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§1. Introduction

The notion of geometric crystal is a sort of geometric lifting of crystal base theory.
If a geometric crystal x is " positive”, it can be ”ultra-discretized” to a crystal UD(x)
(for more details, see below). For a geometric crystal x = (X, {e;}, {vi},{€i}), if there
exists an open dense orbit by e§’s, we call x prehomogeneous, where e¢; : C* x X — X
(e§(x) = e;i(c,x)) defines certain rational C*-action on X. For isomorphic prehomo-
geneous geometric crystals x1 and x2 (f : x1—X2), assume that there exists another
isomorphism f’ : x; — X2 such that f(p) = f/(p) for some point p € Z C X; where
Z is an open dense orbit in X;. Then it is easy to see that f = f’ as a rational
morphism, which resembles Schur’s lemma. In this sense, prehomogeneity of geometric
crystals corresponds to irreducibility of modules. In general, it is not easy to show
the prehomogeneity of a geometric crystal directly. Here we obtain a sufficient condi-
tion for prehomogeneity of a ”positive” geometric crystal x, which is, indeed, that the
ultra-discretized crystal U D(x) is connected.

Perfect crystals are invented to treat the problem in some physical models from the
crystal theoretical point of view ([KMNI1],[KMN2]). They possess several remarkable
properties; one of the most crucial ones among them is connectedness. Perfect crystals
are not only connected themselves but also their tensor product are again connected.
Let {B;};>1 be a coherent family of perfect crystals and By its limit([KKM]). Then
the crystal Bo, holds similar properties to perfect crystals, e.g., connectedness.
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Let {xx}xea be a family of geometric crystals indexed by a set A. Tropical R map
R, is an isomorphism Ry, @ X X Xu — Xu X Xx (A, o € A) satisfying the Yang-Baxter
equation. We have not obtained a kind of ”universal objects” for geometric crystals just
like universal R-matrix for modules of quantum groups except for the sly- case. The
universal tropical R map of sl is introduced in the last section of this article.

In [KNOJ,[KNO2], we construct the affine geometric crystals V(g)r (L € C*) for
g = AP, B,(LI), (C’T(Ll)), Dﬁll), Dfizl, Aéi)_l, Agn) Each of them is equipped with
a positive structure and then there exists the corresponding affine crystal, which is,
indeed, isomorphic to B (gr) the limit of perfect crystal of certain perfect crystals for
the Langlands dual affine Lie algebra g”. Since B, ® By, is a connected crystal, product
of geometric crystals Vi, x Vy (L, M € C*) is prehomogeneous and then for another
tropical R map R’ ,, such that Rpas(xo,y0) = R} (%0,%0), one has Ry = Ry -

This article is basically a review of [KNOJ,[KNO2] except the last section, where
we introduce the universal tropical R-map of sls.

8§ 2. Geometric Crystals and Crystals

The notations and definitions here follow [N1],[N2],[N3],[KNO].

§2.1. Geometric Crystals

Fix a symmetrizable generalized Cartan matrix A = (a;;)i jer with a finite index
set I. Let (t,{ci}ier,{a) }icr) be the associated root data satisfying aj(e)) = a;;.
Let g = g(A) = (t,¢;, fi(i € I)) be the Kac-Moody Lie algebra associated with A. Let
P C t* be a weight lattice such that C ® P = t* and P C {\|A(QY) C Z}, whose
element is called a weight.

Define the simple reflections s; € Aut(t) (i € I) by s;(h) :==h — a;(h)e’, which
generate the Weyl group W. Let G be the Kac-Moody group associated with (g, P)
([PK]). Let U, :=exp go (o € A™) be the one-parameter subgroup of G. The group G
is generated by U, (o € A™). For any i € I, there exists a unique group homomorphism

¢;: SLy(C) — G such that

b ((é i)) = exp(te;), ¢ ((12)) = exp(tf;) (t e C).

