Universal Tropical R map of \mathfrak{sl}_2 and Prehomogeneous Geometric Crystals

Dedicated to Professor Masaki Kashiwara on the occasion of his 60th birthday

By

Toshiki Nakashima*

§ 1. Introduction

The notion of geometric crystal is a sort of geometric lifting of crystal base theory. If a geometric crystal χ is "positive", it can be "ultra-discretized" to a crystal $\mathcal{U}D(\chi)$ (for more details, see below). For a geometric crystal $\chi = (X, \{e_i\}, \{\gamma_i\}, \{\varepsilon_i\})$, if there exists an open dense orbit by e_i^c 's, we call χ prehomogeneous, where $e_i : \mathbb{C}^\times \times X \to X$ ($e_i^c(x) = e_i(c, x)$) defines certain rational \mathbb{C}^\times -action on X. For isomorphic prehomogeneous geometric crystals χ_1 and χ_2 ($f:\chi_1 \xrightarrow{\sim} \chi_2$), assume that there exists another isomorphism $f':\chi_1 \to \chi_2$ such that f(p) = f'(p) for some point $p \in Z \subset X_1$ where Z is an open dense orbit in X_1 . Then it is easy to see that f = f' as a rational morphism, which resembles Schur's lemma. In this sense, prehomogeneity of geometric crystals corresponds to irreducibility of modules. In general, it is not easy to show the prehomogeneity of a geometric crystal directly. Here we obtain a sufficient condition for prehomogeneity of a "positive" geometric crystal χ , which is, indeed, that the ultra-discretized crystal $\mathcal{U}D(\chi)$ is connected.

Perfect crystals are invented to treat the problem in some physical models from the crystal theoretical point of view ([KMN1],[KMN2]). They possess several remarkable properties; one of the most crucial ones among them is connectedness. Perfect crystals are not only connected themselves but also their tensor product are again connected. Let $\{B_l\}_{l\geq 1}$ be a coherent family of perfect crystals and B_{∞} its limit([KKM]). Then the crystal B_{∞} holds similar properties to perfect crystals, e.g., connectedness.

Received February 1, 2008. Accepted August 25, 2008.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 17B37, 17B67; Secondary 22E65, 14M15

Key Words: prehomogeneous geometric crystal, tropical R, ultra-discretization, crystal

Supported in part by JSPS Grants in Aid for Scientific Research #19540050.

^{*}Department of Mathematics, Sophia University, Kioicho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan. E-mail: toshiki@mm.sophia.ac.jp

Let $\{\chi_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of geometric crystals indexed by a set Λ . Tropical R map $R_{\lambda\mu}$ is an isomorphism $R_{\lambda\mu}: \chi_{\lambda} \times \chi_{\mu} \to \chi_{\mu} \times \chi_{\lambda} \ (\lambda, \mu \in \Lambda)$ satisfying the Yang-Baxter equation. We have not obtained a kind of "universal objects" for geometric crystals just like universal R-matrix for modules of quantum groups except for the \mathfrak{sl}_2 - case. The universal tropical R map of \mathfrak{sl}_2 is introduced in the last section of this article.

In [KNO], [KNO2], we construct the affine geometric crystals $\mathcal{V}(\mathfrak{g})_L$ ($L \in \mathbb{C}^{\times}$) for $\mathfrak{g} = A_n^{(1)}$, $B_n^{(1)}$, $(C_n^{(1)})$, $D_n^{(1)}$, $D_{n+1}^{(2)}$, $A_{2n-1}^{(2)}$, $A_{2n}^{(2)}$. Each of them is equipped with a positive structure and then there exists the corresponding affine crystal, which is, indeed, isomorphic to $B_{\infty}(\mathfrak{g}^L)$ the limit of perfect crystal of certain perfect crystals for the Langlands dual affine Lie algebra \mathfrak{g}^L . Since $B_{\infty} \otimes B_{\infty}$ is a connected crystal, product of geometric crystals $\mathcal{V}_L \times \mathcal{V}_M$ ($L, M \in \mathbb{C}^{\times}$) is prehomogeneous and then for another tropical R map R'_{LM} such that $R_{LM}(x_0, y_0) = R'_{LM}(x_0, y_0)$, one has $R_{LM} = R'_{LM}$.

This article is basically a review of [KNO],[KNO2] except the last section, where we introduce the universal tropical R-map of \mathfrak{sl}_2 .

§ 2. Geometric Crystals and Crystals

The notations and definitions here follow [N1], [N2], [N3], [KNO].

§ 2.1. Geometric Crystals

Fix a symmetrizable generalized Cartan matrix $A = (a_{ij})_{i,j \in I}$ with a finite index set I. Let $(\mathfrak{t}, \{\alpha_i\}_{i \in I}, \{\alpha_i^{\vee}\}_{i \in I})$ be the associated root data satisfying $\alpha_j(\alpha_i^{\vee}) = a_{ij}$. Let $\mathfrak{g} = \mathfrak{g}(A) = \langle \mathfrak{t}, e_i, f_i (i \in I) \rangle$ be the Kac-Moody Lie algebra associated with A. Let $P \subset \mathfrak{t}^*$ be a weight lattice such that $\mathbb{C} \otimes P = \mathfrak{t}^*$ and $P \subset \{\lambda \mid \lambda(Q^{\vee}) \subset \mathbb{Z}\}$, whose element is called a weight.

Define the simple reflections $s_i \in \operatorname{Aut}(\mathfrak{t})$ $(i \in I)$ by $s_i(h) := h - \alpha_i(h)\alpha_i^{\vee}$, which generate the Weyl group W. Let G be the Kac-Moody group associated with (\mathfrak{g}, P) ([PK]). Let $U_{\alpha} := \exp \mathfrak{g}_{\alpha}$ $(\alpha \in \Delta^{re})$ be the one-parameter subgroup of G. The group G is generated by U_{α} $(\alpha \in \Delta^{re})$. For any $i \in I$, there exists a unique group homomorphism $\phi_i : SL_2(\mathbb{C}) \to G$ such that

$$\phi_i\left(\begin{pmatrix}1 \ t\\0 \ 1\end{pmatrix}\right) = \exp(te_i), \ \phi_i\left(\begin{pmatrix}1 \ 0\\t \ 1\end{pmatrix}\right) = \exp(tf_i) \qquad (t \in \mathbb{C}).$$

Set $\alpha_i^{\vee}(c) := \phi_i\left(\begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix}\right)$, $x_i(t) := \exp(te_i)$, $y_i(t) := \exp(tf_i)$, $G_i := \phi_i(SL_2(\mathbb{C}))$, $T_i := \alpha_i^{\vee}(\mathbb{C}^{\times})$ and $N_i := N_{G_i}(T_i)$. Let T be the subgroup of G with P as its weight lattice which is called a maximal torus in G, and let $B^{\pm}(\supset T)$ be the Borel subgroup of G. The following definition is equivalent to the ones in [N1],[KNO].

