On the structure of parabolic Humphreys-Verma modules

By

Kaneda Masaharu *

Through an investigation into the bounded derived category $D^b(\cosh P)$ of the coherent sheaves on a projective homogeneous variety P we have been led to study the parabolic Humphreys-Verma modules. Although these modules are defined only in positive characteristic, our geometric application appears effective characteristic-free.

Write $\mathcal{P} = G/P$ with G a reductive algebraic group over an algebraically closed field of positive characteristic and P a parabolic subgroup of G. Let G_1 be the Frobenius kernel of G and let $\hat{\nabla}_P(\varepsilon)$ be the G_1P -module induced from 1-dimensional trivial P-module ε , a parabolic Humphreys-Verma module. We have recently found a way, though verified in only few limited cases yet, to parametrize certain components of the G_1T -socle series of $\hat{\nabla}_P(\varepsilon)$ by the set W^P of distinguished coset representatives of the Weyl group of G by the Weyl group of G such that the associated coherent sheaves \mathcal{E}_w , $w \in W^P$, on \mathcal{P} form a Karoubian complete strongly exceptional poset for $D^b(\operatorname{coh}\mathcal{P})$. Those sheaves are defined over \mathbb{Z} to verify Catanese's conjecture [Bö] transferring over to \mathbb{C} ; in some cases our constructions offer a new evidence to the conjecture in complex algebraic geometry. In this note, however, we will focus on the structure of Humphreys-Verma modules.

In order to be precise in which category the morphisms are taken, we will write C(X,Y) for the set of morphisms in category C from object X to Y. For an algebraic group H we let HMod denote the category of rational H-modules, and for a variety X the category of modules over the structure sheaf of X will be denoted by \mathbf{Mod}_X .

This is an expanded version of the author's talk at a RIMS meeting under the title of the present volume. Subsequent to the talk I have come up with a description of the structure of Humphreys-Verma modules for projective spaces, which is included in §3; in the talk I could merely exhibit the computations in the cases of GL₂ and GL₃.

Received January 26, 2008. Accepted May 23, 2008.

2000 Mathematics Subject Classification(s): 20G05

Key Words: parabolic Humphreys-Verma modules, Frobenius direct image

Supported in part by JSPS Grant in Aid for Scientific Research.

*Osaka City University, Department of Mathematics.

e-mail: kaneda@sci.osaka-cu.ac.jp

§ 1. Humphreys-Verma modules

Let k be an algebraically closed field of positive characteristic p. We will assume p is sufficiently large. Let G be a reductive algebraic group over k, P a parabolic subgroup of G, and G_1 the Frobenius kernel of G. We call the functor

$$\operatorname{ind}_{P}^{G_1P} = \operatorname{\mathbf{Sch}}_{\Bbbk}(G_1P,?)^P : P\operatorname{\mathbf{Mod}} \to G_1P\operatorname{\mathbf{Mod}}$$

parabolic Humphreys-Verma induction and write $\hat{\nabla}_P$ for short.

In case P=B a Borel subgroup of G put $\hat{\nabla}=\hat{\nabla}_B$. Let Λ be the character group of B, T a maximal torus of B, $R\subset \Lambda$ the root system of G relative to T. We choose a positive system R^+ of R such that the roots of B are $-R^+$, and let R^s be the set of simple roots. Let $W=\mathrm{N}_G(T)/T$ the Weyl group of G, $W_p=W\ltimes p\mathbb{Z}R$, $S_p=\{s_i,s_0\mid \alpha_i\in R^s\}$ with s_i the reflexion associated to α_i and s_0 the reflexion in the wall $\{v\in\Lambda\otimes_{\mathbb{Z}}\mathbb{R}\mid \langle v,\alpha_0^\vee\rangle=-p\},\,\alpha_0^\vee$ the highest coroot. Thus (W_p,S_p) forms a Coxeter system. We will consider the dot action of W_p on Λ such that $x\bullet\lambda=x(\lambda+\rho)-\rho,\,x\in W_p,\,\lambda\in\Lambda$, $\rho=\frac{1}{2}\sum_{\alpha\in B^+}\alpha$. One has $\hat{\nabla}(\lambda+p\mu)\simeq\hat{\nabla}(\lambda)\otimes p\mu\;\forall\mu\in\Lambda$, and each $\hat{\nabla}(\lambda)$ has