Set o (c) == ¢ ((§ 091 ), @i(t) :==exp (te;), yi(t) :==exp (tfi), Gi := ¢i(SLa(C)), T; :=
a)/(C*) and N; := Ng,(T;). Let T be the subgroup of G with P as its weight lattice
which is called a mazimal torus in G, and let B¥(D T) be the Borel subgroup of G.
The following definition is equivalent to the ones in [N1],[KNO].



UNIVERSAL TROPICAL R MAP OF §lo 103

Definition 2.1. Let X be an ind-variety over C, v; and &; (i € I) rational
functions on X, and ¢; : C* x X — X a rational C*-action. A quadruple (X, {e;}icr,
{Vi, }ier, {ei}tier) is a G (or g)-geometric crystal if

(i) {1} x X Ndom(e;) is open dense in {1} x X for any i € I. Here dom(e;) is the
domain of definition of ¢;: C* x X — X.

(ii) The rational function v; (i € I) satisfies v;j(ef(x)) = c¢*9v;(zx) for any 4, j € I.

(iii) e; and e; satisfy the following relations:

Cc2 ,C1

C1,C2 __ ] J— J—

e = ee; if a;; =a;; =0,

¢ ,Ci1€c2 ,C2 __ ,C2 ,Ci1C2 Ci 1 J— o=

i'ej. e;0 =e’e; e . if a;; =aj = —1,

c1 ,C1¢2 cice c2 __ _C2 cCicC2 C1C2 cC1 3 L= o=
e; ej3 612 ejs = e;fe; Cel e L . if a;; = -2, aj; 1,
cy €162 C1€C2 Ci1Cy cicCa eC2 — 2 6816263132 C€1C2 CiC2 eVif a:s = —3. a.. = —1
i g % 7 7 R ) 7 % J 7 ] T » T T ’

(iv) The rational function ¢; (i € I) satisfies ;(ef(x)) = ¢ te;(x).

The relations in (iii) is called Verma relations. If x = (X, {e;}, {7}, {e:}) satisfies
the conditions (i), (ii) and (iv), we call x a pre-geometric crystal.

§2.2. Crystals

We recall the notion of crystals.

Definition 2.2. A crystal B is a set endowed with the following maps:

wt: B — P,

gi: B— ZU{-0}, ¢;: B— ZU{—oc0} for i€l

é&: BU{0} — BU{0}, fi: BU{0} — BU{0} for iecl,
&(0) = fi(0) = 0.

Those maps satisfy the following axioms: for all b, b;1,by € B, we have

i(b) = &i(b) + (a7, wt (b)),

= wt(b) + o if ;b € B,
= wt(b) — ay if f;b € B,
Eiby = by <= fiby = by,

SZ(b) = —00 = ¢;b= fzb =0.

Example 2.3.
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(i) If (L, B) is a crystal base, then B is a crystal.

(ii) For the crystal base (L(c0), B(c0)) of the subalgebra U, (g) of the quantum algebra
Uqy(g), B(co) is a crystal.

(iii) For A\ € P, set T :={t\}. We define a crystal structure on T by
éi(t)\) = fi(t)\) =0, €i(t)\) = gpi(tk) = —00, Wt(t)\) =\

Definition 2.4.

(i) To a crystal B, a colored oriented graph is associated by
bliﬂ)g o fzbl = bs.
We call this graph the crystal graph of B.

(ii) A crystal B is said to be connected, if its crystal graph is connected as a graph.

(iii) A crystal B is free if for any b € B, i € I and n > 0, €}'(b) # 0 and ﬁ”(b) #0.

§2.3. Positive structure, Ultra-discretization and Tropicalization

Let us recall the notions of positive structure and ultra-discretization /tropicalization.
The setting below is the same as in [KNO2|. Set R := C(c) and define

v: R\ {0} — Z
fle) = deg(f(c)).

Here deg is the degree of poles at ¢ = co. Note that for fi, fo € R\ {0}, we have

(2.1) o(fufa) = o) + o(fa), v (jﬁ—) — o) — o).

We say that a non-zero rational function f(c) € C(c) is positive if f can be expressed as
a ratio of polynomials with positive coefficients. Note that f € C(c) is positive if and
only if any pole of f is not a positive number and f(z) > 0 for any x > 0.

