<table>
<thead>
<tr>
<th>Title</th>
<th>On a Problem of Hasse (Algebraic Number Theory and Related Topics 2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MOTODA, Yasuo; NAKAHARA, Toru; SHAH, Syed Inayat Ali; UEHARA, Tsuyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2009), B12: 209-221</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/176786</td>
</tr>
<tr>
<td>Right</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Type</td>
<td>Textversion publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On a Problem of Hasse

By

Yasuo MOTODA, Toru NAKAHARA, Syed Inayat Ali SHAH and Tsuyoshi UEHARA

Abstract

In this article we shall construct a new family of cyclic quartic fields K with odd composite conductors, which give an affirmative solution to a Problem of Hasse (Problem 6 in [12, p. 529]); indeed our family consists of cyclic quartic fields whose ring \mathcal{O}_K of integers are generated by a single element ξ over \mathbb{Z}. We will find an integer ξ in K by the two different ways; one of which is based on an integral basis of \mathcal{O}_K and the other is done on a field basis of K.

§1. Introduction

In the year 1966, Hasse’s problem was brought to Kyushu Univ. in Japan from Hamburg by K. Shiratani. Let K be an algebraic number field of degree n over the rationals \mathbb{Q}. Let \mathcal{O} denote the ring of integers. It is called Hasse’s problem to characterize whether the ring \mathcal{O}_K of integers in K has a generator ξ as \mathbb{Z}-free module, namely \mathcal{O}_K coincides with

$$\mathbb{Z}[1, \xi, \cdots, \xi^{n-1}],$$

which we denote by $\mathbb{Z}[\xi]$. If $\mathcal{O}_K = \mathbb{Z}[\xi]$, it is said that \mathcal{O}_K has a power integral basis; it is also said that K is monogenic. In this article, we consider the case of cyclic quartic
fields K with composite conductors over Q. In the case of cyclic quartic field K with a prime conductor, Z_K has no power integral basis except for $K = k_5$ or the maximal real subfield of k_{16} as is shown by one of the author in [11]. Here, k_n means the n-th cyclotomic field over Q. On the contrary, infinitely many monogenic cubic or biquadratic Dirichlet fields are found by D. S. Dummit - H. Kisilevsky in [1] and Y. Motoda in [6, 7]. In the case of biquadratic fields, M.-N. Gras - F. Tanoé [4] gave a necessary and sufficient condition for the fields to be monogenic. If K is 2-elementary abelian extension of degree not less than 8, we proved in [8, 15] that Z_K does not have any power integral basis except for the 24-th cyclotomic field $k_{24} = Q(\zeta_{24})$, which coincides with

$$Q(\zeta_4, \zeta_3, \zeta_8 + \zeta_8^{-1}),$$

§ 2. New examples of monogenic cyclic quartic fields based on integral bases of their rings of integers

A quarter of century ago, we found several monogenic cyclic quartic fields $K = Q(\eta)$ of composite conductor D over Q in [N1]. This result was obtained when we restricted ourselves to the associated Gauß period η_χ of $\varphi(D)/4$ terms with the character χ as a generator ξ of $Z_K = Z[\xi]$, where $\chi = \chi_D$ is the quartic character with conductor D and $\varphi(\cdot)$ denotes Euler’s function. We calculated the group index $[Z_K : Z[\xi]] = \sqrt{\left| \frac{d_K(\xi)}{d_K} \right|}$ of a number ξ under the integral basis $\{1, \eta_\chi, \eta_\chi^2, \eta_\chi^2 \}$, i.e., nearly the normal basis of K/Q, where $d_F, d_F(\alpha)$ and σ denote the field discriminant of a field F, the discriminant of a number α with respect to F/Q and a generator of the Galois group of K/Q, respectively.

In this section, we use a different integral basis from the previous one and seek a candidate ξ of a generator of Z_K using a linear combination of certain partial differenters of ξ. First we consider examples. Let k_{15} be the cyclotomic field with conductor $5 \cdot |-3|$. Then all the proper subfields consists of three quartic fields K_j and three quadratic ones L_j $(1 \leq j \leq 3)$, namely $K_1 = k_5, K_2 = Q(\sqrt{5}, \sqrt{-3}), K_3 = Q(\zeta_{15} + \zeta_{15}^{-1}), L_1 = Q(\sqrt{5}), L_2 = Q(\sqrt{-3}), L_3 = Q(\sqrt{-15})$. In the biquadratic field K_2, a prime number 2 remains prime in its subfield L_1. Then using Lemma 2, we see that K_2 is non-monogenic. The other five subfields are monogenic by [18]. Next we take the cyclotomic field k_{371} with
On a Problem of Hasse

This field has three quartic subfields K_j ($1 \leq j \leq 3$);

$$K_1 = \mathbb{Q}(\eta_{\chi_{53}}), \quad K_2 = \mathbb{Q}(\sqrt{53}, \sqrt{-7}), \quad K_3 = \mathbb{Q}(\eta_{\chi_{371}}).$$

In the field K_2, since 2 remains prime in the quadratic subfield $\mathbb{Q}(\sqrt{53})$ and is decomposed in $\mathbb{Q}(\sqrt{-7})$, i.e., its relative degree f_{K_2} with respect to K_2/\mathbb{Q} is 2, we see by Lemma 2 that K_2 is non-monogenic. However, since the relative degree f_{K_1} with respect to K_1/\mathbb{Q} is 4, we could not use Lemma 2 for K_1. Since the conductor of K_1 is a prime > 5, K_1 is also non-monogenic by the former work [11]. Now we shall show that K_3 is monogenic and this is a new example, which was not obtained by the previous method in [10].

