach an element in I to each character in B_{1} such that

a($\chi$_{i})\leq a($\chi$_{i+1}) and $\chi$_{i}, $\chi$_{i+1}\in B_{1} in the Brauer tree graph of some $\Phi$_{e} ‐defect 1 block

for i=1
,

. . .

, k_{1}-1 . Let I_{\mathrm{i}\mathrm{n}\mathrm{i}} (resp. I_{\mathrm{t}\mathrm{e}\mathrm{r}} ) be the subset of I corresponding to the set of

initial (resp. terminal) characters in I . Namely, B_{1}=\displaystyle \prod_{i\in I_{\mathrm{i}\mathrm{n}\mathrm{i}}}B_{$\phi$_{i},1}.
Define a bijection  $\Omega$ from  I-I_{\mathrm{t}\mathrm{e}\mathrm{r}} to I-I_{\mathrm{i}\mathrm{n}\mathrm{i}} by

 $\Omega$(i)=j if $\phi$_{j} is connected to $\phi$_{i} with a($\phi$_{i})<a($\phi$_{j})

Before investigating decomposition numbers, we will recall the block partitions for

$\Phi$_{e} ‐weight 1.

Lemma 6.10. Suppose that q is a simple root of the Poincaré polynomial P_{W}(u) .

Then, q is a simple root of $\Phi$_{e}(u) and the block distribution of IrrW dose not depend

upon the characteristic of K.

Proof. Let B a $\Phi$_{e} ‐block of IrrW. Since $\Phi$_{e}(u) divides \displaystyle \sum_{ $\phi$\in B}D_{ $\phi$}(u)\mathrm{i}\mathrm{n}\mathrm{d}(T_{w}) $\phi$(T_{w-1})
exactly once,

(3) \displaystyle \frac{\sum_{ $\phi$\in B}D_{ $\phi$}(u)\mathrm{i}\mathrm{n}\mathrm{d}(T_{w}) $\phi$(T_{w-1})}{P_{W}(u)}|_{u=q}
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is an element of \mathcal{O} . Here, D(u) is the generic degree polynomial corresponding to

 $\phi$ . On the other hand, the primitive central orthogonal idempotent \mathrm{e}_{ $\phi$} in \mathcal{H}_{\mathbb{Q}(u),u}(W)
corresponding to  $\phi$\in \mathrm{I}\mathrm{r}\mathrm{r}\mathcal{H}_{\mathbb{Q}(u),u}(W) is given by

\displaystyle \mathrm{e}_{ $\phi$}=\frac{D_{ $\phi$}(u)}{P_{W}(u)}\sum_{w\in W}\mathrm{i}\mathrm{n}\mathrm{d}(T_{w})^{-1} $\phi$(T_{w-1})T_{w}
and (P_{W}(u)/$\Phi$_{e}(u))|_{u=q} is an invertible element of \mathcal{O} . Hence, the block distribution of

IrrW dose not depend upon the characteristic of K. \square 

Lemma 6.11.

(i) Suppoese that B_{ $\phi$,1} is coincident with only a \mathfrak{p} ‐block of IrrW. (IIn general some \mathfrak{p}-

block is a union of $\Phi$_{e} ‐blocks.) Then, the adjustment matrix \mathrm{D}_{\mathfrak{p}}^{e}=(d_{ $\lambda,\ \mu$}^{e,\mathfrak{p}}) satisfy the

following:

d_{ $\lambda,\ \mu$}^{e,\mathfrak{p}}=\left\{\begin{array}{l}
1 if $\phi$= $\chi$\\
 0 otherwise.
\end{array}\right.
for any  $\lambda$\in B_{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}} and  $\mu$\in B_{ $\phi$,1} . Namely, the part of adjustment matrix correspond‐

ing to B_{ $\phi$,1} is identity.

(ii) \mathrm{D}_{e}=\mathrm{D}_{\mathfrak{p}} if q is a simple root of the Poincaré polynomial P_{W}(u) of W.

