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Riemann zeta function and the best constants of
five series of Sobolev inequalities

By

Hiroyuki YAMAGISHIT Yoshinori KAMETAKAT* Atsushi NAGAI*™*
Kohtaro WATANABE! and Kazuo TAKEMURA?

Abstract

We clarified the variational meaning of the special values ((2M) (M = 1,2,3,---) of
Riemann zeta function ((z). These are essentially the best constants of five series of Sobolev
inequalities. In the background, we consider five kinds of boundary value problem (periodic, an-
tiperiodic, Dirichlet, Neumann, Dirichlet-Neumann) for a differential operator (—1)* (d/dxz)*™.
Green functions for these boundary value problems are given by Bernoulli polynomials. Green
functions are simultaneously reproducing kernels for certain Hilbert spaces. Applying Schwarz
inequality to the reproducing relation, we have found the best constants of Sobolev inequalities.

§1. Conclusion

We consider the following five cases:

P (Periodic), AP  (Anti Periodic),
D (Dirichlet), N (Neumann), DN (Dirichlet-Neumann).
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We introduce the following five Sobolev spaces.

H=HX,M)= { w(z) | w(z), v (z) e L3(0,1), wu(z) satisfies A(X) }
AP) D) —uD0)=0 (0<i<M-1), /1 u(z)dx = 0
AAP) v (1) +uP(0)=0 (0<i<M—1) ’
AD) u®0)=u®)(1)=0 (0<i<[(M—-1)/2])
AN) D 0) = w1 =0 (0 < i < [(M —2)/2)), / w(x)der =0
ADN)uCI(0) = 0 (0<i < [(M—1)/2)), :

wH(1) =0 (0<i<[(M —2)/2])

It should be noted that if M = 1 the boundary conditions for u(z) in A(N) and for u(x)
on x =1 in A(DN) are not required. Furthermore, we introduce Sobolev inner product
defined by

(u,v) pr :/0 u™) (2) 7™M (2) da.

Sesquilinear form (-,-)as is proved to be an inner product of H afterwards. That is, H

is Hilbert space with an inner product (-,-)as.

Let G(X;z,y) = G(X,M;z,y) (0 < x,y < 1) be Green functions defined by

G(P;z,y) = (=) banr(fz —yl), (1.1)
G(AP;z,y) = (—1)M+192M-1 [ bgM(k" 5 y') — bonr (% _ 5 y') ] , (1.2)
G(D;x,y) = (—1)M+192M -1 bgM(VC 3 y') - b2M<x—12-y) : (1.3)
G(N;z,y) = (—1)M+192M-1 :bgM(”’;y') +b2M($;y) , (1.4)
G(DN;z,y) = (—1)M+142M—1[

(7)o (22 32 a3 552) ] 0

bans () is Bernoulli polynomial defined in section 2.

Our conclusion is the following theorem:

Theorem 1.1.

For any function u(x) € H, there exists a positive constant C
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which is independent of u(z) such that Sobolev inequality

2 1 9
(s ) ) < ¢ [ |u)] ao (1.6
0<y<1 0
holds. Among such C' the best constant C(X, M) is as follows:
CX,M) = sup G(y,y) = G(yo,Y0), (1.7)
0<y<1
C(P,M) = 2~ M=) 7=2M¢(20]),
C(D,M) = C(AP,M) = 2-GM=1) (22M _ 1) z=2M((2)\]),
C(N,M) = 2r2M¢(2M),
C(DN, M) = 2(22M — 1) 72 M (2M),
where ((z Z (Re z > 1) is well-known Riemann-zeta function. If we replace

C by C(X, M) ;L (1.6), then the equality holds for u(z) = ¢G(z,yp) (0 < x < 1) where

c is any complex number.

The engineering meaning of Sobolev inequality is that the square of the maximal
bending of a string (M = 1)[1] or a beam (M = 2) is estimated from above by the

constant multiple of the potential energy.
We here list explicit forms of C(X, M) (M =1,2,3,4,5).