Let $D = dd_1$ be a square free odd integer with $d = a^2 + 4b^2 \equiv -d_1 \equiv 1 \pmod{4}$ and $d = \prod_{j=1}^{r} p_j$ and $d_1 = \prod_{k=1}^{s} q_k$, the canonical factorizations of d and d_1, respectively. Let

$$\delta = \prod_{j=1}^{r} \pi_j$$

be the prime decomposition of a factor $\delta = a + 2bi$ of d with $i = \sqrt{-1}$ in k_4, where $p_j = \pi_j \cdot \overline{\pi_j}$, $d = \delta \cdot \overline{\delta}$; here $\overline{\alpha}$ denotes the complex conjugate of $\alpha \in k_4$. Let G be the Galois group of the cyclotomic extension k_D/\mathbb{Q}. We identify the group G with the reduced residue group modulo D. Let $\chi_p(x) = \left(\frac{x}{\pi_j}\right)_4$ be a pure quartic character with conductor p_j for $x \in G$, where $\left(\frac{x}{\pi_j}\right)_4$ means the quartic residue symbol modulo π_j with normalized $\pi_j \equiv 1 \pmod{(1-i)^3}$ ($1 \leq j \leq r$). Then the quartic character χ_d is defined by $\prod_{j=1}^{r} \chi_{p_j}$. Let ψ_d and ψ_{d_1} denote the quadratic characters χ_d^2 and $\prod_{k=1}^{s} \psi_{q_k}$ for the quadratic character ψ_{q_k} with conductor q_k, respectively. Then $\chi = \chi_d \psi_{d_1}$ is a quartic character with conductor dd_1. Let $\tau(\chi) = \sum_{x \in G} \chi(x)\zeta_D^x$ be the Gauß sum attached with χ. From the norm relation of the Gauß sum, Jacobi sum and the decomposition of $\tau(\chi)$, we have

$$\tau(\chi_p)\tau(\overline{\chi}_p) = \chi_p(-1)p,$$

$$\tau(\chi_p)^2/\tau(\overline{\chi}_p^2) = -\chi_p(-1)\pi_p,$$

$$\tau(\chi) = \left(\prod_{j=1}^{r} \chi_{p_j}(d/p_j)\right) \left(\prod_{k=1}^{s} \psi_{q_k}(d_1/q_k)\right) \left(\prod_{j=1}^{r} \tau(\chi_{p_j})\right) \left(\prod_{k=1}^{s} \tau(\psi_{q_k})\right),$$

where $\overline{\chi}_p$ denotes the complex conjugate character of χ_p. Then we can derive for $d = \delta \cdot \overline{\delta}$,
\[\delta \equiv 1 \pmod{(1-i)^3}, \]

\[
\tau(\chi) \tau(\bar{\chi}) = \chi(-1)dd_1 = (-1)^s dd_1,
\tau(\chi)^2 = (-1)^{r+s} \psi_d(d_1)d d_1 \sqrt{d},
\tau(\chi^2) = (-1)^s \psi_d(d_1) \delta d_1 \sqrt{d}.
\]

Let \(H \) be the kernel of \(\chi \). Then the residue class group \(G/H \) is isomorphic to a cyclic subgroup \(< \chi > \) of order 4 of the character group \(\mathfrak{X} \) of \(G \). Let \(K \) denote the subfield of \(k_D \) associated with \(< \chi > \). Then \(K \) is a cyclic quartic extension over \(Q \), whose Galois group \(\text{Gal}(K/Q) \) is isomorphic to \(G/H \). Let \(\eta = \eta_\chi = \sum_{x \in H} \zeta_D^x \) be the associated Gauß period of \(\varphi(D)/4 \) terms with the character \(\chi \) of conductor \(D \). Then we have \(K = Q(\eta) \).

Fix an element \(\sigma \in G \) such that \(\chi(\sigma) = i \). Then we get

\[
\eta = (((-1)^{r+s} + \tau(\chi) + \tau(\chi^2) + \tau(\bar{\chi}))/4)
\]

\[
\tau(\chi)^{\sigma} = -i \tau(\chi), \quad \tau(\chi^2)^{\sigma} = -\tau(\chi^2), \quad \tau(\bar{\chi})^{\sigma} = i \tau(\bar{\chi}).
\]

Lemma 2.1. Being the same notation as above, it holds that

\[Z_K = Z[1, \eta, \eta^{\sigma}, \eta^{\sigma^2}] = Z[1, \eta, \eta^{\sigma}, \eta + \eta^{\sigma^2}]. \]

Proof. Since the set \(\{\eta, \eta^\sigma, \eta^{\sigma^2}, \eta^{\sigma^3}\} \) forms a normal basis of \(Z_K \), we have \(Z_K = Z[1, \eta, \eta^\sigma, \eta^{\sigma^2}] \) by \((-1)^{r+s} = \eta + \eta^\sigma + \eta^{\sigma^2} + \eta^{\sigma^3}\). Applying a suitable special linear transformation to a basis \(\{1, \eta, \eta^\sigma, \eta^{\sigma^2}\} \), we obtain the basis \(\{1, \eta, \eta^\sigma, \eta + \eta^{\sigma^2}\} \).