If f1, fo € R are positive, then we have

(2.2) v(f1 + f2) = max(v(f1),v(f2))-

Let T ~ (C*)! be an algebraic torus over C and X *(T'):=Hom(T, C*) (resp. X.(T):=
Hom(C*,T)) be the lattice of characters (resp. co-characters) of 7. We denote by 7'y the
set of points z in T" such that x(z) > 0 for any character x. Then (((CX)”)Jr = (Rso)™.

A non-zero rational function on an algebraic torus 7T is called positive if it is written
as g/h where g and h are a positive linear combination of characters of T'.
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Definition 2.5. Let f: T — T’ be a rational mapping between two algebraic
tori T and T”. We say that f is positive, if y o f is positive for any character y: TV — C.

Denote by Mor™ (T, T") the set of positive rational mappings from T to 7.
Note that any f € Mor™ (T,T") induces a real analytic map fy: T — T.

Lemma 2.6 ([BK]). For any f € Mor™ (Ty,T,) and g € Mor™ (T, T3), the com-
position g o f is well-defined and belongs to Mor™ (T}, T3).

By Lemma 2.6, we can define a category 7, whose objects are algebraic tori over
C and arrows are positive rational mappings. The category 7, admits products. For
two algebraic tori T and T”, their product in 7 coincides with the usual product of T'
and T".

Note that T'+— T gives a functor from 7 to the category of real analytic manifolds.

Let f: T — T’ be a positive rational mapping of algebraic tori T"and T’. We define
amap f: X.(T) — X.(T") by

~

G (€)= v(x o fod),

where y € X*(T") and £ € X,.(T). Note that x o f o is a rational map from C* to
itself.

Lemma 2.7 ([BK]).  For any algebraic tori Ty, T, T3, and positive rational
mappings f € Mor™ (T, Ts), g € Mor™(Ty,T3), we have go f =gGo f.

By this lemma, we obtain a functor
Ub: g — Set

T — X.(T)
(f: T—T") = (f: Xo(T) = X.(T")).

Let us come back to the situation in §2.1. Hence G is a Kac-Moody group and T'
is its Cartan subgroup.

Definition 2.8 ([BK]). Let x = (X,{ei}ier, {Vi}ier,{ei}ticr) be a G (or g)-
geometric crystal, 77 an algebraic torus and 6: T — X a birational mapping. The
mapping 6 is called a positive structure on y if it satisfies

(i) for any i € I the rational functions v;06: T — C and ¢; 00: T" — C are positive,

(ii) for any i € I, the rational mapping e; g: C* x T” — T” defined by e; g(c,t):=0"10
e 0 0(t) is positive.
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Let §: T" — X be a positive structure on a geometric crystal x = (X, {e;}ier,
{"i}ier,{€i}ier). Applying the functor UD to the positive rational mappings e; g: C* x
T — T and v;00, g;00: T" — C*, we obtain

€i:=UD(e;ip): Z x Xu(T") — X (T")
wt; :==UD(y;00), g;:=UD(g;00): X.(T") — Z.
Hence the quadruple (X.(T"),{é;}icr, {Wti}icr,{€i}icr) is a free pre-crystal structure

(see [BK, 2.2]) and we denote it by UDg 1/ (x). As for the definition of crystal, see 3.4
or [KKM],[K1], [K2]. We have thus the following theorem:

Theorem 2.9 ([BK][N1]).  For any geometric crystal x = (X, {ei}tier, {vi}ticr,{€i}ier)
and a positive structure 6: T — X, the associated pre-crystal UDg 1/ (x) is a crystal
(see [BK, 2.2]).

Now, let GCT(g) be the category whose object is a triplet (x,T”,0) where x =
(X, {e:}, {vi}, {ei}) is a g-geometric crystal and 6: T — X is a positive structure on Yy,
and morphism f: (x1,77,01) — (x2,T%,02) is given by a morphism ¢: X; — X3 of
geometric crystals such that

f=0"0p00,: T — T5,

is a positive rational mapping. Let CR(g) be the category of g-crystals. Then by the
theorem above, we have

Corollary 2.10. UD defines a functor

UD : GC" (g) — CR(g")
(x,T",0) — UDg 1 (x) = (AX*(T/), {€i}ier, Awtitier, {€i}ier)
(f: (XlaTl/vel) - (X2>T2/792)) = (f X*(T{) - X*(TQ/))a

where g~ is the Langlands dual for g.