Definition 2.1. Let X be an ind-variety over \mathbb{C} , γ_i and ε_i $(i \in I)$ rational functions on X, and $e_i : \mathbb{C}^{\times} \times X \to X$ a rational \mathbb{C}^{\times} -action. A quadruple $(X, \{e_i\}_{i \in I}, \{\varphi_i\}_{i \in I}, \{\varepsilon_i\}_{i \in I})$ is a G (or \mathfrak{g})-geometric crystal if

- (i) $\{1\} \times X \cap dom(e_i)$ is open dense in $\{1\} \times X$ for any $i \in I$. Here $dom(e_i)$ is the domain of definition of $e_i : \mathbb{C}^{\times} \times X \to X$.
- (ii) The rational function γ_i $(i \in I)$ satisfies $\gamma_j(e_i^c(x)) = c^{a_{ij}}\gamma_j(x)$ for any $i, j \in I$.
- (iii) e_i and e_j satisfy the following relations:

$$\begin{aligned} e_i^{c_1}e_j^{c_2} &= e_j^{c_2}e_i^{c_1} & \text{if } a_{ij} = a_{ji} = 0, \\ e_i^{c_1}e_j^{c_1c_2}e_i^{c_2} &= e_j^{c_2}e_i^{c_1c_2}e_j^{c_1} & \text{if } a_{ij} = a_{ji} = -1, \\ e_i^{c_1}e_j^{c_1^2c_2}e_i^{c_1c_2}e_j^{c_2} &= e_j^{c_2}e_i^{c_1c_2}e_j^{c_1^2c_2}e_i^{c_1} & \text{if } a_{ij} = -2, \, a_{ji} = -1, \\ e_i^{c_1}e_j^{c_1^3c_2}e_i^{c_1$$

(iv) The rational function ε_i ($i \in I$) satisfies $\varepsilon_i(e_i^c(x)) = c^{-1}\varepsilon_i(x)$.

The relations in (iii) is called *Verma relations*. If $\chi = (X, \{e_i\}, \{\gamma_i\}, \{\varepsilon_i\})$ satisfies the conditions (i), (ii) and (iv), we call χ a pre-geometric crystal.

§ 2.2. Crystals

We recall the notion of crystals.

Definition 2.2. A crystal B is a set endowed with the following maps:

$$\begin{aligned} &\text{wt} \colon B \longrightarrow P, \\ &\varepsilon_i \colon B \longrightarrow \mathbb{Z} \sqcup \{-\infty\}, \quad \varphi_i \colon B \longrightarrow \mathbb{Z} \sqcup \{-\infty\} \quad \text{for} \quad i \in I, \\ &\tilde{e}_i \colon B \sqcup \{0\} \longrightarrow B \sqcup \{0\}, \quad \tilde{f}_i \colon B \sqcup \{0\} \longrightarrow B \sqcup \{0\} \quad \text{for} \quad i \in I, \\ &\tilde{e}_i(0) = \tilde{f}_i(0) = 0. \end{aligned}$$

Those maps satisfy the following axioms: for all $b, b_1, b_2 \in B$, we have

$$\varphi_i(b) = \varepsilon_i(b) + \langle \alpha_i^{\vee}, \operatorname{wt}(b) \rangle,$$

$$\operatorname{wt}(\tilde{e}_i b) = \operatorname{wt}(b) + \alpha_i \text{ if } \tilde{e}_i b \in B,$$

$$\operatorname{wt}(\tilde{f}_i b) = \operatorname{wt}(b) - \alpha_i \text{ if } \tilde{f}_i b \in B,$$

$$\tilde{e}_i b_2 = b_1 \iff \tilde{f}_i b_1 = b_2,$$

$$\varepsilon_i(b) = -\infty \implies \tilde{e}_i b = \tilde{f}_i b = 0.$$

Example 2.3.

- (i) If (L, B) is a crystal base, then B is a crystal.
- (ii) For the crystal base $(L(\infty), B(\infty))$ of the subalgebra $U_q^-(\mathfrak{g})$ of the quantum algebra $U_q(\mathfrak{g})$, $B(\infty)$ is a crystal.
- (iii) For $\lambda \in P$, set $T_{\lambda} := \{t_{\lambda}\}$. We define a crystal structure on T_{λ} by

$$\tilde{e}_i(t_\lambda) = \tilde{f}_i(t_\lambda) = 0, \quad \varepsilon_i(t_\lambda) = \varphi_i(t_\lambda) = -\infty, \quad \text{wt}(t_\lambda) = \lambda.$$

Definition 2.4.

(i) To a crystal B, a colored oriented graph is associated by

$$b_1 \xrightarrow{i} b_2 \iff \tilde{f}_i b_1 = b_2.$$

We call this graph the $crystal\ graph$ of B.

- (ii) A crystal B is said to be connected, if its crystal graph is connected as a graph.
- (iii) A crystal B is free if for any $b \in B$, $i \in I$ and n > 0, $\tilde{e}_i^n(b) \neq 0$ and $\tilde{f}_i^n(b) \neq 0$.

§ 2.3. Positive structure, Ultra-discretization and Tropicalization

Let us recall the notions of positive structure and ultra-discretization/tropicalization. The setting below is the same as in [KNO2]. Set $R := \mathbb{C}(c)$ and define

$$v \colon R \setminus \{0\} \longrightarrow \mathbb{Z}$$

 $f(c) \mapsto \deg(f(c)).$

Here deg is the degree of poles at $c = \infty$. Note that for $f_1, f_2 \in R \setminus \{0\}$, we have

(2.1)
$$v(f_1f_2) = v(f_1) + v(f_2), \quad v\left(\frac{f_1}{f_2}\right) = v(f_1) - v(f_2).$$

We say that a non-zero rational function $f(c) \in \mathbb{C}(c)$ is *positive* if f can be expressed as a ratio of polynomials with positive coefficients. Note that $f \in \mathbb{C}(c)$ is positive if and only if any pole of f is not a positive number and f(x) > 0 for any x > 0.

If $f_1, f_2 \in R$ are positive, then we have

(2.2)
$$v(f_1 + f_2) = \max(v(f_1), v(f_2)).$$

Let $T \simeq (\mathbb{C}^{\times})^l$ be an algebraic torus over \mathbb{C} and $X^*(T) := \operatorname{Hom}(T, \mathbb{C}^{\times})$ (resp. $X_*(T) := \operatorname{Hom}(\mathbb{C}^{\times}, T)$) be the lattice of characters (resp. co-characters) of T. We denote by T_+ the set of points x in T such that $\chi(x) > 0$ for any character χ . Then $((\mathbb{C}^{\times})^n)_+ = (\mathbb{R}_{>0})^n$.

A non-zero rational function on an algebraic torus T is called *positive* if it is written as g/h where g and h are a positive linear combination of characters of T.

Definition 2.5. Let $f: T \to T'$ be a rational mapping between two algebraic tori T and T'. We say that f is *positive*, if $\chi \circ f$ is positive for any character $\chi: T' \to \mathbb{C}$.

Denote by $\operatorname{Mor}^+(T, T')$ the set of positive rational mappings from T to T'. Note that any $f \in \operatorname{Mor}^+(T, T')$ induces a real analytic map $f_+: T_+ \to T'_+$.

Lemma 2.6 ([BK]). For any $f \in \text{Mor}^+(T_1, T_2)$ and $g \in \text{Mor}^+(T_2, T_3)$, the composition $g \circ f$ is well-defined and belongs to $\text{Mor}^+(T_1, T_3)$.

By Lemma 2.6, we can define a category \mathcal{T}_+ whose objects are algebraic tori over \mathbb{C} and arrows are positive rational mappings. The category \mathcal{T}_+ admits products. For two algebraic tori T and T', their product in \mathcal{T}_+ coincides with the usual product of T and T'.

Note that $T \mapsto T_+$ gives a functor from T_+ to the category of real analytic manifolds. Let $f: T \to T'$ be a positive rational mapping of algebraic tori T and T'. We define a map $\widehat{f}: X_*(T) \to X_*(T')$ by

$$\langle \chi, \widehat{f}(\xi) \rangle = v(\chi \circ f \circ \xi),$$

where $\chi \in X^*(T')$ and $\xi \in X_*(T)$. Note that $\chi \circ f \circ \xi$ is a rational map from \mathbb{C}^{\times} to itself.