Now, we choose the integral basis \(\{1, \eta, \eta^\sigma, \eta^{\sigma^2}, \eta^{\sigma^3}\} \) because the number \(\eta + \eta^{\sigma^2} = \{(-1)^{r+s} + \tau(\chi^2)\}/2 \) belongs to \(k = Q(\sqrt{d}) \). Assume that we have \(Z_K = Z[\xi] \) for \(\xi = x\eta + y\eta^\sigma + z(\eta + \eta^{\sigma^2}) \). Then for the candidate \(\xi \) of a power integral basis, the different \(d_K(\xi) \) of \(\xi \) should be equal to the field different \(d_K \). By Hasse’s Conductor-Discriminant formula, we have \(d_K = \prod_{\rho \in <\chi>} f_\rho = 1 \cdot dd_1 \cdot d_1 \cdot dd_1 = d^3 d_1^2 \) and \(d_K = N_K(\mathfrak{d}_K) \), where \(f_\rho \) denotes the conductor of a character \(\rho \).

By \(\mathfrak{d}_K(\xi) = (\xi - \xi^{\sigma})(\xi - \xi^{\sigma^2})(\xi - \xi^{\sigma^3}) \) we have

\[
\pm d_K(\xi) = N_K(\mathfrak{d}_K(\xi))
\]

\[
= (\xi - \xi^{\sigma})(\xi - \xi^{\sigma^2})(\xi - \xi^{\sigma^3})
\times (\xi^{\sigma} - \xi^{\sigma^2})(\xi^\sigma - \xi^{\sigma^3})(\xi^{\sigma^3} - \xi)
\times (\xi^{\sigma^2} - \xi^{\sigma^3})(\xi^{\sigma^2} - \xi)(\xi^{\sigma^2} - \xi^{\sigma})
\times (\xi^{\sigma^3} - \xi)(\xi^{\sigma^3} - \xi)(\xi^{\sigma^3} - \xi^{\sigma^2})
\]

\[
= \{(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})\}^2 \{(\xi - \xi^{\sigma^2})(\xi - \xi^{\sigma^2})\}^2 \left[\{(\xi - \xi^{\sigma})(\xi - \xi^{\sigma^2})\}^2 \right]^\sigma.
\]
Here, we select \(\xi = x\eta + z(\eta + \eta^{\sigma}) \) with \(y = 0 \) and put
\[
I = N_{K/k}(\mathfrak{d}_{K/k}(\xi)) = -(\xi - \xi^{\sigma})^{2}, \quad J = N_{K/k}(\mathfrak{d}_{k}(\xi)) = (\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\sigma}.
\]
Then it follows that \(I = x^{2}(\eta - \eta^{\sigma^{2}})^{2} \). On the other hand, by the transitive law of the field differents for \(K \supset k \supset \mathbb{Q} \), we have
\[
\mathfrak{d}_{K} = \mathfrak{d}_{K/k}\mathfrak{d}_{k},
\]
where \(\mathfrak{d}_{K/k} \) is the relative different with respect to \(K/k \), namely
\[
\mathfrak{d}_{K/k} = <\alpha - \alpha^{\sigma^{2}}; \forall \alpha \in Z_{K}>.
\]
Thus, by \(N_{K}(\mathfrak{d}_{K}) = N_{K}(\mathfrak{d}_{K/k})N_{K}(\mathfrak{d}_{k}) \), \(N_{K}(\mathfrak{d}_{K}) = d_{K} = d^{3}d_{1}^{2} \) and \(N_{k}(\mathfrak{d}_{k}) = d \), we obtain \(N_{K}(\mathfrak{d}_{K/k}) = dd_{1}^{2} \), namely the relative discriminant
\[
d_{K/k} \cong N_{K/k}(\mathfrak{d}_{K/k}) \cong \sqrt{d}d_{1}.
\]
Here \(\alpha \cong \beta \) means that both sides are equal to each other as ideals. Then
\[
I = x^{2}d_{1}\sqrt{d} \cdot \gamma
\]
for some integer \(\gamma \in k \). Since the ‘obstacle’ factor \(x^{2}\gamma \) should disappear, we have \(x = \pm 1 \). By virtue of \(N_{K}(\mathfrak{d}_{k}(\xi))^{2} \equiv 0 \pmod{d_{K}/d_{K/k}^{2}} \) and
\[
d_{K}/d_{K/k}^{2} = d^{3}d_{1}^{2}/(dd_{1}^{2}) = d^{2},
\]
we obtain \(J \cong \mathfrak{d}_{k}(\xi)\mathfrak{d}_{k}(\xi)^{\sigma^{2}} \equiv 0 \pmod{\sqrt{d}} \).

Next we consider the following linear relation of three partial differents;
\[
N_{K/k}(\mathfrak{d}_{k}(\xi)) - N_{k}(\mathfrak{d}_{K/k}(\xi)) - N_{K/k}(\mathfrak{d}_{k}(\xi)^{\sigma^{-1}}) = 0,
\]
namely,
\[
(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\sigma^{2}} - (\xi - \xi^{\sigma^{2}})(\xi - \xi^{\sigma})^{\sigma} - (\xi - \xi^{\sigma^{-1}})(\xi - \xi^{\sigma^{-1}})^{\sigma^{2}} = 0.
\]
For \(\xi \) to satisfy \(Z_{K} = \mathbb{Z}[\xi] \), there must be such units \(\varepsilon_{j} \) in \(k \) as
\[
\varepsilon_{1}\sqrt{d} + \varepsilon_{2}\sqrt{dd_{1}} + \varepsilon_{3}\sqrt{d} = 0.
\]
Here by \(N_{K/k}(\mathfrak{d}_{k}(\xi)) = \mathfrak{d}_{k}(\xi)\mathfrak{d}_{k}(\xi)^{\sigma^{2}} \cong \sqrt{dd_{1}} \), we have \(N_{k}(\mathfrak{d}_{K/k}(\xi)) = \mathfrak{d}_{K/k}(\xi)\mathfrak{d}_{K/k}(\xi)^{\sigma} \cong \sqrt{dd_{1}} \), because, for a ramified ideal \(\mathfrak{L} \) in \(K \), i.e., \(\mathfrak{L}|dd_{1} \), \(\mathfrak{L}^{\sigma} = \mathfrak{L} \) holds. Then we get
\[
(*)_{0} \quad \begin{cases}
\varepsilon_{1} + \varepsilon_{2}d_{1} + \varepsilon_{3} = 0, \\
\bar{\varepsilon}_{1} + \bar{\varepsilon}_{2}d_{1} + \bar{\varepsilon}_{3} = 0,
\end{cases}
\]
where \(\bar{\varepsilon} \) for \(\varepsilon \in k \) means the real conjugate of \(\varepsilon \) with respect to \(K/\mathbb{Q} \). When we consider the simultaneous equation \((*)_{0}\) with coefficients \(\varepsilon_{j}, \bar{\varepsilon}_{j} \), under the assumption that the rank of \((*)_{0}\) would be equal to 1, then we have \(1 \pm d_{1} \pm 1 = 0 \), which is impossible by
$d_1 \geq 3$. Then the rank of $(*)_0$ is equal to 2. Without loss of generality, we may consider the equations dividing both sides of $(*)_0$ by ϵ_2:

$$(*) \begin{cases}
\epsilon_1 \cdot 1 + 1 \cdot d_1 + \epsilon_3 \cdot 1 = 0, \\
\bar{\epsilon}_1 \cdot 1 + 1 \cdot d_1 + \bar{\epsilon}_3 \cdot 1 = 0,
\end{cases}$$

with units $\epsilon_j = \frac{v_j + u_j \sqrt{d}}{2}$ in k. Thus we have the ratios

$$1 : d_1 : 1 = \begin{vmatrix}
1 & \epsilon_3 \\
1 & \bar{\epsilon}_3 \\
\epsilon_1 & 1 \\
\bar{\epsilon}_1 & 1
\end{vmatrix}.$$

Then by $1 : 1 = \bar{\epsilon}_3 - \epsilon_3 : \epsilon_1 - \bar{\epsilon}_1 = -u_3 : -u_1$ and $d_1 : 1 = \epsilon_3 \bar{\epsilon}_1 - \bar{\epsilon}_3 \epsilon_1 : \epsilon_1 - \bar{\epsilon}_1 = (v_3(u_1) + u_3 v_1)/2 : u_1$, we obtain $d_1 = -(v_3 + v_1)/2$. Since $\epsilon_3 = (v_3 + u_3 \sqrt{d})/2$, $\epsilon_1 = (v_1 + u_1 \sqrt{d})/2$ and $-u_3 = u_1$, we have $v_3 = \pm v_1$, and hence $v_3 = v_1$ by $d_1 \neq 0$. Then $d_1 = -v_1$. Thus $N_k(\epsilon_1) = (d_1^2 - u_1^2)/2 = \pm 1$, namely $d_1^2 \pm 4 = u_1^2$ holds. From $d_k(\xi) = (2z + (-1)^s \psi_{d_1}(d) \sqrt{d})/2 + \{(1 + i) \tau(\chi) + (1 - i) \tau(\bar{\chi})\}/4$, it follows that

$$J = N_{K/k}(d_k(\xi)) = d_k(\xi)d_k(\xi)^{\sigma^2}$$

$$= [(2z \pm 1)^2 \sqrt{d}/2 + \{(1 + i) \tau(\chi) + (1 - i) \tau(\bar{\chi})\}/4]$$

$$\times [(2z \pm 1)^2 \sqrt{d}/2 - \{(1 + i) \tau(\chi) + (1 - i) \tau(\bar{\chi})\}/4]$$

$$= (2z \pm 1)^2 \sqrt{d}/4 - \{2i(\pm \delta d_1 \sqrt{d}) - 2i(\pm \delta d_1 \sqrt{d}) + 4(\pm dd_1)\}/(16)$$

$$= (2z \pm 1)^2 \sqrt{d}/4 - \{\pm 8bd_1 \sqrt{d}} + 4(\pm dd_1)\}/(16)$$

$$= \{\pm bd_1/2 + [(2z \pm 1)^2 - d_1]/4\}\sqrt{d}.$$

Here we conclude that $(2z \pm 1)^2 \pm d_1$ is equal to $(2z \pm 1)^2 - d_1$, because J is an integer in k. We choose $b = 1$ and the number $(2z \pm 1)^2 \pm 2$ as d_1. Then for $\epsilon = (\pm d_1 \pm \sqrt{d})/2$ we see that $N_k(\epsilon) = -1$, namely that ϵ is a unit in k. Thus for square free numbers $d_1 = (2z + 1)^2 \pm 2$ and $d = d_1^2 + 4$, we obtain

$$d_K(\xi) \cong N_K(d_K(\xi))$$

$$\cong N_K(d_k/\eta(\xi) \cdot N_K(\xi))$$

$$\cong N_K(d_k/\eta(\xi) \cdot N_K(d_k(\xi))$$

$$\cong N_k(I) \cdot N_K(J)$$

$$\cong dd_1^2 \cdot (\sqrt{d})^4 = d_1^2 d_1^2,$$

where $I = N_K(\eta(\xi))$, $J = N_K(d_k(\xi))$ and $\sigma^2 Gal(K/Q) = Gal(K/Q)$. Therefore we verified the following Theorem.
Theorem 2.2. Let \(d_1 = (z+1)^2 \pm 2 \) \((z \in \mathbb{Z})\) and \(d = d_1^2 + 4 \) be square free integers. Then the cyclic quartic field \(K = \mathbb{Q}(\eta) \) with conductor \(dd_1 \) is monogenic; namely its ring \(Z_K \) of integers has a power integral basis \(Z_K = \mathbb{Z}[\xi] \) for \(\xi = \eta + z\sqrt{d} \). Here \(\eta \) means the associated Gauß period of \(\varphi(dd_1)/4 \) terms with the quartic character \(\chi = \chi_d \psi_{d_1} \), where \(\chi_d \) denotes the quartic character with conductor \(d \) and \(\psi_{d_1} \) the quadratic one with conductor \(d_1 \).