We call the functor YD “ultra-discretization” as in [N1],[N2]. While for a crystal B,
if there exists a geometric crystal x and a positive structure #: T — X on y such that
UD(x,T’,0) ~ B as crystals, an object (x,T",0) in GO (g) is called a tropicalization
of B.

§3. Perfect Crystals

§3.1. Affine weights

Let g be an affine Lie algebra. The sets t, {;}icr and { }ier be as in 2.1. We
take t so that dimt =47 4+ 1. Let § € Q4+ be a unique element satisfying

{NeQ|{(a),\) =0 for any i € I} = Z5,
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and let ¢ € >, Z>ocy/ C g be a unique central element satisfying
{he@”|(h,a;) =0 for any i € I} = Zc.

We write ([Kac, 6.1])
(3.1) c:Zaivaz\-/, 522%%‘-

Let ( , ) be the non-degenerate W-invariant symmetric bilinear form on t* normalized
by (6, A) = (c, A\) for A € t*. Let us set t;:=t*/C¢ and let cl: t* — t| be the canonical
projection. Then we have t§ = @,(Ca;’)*. Set t§:={\ € t*| (c,\) = 0}, (£)0:=cl().
Then we have a positive-definite symmetric form on (t}))o induced by the one on t*.
Let A; € t) (i € I) be a weight such that (o, A;) = §; ;, which is called a fundamental
weight. We choose P so that P := cl(P) coincides with @;c7ZA; and we call P the
classical weight lattice.

§3.2. Affinization

Let Uy(g) = (ei, fi,q"|i € I, h € P) be the quantum affine algebra associated
with P and U}(g) = (e, fi,q"|i € I, h € (Pu)*) its subalgebra associated with (Pe)*.
Set Mod/ (g, P.) the category of a finite dimensional U, (g)-module M with a weight
decomposition M = ®xep, M.

Let M be an object in Mod” (g, P.). For I € C*, define the U,(g)-module M; as
follows: There exists a C-linear bijective homomorphism ®; : M — M, such that

¢"®(u) = ®;(¢"u) for h € P,
e;®y(u) = 19900 (e;u),
fi®i(u) = 17%0®( fiu).

The module M; := ®;(M) is said to be an affinization of M ([KMN1],[K1]).

§3.3. Fundamental representation W (w;),

Here we consider the following affine Lie algebras g = A,(ll), B,gl), C’,(ll), DS), Afn)_ 15
D,(izl, Agi) Let {A;|i € I} be the set of fundamental weights as in §3.1. Let w; :=
A1 — ai Ag be the (level 0) fundamental weight, where ¢ = 1 is the node of the Dynkin
diagram as in [KNOJ[KNOZ2].

Let W(w1) be the fundamental representation of U, (g) (see [K1, Sect 5.]). By
[K1, Theorem 5.17], W(ww1) is a finite-dimensional irreducible integrable U, (g)-module,
an object in Mod” (g, Pc) and has a global basis with a simple crystal. Thus, we can
consider its affinization W(w;); (I € C*) specialized at ¢ = 1. Then we obtain a
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finite-dimensional g-module denoted also by W (w;); in which we shall construct affine
geometric crystals in the next section.

Note that W (w;) is an irreducible g-module for any g as above. But, for some 4
and g, W (w;) is not necessarily irreducible.

§3.4. Limit of perfect crystals

We review the limits of perfect crystals following [KKM]. (See also [KMN1],[KMN2].)
Let g be an affine Lie algebra, P the classical weight lattice as above and for
l € Z~q set (Pcl);r ={A€ Pal{c,\) =1, (o, ) >0}.

Definition 3.1. We say that a crystal B is perfect of level [ if
(i) B® B is connected as a crystal graph.