a G_1T -simple socle $\hat{L}(\lambda)$ of highest weight λ with all other composition factors having their highest weights $<\lambda$. If $\Lambda_1=\{\lambda\in\Lambda\mid\langle\lambda,\alpha^\vee\rangle\in[0,p[\ \forall\alpha\in R^s\}\$ the set of restricted dominant weights, a simple G_1T -module of highest weight $\lambda\in\Lambda_1$ admits a structure of simple G-module $L(\lambda)$. Thus, the determination of the composition factors of all $\hat{\nabla}(\lambda)$, $\lambda\in\Lambda_1$, will yield all irreducible characters for G by Steinberg's tensor product theorem. Moreover, let A be the set of alcoves on Λ with respect to the dot action of W_p . $\forall A\in\mathcal{A},\ \forall w\in W,\ \forall\gamma\in\mathbb{Z}R$, we will write $Aw^{-1}t_{p\gamma}$ for the alcove $(w\bullet A)+p\gamma$. Let 0_A be the image of $0\in\Lambda$ in A under the W_p -action. By the translation principle $[J,\ II.7]$ the structure of $\hat{\nabla}(0_A)$ describes that of all other $\hat{\nabla}(\lambda)$, $\lambda\in\Lambda\cap A$, and the determination of irreducible characters of all $L(0_A)$, $0_A\in\Lambda_1$, will obtain all irreducible characters for G, which has now been achieved for indefinitely large p by Andersen, Jantzen and Soergel [AJS] to verify Lusztig's conjecture. We will thus write $\hat{\nabla}(A)$ for $\hat{\nabla}(0_A)$.

The Lusztig conjecture on the irreducible G-characters, in turn, determines the G_1T -socle series of each $\hat{\nabla}(A)$; let $\operatorname{soc}_i\hat{\nabla}(A)$ be the i-th G_1T -socle layer of $\hat{\nabla}(A)$ and let $\hat{L}(C)$ be the simple G_1T -module of highest weight 0_C ; by the linkage principle [J, II.9.15] the composition factors of $\hat{\nabla}(A)$ are of the form $\hat{L}(C)$. Let $w_0 \in W$ be the longest element of W with respect to $\{s_i \mid \alpha_i \in R^s\}$. Then

Theorem 1.1 ([AK]/[RIMS]). Let $A \in \mathcal{A}$.

(i) The Loewy length, that is the length of the socle series, of each $\hat{\nabla}(A)$ is $\ell(w_0)+1$.

(ii) If
$$0_C \in \Lambda_1 + p(\xi - \rho)$$
, $\xi \in \Lambda$, then with $w_{\xi} = w_0 t_{p(\xi - w_0 \xi)}$

$$Q_{A,Cw_{\xi}} = \sum_{i \in \mathbb{N}} q^{\frac{1}{2} \{d(A,Cw_{\xi}) + i - \ell(w_0) - 1\}} [\operatorname{soc}_i \hat{\nabla}(A) : \hat{L}(C)],$$

where $Q_{A,C}$ is the periodic inverse Kazhdan-Lusztig polynomial [L] associated to $A, C \in \mathcal{A}$ and $d(A, Cw_{\xi})$ is the distance from A to Cw_{ξ} .

§ 2. Parabolic Humphreys-Verma modules

We wish to obtain a formula to describe the socle series for general parabolic P. Let $\Lambda_P = \mathbf{Grp}_{\mathbb{k}}(P, \mathrm{GL}_1)$, L the standard Levi subgroup of P, U_L the unipotent radical of $B \cap L$, $\mathrm{Dist}(U_L)$ the algebra of distributions on U_L , $R_L \subseteq R$ the root system of L, and $W_P = \langle s_\alpha \mid \alpha \in R_L \rangle \leq W$ the Weyl group of P and also of L. $\forall \nu \in \Lambda_P$, regarded as G_1T -modules

$$\hat{\nabla}_P(\nu) = \operatorname{ind}_P^{G_1 P}(\nu) \simeq \operatorname{ind}_{P_1 T}^{G_1 T}(\nu),$$

where P_1 is the Frobenius kernel of P. We call $\hat{\nabla}_P(\nu)$ the parabolic Humphreys-Verma module of highest weight ν ; if $\rho_P = \frac{1}{2} \sum_{\alpha \in R^+ \backslash R_L} \alpha$,

$$\hat{\nabla}_P(\nu) \simeq \operatorname{ind}_{P_1}^{G_1}(\nu)$$

$$\simeq \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(P_1)} (\nu - 2(p-1)\rho_P) \quad \text{by [J, II.9.2] }.$$

