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Tensor Representations
for the Quantum Loop Algebras of Type A
at Roots of Unity

By

Yuuki ABE *

§1. Introduction

Let ¢ be a nonzero complex number which is not a root of unity and let U, (g) be the
quantum loop algebra over C associated with a finite-dimensional complex simple Lie
algebra g. It is known that every finite-dimensional irreducible representation of U,(g)
is a pseudo-highest weight representation and classified by the pseudo-highest weights
(see [7]). In 2002, Chari showed the sufficient condition for the tensor product of the
finite-dimensional irreducible representations of U,(g) to be a pseudo-highest weight
representation (see [4]). In particular, by using this result, we obtain the necessary
and sufficient conditions for the tensor product of the fundamental representations to
be irreducible (see also [2], [13], and [11]). It is known that every finite-dimensional
irreducible representation of U,(g) is isomorphic to a subquotient of the tensor product
of the fundamental representations (see [7]).

In this note, we explain the necessary and sufficient conditions for the tensor prod-
uct of the fundamental representations for the restricted quantum loop algebras of type
A at roots of unity to be irreducible. This is the result in [1].

§2. Notations

We fix the following notations:

N:={1,2,---}: the set of natural numbers,

Zy :={0,1,2,---}: the set of non-negative integers,
I:={1,2--- n}, [:=1U {0}: index sets,
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(ai,j)ijer: Cartan matrix of type A,

(a:,5); jel generalized Cartan matrix of type A%l),

¢: indeterminate, C(g): rational function field of g,

qT _ q—'f
[r] := W’ [m]! == [m|[m —1]---[1], [0]!:=1,
I P 1

"= rllr =1 [r=m+1] (reZ,meN),
m [m][m —1]--- [1]

[: an odd integer greater than 2, &: a primitive [-th root of unity,
A := C[t,t71]: Laurent polynomial ring,
C.: A-algebra of the set of complex numbers defined by the following formula:

g9(q).c:=g(e)c for g(q) € A,ceC.

§3. The restricted quantum loop algebras

First, we introduce the generic quantum loop algebras to define the restricted quan-

tum loop algebras.

Definition 3.1.  The quantum loop algebra ﬁq of type A,, is the associative C(q)-
algebra generated by {F;, F;, K iil |i € I'} with the following defining relations:

KK '=K 'Ki=1, KK;=KK, K=][[K,",

pel
KE;K; ' = q*E;, K F;K;'=q “F}
K;—K!
EFj — FjE; = 6 j———'—,
q—q

1—Cliyj l—ai,j

> (PEP BB = S CAPEPRE Y 20 ik,
p=0 p=0

fori,5 € f, where
(m) 1 m (m) L m

Next, we introduce the Drinfel’d realization of ﬁq to define the pseudo-highest
weight representations of the restricted quantum loop algebras (see §4 in this paper).

Theorem 3.2 ([9] and [3]). As a C(q)-algebra, ﬁq is isomorphic to the alge-
bra with generators {X-i Hi,s,Kiil i € I,r,s € Z,s # 0} and the following defining

7,77
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relations:
KK ' = Ki_lKi =1, [Ki,K;]=[Ki,H;=[H.H, s]=0,
_ sa
K X:l: K :l:uz ]X]:t'rﬂ [H’L S)X:i: ] :I:[ ’L,J]le:r_'_s,
+ + :I: i + + +a; ;v v + +
Xi,r—l—IXj’ & JX Xz oL T ¢ Y]X X] 1l X g’ _|_1Xz r
’ r ‘P_ /
X , _5 i, r+r 2, r+r ’
[ 1,1 ] 4,7 q-— q_l
:I: + + + + _ . .
Z Z [ ] ey K i X Xirnpan) " Ky = 0 0 7),
TESy p=0
forri,--- ,rm € Z, where m :=1— a; j, Sy, is the symmetric group on m letters, and
+ .
U5, are determined by
Z \I'Z Lu = Kilexp Z H; isu

and\Ifzir =0ifr <0.