§3. A new family of monogenic cyclic quartic fields based on bases of the fields

Let \(K \) be a cyclic quartic extension \(\mathbb{Q}(\theta) \) over \(\mathbb{Q} \) associated to the character \(\chi = \chi_d \psi_{d_1} \), where \(\chi_d \) is a quartic and \(\psi_{d_1} \) is a quadratic character. Then \(K \) has a quadratic subfield \(k = \mathbb{Q}(\sqrt{d}) \) with the field discriminant \(d \). In this article, we restrict ourselves within an odd factor \(d \equiv 5 \) (mod 8) of the conductor \(dd_1 \) of \(K \). It is because \(Z_K \) has no power basis if \(d \equiv 1 \) (mod 8). Indeed, the prime 2 is completely decomposed in \(k \) in this case, and hence the relative degree \(f \) of 2 with respect to \(K/\mathbb{Q} \) is at most 2. Thus by Lemma 2 of [17], \(Z_K \) has no power basis. Since \(K \) is a quadratic extension of \(k \), we can choose an integer \(\sqrt{\frac{a+b\sqrt{d}}{2}} \) for \(a, b \in \mathbb{Z}, \ a \equiv b \) (mod 2) as a generator \(\theta \) for the field \(K \).

Here we use the following lemmas.

Lemma 3.1 ([17]). Let \(\ell \) be a prime number and let \(F/\mathbb{Q} \) be a Galois extension of degree \(n = ef \) with ramification index \(e \) and the relative degree \(f \) with respect to \(\ell \). If one of the following two conditions is satisfied, then the ring \(Z_F \) of integers in \(F \) has no power integral basis, i.e., \(F \) is non-monogenic:

1. \(e\ell^f < n \) and \(f = 1 \);
2. \(e\ell^f \leq n + e - 1 \) and \(f \geq 2 \).

Lemma 3.2 ([6, 19]). Being the same notation as above, the field \(\mathbb{Q}\left(\sqrt{(a+b\sqrt{d})/2}\right) \) is a cyclic quartic extension over \(\mathbb{Q} \) if and only if there exists an integer \(j \in \mathbb{Z} \) such that

\[
\frac{a^2 - b^2d}{4} = j^2d;
\]

hence \(a \equiv 0 \) (mod \(d \)) in this case.

Let \(G \) be the Galois group \(< \sigma > \) of the cyclic quartic extension \(K/\mathbb{Q} \) with a generator \(\sigma \). We may suppose

\[\theta^\sigma = \sqrt{\frac{a - b\sqrt{d}}{2}} \quad \text{and} \quad \theta^{\sigma^2} = -\theta.\]
Proposition 3.3. Let \(d(1, \sqrt{d}, \theta, \theta^\sigma) \) be the discriminant of a basis \(\{1, \sqrt{d}, \theta, \theta^\sigma\} \) of the field \(K \), where \(\theta = \sqrt{a+b\sqrt{d}/2} \), \(\theta^\sigma = \sqrt{a-b\sqrt{d}/2} \) and \(\theta^\sigma^2 = -\theta \). Then it holds that
\[
d(1, \sqrt{d}, \theta, \theta^\sigma) = \begin{vmatrix} 1 & \sqrt{d} & \theta & \theta^\sigma \\ 1-\sqrt{d} & -\theta & -\theta^\sigma & \theta \\ 1 & \sqrt{d} & -\theta & -\theta^\sigma \\ 1 & -\sqrt{d} & \theta & \theta^\sigma \end{vmatrix}^2 = 64a^2d.\]

On the other hand, we obtain the field discriminant \(d_K \) by the next lemma.

Lemma 3.4 ([18]). For the field discriminant \(d_K \) of the cyclic quartic field \(K \) associated to quartic character \(\chi = \chi_d\psi_{d_1} \), it holds that
\[
(1) \quad d_K = f_1f_xf_\chi^2f_\chi^3 = d^3d_1^2,
\]
where \(f_\rho \) and \(I \) denote the conductor of a character \(\rho \) and the principal character, respectively;
\[
(2) \quad d_K = N_k(d_{K/k})d_{k}^2 = d^3d_1^2,
\]
where \(k \) denotes the quadratic subfield \(\mathbb{Q}(\sqrt{d}) \) of \(K \), \(d_{K/k} \) the relative discriminant with respect to \(K/k \) and \(N_k \) the norm of an ideal in \(k \) with respect to \(k/\mathbb{Q} \), respectively.

