On the structure of parabolic Humphreys-Verma modules

By

KANEDA Masaharu *

Through an investigation into the bounded derived category $\mathbb{D}^b(\text{coh}\mathcal{P})$ of the coherent sheaves on a projective homogeneous variety \mathcal{P} we have been led to study the parabolic Humphreys-Verma modules. Although these modules are defined only in positive characteristic, our geometric application appears effective characteristic-free.

Write $\mathcal{P} = G/P$ with G a reductive algebraic group over an algebraically closed field of positive characteristic and P a parabolic subgroup of G. Let G_1 be the Frobenius kernel of G and let $\nabla_P(\varepsilon)$ be the G_1P-module induced from 1-dimensional trivial P-module ε, a parabolic Humphreys-Verma module. We have recently found a way, though verified in only few limited cases yet, to parametrize certain components of the G_1T-socle series of $\nabla_P(\varepsilon)$ by the set W_P, $w \in W_P$, on \mathcal{P} form a Karoubian complete strongly exceptional poset for $\mathbb{D}^b(\text{coh}\mathcal{P})$. Those sheaves are defined over \mathbb{Z} to verify Catanese’s conjecture [Bö] transferring over to \mathbb{C}; in some cases our constructions offer a new evidence to the conjecture in complex algebraic geometry. In this note, however, we will focus on the structure of Humphreys-Verma modules.

In order to be precise in which category the morphisms are taken, we will write $\mathcal{C}(X, Y)$ for the set of morphisms in category \mathcal{C} from object X to Y. For an algebraic group H we let HMod denote the category of rational H-modules, and for a variety X the category of modules over the structure sheaf of X will be denoted by Mod_X.

This is an expanded version of the author’s talk at a RIMS meeting under the title of the present volume. Subsequent to the talk I have come up with a description of the structure of Humphreys-Verma modules for projective spaces, which is included in §3; in the talk I could merely exhibit the computations in the cases of GL_2 and GL_3.

Received January 26, 2008. Accepted May 23, 2008.
2000 Mathematics Subject Classification(s): 20G05

Key Words: parabolic Humphreys-Verma modules, Frobenius direct image

Supported in part by JSPS Grant in Aid for Scientific Research.

*Osaka City University, Department of Mathematics.

\text{e-mail: kaneda@sci.osaka-cu.ac.jp}

© 2009 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
§ 1. Humphreys-Verma modules

Let \mathbb{k} be an algebraically closed field of positive characteristic p. We will assume p is sufficiently large. Let G be a reductive algebraic group over \mathbb{k}, P a parabolic subgroup of G, and G_1 the Frobenius kernel of G. We call the functor

$$\text{ind}^{G_1 P}_{P} = \text{Sch}_{\mathbb{k}}(G_1 P,?)^P : \text{PMod} \to G_1 \text{PMod}$$

parabolic Humphreys-Verma induction and write $\hat{\nabla}_P$ for short.