Lemma 2.7 ([BK]). For any algebraic tori T_1 , T_2 , T_3 , and positive rational mappings $f \in \text{Mor}^+(T_1, T_2)$, $g \in \text{Mor}^+(T_2, T_3)$, we have $\widehat{g \circ f} = \widehat{g} \circ \widehat{f}$.

By this lemma, we obtain a functor

$$\mathcal{U}D: \quad \mathcal{T}_{+} \longrightarrow \operatorname{Set}$$

$$T \mapsto X_{*}(T)$$

$$(f: T \to T') \mapsto (\widehat{f}: X_{*}(T) \to X_{*}(T')).$$

Let us come back to the situation in $\S 2.1$. Hence G is a Kac-Moody group and T is its Cartan subgroup.

Definition 2.8 ([BK]). Let $\chi = (X, \{e_i\}_{i \in I}, \{\gamma_i\}_{i \in I}, \{\varepsilon_i\}_{i \in I})$ be a G (or \mathfrak{g})-geometric crystal, T' an algebraic torus and $\theta \colon T' \to X$ a birational mapping. The mapping θ is called a *positive structure* on χ if it satisfies

- (i) for any $i \in I$ the rational functions $\gamma_i \circ \theta \colon T' \to \mathbb{C}$ and $\varepsilon_i \circ \theta \colon T' \to \mathbb{C}$ are positive,
- (ii) for any $i \in I$, the rational mapping $e_{i,\theta} : \mathbb{C}^{\times} \times T' \to T'$ defined by $e_{i,\theta}(c,t) := \theta^{-1} \circ e_i^c \circ \theta(t)$ is positive.

Let $\theta \colon T' \to X$ be a positive structure on a geometric crystal $\chi = (X, \{e_i\}_{i \in I}, \{\gamma_i\}_{i \in I}, \{\varepsilon_i\}_{i \in I})$. Applying the functor $\mathcal{U}D$ to the positive rational mappings $e_{i,\theta} \colon \mathbb{C}^{\times} \times T' \to T'$ and $\gamma_i \circ \theta$, $\varepsilon_i \circ \theta \colon T' \to \mathbb{C}^{\times}$, we obtain

$$\tilde{e}_i := \mathcal{U}D(e_{i,\theta}) \colon \mathbb{Z} \times X_*(T') \to X_*(T')$$

 $\operatorname{wt}_i := \mathcal{U}D(\gamma_i \circ \theta), \ \varepsilon_i := \mathcal{U}D(\varepsilon_i \circ \theta) \colon X_*(T') \to \mathbb{Z}.$

Hence the quadruple $(X_*(T'), \{\tilde{e}_i\}_{i\in I}, \{\text{wt}_i\}_{i\in I}, \{\varepsilon_i\}_{i\in I})$ is a free pre-crystal structure (see [BK, 2.2]) and we denote it by $\mathcal{U}D_{\theta,T'}(\chi)$. As for the definition of crystal, see 3.4 or [KKM],[K1], [K2]. We have thus the following theorem:

Theorem 2.9 ([BK][N1]). For any geometric crystal $\chi = (X, \{e_i\}_{i \in I}, \{\gamma_i\}_{i \in I}, \{\varepsilon_i\}_{i \in I})$ and a positive structure $\theta \colon T' \to X$, the associated pre-crystal $\mathcal{U}D_{\theta,T'}(\chi)$ is a crystal (see [BK, 2.2]).

Now, let $\mathcal{G}C^+(\mathfrak{g})$ be the category whose object is a triplet (χ, T', θ) where $\chi = (X, \{e_i\}, \{\gamma_i\}, \{\varepsilon_i\})$ is a \mathfrak{g} -geometric crystal and $\theta \colon T' \to X$ is a positive structure on χ , and morphism $f \colon (\chi_1, T'_1, \theta_1) \to (\chi_2, T'_2, \theta_2)$ is given by a morphism $\varphi \colon X_1 \longrightarrow X_2$ of geometric crystals such that

$$f := \theta_2^{-1} \circ \varphi \circ \theta_1 \colon T_1' \longrightarrow T_2',$$

is a positive rational mapping. Let $CR(\mathfrak{g})$ be the category of \mathfrak{g} -crystals. Then by the theorem above, we have

Corollary 2.10. UD defines a functor

$$\mathcal{U}D: \mathcal{G}C^{+}(\mathfrak{g}) \longrightarrow \mathcal{C}R(\mathfrak{g}^{L})$$

$$(\chi, T', \theta) \mapsto \mathcal{U}D_{\theta, T'}(\chi) = (X_{*}(T'), \{\tilde{e}_{i}\}_{i \in I}, \{\operatorname{wt}_{i}\}_{i \in I}, \{\varepsilon_{i}\}_{i})$$

$$(\chi, T', \theta) \mapsto \mathcal{U}D_{\theta, T'}(\chi) = (X_*(T'), \{\tilde{e}_i\}_{i \in I}, \{\operatorname{wt}_i\}_{i \in I}, \{\varepsilon_i\}_{i \in I})$$

$$(f: (\chi_1, T'_1, \theta_1) \to (\chi_2, T'_2, \theta_2)) \mapsto (\widehat{f}: X_*(T'_1) \to X_*(T'_2)),$$

where \mathfrak{g}^L is the Langlands dual for \mathfrak{g} .

We call the functor $\mathcal{U}D$ "ultra-discretization" as in [N1],[N2]. While for a crystal B, if there exists a geometric crystal χ and a positive structure $\theta\colon T'\to X$ on χ such that $\mathcal{U}D(\chi,T',\theta)\simeq B$ as crystals, an object (χ,T',θ) in $\mathcal{G}C^+(\mathfrak{g})$ is called a tropicalization of B.

§ 3. Perfect Crystals

§ 3.1. Affine weights

Let \mathfrak{g} be an affine Lie algebra. The sets \mathfrak{t} , $\{\alpha_i\}_{i\in I}$ and $\{\alpha_i^{\vee}\}_{i\in I}$ be as in 2.1. We take \mathfrak{t} so that dim $\mathfrak{t}=\sharp I+1$. Let $\delta\in Q_+$ be a unique element satisfying

$$\{\lambda \in Q \mid \langle \alpha_i^{\vee}, \lambda \rangle = 0 \text{ for any } i \in I\} = \mathbb{Z}\delta,$$

and let $\mathbf{c} \in \sum_i \mathbb{Z}_{\geq 0} \alpha_i^{\vee} \subset \mathfrak{g}$ be a unique central element satisfying

$$\{h \in Q^{\vee} \mid \langle h, \alpha_i \rangle = 0 \text{ for any } i \in I\} = \mathbb{Z}\mathbf{c}.$$

We write ([Kac, 6.1])

(3.1)
$$\mathbf{c} = \sum_{i} a_{i}^{\vee} \alpha_{i}^{\vee}, \qquad \delta = \sum_{i} a_{i} \alpha_{i}.$$

Let (,) be the non-degenerate W-invariant symmetric bilinear form on \mathfrak{t}^* normalized by $(\delta,\lambda)=\langle \mathbf{c},\lambda\rangle$ for $\lambda\in\mathfrak{t}^*$. Let us set $\mathfrak{t}_{\mathrm{cl}}^*:=\mathfrak{t}^*/\mathbb{C}\delta$ and let $\mathrm{cl}:\mathfrak{t}^*\longrightarrow\mathfrak{t}_{\mathrm{cl}}^*$ be the canonical projection. Then we have $\mathfrak{t}_{\mathrm{cl}}^*\cong\bigoplus_i(\mathbb{C}\alpha_i^\vee)^*$. Set $\mathfrak{t}_0^*:=\{\lambda\in\mathfrak{t}^*\mid \langle \mathbf{c},\lambda\rangle=0\},\ (\mathfrak{t}_{\mathrm{cl}}^*)_0:=\mathrm{cl}(\mathfrak{t}_0^*)$. Then we have a positive-definite symmetric form on $(\mathfrak{t}_{\mathrm{cl}}^*)_0$ induced by the one on \mathfrak{t}^* . Let $\Lambda_i\in\mathfrak{t}_{\mathrm{cl}}^*$ $(i\in I)$ be a weight such that $\langle\alpha_i^\vee,\Lambda_j\rangle=\delta_{i,j}$, which is called a fundamental weight. We choose P so that $P_{\mathrm{cl}}:=\mathrm{cl}(P)$ coincides with $\oplus_{i\in I}\mathbb{Z}\Lambda_i$ and we call P_{cl} the classical weight lattice.