Next, we introduce the restricted quantum loop algebras and their triangular de-
composition. Let U%*® be the A-subalgebra of U, generated by {Ei(m), Fi(m), Kiil li €
I, m e N}

Definition 3.3 ([8] and [12]).  The restricted quantum loop algebra U is de-
fined as follows:

ﬁsres . Ures R4 Ce-

Fori e I, r € Z, and m € N, define

Kgr| _ ﬁ Kig Pt - K gt
m ’ qp — q_P

)
p=1

Znimu = exp(— Z%Hi,ﬂw) i U,[[u]].
m=0 s=1

Then we have

K 1 ~
[ Z,T] ’ (Xz,r)(m) EHias’ Pi,r c Ures’

forie I, meN, r €Z, and s € Z*, where (X;f:r)(m) = L(Xi )™ (see [6, §9.3A] and
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[8, §3.1]). Therefore, the following elements are included in UZeS:

kj;T L Kj;T
m o m

(] yom) = (Xi )™ @1, hjs=Hjs®1, ¢i —\IljE ®1, pjr:=Pjr®1,

where i € f jel,re,seZ*, and m € N. Define (ﬁres) (resp. (ﬁres)— (ﬁres) )
to be the C-subalgebra of U™ generated by {(z7 )(m) |i € I,r € Z,m € N} (resp.

{(:c;r)(m) i e I,r € Z,m e N}, {p;,, ki, [k“l |i € I,r € Z}). Then we obtain the

triangular decomposition of U (see [8, §6]):
(3.1) (UF)~ © (U2)° @ (UF=)t = Uz

The comultiplication A of ﬁges is as follows:

m)) — Z q—p(m—p)egp) ® k‘?e§m_p), A(fi(m)) _ Z qp(m—p)fi(P) ® fz‘(m_p)ki_pv
p=1
A(k;) = ki @ Ky,

for any i € I and m € N (see [6, §9.3A]).
By using (3.1) and the results of the generic case (in particular, [4, Proposition
2.2]), we obtain the following lemma:

Lemma 3.4 ([1, Lemma 6.3]). Leti €I andr € N. Modulo Ures ® X1,

r—1

Aw,,) =2, @k +1@z,,+ Yz, QU]
p=1

res .__ ~res m
where X := Zjef,rez,meNUa ( )( ).

]7

§4. Representation theory of the restricted quantum loop algebras

Without loss of generality, we assume that the representation of (7;‘33 is of type 1,
that is, k! = 1 on the representation for any i € I.

For any m = (m;(t))ier € (Co[t])™ (Co[t] := {n(t) € C[t] | w(0) = 1}), there exists a
unique C-algebra homomorphism A : (ﬁ;es)o — C such that

(0) k0 - m
An(KiEH) =P, Aw(! l]>:p§”, >~ Anlpim)t™ = 75 (0,
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where

tdems (), (1)
= (tdegm (t) ™ (t_l)) |t=0 ’
deg(mi () = p! +1pY (0 < ¥ <1).

Definition 4.1. Let V be a representation of ﬁ;es and m = (m;(t))ier be an
element in (Cy[t])”. We assume that there exists a nonzero vector vp € V such that
(CU;TT)(m)UA —0foralliel, reZ and meN and uvy = Ar(u)vy for all u € (UF)O,
If V is generated by vp as a representation of (7;65, we call V' a pseudo-highest weight
representation of Uges with the pseudo-highest weight m generated by a pseudo-highest
weight vector vy .

Theorem 4.2 ([8, §8]).  For any m € (Cy[t])", there exists a finite-dimensional
irreducible pseudo-highest weight ﬁges—representation V;es(w) with the pseudo-highest
weight w. Moreover, for any finite-dimensional irreducible ﬁsres—representation V', there
exists a unique w € (Co[t])™ such that V is isomorphic to VX (rr).

Theorem 4.3 ([8, Proposition 8.3]). Let m,m € (Colt])" and let vy (resp.
v;,) be a pseudo-highest weight vector in VZIes(m) (resg/)v. Vsres(wll). Vefes(mr/) is iso-
morphic to a quotient of the UL*S-subrepresentation of VI°(m) @ VX (n') generated by
Ur & v;r,. In particular, if VI (7)) @ VIS(x') is irreducible, VX(1) @ VI (x') is iso-

morphic to VI (rr).