Lemma 3.5 ([6]). Being the same notation as above, for a number \(\xi = x+y\sqrt{d}+z\theta+w\theta^\sigma \) of the field \(K \), \(x, y, z, w \in \mathbb{Q} \), it holds that \(\xi \in \mathbb{Z}_K \) if and only if the following two conditions hold:
\[
(\text{IT}) \quad \text{Tr}_{K/k}(\xi) = 2(x+y\sqrt{d}) \in \mathbb{Z}_K,
\]
\[
(\text{IN}) \quad N_{K/k}(\xi) = \left\{ x^2+y^2d-(z^2+w^2)\frac{a}{2} \right\} + \left\{ 2xy-(z^2-w^2)\frac{b}{2}-2zwj \right\} \sqrt{d} \in \mathbb{Z}_K.
\]

Theorem 3.6. Let \(\chi = \chi_d\psi_{d_1} \) be the composite quartic character with a quartic \(\chi_d \) with odd conductor \(d \) and a quadratic \(\psi_{d_1} \) with odd conductor \(d_1 \). Then a cyclic quartic field \(K = \mathbb{Q}(\theta) \) with \(\theta = \sqrt{a+b\sqrt{d}/2} \) for square free integers \(a \) and \(b \) is monogenic, namely \(\mathbb{Z}_K = \mathbb{Z}[\xi] \) for some \(\xi = x+y\sqrt{d}+z\theta+w\theta^\sigma \), \(x, y, z, w \in \mathbb{Q} \) and a generator \(\sigma \) of the Galois group of \(K/\mathbb{Q} \), if and only if the following three conditions are satisfied:
\[
(1) \quad \text{For } a = dd_1a_0, \ b = d_1b_0, \ d \equiv 5(\mod 8), \ -d_1 \equiv 1(\mod 4), \ it \ holds \ that \ \frac{da_0^2-b_0^2}{4} = j_0^2 \quad \text{and} \quad a_0, b_0, j_0 \ are \ rational \ integers; \quad 4
\]
\[
(2) \quad \text{Tr}_{K/k}(\xi) = 2(x+y\sqrt{d}) \ belongs \ to \ \mathbb{Z}_k, \ \text{and} \quad N_{K/k}(\xi) = \left\{ x^2+y^2d-(z^2+w^2)\frac{da_0}{2} \right\} + \left\{ 2xy-(z^2-w^2)\frac{b_0}{2}-2zwj_0 \right\} \sqrt{d} \ belongs \ to \ Z_k; \quad 3
\]
\[
(3) \quad \text{For } X = (z^2-w^2)j_0 - zwb_0 \quad \text{and} \quad Y = 4y^2-(z^2+w^2)d_1a_0, \ it \ holds \ that \ \ X = \pm 1_4 \quad \text{and} \quad 2d_1X - Y\sqrt{d} \ is \ a \ unit \ in \ k. \quad 3
Proof. First we immediately see that the assertion (2) holds if and only if $\xi \in Z_K$. We now assume $\xi \in Z_K$. We notice that the assertion $Z_K = \mathbb{Z}[\xi]$ if and only if $\pm d_K = d_K(\xi)$. For the different $\mathfrak{d}_K(\xi) = (\xi - \xi^\sigma)(\xi - \xi^{\sigma^2})(\xi - \xi^{\sigma^3})$, it holds that

$$d_K(\xi) = N_K(\mathfrak{d}_K(\xi)) = N_K(\mathfrak{d}_K/k(\xi) \cdot N_K/k(\mathfrak{d}_k(\xi))).$$

We put

$$(I) = N_k(\mathfrak{d}_K/k(\xi)) = (\xi - \xi^{\sigma^2})(\xi - \xi^{\sigma^2})^{\sigma}, \quad (II) = N_K/k(\mathfrak{d}_k(\xi)) = (\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\sigma^2}.$$ Then, it follows that

$$N_K(\mathfrak{d}_K/k(\xi)) = N_K(N_K/k(\mathfrak{d}_K/k(\xi)) = N_k(d_K/k(\xi))$$

$$= N_K/k(N_k(\mathfrak{d}_K/k(\xi)))$$

$$= N_K/k(\{(\xi - \xi^{\sigma^2})(\xi - \xi^{\sigma^2})^{\sigma}\})$$

$$= (I)^2$$

and

$$N_K(\mathfrak{d}_k(\xi)) = N_K(N_k(\mathfrak{d}_k(\xi))) = N_K/k(d_k(\xi))$$

$$= N_k(N_K/k(\mathfrak{d}_k(\xi)))$$

$$= (\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\sigma^2}(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\sigma^3},$$

$$= (II)(II)^\sigma.$$ Specifically,

$$d_{K/k}(\theta) = N_K(\mathfrak{d}_{K/k}(\theta)) = (\theta - \theta^{\sigma^2})(\theta - \theta^{\sigma^2})^{\sigma^2} = (\theta - (-\theta))(\theta - (-\theta))^{\sigma^2} = 4\theta\theta^{\sigma^2}.$$ Then by Lemma 3, it holds that

$$\frac{d_K(\theta)}{d_k(\theta)^4} = N_k(d_K/k(\theta)) = (4\theta\theta^{\sigma^2})(4\theta\theta^{\sigma^2})^{\sigma} = 2^4(\theta\theta^{\sigma})(\theta\theta^{\sigma})^{\sigma^2}$$

$$= 2^4\sqrt{\frac{a^2 - b^2d}{4}} \left((-1)^2 \sqrt{\frac{a^2 - b^2d}{4}}\right) = 2^4 j^2 d.$$ Since $\gcd(d(1, \sqrt{d}, \theta, \theta^\sigma), N_k(d_{K/k}(\theta)) = \gcd(2^6 a^2 d, 2^4 j^2 d) \equiv 0 \pmod{d_{K/k}^2}$ for $d_{K/k}^2 = \frac{d_K}{d_k} = \frac{d_k}{d_k} = \frac{d_1 d_k^2}{d_k}$, we have $\gcd(a^2 d, j^2 d) \equiv 0 \pmod{dd_1^2}$). Then we can put $a = dd_1 a_0$, $j = d_1 j_0$, $a_0, j_0 \in \mathbb{Z}$ together with $d(1, \sqrt{d}, \theta, \theta^\sigma) \equiv 0 \pmod{d_K}$, and hence by $\frac{a^2 - b^2d}{4} = j^2 d$ in Lemma 3, we get $b = d_1 b_0$. Therefore we obtain the assertion (1),
because $K = \mathbb{Q}(\theta)$ is a cyclic quartic field. For a generator $\xi = x + y\sqrt{d} + z\theta + w\theta^\sigma$ of Z_K in $\mathbb{Q}(\theta)$ we have