(iii) If IrrW =\displaystyle \prod_{i=0}^{2}B_{i} with B_{2}=B_{ $\phi$,2} for some initial character  $\phi$ , then  B_{ $\phi$,2}=B_{ $\phi$,2}^{\mathfrak{p}}.

Proof. (i): Suppose that B_{$\phi$_{i},1} is coincident with only a \mathfrak{p} ‐block of IrrW and

\{i,  $\Omega$(i), . . . , $\Omega$^{n}(i)\}\subset I is the subset of indices corresponding to B_{$\phi$_{i},1} . Note that i\in I_{\mathrm{i}\mathrm{n}\mathrm{i}}

and $\Omega$^{n}(i)\in I_{\mathrm{t}\mathrm{e}\mathrm{r}} . Moreover, by Geck�s Theorem 6.3 we can label all the projective

indecomposable \mathcal{H}_{$\beta$_{\mathrm{k}}} ‐modules lying in B_{$\phi$_{i}} ,1 as P_{i}, P_{ $\Omega$(i)} ,
. . .

, P_{$\Omega$^{n-1}(i)} such that for any

0\leq j\leq n-1

\langle[(P_{$\Omega$^{j}(i)})_{\mathcal{O}}], $\phi$_{$\Omega$^{m}(i)}\rangle=0 if m<j

and

\langle[(P_{$\Omega$^{j}(i)})_{\mathcal{O}}], $\phi$_{$\Omega$^{j}(i)}\rangle=1.

Then, we know that the p.i. \mathrm{m}. P_{$\Omega$^{n-1}(i)} satisfies

(4) [P_{$\Omega$^{n-1}(i)}]=$\phi$_{$\Omega$^{n-1}(i)}+$\phi$_{$\Omega$^{n}(i)}.

Let  $\sigma$ B_{$\phi$_{i},1} be \{ $\sigma$( $\chi$)| $\chi$\in B_{$\phi$_{i},1}\} . Then, the above observation also holds for  $\sigma$(B_{$\phi$_{i},1}) .

Moreover, by the property of  $\sigma$
,

we have already known that if  s<t then a( $\sigma$($\phi$_{s}))>
a( $\sigma$($\phi$_{t})).(\mathrm{s}\mathrm{e}\mathrm{e}[\mathrm{G}\mathrm{e}\mathrm{c}98\mathrm{a}].) Since $\phi$_{$\Omega$^{n}(i)} takes the maximal a‐value in B_{$\phi$_{i},1},  $\sigma$($\phi$_{$\Omega$^{n}(i)}) is the

minimal a‐value in  $\sigma$(B_{$\phi$_{i},1}) . Note that  $\sigma$ induces a bijection ỡ of  I defined by ỡ(j) =l
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if  $\sigma$($\phi$_{j})=$\phi$_{l} . (In particular,  $\sigma$ induces a bijection between  I_{\mathrm{i}\mathrm{n}\mathrm{i}} and I_{\mathrm{t}\mathrm{e}\mathrm{r}}. )  $\sigma$($\phi$_{i}) takes

the maximal a‐value in  $\sigma$(B_{$\phi$_{i},1}) . More precisely, we know that

(5) a( $\sigma$($\phi$_{$\Omega$^{n}(i)}))<a( $\sigma$($\phi$_{$\Omega$^{n-1}(i)}))<\cdots<a( $\sigma$($\phi$_{ $\Omega$(i)}))<a( $\sigma$($\phi$_{i})) .

By (4) and the above observation we know that  $\sigma$($\phi$_{ $\Omega$(i)})+ $\sigma$($\phi$_{i}) is a character of

projective indecomposable \mathcal{H}_{$\beta$_{\mathrm{k}}} ‐module lying in  $\sigma$(B_{$\phi$_{i},1}) . Hence, by Lemma 5.1, we

know that [(P_{i})_{\mathcal{O}}]=$\phi$_{i}+$\phi$_{ $\Omega$(i)}.
We would like to proceed on induction on (n, <) . We assume the following:

Assumption I:

Fix m_{0} . For any s and m with 0\leq m<m_{0}

(6) d^{\mathfrak{p}} =0 unless s=m, m+1,$\Omega$^{\mathrm{s}}(i),$\Omega$^{m}(i)

and

(7) d^{\mathfrak{p}} =d^{\mathfrak{p}} =1.$\Omega$^{m}(i),$\Omega$^{m}(i) $\Omega$^{m+1}(i),$\Omega$^{m}(i)

By Lemma 5.1 the above assumption also means the following: for any s and m

with 1\leq m<m_{0}

d^{\mathfrak{p}} =0 unless s=m, m-1.
 $\Omega$-\mathrm{s}(\sim(i)), $\Omega$-m(\sim(i))

Suppose (for a contradiction) that there exists t with t<m_{0}-1 such that

d^{\mathfrak{p}} >0 and $\phi$_{ $\Omega$(\sim(i))}-t takes the maximal a‐value in
 $\Omega$-t(\tilde{ $\sigma$}(i)), $\Omega$-m_{0} (ỡ(i))

\{$\phi$_{l}\in $\sigma$ B_{ $\phi$,1}|d_{ $\Omega$-t}(\ovalbox{\tt\small REJECT}(i)),l >0\}.
By Lemma 5.1 and the equation 5, we know that

[( $\sigma$ P_{ $\Omega$-t}()_{\mathcal{O}}]= $\sigma$($\phi$_{ $\Omega$-t})+ $\sigma$($\phi$_{ $\Omega$-m_{0}})+ $\sigma$($\phi$_{ $\Omega$-m_{0}+1})+\cdots.

This contradicts Assumption I. Hence, the equation (6) holds for m=m_{0} . Moreover,
note that the maximality condition forces the coefficient of  $\sigma$($\phi$_{ $\Omega$(\sim(i))}-t) to be 1 by the

lower unitriangular shape of the decomposition matrix \mathrm{D}_{\mathfrak{p}}.
From these facts and Lemma 5.1 the equation (7) follows for m=m_{0}.

(ii): Clear by Lemma 6.10 and (i).
(iii): Clear by (ii). \square 

§7. Representation type

In this section we will show that Uno�s conjecture is true for Iwahori‐Hecke algebras
of exceptional Weyl groups. First, we recall some known facts on Uno�s conjecture, which

will be used for some reductions of our proof. The following theorem is the starting

point on this problem.
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Theorem 7.1 (Uno[Uno92]).

(i) \mathcal{H}_{$\beta$_{\mathrm{K}}q}(A_{n-1}) is of finite type and not semisimple if and only if q is a simple root of
the Poincaré polynomial P_{W(A_{n-1})}(v) of \mathcal{H}_{\mathcal{A},v}(A_{n-1}) .

(ii) \mathcal{H}_{$\beta$_{\mathrm{K}}q}(I(m)) is of finite type and not semisimple if and only if q is a simple root of
the Poincaré polynomial P_{I_{2}(m)}(v) of \mathcal{H}_{\mathcal{A},v}(I_{2}(m)) .

Moreover, Uno[Uno92, Theorem 3.4] also proved the following (see also [AM04,
Theorem 2.5] and remarks there):

Theorem 7.2 (Uno). Suppose that A is a symmetric indecomposable algebra
such that the decomposition matrix of A can be written in the following shape:

(_{0..11}^{1.0.\cdot...0}011.\cdot\cdot 0
Then A is of finite representation type.

Theorem 7.3 (Ariki‐Mathas[AM04]). \mathcal{H}_{$\beta$_{\mathrm{K}}q}(B) is of finite type and not

semisimple if and only if q is a simple root of the Poincaré polynomial P_{W(B_{n})}(v) of

\mathcal{H}_{\mathcal{A},v}(B_{n}) .

One of the difficulties to show this theorem is that we can not find any suitable

subalgebras like defect groups in \mathcal{H}_{$\beta$_{\mathrm{K}}q}(B_{n}) . This gives an essential difference from type
A . Ariki and Mathas overcame this by using Dipper‐James‐Murphy�s Specht theory,
Ariki�s classification of simple modules, James‐Mathas� Jantzen‐Schaper theorem, and

so on.