§ 3.2. Affinization

Let $U_q(\mathfrak{g}) = \langle e_i, f_i, q^h | i \in I, h \in P \rangle$ be the quantum affine algebra associated with P and $U'_q(\mathfrak{g}) = \langle e_i, f_i, q^h | i \in I, h \in (P_{\text{cl}})^* \rangle$ its subalgebra associated with $(P_{\text{cl}})^*$. Set $\text{Mod}^f(\mathfrak{g}, P_{\text{cl}})$ the category of a finite dimensional $U'_q(\mathfrak{g})$ -module M with a weight decomposition $M = \bigoplus_{\lambda \in P_{\text{cl}}} M_{\lambda}$.

Let M be an object in $\operatorname{Mod}^f(\mathfrak{g}, P_{\operatorname{cl}})$. For $l \in \mathbb{C}^{\times}$, define the $U'_q(\mathfrak{g})$ -module M_l as follows: There exists a \mathbb{C} -linear bijective homomorphism $\Phi_l : M \longrightarrow M$, such that

$$q^{h}\Phi_{l}(u) = \Phi_{l}(q^{h}u) \quad \text{for } h \in P_{\text{cl}}^{*},$$

$$e_{i}\Phi_{l}(u) = l^{\delta_{i,0}}\Phi_{l}(e_{i}u),$$

$$f_{i}\Phi_{l}(u) = l^{-\delta_{i,0}}\Phi_{l}(f_{i}u).$$

The module $M_l := \Phi_l(M)$ is said to be an affinization of M ([KMN1],[K1]).

§ 3.3. Fundamental representation $W(\varpi_1)_l$

Here we consider the following affine Lie algebras $\mathfrak{g} = A_n^{(1)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}, A_{2n-1}^{(2)},$ $D_{n+1}^{(2)}, A_{2n}^{(2)}$. Let $\{\Lambda_i \mid i \in I\}$ be the set of fundamental weights as in §3.1. Let $\varpi_1 := \Lambda_1 - a_1^{\vee} \Lambda_0$ be the (level 0) fundamental weight, where i = 1 is the node of the Dynkin diagram as in [KNO][KNO2].

Let $W(\varpi_1)$ be the fundamental representation of $U'_q(\mathfrak{g})$ (see [K1, Sect 5.]). By [K1, Theorem 5.17], $W(\varpi_1)$ is a finite-dimensional irreducible integrable $U'_q(\mathfrak{g})$ -module, an object in $\operatorname{Mod}^f(\mathfrak{g}, P_{lc})$ and has a global basis with a simple crystal. Thus, we can consider its affinization $W(\varpi_1)_l$ ($l \in \mathbb{C}^{\times}$) specialized at q = 1. Then we obtain a

finite-dimensional \mathfrak{g} -module denoted also by $W(\varpi_1)_l$ in which we shall construct affine geometric crystals in the next section.

Note that $W(\varpi_1)$ is an irreducible \mathfrak{g} -module for any \mathfrak{g} as above. But, for some i and \mathfrak{g} , $W(\varpi_i)$ is not necessarily irreducible.

§ 3.4. Limit of perfect crystals

We review the limits of perfect crystals following [KKM]. (See also [KMN1],[KMN2].) Let \mathfrak{g} be an affine Lie algebra, $P_{\rm cl}$ the classical weight lattice as above and for $l \in \mathbb{Z}_{>0}$ set $(P_{\rm cl})_l^+ := \{\lambda \in P_{\rm cl} \mid \langle \mathbf{c}, \lambda \rangle = l, \ \langle \alpha_i^{\vee}, \lambda \rangle \geq 0\}.$

Definition 3.1. We say that a crystal B is perfect of level l if

- (i) $B \otimes B$ is connected as a crystal graph.
- (ii) There exists $\lambda_0 \in P_{\rm cl}$ such that

$$\operatorname{wt}(B) \subset \lambda_0 + \sum_{i \neq 0} \mathbb{Z}_{\leq 0} \operatorname{cl}(\alpha_i), \qquad \sharp B_{\lambda_0} = 1$$

- (iii) There exists a finite-dimensional $U_q'(\mathfrak{g})$ -module V with a crystal pseudo-base B_{ps} such that $B \cong B_{ps}/\pm 1$
- (iv) The maps $\varepsilon, \varphi \colon B^{min} := \{b \in B \mid \langle c, \varepsilon(b) \rangle = l\} \longrightarrow (P_{\mathrm{cl}}^+)_l$ are bijective, where $\varepsilon(b) := \sum_i \varepsilon_i(b) \Lambda_i$ and $\varphi(b) := \sum_i \varphi_i(b) \Lambda_i$.

Theorem 3.2 ([KMN1],[KMN2]). For each affine Lie algebra \mathfrak{g} as above and for any positive integer l, there exists a perfect crystal $B_l(\mathfrak{g})$ of level l.

For an affine Lie algebra \mathfrak{g} , let $\{B_l(\mathfrak{g})\}_{l\geq 1}$ be a family of perfect crystals of level l and set $J:=\{(l,b)\,|\,l>0,\,b\in B_l^{min}\}.$

Definition 3.3. A crystal $B_{\infty} = B_{\infty}(\mathfrak{g})$ with an element b_{∞} is called the *limit* of $\{B_l\}_{l\geq 1}$ if

- (i) $\operatorname{wt}(b_{\infty}) = \varepsilon(b_{\infty}) = \varphi(b_{\infty}) = 0.$
- (ii) For any $(l, b) \in J$, there exists an embedding of crystals:

$$f_{(l,b)}: T_{\varepsilon(b)} \otimes B_l \otimes T_{-\varphi(b)} \hookrightarrow B_{\infty}$$

 $t_{\varepsilon(b)} \otimes b \otimes t_{-\varphi(b)} \mapsto b_{\infty}$

(iii)
$$B_{\infty} = \bigcup_{(l,b) \in J} \operatorname{Im} f_{(l,b)}.$$

As for the crystal T_{λ} , see Example 2.3 (iii). If the limit of a family $\{B_l\}$ exists, we say that $\{B_l\}$ is a *coherent family* of perfect crystals.

Proposition 3.4 ([KKM]). For each affine Lie algebra \mathfrak{g} as above there exists a coherent family of perfect crystals $\{B_l(\mathfrak{g})\}_{l>0}$ and its limit $B_{\infty}(\mathfrak{g})$.

§ 4. Affine Geometric Crystals

Following the method in [KNO2], we shall see how to construct the affine geometric crystal $\mathcal{V}(\mathfrak{g})_l$ $(l \in \mathbb{C}^{\times})$ in $W(\varpi_1)_l$.