M| c(P, M) |C(D, M),C(AP, M)|C(N, M)|C(DN, M)
1 1 1
1| = - = 1
12 4 3
) 1 1 1 1
720 48 45 3
; 1 1 2 2
30240 480 945 15
A 1 17 1 17
1209600 80640 4725 315
. 1 31 2 62
47900160 1451520 93555 | 2835

The present paper is composed of eight sections. In section 2, we explain about
Bernoulli polynomial [2, 3], which plays an important role in this paper. In section 3,
we present five boundary value problems for (—1)(d/dx)?™. In section 4, we show
that Green function G(x,y) is expressed in terms of Bernoulli polynomial by “reflection
method”. In section 5, it is clarified that Green function G(x,y) is a reproducing kernel
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for H and (-,-)as. Section 6 is devoted to the proof of Theorem 1.1. In section 7, we
investigate the diagonal value of Green function. Finally, in section 8, we present a
discrete version of Theorem 1.1 (DN, M = 1).

§2. Bernoulli polynomial

As a preparation, we introduce Bernoulli polynomials b;(x) defined by the following

recurrence relation:
bo(CC) =1
1
vi(z) = bj-1(x), / bj(x)dr = 0 (G=1,2,3--).
0

Here we list explicit forms of b;(x) (j =0,1,---,8).

h(r) =1, b)) =z- 5, b)) = g2t gat o
bg(x):éxg—iﬁ-*-%a:, b4(a:):2—14x4—1—12x3+ix2—%,
b5(x):%$5—%$4+7—12$3—ﬁ10m,
ba(x):%arfj—ﬁf—l—%ﬁ—ﬁﬁ—}—ﬁ,

brle) = ﬁaﬁ B 14140 =+ 14140 - ﬁx?’ * ﬁa”
bg(a;):@azg—wl&)f—l—@xf‘—ﬁﬁ%—@xz—m.

They are also defined by the generating function

xt o

o = L@ (el <o)

Bernoulli polynomial b;(x) is j-th polynomial with respect to . We list up the proper-
ties of Bernoulli polynomial b;(z) which are required in this paper.

bj(1—z) = (=1)7bj(x)  (j=0,1,2,---). (2.1)
bj(1) = b;(0) = J1 (j=1)
{ou#n. .

0 (j=1,23,---). (2:3)

boj11(1/2) =0  (j=0,1,2,---). (2.4)
(=1)""bo;(0) = B;/(2§)! (1 =0,1,2,---). (25)

byi+1(0) = {—1/2 (j =0)
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In (2.5), Bj is Bernoulli number defined by
1

n—

S (1) @7)B =-n (n=1,2,3,---), By = —L.

§=0
Next we derive Fourier expansion formula of b;({z}), where
{z} =x — [z], [] =sup{n € Z|n <z},

denotes a decimal part of a real number z. {z} is a periodic function of x with period
1. For j =1,2,3, -, we have

bj({z}) = — Z (V—12rk) - exp(v—12rkz),

k£0
that is to say
bo;({7}) = (=1)7T12 Iil(%k)—?j cos(2rkx), (2.6)
boji({x}) = (—1)7T12 i(%k)—(?ﬁl) sin(27kx). (2.7)
For j =0,1,2,---, the relati(f:l
(=1)7" b2;(0) = 2 g(%k)‘zj = (Qj)zj ¢(29), (2.8)
bo;(1/2) = — (1 . 2—_<12j—1>) ba; (0) (2.9)

follows from the above Fourier expansion of b;({z}). The following lemma concerning
Bernoulli polynomials play important roles hereafter.

Lemma 2.1.  u(z) = (—1)7 " by;(z) (j = 1,2,3,--+) satisfy the following prop-
erties:

Jnax, u(x) = u(0) = u(l) > 0, orgngrgll u(x) = u(1/2) < 0,
pax |u(z)| = u(0) = u(l),

u'(x) <0 (0<z<1/2), u'(x) > 0 (1/2 <z <1).