(ii) There exists A\g € P such that

wt(B) C Ao+ Y Z<ocl(ey),  #By, =1
i#£0

(iii) There exists a finite-dimensional U, (g)-module V' with a crystal pseudo-base By,
such that B = B,/=+1

(iv) The maps e, ¢p: B™":={b € B|{(c,e(b)) = I} —(P1); are bijective, where £(b):=
>_;€i(0)A; and (b) := 3, i (b)A;.

Theorem 3.2 ([KMN1],[KMN2]).  For each affine Lie algebra g as above and
for any positive integer l, there exists a perfect crystal Bi(g) of level l.

For an affine Lie algebra g, let {B;(g)}i>1 be a family of perfect crystals of level
and set J := {({,b)[{ >0, b € B""}.

Definition 3.3. A crystal B, = Boo(g) with an element by, is called the limit
Of {Bl}121 if

(1) Wt(boo) = €(bso) = ¥(boo) = 0.
(ii) For any (I,b) € J, there exists an embedding of crystals:
Japy: Tey ® B T_y) — Boo

ter) ® D& t_p0) = oo

(iii) Beo = U(l,b)eJImf(l»b)'
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As for the crystal T, see Example 2.3 (iii). If the limit of a family {B;} exists, we say
that {B;} is a coherent family of perfect crystals.

Proposition 3.4 ([KKM]).  For each affine Lie algebra g as above there exists
a coherent family of perfect crystals {Bi(g) b0 and its limit Boo(g).

§4. Affine Geometric Crystals

Following the method in [KNO2], we shall see how to construct the affine geometric
crystal V(g); (I € C*) in W (w);.

§4.1. Translation ()
For &y € (t)o0, let t(&p) be as in [K1, Sect.4]:

(&:€)

t(&O)()‘) =+ (57 )‘)£ - (57 )‘)5 - T(& )‘)5

for £ € t* such that cl(§) = &. Then t(£y) does not depend on the choice of £, and it is
well-defined.

Let ¢ be as follows:

2

(41) c;, = max(l,m

(3

).

Then t(mw;) belongs to the extended Weyl group W if and only if m € ¢/Z.
Setting @, := ¢/w; (i € I) ([K2]), t(c01) is expressed as follows:

;

L(SnSn—1-"-S281) A%l) case,
. ... (1) 42
L(81+8n)(Sn—1-"+5281) By, A5,/ cases,
t(@1) = § (5081 8n)(Sn_1 - 5251) C’ﬁbl), Dfﬁl cases,
L(81+8n)(Sn—2--5281) Dﬁll) case,
L (5051 8n)(Sn—1---5251) Aéi)v case,

where ¢ is certain Dynkin diagram automorphism. Now, we know that each ¢(o)
is in the form w; or ¢ - wy for some wy € W, e.g., wy = s,---8s1 for A%l), wy =
($1°+Sp)(Sp—1---s1) for B,(ll), ete., ....

In the case Agff, n:=wt(vg) = Ap—1 — Ay, (resp. A,,—1 — 2A,,) is a unique weight
of W(w1); which satisfies (o, n) > 0 for i # n. For this n we have

(4.2) t(n) = (SnSn—1---51)(S081 " Sp—1) =: Wa.
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§4.2. Affine geometric crystals in W (w;);

Let o be the Dynkin diagram automorphism as in [KNO2| and w; = s;, -+ - 84, be
as in the previous subsection. Let H € t be an element as in [KNOZ2].
(1 ifi=1landg#D?, AP
2 ifi=1landg=D AP
ai(H)={ -1 ifi=0and g# D, ALY,
—2 ifi=0and g= D% AP

0 otherwise.
Set
(4.3) V(g):={v(z1,...,2) =Y, (z1)---Y;, (:ck)lel | x1,...,x5 € C*} C W(w)

where the vector vy is a highest weight vector in W (w;); as a go-module and then
V(g) has a Go-geometric crystal structure, where go C g (resp. Go C G) is a simple
Lie algebra (resp. simple algebraic group) corresponding to the index set Iy := 1\
{0}. Moreover (C*)* — V(g); given by (z1,...,2%) — v(x1,...,7;) is a birational
morphism. We shall define a G-geometric crystal structure on V(g); by using the Dynkin
diagram automorphism o except for Agi) This ¢ induces an automorphism of W (w1 ),
which is denoted by o;: W(w1); — W (w1)i.