§5. The fundamental representations of the restricted quantum loop
algebras

Now, we fix the following notations. We define I :=IU{n+1} = {1,2,--- ,n+1}
and Je = {J = {j1,J2, - ,Je} CI|j1 < jo <--- < je}, where £ € I. Let L¢ be the
#(J¢)-dimensional C-vector space having J¢ as a C-basis. For a € C*, we define

1—at, if j=¢
(5.1) e (t) == g = (mg . (t))jer-
o L i jre o

and call ‘7;‘35(772‘) a fundamental representation of U,
By using the result of the generic case (see [10, §2.2] and [2, B.1]), we obtain the
following proposition:

Proposition 5.1. For & € I and a € C*, the following formula gives a UL®-
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representation structure on L¢: fori € I, meN (m>2), and J € T,

a0 (\{i+1Y)u{i}, ifi+1eJandigJ,

0, otherwise,

eiJ =

a S (J\EHUu{i+1}, ificJandi+1¢J,

0, otherwise,

fid =

ed, ifiteJandi+1¢ J,
kiJ =<qe Y, ifigJandi+1€J,
J, otherwise,

™My =My =o,

where & := ac"~(—1)% and we regard 0 in J as (n+1). Moreover, L¢ is isomorphic to
Vie(mg) as a representation of UZ*.

For1<i<j<m,let JE ; be the extremal vector in ‘7;65(77?) (see [2]). In this case,
Jf’ ; is given by the following formula (see [1, Proposition 4.11]):

{1727"' 75}7 lf]<£7
Jei =i +2—6j+3—6- j+1}, if¢<jandi<j+1—¢
(G41—¢€-i—1i41,---,j+1}, fé<jandj+1—E€<i.

In particular, Jl'g,1 (resp. an) is a pseudo-highest (resp. lowest) weight vector in
V).
In a similar way to the proof of Lemma 4.2 in [4], we obtain the following lemma.
Lemma 5.2 ([1, Lemma 6.12]). Let{ €1, ac C*, and w € (Cy[t])™. Let V
be a pseudo-highest weight representation of ﬁ;es with the pseudo-highest weight © and
let v, be a pseudo-highest weight vector in V. We assume an ® vy € ﬁ;eS(Jfl ® Ur).

Then ‘7;65(77?) ® V is a pseudo-highest weight representation of ﬁges with the pseudo-
highest weight Tgm.

§6. Tensor product of the fundamental representations for the restricted
quantum loop algebras

8§6.1. Irreducibility

In a similar way to the proof of the generic case (see [4] and [5]), we obtain the
following theorem:
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Theorem 6.1 ([1, Theorem 6.14]). Let&;, - &, €I anday,--- ,a,, € C*.
If
ag
for any 1 <k # k" < m and max(&, &) <t <min(é + & — Ln), VVE@E) @ ®
Zres(w?;”) is a pseudo-highest weight representation of ﬁ;es with the pseudo-highest
weight 7T?11 x W?:: generated by a pseudo-highest weight vector Jfll R ® Jf"f

Sketch of Proof. If we can prove the following formula, we obtain this theorem from
Proposition 7.4 in [8]:

VIS(mg) @ - @ VIS(mgr) = UIP(Jfh @ - @ Jip).

We shall prove this formula by the induction on m. If m = 1, this follows from the
definition of the pseudo-highest representation of U:*®. Now, we assume m > 1 and the
case of (m — 1) holds. We set

V= VIS(a@2) @ e VIS(rgr), T = J1 0@ i,

From the assumption of the induction on m, V'isa pseudo-highest weight representation
of U with the pseudo-highest weight W?j e ﬂ'?:: generated by a pseudo-highest weight
vector J . Hence, from Lemma 5.2, it is enough to prove that

T @ e UM (I ).

,n

We shall prove that
JheJ e Uy @ J),
for any 1 < ¢ < j <n by the induction on (4, j), where
(Z_17])>(Z7]) and (]+17]+1)>(17.])

If (i,7) = (1,1), we have nothing to prove. We assume that the case of (7, ;) holds.
As an example, let us give a proof for the case that ¢ # 1, j —i+2 < & < j, and
& =+ =&, =i— 1. Similarly we can prove the other case (see Case 2 of the proof of
Theorem 5.3 in [1]).