In case $P = B$ a Borel subgroup of G put $\nabla = \hat{\nabla}_B$. Let Λ be the character group of B, T a maximal torus of B, $R \subset \Lambda$ the root system of G relative to T. We choose a positive system R^+ of R such that the roots of B are $-R^+$, and let R^s be the set of simple roots. Let $W = \text{N}_G(T)/T$ the Weyl group of G, $W_p = W \rtimes p\mathbb{Z}R$, $S_p = \{s_i, s_0 \mid \alpha_i \in R^s\}$ with s_i the reflexion associated to α_i and s_0 the reflexion in the wall $\{v \in \Lambda \otimes \mathbb{Z}R \mid \langle v, \alpha_i^\vee \rangle = -p\}$, α_0^\vee the highest coroot. Thus (W_p, S_p) forms a Coxeter system. We will consider the dot action of W_p on Λ such that $x \bullet \lambda = x(\lambda + \rho) - \rho$, $x \in W_p$, $\lambda \in \Lambda$, $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. One has $\hat{\nabla}(\lambda + p\mu) \simeq \hat{\nabla}(\lambda) \otimes p\mu \forall \mu \in \Lambda$, and each $\hat{\nabla}(\lambda)$ has a $G_1 T$-simple socle $\hat{L}(\lambda)$ of highest weight λ with all other composition factors having their highest weights $< \lambda$. If $\Lambda_1 = \{\lambda \in \Lambda \mid \langle \lambda, \alpha_i^\vee \rangle \in [0, p[\forall \alpha \in R^s\}$ the set of restricted dominant weights, a simple $G_1 T$-module of highest weight $\lambda \in \Lambda_1$ admits a structure of simple G-module $L(\lambda)$. Thus, the determination of the composition factors of all $\hat{\nabla}(\lambda)$, $\lambda \in \Lambda_1$, will yield all irreducible characters for G by Steinberg’s tensor product theorem. Moreover, let \mathcal{A} be the set of alcoves on Λ with respect to the dot action of W_p, $\forall A \in \mathcal{A}$, $\forall w \in W$, $\forall \gamma \in \mathbb{Z}R$, we will write $Aw^{-1}t_{p\gamma}$ for the alcove $(w \bullet A) + p\gamma$. Let 0_A be the image of $0 \in \Lambda$ in A under the W_p-action. By the translation principle [J, II.7] the structure of $\hat{\nabla}(0_A)$ describes that of all other $\hat{\nabla}(\lambda)$, $\lambda \in \Lambda \cap A$, and the determination of irreducible characters of all $L(0_A)$, $0_A \in \Lambda_1$, will obtain all irreducible characters for G, which has now been achieved for indefinitely large p by Andersen, Jantzen and Soergel [AJS] to verify Lusztig’s conjecture. We will thus write $\hat{\nabla}(A)$ for $\hat{\nabla}(0_A)$.

The Lusztig conjecture on the irreducible G-characters, in turn, determines the $G_1 T$-socle series of each $\hat{\nabla}(A)$; let $\text{soc}_i \hat{\nabla}(A)$ be the i-th $G_1 T$-socle layer of $\hat{\nabla}(A)$ and let $\hat{L}(C)$ be the simple $G_1 T$-module of highest weight 0_C; by the linkage principle [J, II.9.15] the composition factors of $\hat{\nabla}(A)$ are of the form $\hat{L}(C)$. Let $w_0 \in W$ be the longest element of W with respect to $\{s_i \mid \alpha_i \in R^s\}$. Then

Theorem 1.1 ([AK]/[RIMS]). Let $A \in \mathcal{A}$.

(i) The Loewy length, that is the length of the socle series, of each $\hat{\nabla}(A)$ is $\ell(w_0) + 1$.

(ii) If $0_C \in \Lambda_1 + p(\xi - \rho), \xi \in \Lambda$, then with $w_\xi = w_0 t_p(\xi - w_0 \xi)$

$$Q_{A,Cw_\xi} = \sum_{i \in \mathbb{N}} q^{\frac{1}{2}\{d(A,Cw_\xi)+i-\ell(w_0)-1\}} \text{soc}_i \hat{\nabla}(A) : \hat{L}(C),$$

where $Q_{A,C}$ is the periodic inverse Kazhdan-Lusztig polynomial [L] associated to $A, C \in \mathcal{A}$ and $d(A,Cw_\xi)$ is the distance from A to Cw_ξ.