Using the above theorem, an embedding of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(D) into some Hecke algebras of

type A and B
,

and so on, Ariki showed the following:

Theorem 7.4 (Ariki[Ari05]). \mathcal{H}_{$\beta$_{\mathrm{K}}q}(D) is of finite type and not semisimple if
and only if q is a simple root of the Poincaré polynomial P_{W(D_{n})}(v) of \mathcal{H}_{\mathcal{A},v}(D_{n}) .

In Lemma 6.11 we have already seen that the decomposition matrix of a $\Phi$_{e} ‐block

with $\Phi$_{e} ‐defect 1 completely controls that of the corresponding \mathfrak{p} ‐block. So, by Theo‐

rem 7.2 we deduce that if q is a simple root of P_{W}(v) then \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) is of finite type.
On the other hand, in order to verify Uno�s conjecture, we can use some reductions

on the Mackey system of the Iwahori‐Hecke algebras for the Weyl groups as in Ariki‐

Mathas [AM04, Corollary 3.2]. By Theorem 7.1, Theorem 7.3, and Theorem 7.4, it is

enough to consider the following cases:
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(i) F_{4}, e=3 , 4, 6.

(ii) E_{6}, e=6.

(iii) E_{8}, e=5 , 8, 10, 12.

The case F_{4}, e=3 will be well‐understood by [Miy01] as follows:

Theorem 7.5. Let \mathrm{K} be a field such that 1+q+q^{2}=0 in \mathrm{K} and the characteristic

of \mathrm{K} is not 2. Then, the principal block of \mathcal{H}_{$\beta$_{\mathrm{K}}q}(F) is isomorphic to \mathcal{H}_{$\beta$_{\mathrm{K}}q}(A_{2})\otimes_{$\beta$_{\mathrm{K}}}
\mathcal{H}_{$\beta$_{\mathrm{K}}q}(A_{2}) .

From now on \mathcal{H}(W) always means a specialized Hecke algebra \mathcal{H}_{$\beta$_{\mathrm{K}}q}(W) with 1‐

parameter q\in \mathrm{k} with the minimal positive integer e such that [e]_{q}=0 in \mathrm{K}
,

unless

stated otherwise. Moreover, B will always mean the principal $\Phi$_{e} ‐block \mathcal{H}=\mathcal{H}(W)
with $\Phi$_{e} ‐defect 2 for given e and \mathcal{H}' will mean a suitable parabolic subalgebra of \mathcal{H} in

the rest of sections.

The rest of the proof for Uno�s conjecture, namely, Theorem 1.3, goes as follows,
but we shall avoid writing notes of computations in this paper.

(i) For the cases (W, e)=(F_{4},4) and (E_{8},5) ,
we can find some  $\sigma$‐stable projective inde‐

composable \mathcal{H}‐modules as in Lemma 5.2. 4 induced from some parabolic subalgebra
\mathcal{H}' . Let P be such an indecomposable projective \mathcal{H}' ‐module with P\uparrow^{B}\cong(P\uparrow^{B})^{ $\sigma$}
indecomposable. Let T be the top of P (equivalently the socle of P). Then, we will

see that T has the properties:

(a) T\uparrow^{B} is selfdual by Proposition 3.2 and Lemma 3.4,

(b) Top (T\uparrow^{B}) is simple by Lemma 5.2 (i) (b),

(c) T\uparrow^{B} is not  $\sigma$‐stable, which we will prove in the later sections by checking the

composition factors of  T\uparrow^{B}.

The explicit choices for (W, e)=(F_{4},4) and (E_{8},5) are:

(F_{4},4) : Set T:=D^{(\emptyset,21)} (resp. T^{ $\sigma$}:=D^{(21,\emptyset)} ) to be the simple \mathcal{H}(\mathrm{B}) ‐module corre‐

sponding to $\phi$_{(\emptyset,21)} (resp. $\phi$_{(21,\emptyset)} ). Set P to be the projective cover of D^{(\emptyset,21)}.