§ 4.1. Translation $t(\tilde{\omega}_1)$

For $\xi_0 \in (\mathfrak{t}_{\mathrm{cl}}^*)_0$, let $t(\xi_0)$ be as in [K1, Sect.4]:

$$t(\xi_0)(\lambda) := \lambda + (\delta, \lambda)\xi - (\xi, \lambda)\delta - \frac{(\xi, \xi)}{2}(\delta, \lambda)\delta$$

for $\xi \in \mathfrak{t}^*$ such that $\operatorname{cl}(\xi) = \xi_0$. Then $t(\xi_0)$ does not depend on the choice of ξ , and it is well-defined.

Let c_i^{\vee} be as follows:

$$(4.1) c_i^{\vee} := \max(1, \frac{2}{(\alpha_i, \alpha_i)}).$$

Then $t(m\varpi_i)$ belongs to the extended Weyl group \widetilde{W} if and only if $m \in c_i^{\vee}\mathbb{Z}$. Setting $\widetilde{\varpi}_i := c_i^{\vee}\varpi_i \ (i \in I) \ ([K2]), \ t(\widetilde{\varpi}_1)$ is expressed as follows:

$$t(\widetilde{\omega}_1) = \begin{cases} \iota(s_n s_{n-1} \cdots s_2 s_1) & A_n^{(1)} \text{ case,} \\ \iota(s_1 \cdots s_n)(s_{n-1} \cdots s_2 s_1) & B_n^{(1)}, A_{2n-1}^{(2)} \text{ cases,} \\ (s_0 s_1 \cdots s_n)(s_{n-1} \cdots s_2 s_1) & C_n^{(1)}, D_{n+1}^{(2)} \text{ cases,} \\ \iota(s_1 \cdots s_n)(s_{n-2} \cdots s_2 s_1) & D_n^{(1)} \text{ case,} \\ (s_0 s_1 \cdots s_n)(s_{n-1} \cdots s_2 s_1) & A_{2n}^{(2)}, \text{ case,} \end{cases}$$

where ι is certain Dynkin diagram automorphism. Now, we know that each $t(\widetilde{\varpi}_1)$ is in the form w_1 or $\iota \cdot w_1$ for some $w_1 \in W$, e.g., $w_1 = s_n \cdots s_1$ for $A_n^{(1)}$, $w_1 = (s_1 \cdots s_n)(s_{n-1} \cdots s_1)$ for $B_n^{(1)}$, etc.,

In the case $A_{2n}^{(2)}$, $\eta := \operatorname{wt}(v_{\overline{n}}) = \Lambda_{n-1} - \Lambda_n$ (resp. $\Lambda_{n-1} - 2\Lambda_n$) is a unique weight of $W(\varpi_1)_l$ which satisfies $\langle \alpha_i^{\vee}, \eta \rangle \geq 0$ for $i \neq n$. For this η we have

$$(4.2) t(\eta) = (s_n s_{n-1} \cdots s_1)(s_0 s_1 \cdots s_{n-1}) =: w_2.$$

§ 4.2. Affine geometric crystals in $W(\varpi_1)_l$

Let σ be the Dynkin diagram automorphism as in [KNO2] and $w_1 = s_{i_1} \cdots s_{i_k}$ be as in the previous subsection. Let $H \in \mathfrak{t}$ be an element as in [KNO2].

$$\alpha_i(H) = \begin{cases} 1 & \text{if } i = 1 \text{ and } \mathfrak{g} \neq D_{n+1}^{(2)}, A_{2n}^{(2)}, \\ 2 & \text{if } i = 1 \text{ and } \mathfrak{g} = D_{n+1}^{(2)}, A_{2n}^{(2)}, \\ -1 & \text{if } i = 0 \text{ and } \mathfrak{g} \neq D_{n+1}^{(2)}, A_{2n}^{(2)}, \\ -2 & \text{if } i = 0 \text{ and } \mathfrak{g} = D_{n+1}^{(2)}, A_{2n}^{(2)}, \\ 0 & \text{otherwise.} \end{cases}$$

Set

$$(4.3) \quad \mathcal{V}(\mathfrak{g})_{l} := \{ v(x_{1}, \dots, x_{k}) := Y_{i_{1}}(x_{1}) \cdots Y_{i_{k}}(x_{k}) l^{H} v_{1} \mid x_{1}, \dots, x_{k} \in \mathbb{C}^{\times} \} \subset W(\varpi_{1})_{l}$$

where the vector v_1 is a highest weight vector in $W(\varpi_1)_l$ as a \mathfrak{g}_0 -module and then $\mathcal{V}(\mathfrak{g})$ has a G_0 -geometric crystal structure, where $\mathfrak{g}_0 \subset \mathfrak{g}$ (resp. $G_0 \subset G$) is a simple Lie algebra (resp. simple algebraic group) corresponding to the index set $I_0 := I \setminus \{0\}$. Moreover $(\mathbb{C}^{\times})^k \to \mathcal{V}(\mathfrak{g})_l$ given by $(x_1, \ldots, x_k) \mapsto v(x_1, \ldots, x_k)$ is a birational morphism. We shall define a G-geometric crystal structure on $\mathcal{V}(\mathfrak{g})_l$ by using the Dynkin diagram automorphism σ except for $A_{2n}^{(2)}$. This σ induces an automorphism of $W(\varpi_1)_l$, which is denoted by $\sigma_l \colon W(\varpi_1)_l \longrightarrow W(\varpi_1)_l$.

Theorem 4.1 ([KNO2]).

(i) Case $\mathfrak{g} \neq A_{2n}^{(2)}$. For $x = (x_1 \cdots, x_k) \in (\mathbb{C}^{\times})^k$, there exist a unique $y = (y_1, \dots, y_k) \in (\mathbb{C}^{\times})^k$ and a positive rational function a(x) such that

$$(4.4) v(y) = a(x)\sigma_l(v(x)), \varepsilon_{\sigma(i)}(v(y)) = \varepsilon_i(v(x)) if i, \sigma(i) \neq 0.$$

(ii) Case $\mathfrak{g} = A_{2n}^{(2)}$. Associated with w_1 and w_2 as in the previous subsection, we define $\mathcal{V}(\mathfrak{g})_l := \{v_1(x) = Y_0(x_0)Y_1(x_1)\cdots Y_n(x_n)Y_{n-1}(\bar{x}_{n-1})\cdots Y_1(\bar{x}_1)l^Hv_1 \mid x_i, \bar{x}_i \in \mathbb{C}^\times\},$ $\mathcal{V}_2(\mathfrak{g})_l := \{v_2(y) = Y_n(y_n)\cdots Y_1(y_1)Y_0(y_0)Y_1(\bar{y}_1)\cdots Y_{n-1}(\bar{y}_{n-1})l^{H'}v_{\bar{n}} \mid y_i, \bar{y}_i \in \mathbb{C}^\times\},$ $where \, \alpha_0(H') = 2, \, \alpha_n(H') = -4 \, and \, \alpha_i(H') = 0 \, otherwise. \, (Note that \, \mathrm{wt}(v_1)(H) = \mathrm{wt}(v_{\bar{n}})(H').) \, \text{ For any } x \in (\mathbb{C}^\times)^{2n} \, \text{ there exist a unique } y \in (\mathbb{C}^\times)^{2n} \, \text{ and a rational }$ $function \, a(x) \, such \, that \, v_2(y) = a(x)v_1(x).$

Now, using this theorem, we define the rational mapping

(4.5)
$$\overline{\sigma} \colon \mathcal{V}(\mathfrak{g})_l \longrightarrow \mathcal{V}(\mathfrak{g})_l, \qquad \overline{\sigma} \colon \mathcal{V}(\mathfrak{g})_l \longrightarrow \mathcal{V}_2(\mathfrak{g})_l, \\
v(x) \mapsto v(y) \ (\mathfrak{g} \neq A_{2n}^{(2)}), \qquad v_1(x) \mapsto v_2(y) \ (\mathfrak{g} = A_{2n}^{(2)}),$$

Associated with an element $w \in W$, let B_w^- be the geometric crystal as in [N1],[KNO], which is isomorphic to the geometric crystal on the Schubert cell X_w (see [N1]).