If U_P^+ is the subgroup of G generated by the root subgroups U_α , $\alpha \in R^+ \setminus R_L$, and if $U_{P,1}^+$ is the Frobenius kernel of U_P^+ , then $\mathrm{Dist}(G_1) \simeq \mathrm{Dist}(U_{P,1}^+) \otimes_{\mathbb{k}} \mathrm{Dist}(P_1)$, and hence

$$\hat{\nabla}(\nu) \simeq \operatorname{Dist}(U_{P,1}^+) \otimes_{\mathbb{k}} (\nu - 2(p-1)\rho_P)$$

with $\operatorname{Dist}(U_{P,1}^+) \simeq \otimes_{\alpha \in R^+ \setminus R_L} \operatorname{Dist}(U_{\alpha,1})$. To relate a parabolic Humphreys-Verma module to ordinary Humphreys-Verma modules, one has at the character level

Proposition 2.1 ([KY]). $\forall \nu \in \Lambda$,

$$\operatorname{ch}\hat{\nabla}_{P}(\nu) = e^{\nu} \prod_{\alpha \in R^{+} \backslash R_{L}} \frac{1 - e^{-p\alpha}}{1 - e^{-\alpha}} = \sum_{\substack{w \in W_{P} \\ \gamma \in \mathbb{Z}R_{L}}} (-1)^{\ell(w)} \operatorname{dim}(\operatorname{Dist}(U_{L})_{\gamma}) \operatorname{ch}\hat{\nabla}(w \bullet \nu + p\gamma).$$

Now let $A \in \mathcal{A}$ with $0_A \in \Lambda_P$. As $\hat{\nabla}_P(A) \leq \hat{\nabla}(A)$ as G_1B -modules, a naïve speculation on the G_1T -socle series of $\hat{\nabla}_P(A)$ would be that $\forall C \in \mathcal{A}$ with $0_C \in \Lambda_1 + p(\xi - \rho), \xi \in \Lambda$,

$$(1) \sum_{i \in \mathbb{N}} q^{\frac{1}{2} \{d(A,Cw_{\xi}) + i - \ell(w_{0}) - 1\}} [\operatorname{soc}_{i} \hat{\nabla}_{P}(A) : \hat{L}(C)] = \sum_{\substack{w \in W_{P} \\ \gamma \in \mathbb{Z}R_{L}}} (-1)^{\ell(w)} \operatorname{dim}(\operatorname{Dist}(U_{L})_{\gamma})$$

$$\sum_{i \in \mathbb{N}} q^{\frac{1}{2} \{d(Aw^{-1}t_{p\gamma}, Cw_{\xi}) + i - \ell(w_{0}) - 1\}} [\operatorname{soc}_{i} \hat{\nabla}(Aw^{-1}t_{p\gamma}) : \hat{L}(C)]$$

$$= \sum_{\substack{w \in W_{P} \\ \gamma \in \mathbb{Z}R_{L}}} (-1)^{\ell(w)} \operatorname{dim}(\operatorname{Dist}(U_{L})_{\gamma}) Q_{Aw^{-1}t_{p\gamma}, Cw_{\xi}}.$$

By design (1) holds under the specialization $q \rightsquigarrow 1$, and also in case P = B.

Proposition 2.2 ([KY]). (1) holds for G of rank ≤ 2 .