§3. Boundary value problem

Let f(x) be a bounded continuous function on an interval 0 < x < 1 satisfying the
following solvability condition S(X):

S(P), S(N) : /O fy)dy = 0,  S(AP), S(D), S(DN) : none.
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We consider the boundary value problem:

BVP (X, M)
(—DMuCM) = f(z)  (0<z<1) (3.1)
B(X) (3.2)
O(X) (3.3)
where the boundary condition B(X) and orthogonality condition O(X) are given as
follows:
BP) : u®1)—-u?0)=0 (0<i<2M-—1)
B(AP) : (1) +u®(0)=0 (0<i<2M-1)
BMD) : u®Y(0)=uY(1) =0 (0<i<M-1)
B(N) : u®HD(0) = u@HD (1) =0 ( 0<i<M-1 )
B(DN) : u®)(0) =u®*(1)=0  (0<i<M-1)

o
>
&

1
(P), O(N) : /0 u(z)dr = 0, O(AP), O(D), O(DN) : none.

Concerning the uniqueness and existence of the solution to BVP(X, M), we have the

following theorem:

Theorem 3.1.  For any bounded continuous function f(x) on an interval 0 <
x < 1 which satisfies the solvability condition S(X), BVP(X, M) has a unique classical

solution u(x) expressed as

1
uw) = [ G Mizy) f)dy  (0<a<1) (3.4
0
Green function G(X;z,y) = G(X, M;z,y) (0 < z,y < 1) is given by (1.1) ~ (1.5).

Proof of Theorem 3.1 The uniqueness of the solution to BVP(X, M) is shown in
section 4. Differentiating u(z) (0 < z < 1) in (3.4) 7 (0 < i < 2M) times and using
Theorem 3.2 (2), (3), (4) and (6), we can show that the existence of the solution to
BVP(X, M). We have Theorem 3.1. |

Theorem 3.2.  Green function G(X;z,y) = G(X, M;x,y) satisfies the following
properties:
(1) GXsry) =G(X5y,7) (X=P,AP,D,N,DN, 0<umz,y<1).

2) (-O)MPMG(X;x,y) =)0  (X=AP,D,DN)
-1 (X=P,N) O<zy<l, x#y).
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(3) For0<i<2M —1, we have

0LG(Pixy)|  —0iG(Pizy)| =0,

=0
» + 0LG(AP; z,v)

For0<i< M — 1, we have

OGDiz,y)| =0, FTGN;zy)

OLG(AP; 2,v) =0 0<y<1).

=0

=0,
x=0,1
=0 0<y<1).

97'G(DN;z,y)| = 95" 'G(DN;z,y)

=0 =
(@) 9GXKzy)| 0G| =
y=x—0 y=z+0
0 (0<i<2M —2)
(-H)M (i=2M —-1) (X=P,AP,D,N,DN, 0<z<1).
(5)  0,G(X;z,y) — 0.G(X; 3,y) =
r=y+0 r=y—0

0 (0<i<2M —2)
(-)M (i=2M —1) (X=P,AP,D,N,DN, 0<y<1).

1
/GX$y =0 (X=P,N, O0<y<l).
0

() GX;z,y) >0 (X=D,DN, 0<uz,y<l).

Proof of Theorem 3.2 Employing properties of Bernoulli polynomial, one can easily
show that G(z,y) given by (1.1) ~ (1.5) satisfy properties (1) ~ (6). We only prove (7)
by induction with respect to M. If M = 1, we have

GD,Lz,y) = (xAy)(l—xzVy) >0 0<x,y<1).
For every fixed y (0 <y < 1), u(z) = G(D,M;z,y) (M =2,3,4,---) satisfies

{—u”zG(D,M—l;x,y) 0<z<1)
u(0) = u(l) = 0.

Thus, we can show
1
u(x) = G(D, M;x,y) :/ GD,1;z,2)G(D,M — 1;z,y)dz > 0
0

(M =2,3,4,---, 0<z<l).