Theorem 4.1 ([KNO2J).

(i) Case g # Aéi) Forx = (w1 -+ ,x%) € (CX)*, there exist a unique y = (y1,. .., Yx)
€ (C*)* and a positive rational function a(z) such that

(4.4) v(y) = a(@)oi(v(z)), eo)(v(y)) =ci(v(z)) ifi,o(i) #0.
(ii) Caseg= Agi) Associated with wy and ws as in the previous subsection, we define

V(g)l = {vl(x) = Yo(xo)Yl(afl) e Yn(xn)Yn_l(:En_l) ce Yl(a_fl)lH”Ul | Zi, jiz' € CX},
VQ(g)l = {UQ(y) = Yn(yn) U Yl(yl)YO(yO)Yl (gl) s 'Yn_l@n_l)lHlvﬂ yi,yi c C* },
where ag(H') =2, a,,(H') = —4 and a;;(H') = 0 otherwise. (Note that wt(vy)(H) =

wt(v)(H').) For any x € (C*)?" there exist a unique y € (C*)*™ and a rational
function a(x) such that va(y) = a(x)vi(z).

Now, using this theorem, we define the rational mapping

a: V(g) — V(g a: V(g) — V(o)
o(@) = ov(y) @AAD). w) — ) (@=A45)
Associated with an element w € W, let B, be the geometric crystal as in [N1],[KNO],
which is isomorphic to the geometric crystal on the Schubert cell X, (see [N1]).

(4.5)
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Theorem 4.2 ([KNO2|).  The rational mapping @ is birational. If we define a
go-geometric crystal structure on V(g); by the one on B, I and a rational C* -action
eo : C* xV(g); — V(9): and rational functions wto and €9 on V(g); by

e§:=a0 to eg(o) 00, €0:=Ex(0)°0, 70 :="Ys0)00, Jforg# Agi),

—1

(4.6) )
€eG:=0 ~0ejo0, €):i=€E)p00, Yo:=7Y©0O, forg=As, .

then (V(9)1,{ei}tier, {vitier, {€i}ier) turns out to be a positive affine g-geometric crystal.

Remark. In the case g = Aéi), Va(g) has a gp (n}-geometric crystal structure.
Thus, eg,Y0,c0 are well-defined on Vs(g).

8§4.3. Product structure on affine geometric crystals

In general, if x; and x2 are geometric crystals induced from unipotent crystals,
the product y; X x2 possesses a geometric crystal structure ([BK]). More precisely, let

vi = (X {ei} {2} {e:}) and xa = (V; {ei}, {2}, {e:}) be geometric crystals induced
from unipotent crystals. For x € X and y € Y set

(4.7) Yilz,y) = vi(2)v(y),

48 alep)=a) + LB (o) =1 @)
¢ = (et (x), e? where ¢; := cpiz) +&i(y) c =L
49) o) = (@) e )  where o= EEAI L

Then, (4.7)—(4.9) endow the product X x Y with a structure of a geometric crystal.
As for the affine geometric crystal V; in the previous subsection, its data e;,;, &;
(i = 1,...,n) are obtained from the ones of the geometric crystal B; - {f which is
induced from the unipotent crystal on some X,, x (¥ where i is a reduced word for w
and X, is the Schubert cell associated with w € W and note that {I/*/} holds trivial

unipotent crystal structure. We can check the 7 = 0-case directly and then obtain:

Theorem 4.3 ([KNO2]). For any k € Z>¢ and Ly --- , L € C*, the product
Vi, X -+ xVr, has an affine geometric crystal structure.