If $W^P = \{w \in W \mid wR_L^+ \subseteq R^+\}$, $W = \bigsqcup_{w \in W^P} wW_P$. Let $w_{0,P} \in W_P$ with $w_{0,P}R_L^+ = -R_L^+$, and set $w_0^P = w_0w_{0,P} \in W^P$. $\forall x \in W_p$, $\exists! w \in W$: $x \bullet 0 \equiv w \bullet 0$ mod $p\Lambda$. $\forall w \in W$, choose $0_{P,w} \in \Lambda_1$ such that $0_{P,w} \equiv w_0ww_{0,P} \bullet 0 \mod p\Lambda$. Then $W_p \bullet 0 + p\Lambda = \bigsqcup_{w \in W} (0_{P,w} + p\Lambda)$.

Theorem 2.3 ([KY]). Assume $\operatorname{rk} G \leq 2$. Let $A \in \mathcal{A}$ with $0_A \in \Lambda_P$.

- (i) The Loewy length of $\hat{\nabla}_P(A)$ is $\ell(w_0^P) + 1$.
- (ii) $\forall i \in [1, \ell(w_0^P) + 1]$, there is a decomposition as G_1P -modules

$$\operatorname{soc}_{i} \hat{\nabla}_{P}(A) = \coprod_{w \in W^{P}} L(0_{P,w}) \otimes G_{1} \mathbf{Mod}(L(0_{P,w}), \operatorname{soc}_{i} \hat{\nabla}_{P}(A)).$$

(iii) In case $A = A^+$ the bottom dominant alcove,

$$G_1\mathbf{Mod}(L(0_{P,w}), \operatorname{soc}_{\ell(w_0^P)+1-\ell(w)}\hat{\nabla}_P(A^+)) \neq 0 \quad \forall w \in W^P.$$

Remark 2.4. (i) In case P = B, each $L(0_{B,w})$, $w \in W$, appears as a G_1 -composition factor of any $\hat{\nabla}(A)$.

To see that, $\forall x, y \in W, \forall \mu \in \Lambda$,

$$[\hat{\nabla}(A^+x): L(0_{B,y}) \otimes p\mu] = [\hat{\nabla}(x^{-1} \bullet 0): \hat{L}(0_{B,y} + p\mu)] = [\hat{\nabla}(x^{-1} \bullet 0): \hat{L}(0_{B,y} + px^{-1}x \bullet \mu)]$$
$$= [\hat{\nabla}(\varepsilon): \hat{L}(0_{B,y} + px \bullet \mu)] \quad \text{by [J, II.9.16.4] with } \varepsilon \text{ denoting } 0 \in \Lambda.$$

It is therefore enough to show that $\forall w \in W, \exists \mu \in \Lambda: [\hat{\nabla}(\varepsilon) : \hat{L}(0_{B,w} + p\mu)] \neq 0$. Write $0_{B,w} = w_0 w \bullet 0 + p\eta$ for some $\eta \in \Lambda$. Then

$$[\hat{\nabla}(\varepsilon): \hat{L}(0_{B,w} + p\mu)] = [\hat{\nabla}(\varepsilon): \hat{L}(w_0 w \bullet 0 + p(\eta + \mu))] = [\hat{\nabla}(-p(\eta + \mu)): \hat{L}(w_0 w \bullet 0)].$$

Thus we have only to check $\forall C \in \mathcal{A}$, $\exists \gamma \in \mathbb{Z}R$: $[\hat{\nabla}(A^+t_{p\gamma}) : \hat{L}(C)] \neq 0$. If $C \subseteq \Lambda_1 + p(\xi - \rho)$ for some $\xi \in \Lambda$, then by $[Y] \forall w \in W$, $[\hat{\nabla}(A^+wt_{p\xi}) : \hat{L}(C)] \neq 0$. Write $A^+t_{p\xi} = A^+t_{p\gamma}y$, $\gamma \in \mathbb{Z}R$, $y \in W$. Then

$$A^{+}y^{-1}t_{p\xi} = A^{+}t_{p\gamma}yt_{-p\xi}y^{-1}t_{p\xi} = A^{+}t_{p\gamma}t_{-py\xi}t_{p\xi} = A^{+}t_{p(\gamma-y\xi+\xi)}.$$

If $y = y_1y_2$ with $y_1, y_2 \in W$, then $y\xi - \xi = y_1y_2\xi - \xi = y_1(y_2\xi - \xi) + y_1\xi - \xi$, and $\forall \alpha \in \mathbb{R}^+$, $s_{\alpha}\xi - \xi = \xi - \langle \xi, \alpha^{\vee} \rangle \alpha - \xi = -\langle \xi, \alpha^{\vee} \rangle \alpha \in \mathbb{Z}R$. Thus $\gamma - y\xi + \xi \in \mathbb{Z}R$, as desired.