Moreover, using G(D, M;z,y) >0 (M =1,2,3,---, 0 < z,y < 1), (1.5) is rewrit-
ten equivalently as

Y

G(DN, M;z,y) = 22M-1 [G(D ML =R

>+G(DM21—g>}>0

(M=1,2,3,---, 0<z,y<l).
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This shows (7). |
Concerning the uniqueness of Green function, we have the following theorem:

Theorem 3.3.  The smooth function G(x,y) = G(X,M;z,y) on an open set
0<z,y <1, x#y satisfying properties in Theorem 3.2 (2), (3), (4) and (6) is unique.

Proof of Theorem 3.3 Suppose that we have another function G (z,y) satisfying the
same properties in Theorem 3.2 (2), (3), (4) and (6). For any function f(x) satisfying
S(X),

1~
u(z) = / Gay) f)dy  (0<z<1)

satisfies BVP(X,M). From Theorem 3.1, we have

/0 Gla,y) fly) dy = / Gley) f)dy  (0<z<1).

This shows G(z,y) = G(z,y) (0 < z,y < 1). |

8§4. The method of reflection

In this section, we derive the expression (1.2), (1.3), (1.4) and (1.5) by the so-called
method of reflection.

At first, we derive (1.2), (1.3) and (1.4) starting from BVP(P,M) on an interval
0 < z < 2. In the previous work [2], we proved the following theorem:

Theorem 4.1 ([2]).  For any bounded continuous function f(x) on an interval
0 < x < 2 which satisfies the solvability condition

/O fly)dy = 0, (4.1)

the periodic boundary value problem

BVP (P,M)
(—)MuCM) = f(2) (0<z<?2) (4.2)
u(2) —uD0) =0 (0<i<2M—1) (4.3)

/02 u(z)dxr = 0 (4.4)

has a unique classical solution u(x) which is given by

u(z) = / (—1>M+122M—1b2M("”;y')f(y)dy (0<x<2) (4.5)
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For any bounded continuous function f(z) on an interval 0 < z < 1, we extend the
domain of definition to 0 < x < 2 by the symmetry

fl@) = | —f(z—1) (AP)
- f2-=2) (D) (4.6)
f(2—ux) (N) (I<z<?2).

In the case (N), we assume that

/0 fly)dy = 0. (4.7)

This extended function f(z) (AP,D,N) satisfies (4.1). For this extended f(x), the solu-
tion u(z) of BVP(P,M) is given by (4.5). For 0 < z < 1, we have

(_1)M+12—(2M—1)u(x) =1, + I

= oS i n= () s

Using symmetry of f(z) (4.6

(AP) I, = —/12b2M(

12_/12b2M(
M(x—l— )

where we use (2.1). Thus, we obtain

/1G dy (0<z<1), (4.8)
0

where G(z,y) is given by (1.2), (1.3) and (1.4).
Secondly, we derive G(DN; z,y) (1.5) starting from BVP(D,M) on an interval 0 <
x < 2. In [4], we have proved the following theorem:
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Theorem 4.2 ([4]).  For any bounded continuous function f(x) on an interval

0 < x < 2, Dirichlet boundary value problem

BVP (D, M)
{(—UMM”@::ﬂ@ (0<z<2) (4.9)
u®)(0) = u®(2) =0  (0<i<M-—1) (4.10)

has a unique classical solution u(z) given by

) = | Ly { bgM('x - y') - sz(xjy) ] F) dy
(0<z<2). (4.11)

For any bounded continuous function f(z) on an interval 0 < x < 1, we extend the
domain of definition to 0 < x < 2 by the symmetry

flx) = f(2—1x) (I1<x<?2). (4.12)

For this extended f(z), the solution u(z) of BVP(D,M) is given by (4.11). For 0 < z <

1, we have

(—)MH=CM=Dy () = I, + I,

o [ [ ()
e [ [ (552) (532)

Using (4.12), we have

o [ [on(5) o(52) o

/1
sz(

o L 4 4

.l 1 z+y\ 1 Jz—yl\]

; banr 5 1 banr 5+ 1 fy)dy+
[ o (5-552) = (5 - 2520 sy =
1 _ -

/o _sz(%—ny>—sz(%—|x4y|>_f(y)dy,

where we have used (2.1). Finally we have

u(z) = / Glay) fy)dy  (0<z<1), (4.13)
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where G(z,y) is given by (1.5).