§4.4. Ultra-discretization of V(g);

Let us see the ultra-discretization of V(g);.
By Theorem 4.2 on V(g);, for [ > 0 it holds a natural positive structure 6;: (C*)™ —
V(g); (z — v(x)) where m = dim V(g);. Then we have the following theorem:

Theorem 4.4 ([KNO2|). Forg = A%l),B,(ll),D%l),Dﬁ)_l,Agi)_l and Agi), sup-

pose that | > 0. Then the ultra-discretization UDg,(V(g);) associated with the positive
structure ) is isomorphic to the crystal Boo(gh).
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§5. Tropical R Maps

§5.1. Definition of tropical R maps

Definition 5.1.  Let {(Xy,{e}}, {7}, {e}})}aea be a family of geometric crys-
tals equipped with the product structures, where A is a certain index set and its element
is called a spectral parameter. A birational isomorphism Ry, : X x X, — X, x X
A, 1€ A) is said to be a tropical R map if it satisfies the following conditions:

(

(5.1) (€7 0 Ry = R 0 (677,

(5.2) e = o Ry,

(5 3) VXaxX,, = VX, xXx OR}\W

(5.4) RUDREIRUD = REIRUARE  on Xy x X, x X,

for any i € I and any A\, u,v € A. Here R(Y) means that it acts on i-th and j-th
components of the product.

In [KNO2], we obtain tropical R maps { R} 1. amr=0 of the family of affine geometric
crystals {Vr} >0 for the above affine Lie algebras.

§5.2. Prehomogeneous Geometric Crystal

Definition 5.2. Let x = (X, {ef},{7},{ei}) be a geometric crystal. We say
that x is prehomogeneous if there exists a Zariski open dense subset 2 C X which is an
orbit by the actions of the ef’s

The following lemma is obvious.

Lemma 5.3 (KNO2)).  Let x; = (X, {ef}. (i} {e:}) ( = 1,2) be prehomoge-
neous geometric crystals. Let 1 C X1 be an open dense orbit in X,. For isomorphisms
of geometric crystals ¢, ¢': x1 — X2, suppose that there exists p1 € € such that
d(p1) = ¢'(p1) € Xao. Then, we have ¢ = ¢ as rational morphisms.

The following is the key of this article:

Theorem 5.4 ([KNO2]). Let x = (X,{e5},{vi},{ei}) be a finite-dimensional
positive geometric crystal with the positive structure 0: T — X and B :=UDgy(x) the
crystal obtained as the ultra-discretization of x. x is prehomogeneous if B is a connected
crystal.

§5.3. Uniqueness of the birational R-maps
Theorem 5.5 ([KNO2|).  Let Rpas be the tropical R map as above. Set zg :=
R(1,1) where1l :=v(1,--- ,1) € V. Let R’ be a tropical R map such that R'(1,1) = 2.
Then we have R = R’ as birational morphisms.
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Proof. Let V;,Vp, (I,m € C*) be the affine geometric crystals constructed in
Sect.4 and R the tropical R map as in this section and R’ : V; X V,, — Vi, X W,
other tropical R map such that R(1,1) = R’(1,1). By Theorem 4.4, we have that
UD e, 6, Vi(8) X Vin(g)) is isomorphic to the crystal Boo(g”) ® Boo(g”).

It follows from that for any positive integer m and any affine Lie algebra g appearing
in this article tensor product of crystals @, UDe, (V(8)1;) = B (g%)®™ is connected.
By Theorem 5.4 we obtain that the geometric crystal V; x V,, is prehomogeneous.
Therefore, by Lemma 5.3 we obtain R = R’, which completes the proof of Theorem
5.5. 0

§6. Universal tropical R map of sl

Only for sly-case, we found a kind of "universal” tropical R map. For arbitrary
sly-geometric crystals X = (X, ex,vx,ex) and Y = (Y, ey, vy, ey ), the morphism R :
X xY — Y x X is defined by

(6.1)
ey (y) + 244 1
R(x,y) := (ea(x’y)y,eb(m’y)x), where a(x,y) := SAELDIN b(z,y) =
v * ex(x) + _’i;%v)) a(z,y)

Theorem 6.1.  The morphism R satisfies the following:

(6.2) Ty xx(R(z,y)) = vxxv(z,y),

(6 3) 5Y><X(R(£l'},y)) :SXXY(xay)a

(6.4) Roe®=e‘oR,

(6.5) RUDREIRA2 — REIRANRED  (Yang-Baster eq.)
(6 6) RORZidXXy

This implies that there exists the canonical morphism with the same properties as
a universal R-matrix for modules of quantum groups. Furthermore, the morphism R is
an isomorphism of geometric crystals.