§2. Parabolic Humphreys-Verma modules

We wish to obtain a formula to describe the socle series for general parabolic P. Let $\Lambda_P = \text{Grp}_k(P, \text{GL}_1)$, L the standard Levi subgroup of P, U_L the unipotent radical of $B \cap L$, $\text{Dist}(U_L)$ the algebra of distributions on U_L, $R_L \subseteq R$ the root system of L, and $W_P = \langle s_\alpha \mid \alpha \in R_L \rangle \leq W$ the Weyl group of P and also of L. $\forall \nu \in \Lambda_P$, regarded as $G_1 T$-modules

$$\hat{\nabla}_P(\nu) = \text{ind}_{P_1}^{G_1 P}(\nu) \simeq \text{ind}_{P_1 T}^{G_1 T}(\nu),$$

where P_1 is the Frobenius kernel of P. We call $\hat{\nabla}_P(\nu)$ the parabolic Humphreys-Verma module of highest weight ν; if $\rho_P = \frac{1}{2} \sum_{\alpha \in R^+ \setminus R_L} \alpha$,

$$\hat{\nabla}_P(\nu) \simeq \text{ind}_{P_1}^{G_1}(\nu) \simeq \text{Dist}(G_1) \otimes_{\text{Dist}(P_1)} (\nu - 2(p-1)\rho_P) \quad \text{by \ [J, II.9.2].}$$

If U_P^+ is the subgroup of G generated by the root subgroups U_α, $\alpha \in R^+ \setminus R_L$, and if $U_{P,1}^+$ is the Frobenius kernel of U_P^+, then $\text{Dist}(G_1) \simeq \text{Dist}(U_{P,1}^+) \otimes_k \text{Dist}(P_1)$, and hence

$$\hat{\nabla}(\nu) \simeq \text{Dist}(U_{P,1}^+) \otimes_k (\nu - 2(p-1)\rho_P)$$

with $\text{Dist}(U_{P,1}^+) \simeq \otimes_{\alpha \in R^+ \setminus R_L} \text{Dist}(U_{\alpha,1})$. To relate a parabolic Humphreys-Verma module to ordinary Humphreys-Verma modules, one has at the character level

$$\chi(\hat{\nabla}_P(\nu)) \simeq \chi(\text{Dist}(U_{P,1}^+) \otimes_k (\nu - 2(p-1)\rho_P)),$$

where χ denotes the character.
Proposition 2.1 ([KY]). \(\forall \nu \in \Lambda, \)
\[
\operatorname{ch}_{\nu} \hat{\nabla}_{P}(\nu) = e^{\nu} \prod_{\alpha \in R_{+} \setminus R_{L}} \frac{1 - e^{-\rho \alpha}}{1 - e^{-\alpha}} = \sum_{w \in W_{P}} (-1)^{\ell(w)} \dim(\operatorname{Dist}(U_{L_{\gamma}})) \operatorname{ch}_{w \bullet \nu + p \gamma} \hat{\nabla}.
\]

Now let \(A \in \mathcal{A} \) with \(0_{A} \in \Lambda_{P} \). As \(\hat{\nabla}_{P}(A) \leq \hat{\nabla}(A) \) as \(G_{1}B \)-modules, a naïve speculation on the \(G_{1}T \)-socle series of \(\hat{\nabla}_{P}(A) \) would be that \(\forall C \in \mathcal{A} \) with \(0_{C} \in \Lambda_{1} + p(\xi - \rho), \xi \in \Lambda, \)
\[
(1) \quad \sum_{i \in \mathbb{N}} q^{\frac{1}{2}\{d(A, Cw_{\xi}) + i - \ell(w_{0}) - 1\}} [\operatorname{soc}_{i} \hat{\nabla}_{P}(A) : \hat{L}(C)] = \sum_{w \in W_{P}} (-1)^{\ell(w)} \dim(\operatorname{Dist}(U_{L_{\gamma}})) i \in \mathbb{N} w \in W_{P}
\]
\[
= \sum_{w \in W_{P}, \gamma \in \mathbb{Z}R_{L}} (-1)^{\ell(w)} \dim(\operatorname{Dist}(U_{L_{\gamma}})) Q_{Aw^{-1}t_{p \gamma}, Cw_{\xi}}.
\]

By design (1) holds under the specialization \(q \rightsquigarrow 1 \), and also in case \(P = B \).