8§ 5. Reproducing kernel

In this section, it is shown that Green function G(z,y) = G(X, M;x,y) is a repro-
ducing kernel for a set of Hilbert space H and its inner product (-,-)as introduced in
section 1. The next theorem claims that Green function G(z,y) is a reproducing kernel
for H and (-,) .

Theorem 5.1. (1) For anyu(x) € H, we have the following reproducing relation:
1
u(y) = (u@),Glay)u = [ u(a) oM Glay)dn 0y <1), (5.1
0

(2) Clyy) = / 0M Gz, y)[ e (0<y<1). (5.2)

Proof of Theorem 5.1 For functions u = u(z) and v = v(z) = G(x,y) with y
arbitrarily fixed in 0 <y < 1, we have

M-1
oM g (=1)MGEM) — Z (—1)M—1=3 4, (0) 52M=1=j)
=0

u(M)

Integrating this identity with respect to z on intervals 0 < z < y and y < x < 1 and
using Theorem 3.2 (2), (3), (5) and (6), we have (5.1). (5.2) is obtained by putting
u(z) = G(z,y) in (5.1). We have proved Theorem 5.1. |

§ 6. Diagonal value of Green function

We investigate the diagonal value of Green function G(X;y,y) = G(X, M;y,y) (0 <
y < 1), which is given by

G(Piy.y) = (=)™ bars (0).
G(AP;y,y) = (~)M 1221 s (0) = boar(1/2) |,
G(Diy,y) = (=DM 1222 s (0) = borr () |.

G(N:g,y) = (=)MF122M ] s (0) + boar () |,

1

G(DN; y,y) = (—1)M+142M-1 [ borr(0) — bQM(g) + bons (% - g) ~ bons <§> ] .
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From Lemma 2.1, it is shown that

max G(X;y,y) = G(X;yo0,%0)

0<y<1
Yo is an arbitrarily fixed number satisfying 0 < yo <1 (X =P,AP)
Yo =1/2 (X=D)
Yo =0,1 (X=N)
Yo=1 (X =DN).

Expilicit forms of max G(X;y,y) are given by
0<y<1

max G(Pry,y) = G(Piyo,y0) = (1" barr(0) = 27 M Va=2M((201),
SYS

max G(AP;y,y) = G(AP;yo,y0) = (—1)M“22M_1[ bans (0) —sz(1/2)] =
0<y<1

(_1)M—|—l (22M _ 1) bgM(O) — 2—(2M—1) (22M _ 1) 7T_2MC(2M),

OfggglG(D;y,y) = G(D;1/2,1/2) = (_1)M+122M_1[b2M(0) —sz(1/2)} =

(—1)MFL(22M 1) byp,(0) = 27 M= (22M 1) 7 =2M(2),

OrggglG(N; y,y) = G(N;0,0) = G(N;1,1) =

(—1)MH12Mp, 0 (0) = 27 2M¢(2M),

max G(DN;y,y) = G(DN;1,1) = (—1)M+124M—1[ borr (0) — boas(1/2) | =
0<y<1

(=1)MH12M (22M 1) by (0) = 2 (22M — 1) 7 2M¢(2M),

where we have used (2.8) and (2.9). Hence we have

max G(X;y,y) = G(X;y0,50) = C(X, M) (6.1)
0<y<1

where C(X, M) is given by Theorem 1.1.