Proof. Let us show (6.2). We have

T xx (R(z,9)) = 1y (€@ y)yx (e@¥ ) = a(z,y)?b(z, y) vx (2)7y (y) = Yxxv (2, ).
Next, let us see (6.3).

SX(eb(x,y)x) B
— = a(zx,
Vy(ea(f”’y)y) ( y)

=a(x,y)? (5y(y) + 8X(w)> =ex(x)+ 240 =exxy(T,y).

b(aja y)_ng (:l'})

ey xx(R(z,y)) = ey (e y) + a(z,9) %y (v)
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Let us show (6.4). For ¢ € C* and (z,y) € X XY, let ¢1 := ci(c, x,y), c2 = ca(c, z,9)
be as in (4.9). We have

(6.7) R(ec(x, y)) — (ea(eq x,e%y)(;zy, eb(ec1 33»6‘32y)01x)7
(6.8) e“R(z,y) = (ec/la(x,y)y, ecgb(az,y)x)7

where ¢ := ¢;(c, e @Yy, @V 1) and ¢} = ca(c, @Yy, @Y g). By simple calcula-

tions, one has

ex(x) ex (x)

(6.9) a(e® x,e?y) = a W5 ¢ = cey (y) + S50
' V=0 ey (y) 1= ex(@)

2 CSX(:E) + vx () Sy(y) + 7Y—(?J)

which means a(e®z,e®?y)cy = ca(z,y) and then b(e“'z,e?y)c; = cha(x,y). We ob-
tained (6.4).
Let us show (6.5). Denote

RUDREIRD (z,y, 2) = ("2, Py, e ),
REIROIRED (34, 2) = ( A eBly,eC/x).

It is easy to see that ABC = 1 = A’B’C’ and then we may show that A = A’ and
C = (C'. By simple calculations, we have

e2(2) + sraya

ex (x) ez (2)
b(z,y) T b(@y)2x (@)

c2(e) (c2() + 28 + 248 (vt + 263)
ex(o) (c2(e) + 28) + 525 (v + 523)
()4 e
x(@) 4 i S
c2(2) (c2) + 508) + 558 (v ) + 63)

ox(®) (e22) + 5585) + 55 (20 + 5565)

b(z,y)

A= a(ea(x’y)y, ee x’z)z)a(eb(x’y)x, z) =

A =a(z, e 2)aly, 2) =

which means A = A’.
Next, we have

C = bV, 2)b(w,y),

O = b(eb(x,e“(y,z)z)aj’ eb(y,Z)y)b(a,:’ ea(y,z)z)

It follows from the explicit forms of a(z,y) and b(z,y) that a(x,y) = b(y,x). Thus we
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obtain
Clez = b(eb(z’y)z7 a:)b(z, y) = a(a'f; ea(y’z)z)a(y, Z) = A/
Clyen = b0 2 M2y, o))

= a(ea(x’y)y, ea(eb(z'y)x’z)z)a(eb(x’y)x, z) = A,

which implies C' = C’. Thus, we also obtain B = B’.
Finally, let us show (6.6). Set (y,2') = R(x,y). Then we have

R (@] R(x, y) = (ef;((yl’xl)el;((—x’y)a:’ eby(y/’x/)e(;'(x’y)y).
By the formula (6.9) and a(z,y)b(x,y) = 1 we obtain

a(z,y) _a(z,y)
o) ") = By

and also b(y’, ') = b(x,y). Thus, we have RoR(z,y) = (z,y) and completed the proof.
O

ay',a') = a(e2 @y, 5V a) = b(x,y) = al(z,y),
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