(E_{8},5) : By [Gec92, Theorem 12.6] and Lemma 6.11 we know that the character $\phi$_{84,12}+
$\phi$_{216^{16}} corresponds to a projective indecomposable module over \mathcal{H}(E_{7}) . Set P

to be this module. Set T (resp. T^{ $\sigma$} ) to be the simple module corresponding
the character $\phi$_{84,12}-$\phi$_{1,0} (resp. $\phi$_{84,15}-$\phi$_{1,63} ) . T and T^{ $\sigma$} belong to different

blocks.
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(ii) For the cases (W, e)=(F_{4},6) , (E_{8},8) , (E_{8},10) ,
and (E_{8},12) ,

we can find a projective

indecomposable \mathcal{H}' ‐module, say, P such that P is not  $\sigma$‐stable,  P\uparrow^{B} is  $\sigma$‐stable and

is isomorphic to a direct sum of two non‐isomorphic projective indecomposable B‐

modules. Let  T be the top of P . Then, we will see that T\uparrow^{B} has the properties (1)
to (6) in Lemma 5.4 as M does.

(a) T\uparrow^{B} is selfdual by Proposition 3.2 and Lemma 3.4.

(b) The top of T\uparrow^{B} will be isomorphic to a direct sum S\oplus S' of certain two non‐

isomorphic simple B‐modules S and S' by known decomposition matrices,
Frobenius reciprocity and some direct calculations.

(c) Top (T\uparrow^{B}) is  $\sigma$‐stable since  P\uparrow^{B} is so.

(d) The condition on the Cartan invariant c_{S,S'} is easily checked by the decompo‐
sition matrices in [GL91],[Gec93],[Mül01].

(e) The multiplicity‐free property of Rad (T\uparrow^{B}) will be checked by the condition

on the top of T\uparrow^{B} by using Frobenius reciprocity and the computation for the

composition factors of M.

(f) [T\uparrow^{B}] will not be  $\sigma$‐stable by the same calculation.

The explicit choices of  T and P for (W, e)=(F_{4},6) , (E_{8},8) , (E_{8},10) and (E_{8},12)
are:

(F_{4},6) : Set T:=D^{(2,1)} to be the simple \mathcal{H}(\mathrm{B}) ‐module corresponding to ($\phi$_{(2,1)}-
$\phi$_{(3,\emptyset)}) . Set P to be the projective cover of T.

(E_{8},8) : Set P to be the projective indecomposable module corresponding to the char‐

acter $\phi$_{216,6}+$\phi$_{280,8} . Set T to be the top of P.

(E_{8},10) : Set P to be the projective indecomposable module corresponding to the char‐

acter $\phi$_{420,10}+$\phi$_{405,15} . Set T to be the top of P.

(E_{8},12) : Set P to be the projective indecomposable module corresponding to the char‐

acter $\phi$_{336,11}+$\phi$_{280,18} . Set T to be the top of P.

(iii) The case E_{6}, e=6 ,
unlike the previous cases, will be done by showing an existence

of two non‐isomorphic indecomposable modules M and N as in Lemma 4.3. Write

\{v_{0}, v_{1}, v_{2}, V3, v_{3}', V5, v_{6}, V7, v_{7}', v_{11}, v_{15}\} for a complete set of simple B‐modules. Here,
those correspond to

\{$\phi$_{1,0}, $\phi$_{6}, 1, $\phi$_{20,2}, $\phi$_{30,3}, $\phi$_{15,4}, $\phi$_{60,5}, $\phi$_{24,6}, $\phi$_{80,7}, $\phi$_{60,8}, $\phi$_{60}, 11, $\phi$_{30}, 15\}

by Geck�s a‐value order, which is consistent with [Gec93].

Since the branching rule between B and \mathcal{H}(D) and the decomposition matrix for

B and \mathcal{H}(D) are known, we can get the following result:
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Lemma 7.6.

(a) Let P^{(1211)} be the projective indecomposable \mathcal{H}(D) ‐module corresponding to

$\phi$_{(1,211)}+$\phi$_{(\emptyset,2111)} . Then P^{(1,211)}\uparrow^{B}\cong P(v_{7}) .

(b) Let P^{(1121)} be the projective indecomposable \mathcal{H}(D) ‐module corresponding to

$\phi$_{(11,21)}+$\phi$_{(11,111)} . Then, P^{(11,21)}\uparrow^{B}\cong P(v_{7})\oplus P(v_{7}') .