8§ 7. Sobolev inequality

In this section, we give a proof of Theorem 1.1.
Proof of Theorem 1.1 Applying Schwarz inequality to (5.1) and using (5.2), we
have

)P < [ e Par [ 0@ [ @ = cw) [ a0

2
‘ dx.
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Noting that Jmax G(y,y) = G(yo, o), we have following Sobolev inequality:
<y<

(s |u<y>|)2 < Glnwo) | @) [ e (7.1)

0<y<1

This inequality shows that (-, -)as is positive definite. It should be noted that it requires
Schwarz inequality but does not require “positive definiteness” of the inner product for
the purpose of proving (7.1).

In the second place, we apply this inequality to u(x) = G(z,yp) € H and have

2 L 5 2

(Ogl;l | G(y,90) |) < G(yo,yo)/o | 0, G(z,90) | dr = (G(y()ay())) :

Together with a trivial inequality
9 2
(G(yo,yo)> < ( sup | G(y,y0) |> )

0<y<1

we finally obtain

2 1
2
(s, 1Gww)l) = Glunn) [ 102G (e,m) [ (7.2
0<y<1 0
which completes the proof of Theorem 1.1. |

§ 8. Discrete Sobolev inequality (DN, M = 1)

We finally consider a discrete analogue of Sobolev inequality. In the previous pa-
per [5], we consider a discrete version of Theorem 1.1 (P, M =1,2,---). Here, we focus
our attention on Theorem 1.1 (DN, M =1).

We assume that N = 2,3,4,---. We consider the following set of simultaneous
equations:

—u(i+1) + 2u(i) — u(@—1) = f(@) (1<i<N)

u(0) = 0, u(N+1) — u(N) =0,
which are regarded as a discrete version of BVP(DN, 1). This is rewritten equivalently
as Au = f where

A (a)=(2"1
L

w="(ul), - uN)), f="fQ), -, f(N)) e C.
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Let 8, be a vector defined by

N
(w,v) = v"u = Du = » 0(j)u(j),
j=1
Sobolev inner product
N
(u,v)4 = (Au,v) = v Au = Z o(1) aiju(j)
i,j=1
and Sobolev energy
N N—-1
luld = (w,u)a = D> a(i)ayu@) = [u(@) [+ D [ulG+1) —ul)[*
i,j=1 j=1

We remark that (-,-)4 is positive definite.
The conclusion of this section is as follows:

Theorem 8.1.  For any u € CV, there exists a positive constant C which is
independent of u such that the discrete Sobolev inequality

2
. 2
(Jmax, w6 1) < Clul? (s.)

holds. Among such C the best constant is Cy = N. If we replace C by Cy, then the
equality holds for w = G&n where G = A~ is given by the following expression:

G=(g5)=(minfij}) = Ll
12 3---3 (8.2)
12 3. N

(8.2) is easily proved by using Gauss’s sweeping-out method.
Theorem 8.2. (1) For anyu € CV, we have the following reproducing relation:

u(j) = (u,Gé;),  (1<j<N). (8.3)
(2) 955 = (Gd;,Géd;),  (L<j<N). (8.4)
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Proof of Theorem 8.2 Noting that G* = G, we have
(u,Gd;), = (Au,Gd;) = 6;G" Au = §; u = u(j).
Applying u = G§; € CV to (8.3), we have
(Gd;,Gd;), = (AGH;,Gé;) = (6;,Gé;) = 0;G"6; = 6, Go; = gjj.

This shows Theorem 8.2. n
Proof of Theorem 8.1 Applying Schwarz inequality to (8.3) and using (8.4), we
have |u(j) > < |w|4| Gd; |4 = gjillully . Taking the maximum with respect to
1 < 7 < N, we have the following discrete Sobolev inequality:

2
] < 2 = S = . .
(jmax, 1u)1) < Collulfe  Co= x5 = g = N (85)

In the second place, if we apply this inequality to u = G § € C, then we have

2
( max |ng|) < CollGox | = C2.

1<j<N

2
Combining this and trivial inequality Cz = g3 x < (11<H6%XN lgin |> , we obtain
<j<

2
) _ 2
(s L) = CollGox 3, (56)

which completes the proof of Theorem 8.1. |
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