Proposition 2.2 ([KY]). (1) holds for \(G \) of rank \(\leq 2 \).

If \(W_{P} = \{ w \in W \mid wR_{L}^{+} \subseteq R^{+} \} \), \(W = \bigsqcup_{w \in W_{P}} wW_{P} \). Let \(w_{0,P} \in W_{P} \) with \(w_{0,P}R_{L}^{+} = -R_{L}^{+} \), and set \(w_{0}^{P} = w_{0}w_{0,P} \in W_{P} \). \(\forall x \in W_{P}, \exists! w \in W: x \bullet 0 \equiv w \bullet 0 \mod p\Lambda \). \(\forall w \in W \), choose \(0_{P,w} \in \Lambda_{1} \) such that \(0_{P,w} \equiv w_{0}ww_{0,P} \bullet 0 \mod p\Lambda \). Then \(W_{P} \bullet 0 + p\Lambda = \bigsqcup_{w \in W_{P}} (0_{P,w} + p\Lambda) \).

Theorem 2.3 ([KY]). Assume \(\text{rk} G \leq 2 \). Let \(A \in \mathcal{A} \) with \(0_{A} \in \Lambda_{P} \).
(i) The Loewy length of \(\hat{\nabla}_{P}(A) \) is \(\ell(w_{0}^{P}) + 1 \).
(ii) \(\forall i \in [1, \ell(w_{0}^{P}) + 1] \), there is a decomposition as \(G_{1}P \)-modules
\[
\operatorname{soc}_{i} \hat{\nabla}_{P}(A) = \prod_{w \in W_{P}} L(0_{P,w}) \otimes G_{1}\text{Mod}(L(0_{P,w}), \operatorname{soc}_{i} \hat{\nabla}_{P}(A)).
\]
(iii) In case \(A = A^{+} \) the bottom dominant alcove,
\[
G_{1}\text{Mod}(L(0_{P,w}), \operatorname{soc}_{\ell(w_{0}^{P})+1-\ell(w)} \hat{\nabla}_{P}(A^{+})) \neq 0 \quad \forall w \in W_{P}.
\]

Remark 2.4. (i) In case \(P = B \), each \(L(0_{B,w}), w \in W \), appears as a \(G_{1} \)-composition factor of any \(\hat{\nabla}(A) \).
To see that, \(\forall x, y \in W, \forall \mu \in \Lambda \),

\[
[\hat{\nabla}(A^+ x) : L(0_{B,y}) \otimes p \mu] = [\hat{\nabla}(x^{-1} \cdot 0) : \hat{L}(0_{B,y} + px^{-1} x \cdot \mu)]
\]

\[
= [\hat{\nabla}(\varepsilon) : \hat{L}(0_{B,y} + px \cdot \mu)]
\]

by [J, II.9.16.4] with \(\varepsilon \) denoting \(0 \in \Lambda \).

It is therefore enough to show that \(\forall w \in W, \exists \mu \in \Lambda : [\hat{\nabla}(\varepsilon) : \hat{L}(0_{B,w} + p \mu)] \neq 0 \). Write \(0_{B,w} = w_0 w \cdot 0 + p \eta \) for some \(\eta \in \Lambda \). Then

\[
[\hat{\nabla}(\varepsilon) : \hat{L}(0_{B,w} + p \mu)] = [\hat{\nabla}(\varepsilon) : \hat{L}(w_0 w \cdot 0 + p(\eta + \mu))] = [\hat{\nabla}(-p(\eta + \mu)) : \hat{L}(w_0 w \cdot 0)].
\]