Let S be the simple \mathcal{H}(\mathrm{D}) ‐module corresponding to $\phi$_{(11,111)}-$\phi$_{(\emptyset,11111)} . So,
P^{(1121)} is the projective cover of S.

Lemma 7.7.

S\uparrow^{B}\leftrightarrow v_{5}+v_{6}+2v_{7}+2v_{7}'+v_{11}.

Proof.

($\phi$_{(11,111)}-$\phi$_{(\emptyset,11111)})\uparrow^{B}=$\phi$_{60}, 11+$\phi$_{30}, 15+$\phi$_{15}, 16-$\phi$_{6,25}-$\phi$_{1,36}
\leftrightarrow(v_{5}+v_{7}+v_{7}'+v_{11})+(v_{6}+v_{7}+v_{15})+(v_{7}'+v_{11})

-(v_{15})-(v_{11})
=V5 +v_{6}+2 V7 +2v_{7}'+v_{11}.

\square 

Proposition 7.8. \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{H}(E_{6})}(P(v_{7}))\not\cong \mathrm{K}[x]/(x) foor any n . In particular, by
Lemma 4.2, Uno�s conjecture is true for \mathcal{H}(E_{6}) .

Proof. Note that \mathrm{E}\mathrm{x}\mathrm{t}^{1}(v_{6}, v_{11})=\mathrm{E}\mathrm{x}\mathrm{t}^{1}(v_{11}, v_{6})=0 since the Cartan invariant

c_{$\nu$_{6},$\nu$_{11}} =0 by the decomposition matrix in [Gec93]. By Frobenius reciprocity, we

know

\dim \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(E_{6})}(S\uparrow^{B}, v_{7})=\dim \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(E_{6})}(S\uparrow^{B}, v_{7}')=1.

Suppose that S\uparrow^{B} is decomposable. Put S\uparrow^{B}=V_{7}\oplus V_{7}' such that Top(V) =v_{7} and

Top(V ) =v_{7}' . Looking at the composition factors of S\uparrow^{B} ,
we deduce Soc(V) =v_{7}

and Soc(V ) =v_{7}' . By the selfduality of S\uparrow^{B} ,
we know that the Loewy length of

S\uparrow^{B} is 3. In order to show that B=B((E)) has infinite representation type
we just check that V_{7}\not\cong v_{7} by Lemma 4.3 since we have already known that there

exists a B‐module

$\phi$_{(\emptyset,2111)}\uparrow^{B}= \left(\begin{array}{lll}
 & v_{7} & \\
v_{3} & v_{11} & v_{15}\\
 & v_{7} & 
\end{array}\right) \leftrightarrow$\phi$_{24}, 12+$\phi$_{20,20}
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Suppose that V_{7}=v_{7} . So, V_{7}' has the following Loewy structure:

V_{7}'=\left(\begin{array}{llll}
 &  & v_{7}' & \\
v_{5} & v_{6} & v_{7} & v_{11}\\
 &  & v_{7}' & 
\end{array}\right) .

However, \mathrm{E}\mathrm{x}\mathrm{t}^{1}(v_{7}', v_{6})=0=\mathrm{E}\mathrm{x}\mathrm{t}^{1}(v_{6}, v_{7}') . Hence V_{7}\not\cong V7. Next, we assume that

S\uparrow^{B} is indecomposable. Then, S\uparrow^{B} has the following Loewy structure:

S\uparrow^{B}=\left(\begin{array}{lll}
 & v_{7} & v_{7}'\\
v_{5} & v_{6} & v_{11}\\
 & v_{7} & v_{7}'
\end{array}\right) .

Let $\pi$_{8} be a canonical epimorphism from S\uparrow^{B} to v_{7}' . The top and socle of \mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{8})/v_{7}'
contain V7. Moreover, $\phi$_{(\emptyset,2111)}\uparrow^{B} is not isomorphic to any direct summand of

\mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{8})/v_{7}' . By Lemma 4.3 we are done. \square 
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