\[(I) = 2(z\theta + w\theta^\sigma) \cdot 2(z\theta^\sigma + w\theta^{2\sigma})
= 2^2(z^2\theta\theta^\sigma + zw(\theta\theta^2 + (\theta^\sigma)^2) + w^2\theta^\sigma\theta^{2\sigma})
= 2^2(z^2j\sqrt{d} + zw\left(-\frac{a + b\sqrt{d}}{2} + \frac{a - b\sqrt{d}}{2}\right)) + w^2(-j\sqrt{d}))
= 2^2(-zw^\sigma\sqrt{d} + (z^2 - w^2)j\sqrt{d})
= 2^2Xd_1\sqrt{d} \quad \text{with} \quad X = (z^2 - w^2)j_0 - zwb_0\]

and

\[(II) = (2y\sqrt{d} + z(\theta - \theta^\sigma) + w(\theta + \theta^\sigma))(2y^\sigma\sqrt{d} - z(\theta - \theta^\sigma) - w(\theta + \theta^\sigma))
= 4y^2d - \{z(\theta - \theta^\sigma) + w(\theta + \theta^\sigma)\}^2
= 4y^2d - \{z^2(\theta^2 + (\theta^\sigma)^2 - 2\theta\theta^\sigma) + w^2(\theta^2 + (\theta^\sigma)^2 + 2\theta\theta^\sigma) + 2zw(\theta^2 - (\theta^\sigma)^2)\}
= 4y^2d - \{z^2(a - 2j\sqrt{d}) + w^2(a + 2j\sqrt{d}) + 2zw(b\sqrt{d})\}
= \{4y^2 - (z^2 + w^2)a_0d_1\}d - 2\{z^2j - w^2j - zwb\}\sqrt{d}
= (Y\sqrt{d} - 2Xd_1)\sqrt{d}
\]

with $Y = 4y^2 - (z^2 + w^2)a_0d_1$, $X = (z^2 - w^2)j_0 - zwb_0$.

Hence, $d_K(\xi) = d_K$ if and only if two numbers 2^2X and $Y\sqrt{d} - 2d_1X$ are units in k, that is,

\[
(z^2 - w^2)j_0 - zwb_0 = \pm \frac{1}{4},
\]

\[
(4y^2 - (z^2 + w^2)a_0d_1)\sqrt{d} - 2((z^2 - w^2)j_0 - zwb_0)d_1 = \text{a unit in } k.
\]

\[\square\]

§ 4. The density of certain monogenic fields

Finally we construct certain monogenic cyclic quartic fields K associated to the characters of the form $\chi = \chi_d\psi_{d_1}$ where χ_d is a quartic character with conductor d and ψ_{d_1} a quadratic character with conductor $|d_1|$. Let $\langle \sigma \rangle$ be the Galois group of K/\mathbb{Q} and $\theta = \sqrt{\frac{a + b\sqrt{d}}{2}}$ be a primitive element of K over \mathbb{Q}. Here we can put $a = dd_1a_0$, $b = d_1b_0$ and $j = d_1j_0$ by the previous section. For a number $\xi = x + y\sqrt{d} + z\theta + w\theta^\sigma$, we select

\[
x = y = \frac{d_2}{4}, d_2 \equiv 1 \pmod{2}, \quad z = \frac{1}{2}, \quad w = 0, \quad j_0 = 1, \quad a_0 = -1, \quad -d_1 = -d_2^2 \pm 2, \quad d = d_1^2 + 4.
\]
Then by
\[
Y = 4y^2 - (z^2 + w^2)a_0d_1 \equiv \frac{1}{2} \pmod{1},
\]
\[
2X = 2((z^2 - w^2)j_0 - zwb_0) = \frac{1}{2},
\]
it holds that \(Y \sqrt{d} - 2Xd_1 \in \mathbb{Z}_k \).

We estimate the density \(\triangle \) of square free numbers \(d_1 = d_2^2 - 2 \) and \(d = d_1^2 + 4 \). Assume \(d_2^2 - 2 \equiv D_2^2 - 2 \equiv 0 \pmod{p^2} \) for an odd prime \(p \) with \(d_2 \leq D_2 \) and \(d_2 \equiv D_2 \equiv 1 \pmod{2} \). Then \((d_2 - D_2)(d_2 + D_2) \equiv 0 \pmod{p^2} \).

If \(d_2 - D_2 \equiv d_2 + D_2 \equiv 0 \pmod{p} \), then \(2d_2 \equiv 0 \pmod{p} \), and hence \(d_2 \equiv 0 \pmod{p} \); so \(-2 \equiv d_2^2 \equiv 0 \pmod{p} \), which is a contradiction. Thus only either one of \(D_2 \equiv d_2 \) or \(-d_2 \pmod{p^2} \) holds.

Let \(\mathcal{I}_t = (tp^2, (t + 1)p^2) \) be the unique interval of the form which contains \(d_2 \), and \(J_t \) be the set \(\{D_2; p^2 | (D_2^2 - 2), D_2 \in \mathcal{I}_t\} \). Then \(J_t = \{d_2, (2t + 1)p^2 - d_2\} \) for \(tp^2 < (2t + 1)p^2 - d_2 < (t + 1)p^2 \). However, since \((2t + 1)p^2 - d_2 \equiv 0 \pmod{2} \), it holds that \(\#J_t = \#\{d_2\} = 1 \).