Theorem 4.2 ([KNO2]). The rational mapping $\overline{\sigma}$ is birational. If we define a \mathfrak{g}_0 -geometric crystal structure on $\mathcal{V}(\mathfrak{g})_l$ by the one on $B_{w_1}^- \cdot l^H$ and a rational \mathbb{C}^\times -action $e_0 : \mathbb{C}^\times \times \mathcal{V}(\mathfrak{g})_l \to \mathcal{V}(\mathfrak{g})_l$ and rational functions wt_0 and ε_0 on $\mathcal{V}(\mathfrak{g})_l$ by

$$\begin{cases}
e_0^c := \overline{\sigma}^{-1} \circ e_{\sigma(0)}^c \circ \overline{\sigma}, & \varepsilon_0 := \varepsilon_{\sigma(0)} \circ \overline{\sigma}, & \gamma_0 := \gamma_{\sigma(0)} \circ \overline{\sigma}, & \text{for } \mathfrak{g} \neq A_{2n}^{(2)}, \\
e_0^c := \overline{\sigma}^{-1} \circ e_0^c \circ \overline{\sigma}, & \varepsilon_0 := \varepsilon_0 \circ \overline{\sigma}, & \gamma_0 := \gamma_0 \circ \overline{\sigma}, & \text{for } \mathfrak{g} = A_{2n}^{(2)}.
\end{cases}$$

then $(\mathcal{V}(\mathfrak{g})_l, \{e_i\}_{i \in I}, \{\gamma_i\}_{i \in I}, \{\varepsilon_i\}_{i \in I})$ turns out to be a positive affine \mathfrak{g} -geometric crystal.

Remark. In the case $\mathfrak{g} = A_{2n}^{(2)}$, $\mathcal{V}_2(\mathfrak{g})$ has a $\mathfrak{g}_{I\setminus\{n\}}$ -geometric crystal structure. Thus, $e_0, \gamma_0, \varepsilon_0$ are well-defined on $\mathcal{V}_2(\mathfrak{g})$.

§ 4.3. Product structure on affine geometric crystals

In general, if χ_1 and χ_2 are geometric crystals induced from unipotent crystals, the product $\chi_1 \times \chi_2$ possesses a geometric crystal structure ([BK]). More precisely, let $\chi_1 = (X, \{e_i\}, \{\gamma_i\}, \{\varepsilon_i\})$ and $\chi_2 = (Y, \{e_i\}, \{\gamma_i\}, \{\varepsilon_i\})$ be geometric crystals induced from unipotent crystals. For $x \in X$ and $y \in Y$ set

$$(4.7) \gamma_i(x,y) := \gamma_i(x)\gamma_i(y),$$

(4.8)
$$\varepsilon_i(x,y) := \varepsilon_i(x) + \frac{\varepsilon_i(x)\varepsilon_i(y)}{\varphi_i(x)} \quad (\varphi_i(x) = \gamma(x)\varepsilon_i(x)),$$

(4.9)
$$e_i^c(x,y) := (e_i^{c_1}(x), e_i^{c_2}(y))$$
 where $c_1 := \frac{c\varphi_i(x) + \varepsilon_i(y)}{\varphi_i(x) + \varepsilon_i(y)}, \quad c_2 := \frac{c}{c_1}.$

Then, (4.7)–(4.9) endow the product $X \times Y$ with a structure of a geometric crystal.

As for the affine geometric crystal \mathcal{V}_l in the previous subsection, its data $e_i, \gamma_i, \varepsilon_i$ (i = 1, ..., n) are obtained from the ones of the geometric crystal $B_{\mathbf{i}}^- \cdot l^H$ which is induced from the unipotent crystal on some $X_w \times l^H$ where \mathbf{i} is a reduced word for w and X_w is the Schubert cell associated with $w \in W$ and note that $\{l^H\}$ holds trivial unipotent crystal structure. We can check the i = 0-case directly and then obtain:

Theorem 4.3 ([KNO2]). For any $k \in \mathbb{Z}_{\geq 0}$ and $L_1 \cdots, L_k \in \mathbb{C}^{\times}$, the product $\mathcal{V}_{L_1} \times \cdots \times \mathcal{V}_{L_k}$ has an affine geometric crystal structure.

§ 4.4. Ultra-discretization of $V(\mathfrak{g})_l$

Let us see the ultra-discretization of $\mathcal{V}(\mathfrak{g})_l$.

By Theorem 4.2 on $\mathcal{V}(\mathfrak{g})_l$, for l > 0 it holds a natural positive structure $\theta_l : (\mathbb{C}^{\times})^m \to \mathcal{V}(\mathfrak{g})_l$ ($x \mapsto v(x)$) where $m = \dim \mathcal{V}(\mathfrak{g})_l$. Then we have the following theorem:

Theorem 4.4 ([KNO2]). For $\mathfrak{g} = A_n^{(1)}, B_n^{(1)}, D_n^{(1)}, D_{n+1}^{(2)}, A_{2n-1}^{(2)}$ and $A_{2n}^{(2)}$, suppose that l > 0. Then the ultra-discretization $\mathcal{U}D_{\theta_l}(\mathcal{V}(\mathfrak{g})_l)$ associated with the positive structure θ_l is isomorphic to the crystal $B_{\infty}(\mathfrak{g}^L)$.

§ 5. Tropical R Maps

§ 5.1. Definition of tropical R maps

Definition 5.1. Let $\{(X_{\lambda}, \{e_i^{\lambda}\}, \{\gamma_i^{\lambda}\}, \{\varepsilon_i^{\lambda}\})\}_{{\lambda} \in \Lambda}$ be a family of geometric crystals equipped with the product structures, where Λ is a certain index set and its element is called a *spectral parameter*. A birational isomorphism $\mathcal{R}_{\lambda\mu}: X_{\lambda} \times X_{\mu} \longrightarrow X_{\mu} \times X_{\lambda}$ $(\lambda, \mu \in \Lambda)$ is said to be a *tropical R map* if it satisfies the following conditions:

(5.1)
$$(e_i^{X_\mu \times X_\lambda})^c \circ \mathcal{R}_{\lambda\mu} = \mathcal{R}_{\lambda\mu} \circ (e_i^{X_\lambda \times X_\mu})^c,$$

(5.2)
$$\varepsilon_i^{X_\lambda \times X_\mu} = \varepsilon_i^{X_\mu \times X_\lambda} \circ \mathcal{R}_{\lambda\mu},$$

(5.3)
$$\gamma_{X_{\lambda} \times X_{\mu}} = \gamma_{X_{\mu} \times X_{\lambda}} \circ \mathcal{R}_{\lambda \mu},$$

(5.4)
$$\mathcal{R}^{(12)}\mathcal{R}^{(23)}\mathcal{R}^{(12)} = \mathcal{R}^{(23)}\mathcal{R}^{(12)}\mathcal{R}^{(23)} \quad \text{on } X_{\lambda} \times X_{\mu} \times X_{\nu},$$

for any $i \in I$ and any $\lambda, \mu, \nu \in \Lambda$. Here $\mathcal{R}^{(ij)}$ means that it acts on *i*-th and *j*-th components of the product.

In [KNO2], we obtain tropical R maps $\{\overline{R}_{LM}\}_{L,M>0}$ of the family of affine geometric crystals $\{\mathcal{V}_L\}_{L>0}$ for the above affine Lie algebras.