(ii) In application to the study of $D^b(\operatorname{coh}\mathcal{P})$, $\mathcal{P} = G/P$, the P-module structure on each $G_1\mathbf{Mod}(L(0_{P,w}), \operatorname{soc}_{\ell(w_0^P)+1-\ell(w)}\hat{\nabla}_P(A^+))$, $w \in W^P$, appears to play an important role: as G_1 acts trivially on those, untwisting the Frobenius, put $\operatorname{soc}_{P,w}^1 = G_1\mathbf{Mod}(L(0_{P,w}), \operatorname{soc}_{\ell(w_0^P)+1-\ell(w)}\hat{\nabla}_P(A^+))^{[-1]}$. It appears from [KY] that each $\operatorname{soc}_{P,w}^1$ admits a direct summand E_w such that, writing $\mathcal{L}_{\mathcal{P}}(E_w)$ for the locally free sheaf on \mathcal{P} associated to E_w , $\{\mathcal{L}_{\mathcal{P}}(E_w) \mid w \in W^P\}$ forms a Karoubian complete strongly exceptional poset such that $\mathbf{Mod}_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}(E_x), \mathcal{L}_{\mathcal{P}}(E_y)) \neq 0$ iff $x \leq y$. Moreover, those E_w are defined over \mathbb{Z} to yield also a Karoubian complete strongly exceptional poset in characteristic 0.

§ 3. Projective spaces

Let E be a \mathbb{k} -linear space of basis $e_1, \ldots, e_{n+1}, G = \operatorname{GL}(E)$, and $P = \operatorname{N}_G(\mathbb{k}e_{n+1})$. Thus $\mathcal{P} = G/P \simeq \mathbb{P}^n_{\mathbb{k}}$. If $F_{\mathcal{P}}$ (resp. $F_{\mathbb{k}}$) is the absolute Frobenius morphism on \mathcal{P} (resp. $\operatorname{Spec}(\mathbb{k})$) and if $q: G/P \to G/G_1P$ is a natural morphism, one has a commutative diagram of schemes

If A^+ is the bottom dominant alcove, one has from [Haa]

$$F_{\mathcal{P}*}\mathcal{O}_{\mathcal{P}} \simeq \phi_* \mathcal{L}_{G/G_1P}(\hat{\nabla}_P(A^+)).$$

On the other hand, we know from [HKR]

$$F_{\mathcal{P}*}\mathcal{O}_{\mathcal{P}} \simeq \coprod_{i=0}^{n} \mathcal{O}_{\mathcal{P}}(-i) \otimes_{\mathbb{k}} V_{i},$$

where $V_i = \coprod_{\substack{j \in [0,p[^{n+1}]\\|j|=pi}} \mathbb{k} x^j$ in the polynomial algebra $\mathbb{k}[x_1,\ldots,x_{n+1}]$ with $x^j = \prod_{i=1}^{n+1} x_i^{j_i}$

and $|j| = \sum_{i=1}^{n+1} j_i$ if $j = (j_1, \dots, j_{n+1})$. Regarding x_1, \dots, x_{n+1} as the dual basis of e_1, \dots, e_{n+1} , let G act on $\mathbb{k}[x_1, \dots, x_{n+1}]$ and also on $\mathbb{k}[x_1, \dots, x_{n+1}]/(x_1^p, \dots, x_{n+1}^p)$ contragrediently. Then one can equip V_i with a structure of G-module by identifying it with its image in $\mathbb{k}[x_1, \dots, x_{n+1}]/(x_1^p, \dots, x_{n+1}^p)$.