Thus we have only to check \(\forall C \in A, \exists \gamma \in \mathbb{Z}R : [\hat{\nabla}(A^+ t_{p\gamma}) : \hat{L}(C)] \neq 0 \). If \(C \subseteq \Lambda_1 + p(\xi - \rho) \) for some \(\xi \in \Lambda \), then by [Y] \(\forall w \in W, [\hat{\nabla}(A^+ wt_{p\xi}) : \hat{L}(C)] \neq 0 \). Write \(A^+ t_{p\xi} = A^+ t_{p\gamma} y, \gamma \in \mathbb{Z}R, y \in W \). Then

\[
A^+ y^{-1} t_{p\xi} = A^+ t_{p\gamma} y t_{-p\xi} y^{-1} t_{p\xi} = A^+ t_{p\gamma} t_{-py\xi} t_{p\xi} = A^+ t_{p(\gamma - y\xi + \xi)}.
\]

If \(y = y_1 y_2 \) with \(y_1, y_2 \in W \), then \(y_1 \xi - \xi = y_1 y_2 \xi - \xi = y_1 (y_2 \xi - \xi) + y_1 \xi - \xi \), and \(\forall \alpha \in R^+, s_{\alpha} \xi - \xi = \xi - \langle \xi, \alpha^\vee \rangle \alpha - \xi = -\langle \xi, \alpha^\vee \rangle \alpha \in \mathbb{Z}R \). Thus \(\gamma - y\xi + \xi \in \mathbb{Z}R \), as desired.

(ii) In application to the study of \(D^b(\operatorname{coh}\mathcal{P}), \mathcal{P} = G/P \), the \(P \)-module structure on each \(G_1 \mathcal{M}od(L(0_{P,w}), \operatorname{soc}_{\ell(w_{0P}^P) + 1 - \ell(w)} \hat{\nabla}_{P}(A^+)), w \in W^P \), appears to play an important role: as \(G_1 \) acts trivially on those, untwisting the Frobenius, put \(\operatorname{soc}^1_{P,w} = G_1 \mathcal{M}od(L(0_{P,w}), \operatorname{soc}_{\ell(w_{0P}^P) + 1 - \ell(w)} \hat{\nabla}_{P}(A^+))^{-1} \). It appears from [KY] that each \(\operatorname{soc}^1_{P,w} \) admits a direct summand \(E_w \) such that, writing \(\mathcal{L}_\mathcal{P}(E_w) \) for the locally free sheaf on \(\mathcal{P} \) associated to \(E_w \), \(\{\mathcal{L}_\mathcal{P}(E_w) \mid w \in W^P\} \) forms a Karoubian complete strongly exceptional poset such that \(\operatorname{Mod}_\mathcal{P}(\mathcal{L}_\mathcal{P}(E_x), \mathcal{L}_\mathcal{P}(E_y)) \neq 0 \) iff \(x \leq y \). Moreover, those \(E_w \) are defined over \(\mathbb{Z} \) to yield also a Karoubian complete strongly exceptional poset in characteristic \(0 \).

§ 3. Projective spaces

Let \(E \) be a \(k \)-linear space of basis \(e_1, \ldots, e_{n+1}, G = \operatorname{GL}(E) \), and \(P = N_G(ke_{n+1}) \). Thus \(\mathcal{P} = G/P \simeq \mathbb{P}^{n}_{\mathbb{F}_k} \). If \(F_{\mathcal{P}} \) (resp. \(F_k \)) is the absolute Frobenius morphism on \(\mathcal{P} \) (resp. \(\operatorname{Spec}(k) \)) and if \(q : G/P \rightarrow G/G_1 P \) is a natural morphism, one has a commutative diagram of schemes

\[
\begin{array}{ccc}
P \ar[r] & \mathcal{P} \ar[r] & \operatorname{Spec}(k) \\
q \ar[r] & \phi \ar[u] & \\
G/G_1 P \ar[r]_{\sim} & \mathcal{P}^{(1)} \ar[u]_{F_k} & \\
& & \\
\end{array}
\]
If A^+ is the bottom dominant alcove, one has from [Haa]

$$F_{P*} \mathcal{O}_P \simeq \phi_* \mathcal{L}_{G/G_1 P}(\hat{\nabla}_P(A^+)).$$