§ 5.2. Prehomogeneous Geometric Crystal

Definition 5.2. Let $\chi = (X, \{e_i^c\}, \{\gamma_i\}, \{\varepsilon_i\})$ be a geometric crystal. We say that χ is *prehomogeneous* if there exists a Zariski open dense subset $\Omega \subset X$ which is an orbit by the actions of the e_i^c 's.

The following lemma is obvious.

Lemma 5.3 ([KNO2]). Let $\chi_j = (X_j, \{e_i^c\}, \{\gamma_i\}, \{\varepsilon_i\})$ (j = 1, 2) be prehomogeneous geometric crystals. Let $\Omega_1 \subset X_1$ be an open dense orbit in X_1 . For isomorphisms of geometric crystals ϕ , $\phi' \colon \chi_1 \to \chi_2$, suppose that there exists $p_1 \in \Omega_1$ such that $\phi(p_1) = \phi'(p_1) \in X_2$. Then, we have $\phi = \phi'$ as rational morphisms.

The following is the key of this article:

Theorem 5.4 ([KNO2]). Let $\chi = (X, \{e_i^c\}, \{\gamma_i\}, \{\varepsilon_i\})$ be a finite-dimensional positive geometric crystal with the positive structure $\theta \colon T \to X$ and $B := \mathcal{U}D_{\theta}(\chi)$ the crystal obtained as the ultra-discretization of χ . χ is prehomogeneous if B is a connected crystal.

§ 5.3. Uniqueness of the birational R-maps

Theorem 5.5 ([KNO2]). Let $\overline{\mathcal{R}}_{LM}$ be the tropical R map as above. Set $z_0 := \overline{\mathcal{R}}(\mathbf{1},\mathbf{1})$ where $\mathbf{1} := v(1,\cdots,1) \in \mathcal{V}_L$. Let \mathcal{R}' be a tropical R map such that $\mathcal{R}'(\mathbf{1},\mathbf{1}) = z_0$. Then we have $\overline{\mathcal{R}} = \mathcal{R}'$ as birational morphisms.

Proof. Let $\mathcal{V}_l, \mathcal{V}_m$ $(l, m \in \mathbb{C}^{\times})$ be the affine geometric crystals constructed in Sect.4 and \mathcal{R} the tropical R map as in this section and $\mathcal{R}' : \mathcal{V}_l \times \mathcal{V}_m \to \mathcal{V}_m \times \mathcal{V}_l$ other tropical R map such that $\mathcal{R}(\mathbf{1}, \mathbf{1}) = \mathcal{R}'(\mathbf{1}, \mathbf{1})$. By Theorem 4.4, we have that $\mathcal{U}D_{(\Theta_l, \Theta_m)}(\mathcal{V}_l(\mathfrak{g}) \times \mathcal{V}_m(\mathfrak{g}))$ is isomorphic to the crystal $B_{\infty}(\mathfrak{g}^L) \otimes B_{\infty}(\mathfrak{g}^L)$.

It follows from that for any positive integer m and any affine Lie algebra \mathfrak{g} appearing in this article tensor product of crystals $\bigotimes_{i=1}^m \mathcal{U}D_{\Theta_{l_i}}(\mathcal{V}(\mathfrak{g})_{l_i}) \cong B_{\infty}(\mathfrak{g}^L)^{\otimes m}$ is connected. By Theorem 5.4 we obtain that the geometric crystal $\mathcal{V}_l \times \mathcal{V}_m$ is prehomogeneous. Therefore, by Lemma 5.3 we obtain $\mathcal{R} = \mathcal{R}'$, which completes the proof of Theorem 5.5.

§ 6. Universal tropical R map of \mathfrak{sl}_2

Only for \mathfrak{sl}_2 -case, we found a kind of "universal" tropical R map. For arbitrary \mathfrak{sl}_2 -geometric crystals $\mathbb{X} = (X, e_X, \gamma_X, \varepsilon_X)$ and $\mathbb{Y} = (Y, e_Y, \gamma_Y, \varepsilon_Y)$, the morphism $\mathcal{R} : X \times Y \to Y \times X$ is defined by (6.1)

$$\mathcal{R}(x,y) := (e_Y^{a(x,y)}y, e_X^{b(x,y)}x), \quad \text{where} \quad a(x,y) := \frac{\varepsilon_Y(y) + \frac{\varepsilon_X(x)}{\gamma_Y(y)}}{\varepsilon_X(x) + \frac{\varepsilon_Y(y)}{\gamma_X(x)}}, \qquad b(x,y) = \frac{1}{a(x,y)}.$$

Theorem 6.1. The morphism \mathcal{R} satisfies the following:

(6.2)
$$\gamma_{Y \times X}(\mathcal{R}(x,y)) = \gamma_{X \times Y}(x,y),$$

(6.3)
$$\varepsilon_{Y \times X}(\mathcal{R}(x,y)) = \varepsilon_{X \times Y}(x,y),$$

$$(6.4) \mathcal{R} \circ e^c = e^c \circ \mathcal{R},$$

(6.5)
$$\mathcal{R}^{(12)}\mathcal{R}^{(23)}\mathcal{R}^{(12)} = \mathcal{R}^{(23)}\mathcal{R}^{(12)}\mathcal{R}^{(23)} \quad (Yang-Baxter\ eq.)$$

$$(6.6) \mathcal{R} \circ \mathcal{R} = \mathrm{id}_{X \times Y}$$

This implies that there exists the canonical morphism with the same properties as a universal R-matrix for modules of quantum groups. Furthermore, the morphism \mathcal{R} is an isomorphism of geometric crystals.

Proof. Let us show (6.2). We have

$$\gamma_{Y\times X}(\mathcal{R}(x,y)) = \gamma_Y(e^{a(x,y)}y)\gamma_X(e^{b(x,y)}x) = a(x,y)^2b(x,y)^2\gamma_X(x)\gamma_Y(y) = \gamma_{X\times Y}(x,y).$$

Next, let us see (6.3).

$$\varepsilon_{Y\times X}(\mathcal{R}(x,y)) = \varepsilon_Y(e^{a(x,y)}y) + \frac{\varepsilon_X(e^{b(x,y)}x)}{\gamma_Y(e^{a(x,y)}y)} = a(x,y)^{-1}\varepsilon_Y(y) + \frac{b(x,y)^{-1}\varepsilon_X(x)}{a(x,y)^2\gamma_Y(y)}$$
$$= a(x,y)^{-1}\left(\varepsilon_Y(y) + \frac{\varepsilon_X(x)}{\gamma_Y(y)}\right) = \varepsilon_X(x) + \frac{\varepsilon_Y(y)}{\gamma_X(x)} = \varepsilon_{X\times Y}(x,y).$$

Let us show (6.4). For $c \in \mathbb{C}^{\times}$ and $(x,y) \in X \times Y$, let $c_1 := c_1(c,x,y), c_2 := c_2(c,x,y)$ be as in (4.9). We have

(6.7)
$$\mathcal{R}(e^{c}(x,y)) = (e^{a(e^{c_1}x,e^{c_2}y)c_2}y, e^{b(e^{c_1}x,e^{c_2}y)c_1}x),$$

(6.8)
$$e^{c}\mathcal{R}(x,y) = (e^{c'_{1}a(x,y)}y, e^{c'_{2}b(x,y)}x),$$

where $c'_1 := c_1(c, e^{a(x,y)}y, e^{b(x,y)}x)$ and $c'_2 := c_2(c, e^{a(x,y)}y, e^{b(x,y)}x)$. By simple calculations, one has

(6.9)
$$a(e^{c_1}x, e^{c_2}y) = \frac{c_1}{c_2} \frac{c\varepsilon_Y(y) + \frac{\varepsilon_X(x)}{\gamma_Y(y)}}{c\varepsilon_X(x) + \frac{\varepsilon_Y(y)}{\gamma_X(x)}}, \qquad c_1' = \frac{c\varepsilon_Y(y) + \frac{\varepsilon_X(x)}{\gamma_Y(y)}}{\varepsilon_Y(y) + \frac{\varepsilon_X(x)}{\gamma_Y(y)}},$$

which means $a(e^{c_1}x, e^{c_2}y)c_2 = c'_1a(x, y)$ and then $b(e^{c_1}x, e^{c_2}y)c_1 = c'_2a(x, y)$. We obtained (6.4).