Now let B be a Borel subgroup of P consisting of lower triangular matrices and T a maximal torus of B consisting of diagonal matrices. Identify Λ with $\mathbb{Z}^{\oplus n+1}$ via the basis ε_i : diag $(a_1,\ldots,a_{n+1})\mapsto a_i,\,i\in[1,n+1]$, and W with the symmetric group \mathfrak{S}_{n+1} permuting the $\varepsilon_i,\,i\in[1,n+1]$. Then $W^P=\{(i\,i+1\,\ldots\,n+1)\mid i\in[1,n+1]\}$, and Serre's twisted sheaf on \mathbb{P}^n is given by $\mathcal{O}_{\mathcal{P}}(1)=\mathcal{L}_{\mathcal{P}}(-\varepsilon_{n+1}).\ \forall i\in[1,n+1],\, \text{set }\lambda_{(i\,i+1\,\ldots\,n+1)}=(i-1)\varepsilon_{n+1}$ and $0_{P,(i\,i+1\,\ldots\,n+1)}=-(i-1)\varepsilon_{n+2-i}-(p-1)(\varepsilon_{n+3-i}+\cdots+\varepsilon_{n+1})\in\Lambda_1$, which we agree to be 0 in case i=1. Then $V_{i-1}\simeq L(0_{P,(i\,i+1\,\ldots\,n+1)})\ \forall i\in[1,n+1]$, and hence

$$F_{\mathcal{P}*}\mathcal{O}_{\mathcal{P}} \simeq \coprod_{i=1}^{n+1} \mathcal{L}_{\mathcal{P}}(\lambda_{(i\ i+1\ ...\ n+1)}) \otimes_{\mathbb{k}} L(0_{P,(i\ i+1\ ...\ n+1)}).$$

Confirming the pattern in Theorem 2.3, it holds that

Theorem 3.1 ([K]). Assume $p \ge n + 1$.

- (i) The Loewy length of $\hat{\nabla}_P(A^+)$ is $n+1=\ell(w_0^P)+1$.
- (ii) $\forall i \in [1, n+1], \, \operatorname{soc}_i \hat{\nabla}_P(A^+) \simeq L(0_{P,(i \ i+1 \ \dots \ n+1)}) \otimes \lambda^{[1]}_{(i \ i+1 \ \dots \ n+1)}.$

Remark 3.2. Regardless of characteristic $\{\mathcal{L}_{\mathcal{P}}(\lambda_w) \mid w \in W^P\}$ forms a complete strongly exceptional poset on \mathbb{P}^n such that $\mathbf{Mod}_{\mathbb{P}^n}(\mathcal{L}_{\mathcal{P}}(\lambda_x), \mathcal{L}_{\mathcal{P}}(\lambda_y)) \neq 0$ iff $x \leq y$ [HKR]/[K08].

References

[AJS] Andersen, H.H., Jantzen, J.C. and Soergel, W., Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p, Astérisque **220**, 1994 (SMF)

- [AK] Andersen, H.H. and Kaneda M., Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. LMS (3) 59 (1989), 74–98
- [Bö] Böhning, C., Derived categories of coherent sheaves on rational homogeneous manifolds, Doc. Math. 11 (2006), 261-331
- [Haa] Haastert, B., Über Differentialoperatoren und D-Moduln in positiver Charakteristik, Manusc. Math. 58 (1987), 385–415
- [HKR] Hashimoto Y., Kaneda M. and Rumynin, D., On localization of \bar{D} -modules, in "Representations of Algebraic Groups, Quantum Groups, and Lie Algebras," Contemp. Math. 413 (2006), 43-62
 - [J] Jantzen, J. C., Representations of Algebraic Groups, 2003 (American Math. Soc.)
- [RIMS] Kaneda M., The Kazhdan-Lusztig polynomials arising in the modular representations theory of reductive algebraic groups, RIMS 講究録 670 (1988), 129-162
 - [K08] Kaneda M., Kapranov's tilting sheaf on the Grassmannian in positive characteristic, to appear on Alg. Repr. Th.
 - [KY] Kaneda M. and Ye J.-C., Some observators on Karoubian complete strongly exceptional posets on the projective homogeneous varieties, to appear
 - [K] Kaneda M., The structure of Humphreys-Verma modules for projective spaces, to appear
 - [L] Lusztig, G., Hecke algebras and Jantzen's generic decomposition patterns, Adv. Math. 37 (1980), 121-164
 - [Y] Ye J.-c., Filtrations of principal indecomposable modules of Frobenius kernels of reductive groups, Math. Z. 189 (1985), 515-527