By using Lemma 3.4, we obtain a matrix A = (A, s);"_; such that

o, (TR ) = At (T ;@ T )+ Ars(JE @ JF @+ @ (fim1 1) ® - @ J§T),
s=2

det(4) = ([J(ar —are® %) ] (ap —are?)),

k=2 2<k<k'<m
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(see Case 1 of the proof of Theorem 5.3 in [1]). Since z;_ (Jf; ®J)e ﬁgeS(Jf}l ®J)

i—1,r
from the assumption of the induction on (i, j), we obtain

det(A)(JE, ,® J) € U (J5y © J ).

Since det(A) # 0 from the assumption of this theorem, we obtain
T 0 €U (T @),
O

Corollary 6.2 ([1, Corollary 6.15]).  Let &, -, &y € I and a, -+ ,a,, €
C*. If
Ay H(2t—Ek—E+2)
e ),
foranyl<k#k <m and max (&g, &) <t <min(§ + &, — 1,n), ‘N/;es(wgll) ® -+ ®

~res a ; Y ; Y ~res
VI (mem) is an irreducible representation of UZ.

Sketch of Proof. We set V := ‘7;65(#?11) Q- ® ‘Zres(ﬂgs)' Let V* be the dual
representation of V. It is enough to prove that V and V* are the pseudo-highest weight
representations. From Proposition 6.11 in [1], there exists an integer ¢ € Z such that

V* o VgreS(,]_‘_gmam) Q- ® VvareS(Wzlal)7

(see also [1, Proposition 4.9]). Hence, this corollary follows from Theorem 6.1 and the
assumption of this corollary. O

§6.2. Reducibility

Proposition 6.3 ([1, Proposition 6.16]). Let&, ¢ € [ anda,b € C*. If there
exists 1 <t <min(&,¢,n+1—&n+1—C) such that b = 216 Ca or e~ (4HE=CDa,
then VI (mg) @ VI (ﬂ'?) is reducible as a representation of UL.

Sketch of Proof. Without loss of generality, we assume b = ¢2+é=¢Cla, If V;es (7‘(’2‘)@
vres (W'g) is irreducible as a representation of U[*, we obtain

Voo (n2) @ Vi (n) & Vs (n?),

from Theorem 4.3. Here, for m € (Co[t])™, let ‘7(1(77) be the finite-dimensional irreducible
representation of U, with the pseudo-highest weight 7 and, for ¢ € (C(q))* and v € I,

let ‘7:1(7@) be the fundamental representation of ﬁq, where 7¢ is as in (5.1). It is known

that dimg(q) (Vy(7S)) = J,. Hence, we have

. /res/. _a . 7 (-a . 7 (. bg
dime (V2 (r272)) = dimgq) (V(72)) x dime(qg) (Vg(r.)),
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where b, := ¢*T1¢=¢la. On the other hand, we have
dime (V2 (r278)) < dimeqg) Vy(mn),
(see [1, §6.4]). Thus, we have
dime(g) (Vy(72)) x dimegg) (Vy(me")) < dimegg) (Vo (meme?)).

Hence, by the generic case of Theorem 4.3 (see [7]), we obtain

I

1/ 17 bq 17 bq
Vo(md) @ V() g(mEme).

In particular, %(71’?)@‘7(1(71'?(’) is irreducible as a representation of ﬁq. However, from the
result of the generic case (see [4] or [1, Proposition 5.7]), ‘7(1(772‘) ® ‘7(1(77?9’) is reducible.

This is a contradiction. Therefore 175“35 (m8) ® ‘Zfes (7‘(’?) is reducible as a representation
of U, O

§6.3. The necessary and sufficient condition

From Corollary 6.2 and Proposition 6.3, we obtain the following theorem.

Theorem 6.4 ([1, Theorem 6.17]). Let&y, - ,&, € I anday, - ,a, € C*.
Veres(w?ll) Q- Q VIS (W?::) is an irreducible representation of UL if and only if

)
ag ’

forany1<k#k <m and 1 <t <min(, & ,n+1—E&,n+1—&).

Example 6.5. We consider the case of n = 4 and [ = 7. Then, for a, b € C*,
Vres(72) @ VZIeS(72) is irreducible if and only if

b # ac?, a3, ac, ac®.
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