Let us show (6.5). Denote

$$\mathcal{R}^{(12)}\mathcal{R}^{(23)}\mathcal{R}^{(12)}(x,y,z) = (e^A z, e^B y, e^C x),$$

$$\mathcal{R}^{(23)}\mathcal{R}^{(12)}\mathcal{R}^{(23)}(x,y,z) = (e^{A'} z, e^{B'} y, e^{C'} x).$$

It is easy to see that ABC = 1 = A'B'C' and then we may show that A = A' and C = C'. By simple calculations, we have

$$A = a(e^{a(x,y)}y, e^{a(e^{b(x,y)}x,z)}z)a(e^{b(x,y)}x, z) = \frac{\varepsilon_{Z}(z) + \frac{\varepsilon_{X}(x)}{b(x,y)\gamma_{Z}(z)}}{\frac{\varepsilon_{X}(x)}{b(x,y)} + \frac{\varepsilon_{Z}(z)}{b(x,y)^{2}\gamma_{X}(x)}}$$

$$= \frac{\varepsilon_{Z}(z)\left(\varepsilon_{Z}(z) + \frac{\varepsilon_{Y}(y)}{\gamma_{Z}(z)}\right) + \frac{\varepsilon_{X}(x)}{\gamma_{Z}(z)}\left(\varepsilon_{Y}(y) + \frac{\varepsilon_{Z}(z)}{\gamma_{Y}(y)}\right)}{\varepsilon_{X}(x)\left(\varepsilon_{Z}(z) + \frac{\varepsilon_{Y}(y)}{\gamma_{Z}(z)}\right) + \frac{\varepsilon_{Z}(z)}{\gamma_{X}(x)}\left(\varepsilon_{Y}(y) + \frac{\varepsilon_{Z}(z)}{\gamma_{Y}(y)}\right)},$$

$$A' = a(x, e^{a(y,z)}z)a(y, z) = \frac{\varepsilon_{Z}(z) + \frac{\varepsilon_{X}(x)}{a(y,z)\gamma_{Z}(z)}}{\varepsilon_{X}(x) + \frac{\varepsilon_{Z}(z)}{a(y,z)\gamma_{X}(x)}}$$

$$= \frac{\varepsilon_{Z}(z)\left(\varepsilon_{Z}(z) + \frac{\varepsilon_{Y}(y)}{\gamma_{Z}(z)}\right) + \frac{\varepsilon_{X}(x)}{\gamma_{Z}(z)}\left(\varepsilon_{Y}(y) + \frac{\varepsilon_{Z}(z)}{\gamma_{Y}(y)}\right)}{\varepsilon_{X}(x)\left(\varepsilon_{Z}(z) + \frac{\varepsilon_{Y}(y)}{\gamma_{Z}(z)}\right) + \frac{\varepsilon_{Z}(z)}{\gamma_{X}(x)}\left(\varepsilon_{Y}(y) + \frac{\varepsilon_{Z}(z)}{\gamma_{Y}(y)}\right)},$$

which means A = A'.

Next, we have

$$C = b(e^{b(x,y)}x, z)b(x, y),$$

$$C' = b(e^{b(x,e^{a(y,z)}z)}x, e^{b(y,z)}y)b(x, e^{a(y,z)}z)$$

It follows from the explicit forms of a(x,y) and b(x,y) that a(x,y) = b(y,x). Thus we

obtain

$$C_{|x \leftrightarrow z} = b(e^{b(z,y)}z, x)b(z, y) = a(x, e^{a(y,z)}z)a(y, z) = A'$$

$$C'_{|x \leftrightarrow z} = b(e^{b(z, e^{a(y,x)}x)}z, e^{b(y,x)}y)b(z, e^{a(y,x)}x)$$

$$= a(e^{a(x,y)}y, e^{a(e^{b(x,y)}x, z)}z)a(e^{b(x,y)}x, z) = A,$$

which implies C = C'. Thus, we also obtain B = B'.

Finally, let us show (6.6). Set $(y', x') = \mathcal{R}(x, y)$. Then we have

$$\mathcal{R} \circ \mathcal{R}(x,y) = (e_X^{a(y',x')} e_X^{b(x,y)} x, e_Y^{b(y',x')} e_Y^{a(x,y)} y).$$

By the formula (6.9) and a(x,y)b(x,y) = 1 we obtain

$$a(y',x') = a(e_y^{a(x,y)}y, e_X^{b(x,y)}x) = \frac{a(x,y)}{b(x,y)}a(y,x) = \frac{a(x,y)}{b(x,y)}b(x,y) = a(x,y),$$

and also b(y', x') = b(x, y). Thus, we have $\mathcal{R} \circ \mathcal{R}(x, y) = (x, y)$ and completed the proof.

References

[BK] Berenstein, A. and Kazhdan, D., Geometric crystals and unipotent crystals, GAFA 2000(Tel Aviv,1999), Geom Funct.Anal. Special Volume, PartI, (2000) 188–236.

[Kac] Kac, V.G., Infinite Dimensional Lie Algebras, Cambridge Univ. Press, 3rd edition (1990).

[KKM] Kang, S-J., Kashiwara, M. and Misra, K.C., Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Mathematica 92 (1994) 299–345.

[KMN1] Kang, S-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A., Affine crystals and vertex models, Int.J.Mod.Phys., A7 Suppl.1A (1992) 449–485.

[KMN2] _____, Perfect crystals of quantum affine Lie algebras, Duke Math. J., **68**(3), (1992) 499-607.

- [K1] Kashiwara, M., On level-zero representation of quantized affine algebras, Duke Math.J., 112 (2002) 499–525.
- [K2] _____, Level zero fundamental representations over quantized affine algebras and Demazure modules, Publ. Res. Inst. Math. Sci. 41 (2005) no. 1, 223–250.
- [KNO] Kashiwara, M., Nakashima, T. and Okado, M., Affine Geometric Crystals and Limit of Perfect Crystals, Trans.Amer.Math.Soc., 360, no.7 (2008), 3645–3686.
- [KNO2] Kashiwara, M., Nakashima, T. and Okado, M., Tropical R maps and affine geometric crystals, arXiv:0808.2411.
- [KOTY] Kuniba, A., Okado, M., Takagi, T. and Yamada, Y., Geometric crystals and tropical \mathcal{R} for $D_n^{(1)}$, IMRN, no.48, (2003) 2565–2620.
- [N1] Nakashima, T., Geometric crystals on Schubert varieties, Journal of Geometry and Physics, **53** (2), (2005) 197–225.
- [N2] _____, Geometric crystals on unipotent groups and generalized Young tableaux, Journal of Algebra, 293 (2005) No.1, 65–88.

- [N3] ______, Affine Geometric Crystal of type $G_2^{(1)}$, Contemporary Mathematics 442, (2007). [PK] Peterson D.H. and Kac V.G., Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. USA, 80, (1983) 1778–1782.