On the other hand, we know from [HKR]

$$F_{P*} \mathcal{O}_P \simeq \prod_{i=0}^{n} \mathcal{O}_P(-i) \otimes_{\mathbb{k}} V_i,$$

where $V_i = \prod_{j \in [0, p^{n+1}]} \mathbb{k} x^j$ in the polynomial algebra $\mathbb{k}[x_1, \ldots, x_{n+1}]$ with $x^j = \prod_{i=1}^{n+1} x_i^{j_i}$ and $|j| = \sum_{i=1}^{n+1} j_i$ if $j = (j_1, \ldots, j_{n+1})$. Regarding x_1, \ldots, x_{n+1} as the dual basis of e_1, \ldots, e_{n+1}, let G act on $\mathbb{k}[x_1, \ldots, x_{n+1}]$ and also on $\mathbb{k}[x_1, \ldots, x_{n+1}]/(x_1^p, \ldots, x_{n+1}^p)$ contragrediently. Then one can equip V_i with a structure of G-module by identifying it with its image in $\mathbb{k}[x_1, \ldots, x_{n+1}]/(x_1^p, \ldots, x_{n+1}^p)$.

Now let B be a Borel subgroup of P consisting of lower triangular matrices and T a maximal torus of B consisting of diagonal matrices. Identify A with $\mathbb{Z}^{\oplus n+1}$ via the basis $\epsilon_i : \text{diag}(a_1, \ldots, a_{n+1}) \mapsto a_i, i \in [1, n+1]$, and W with the symmetric group \mathfrak{S}_{n+1} permuting the $\epsilon_i, i \in [1, n+1]$. Then $W^P = \{(i (i+1 \ldots n+1) | i \in [1, n+1]\}$, and Serre’s twisted sheaf on \mathbb{P}^n is given by $\mathcal{O}_P(1) = L_P(-\epsilon_{n+1}). \forall i \in [1, n+1]$, set $\lambda_{(i (i+1 \ldots n+1)} = (i-1)\epsilon_{n+1}$ and $0_P(i (i+1 \ldots n+1) = -(i-1)\epsilon_{n+2-i} - (p-1)(\epsilon_{n+3-i} + \cdots + \epsilon_{n+1}) \in \Lambda_1$, which we agree to be 0 in case $i = 1$. Then $V_{i-1} \simeq L(0_P(i (i+1 \ldots n+1) \forall i \in [1, n+1]$, and hence

$$F_{P*} \mathcal{O}_P \simeq \prod_{i=1}^{n+1} \mathcal{L}_P(\lambda_{(i (i+1 \ldots n+1)}) \otimes_{\mathbb{k}} L(0_P(i (i+1 \ldots n+1)).$$

Confirming the pattern in Theorem 2.3, it holds that

Theorem 3.1 ([K]). Assume $p \geq n + 1$.

(i) The Loewy length of $\hat{\nabla}_P(A^+)$ is $n + 1 = \ell(w_0^P) + 1$.

(ii) $\forall i \in [1, n+1]$, $\text{soc}_i \hat{\nabla}_P(A^+) \simeq L(0_P(i (i+1 \ldots n+1)) \otimes \lambda_{(i (i+1 \ldots n+1)}^{[1]}.$

Remark 3.2. Regardless of characteristic $\{\mathcal{L}_P(\lambda_w) | w \in W^P\}$ forms a complete strongly exceptional poset on \mathbb{P}^n such that $\text{Mod}_{\mathbb{P}^n}(\mathcal{L}_P(\lambda_x), \mathcal{L}_P(\lambda_y)) \neq 0$ iff $x \leq y$ [HKR] / [K08].

References

On the structure of parabolic Humphreys-Verma modules

[KY] Kaneda M. and Ye J.-C., *Some observations on Karoubian complete strongly exceptional posets on the projective homogeneous varieties*, to appear