Hence, for odd primes \(p \)
\[
\lim_{N \to \infty} \frac{\#\{d_1 = d_2^2 - 2 < N; d_1 \text{ odd square free}\}}{N} > \lim_{N \to \infty} \frac{1}{N} \left(N - \#\{d_1; d_1 < N, p^2 | d_1\} - \#\{d_1; d_1 < N, 2|d_1\} \right)
\]
\[
> 1 - \sum_{(\frac{2}{p}) = 1} \frac{1}{p^2} - \frac{1}{2};
\]
we denote the last value by \(\delta_1 \) where \(\frac{1}{2} \) means the the density of even \(d_2 \). For \(d = d_1^2 + 4 \), we have \(p \mid d \) if and only if \((\frac{-1}{p}) = 1 \) if and only if \(p \equiv 1 \pmod{4} \). In the ring of Gaussian integers, \(p \mid d = d_1^2 + 4 \) if and only if \(p = \pi \overline{\pi} \) for a prime \(\pi = a + ib \) and its conjugate \(\overline{\pi} = a - ib \). Suppose that \(d \equiv 0 \pmod{p^2} \). Then since \(d_1^2 + 4 = (d_1 + 2i)(d_1 - 2i) = (d_2^2 - 2 + 2i)(d_2^2 - 2 - 2i) \), if \(d_1 \equiv 0 \pmod{p^2} \), then \(\pi^2 \mid d_2^2 - 2 + 2i \), because \((d_2^2 - 2, 2) = 1 \).

Assume \(d_2^2 - 2 + 2i \equiv D_2^2 - 2 + 2i \pmod{\pi^2} \) and \(d_2 \leq D_2 \); in the same way as above, we obtain
\[
\lim_{N \to \infty} \frac{\#\{d = d_1^2 + 4 < N; d \text{ has a square factor} > 2\}}{N}
\]
\[
= \lim_{N \to \infty} \frac{1}{N} \#\{d; d < N, p^2 | d\}
\]
\[
< \lim_{N \to \infty} \frac{1}{N} \sum_{d < N, p^2 | d} \frac{N}{p^2} = \sum_{(\frac{-1}{p}) = 1} \frac{1}{p^2};
\]
we denote the last value by \(\delta \).

Let \(\Delta \) be the density
\[
\lim_{N \to \infty} \frac{\#\{d = d_1^2 + 4 < N; d \text{ and } d_1 \text{ are square free}\}}{N}.
\]
Then \(\Delta > \delta_1 - \delta = \left(1 - \frac{1}{2} - \sum_{(\frac{2}{p})=1} \frac{1}{p^2} \right) - \sum_{(\frac{1}{p})=1} \frac{1}{p^2} \). By virtue of the evaluation
\[
\sum_{p \geq 3} \frac{1}{p^2} < \frac{19}{72},
\]
which is due to Lemma 7 in [6], we obtain \(\Delta > \frac{1}{2} - (\frac{19}{72} - \frac{1}{3^2}) \times 2 = \frac{7}{36} > 0 \).

Indeed, from the fact \((\frac{-1}{3}) = (\frac{2}{3}) = -1\), it follows that \(3 \not| d\) and \(3 \not| d_2\); namely, the prime number 3 does not appear in the both summations \(\sum_{(\frac{2}{p})=1} \frac{1}{p^2}\) and \(\sum_{(\frac{1}{p})=1} \frac{1}{p^2}\). Then the evaluation of
\[
\sum_{p \geq 5} \frac{1}{p^2} = \sum_{p \geq 3} \frac{1}{p^2} - \frac{1}{3^2}
\]
is bounded by the value \(\frac{19}{72} - \frac{1}{3^2}\).

Contrary to the cyclic quartic fields with prime conductors, we obtain

Theorem 4.1. There exist infinitely many monogenic cyclic quartic fields with odd composite conductors over the rationals.

Example 4.2. Using the parameter \(z\) in Theorem 1, several conductors of new monogenic cyclic quartic fields are given as follows;

\[
53 \cdot | -7 |_{z_-=1} = 371, \quad 533 \cdot | -23 |_{z_-=2} = 13 \cdot 41 \cdot | -23 | = 12259,
\]
\[
2213 \cdot | -47 |_{z_-=3} = 104011.
\]

Two monogenic fields with conductors,

\[
5 \cdot | -1 |_{z_-=0} = 5, \quad 13 \cdot | -3 |_{z_+=0} = 39
\]
coincide with the members of the former experiments [10].

Acknowledgement. The authors would like to express their gratitude to Prof. Yuichiro TAGUCHI [Kyushu Univ.] for his valuable comments to §2, a referee for many notices with linguistic remarks and Prof. Ken YAMAMURA [National Defense Academy of Japan] for remarks on Theorem 1 and updated reference tables on monogenuity and the non-essential discriminant factor (außerwesentlicher Diskriminanzanteiler) of an algebraic number field. Finally the authors would express thanks to Prof. Noriyuki SUWA[Chuo Univ.] for his ceaseless encouragements to find a new phenomenon in Mathematics introducing us a short novel 夢十話 [Ten Stories of Dreams] by 夏目漱石 during the Conference [Algebraic Number Theory and Related Topics 2007].

References

[13] Nakahara T. and Uehara T., Monogenesis of the Rings of Integers in Certain Abelian Fields, Preprint,

[21] Yamamura K., Bibliography on außerwesentlicher diskriminantenanteil or common index divisors in algebraic number fields, Dec. 2007, updated ed., [47 papers with MR# are included].