<table>
<thead>
<tr>
<th>Title</th>
<th>Self-similar blow-up for a chemotaxis system in higher dimensional domains (Mathematical analysis on the self-organization and self-similarity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NAITO, Yuki; SENBA, Takasi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2009), B15: 87-99</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/176831</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Self-similar blow-up for a chemotaxis system in higher dimensional domains

By

Yüki Naito * and Takasi Senba **

§ 1. Introduction and statement of main results

We consider solutions of a parabolic-elliptic system

\[
\begin{cases}
 u_t = \nabla \cdot (\nabla u - u \nabla v) & \text{in } \Omega \times (0, T) \\
 0 = \Delta v + u & \text{in } \Omega \times (0, T),
\end{cases}
\]

(1.1)

where either \(\Omega = \{ x \in \mathbb{R}^N : |x| < L \} \) or \(\Omega = \mathbb{R}^N \) with \(N \geq 3 \). In the former case, we assume \(\partial u / \partial \nu - u \partial v / \partial \nu = 0 \) and \(v = 0 \) on \(\partial \Omega \), where \(\nu \) denotes the outer unit normal vector. This system arises in the study of the motion of bacteria by chemotaxis as a simplification of the Keller-Segel model (see \cite{16}, \cite{22}). Here, \(u \) and \(v \) represent the density of the bacteria and the concentration of the chemo-attractant, respectively. This system also has been used as a model for the evolution of self-attracting clusters (see \cite{27}, \cite{28}, \cite{2}).

In this note we consider the blow-up rate of solutions to the system

\[
\begin{cases}
 u_t = \nabla \cdot (\nabla u - u \nabla v) & \text{in } \Omega \times (0, T) \\
 0 = \Delta v + u & \text{in } \Omega \times (0, T) \\
 \frac{\partial u}{\partial \nu} - u \frac{\partial v}{\partial \nu} = 0 \text{ and } v = 0 & \text{on } \partial \Omega \times (0, T) \\
 u(x, 0) = u_0(|x|) & \text{in } \Omega,
\end{cases}
\]

(1.2)
where $\Omega = \{x \in \mathbb{R}^N : |x| < L\}$ with $N \geq 3$ and $0 < L < \infty$, and $u_0(r)$ is a nonnegative continuous function on $[0, L]$. We restrict ourselves to the study of radially symmetric solutions. It is known by [2] that the system (1.2) has a unique local classical solution (u, v). It is easy to see that u and v are positive for $0 < t < T$, and that the conservation of the initial mass of u holds, that is,

\begin{equation}
\|u(\cdot, t)\|_1 = \|u_0(\cdot)\|_1 \quad \text{for} \quad 0 < t < T,
\end{equation}

where $\| \cdot \|_p$ denotes the standard $L^p(\Omega)$ norm for $1 \leq p \leq \infty$. A solution (u, v) is said to blow-up at $t = T < \infty$ if (u, v) is classical in $\Omega \times (0, T)$ and satisfies $\limsup_{t \to T} \|u(\cdot, t)\|_\infty = \infty$. A simple argument shows that if u blows up at a finite time $t = T$ then

$$
\liminf_{t \to T} (T - t) \|u(\cdot, t)\|_\infty > 0.
$$

We say that the blow-up is of type I if u satisfies

$$
\limsup_{t \to T} (T - t) \|u(\cdot, t)\|_\infty < \infty.
$$

The blow-up is called type II if it is not type I. We note that self-similar solutions, given by (2.1) below, blow up in type I rate.

We briefly review some known results concerning blow-up behavior for (1.1) and related systems. In the case $N = 2$, Herrero and Velázquez [15] considered the system

\begin{equation}
\begin{cases}
u_t = \nabla \cdot (\nabla u - u \nabla v) & \text{in} \quad \Omega \times (0, T) \\
\tau v_t = \Delta v - v + u & \text{in} \quad \Omega \times (0, T), \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 & \text{in} \quad \partial \Omega \times (0, T),
\end{cases}
\end{equation}

(1.4)

together with initial conditions

$$
u(x, 0) = u_0(|x|) \quad \text{and} \quad v(x, 0) = v_0(|x|) \quad \text{for} \quad x \in \Omega,$$

where $\Omega = \{x \in \mathbb{R}^2 : |x| < L\}$ and $\tau > 0$. It was shown in [15] that (1.4) has radially symmetric solutions such that u develops a Dirac delta-type singularity at the origin in a finite time, and that u blows up in type II rate. See also [13], [14]. Senba and Suzuki [25] considered the system (1.4) in the case where Ω is a bounded smooth domain in \mathbb{R}^2 and $\tau = 0$ together with the initial condition $u(x, 0) = u_0(x)$ for $x \in \Omega$. Denote by T the maximal existence time of the solution to (1.4). It was shown in [25] that, if $T < \infty$, then the solution (u, v) of (1.4) satisfies

\begin{equation}
\lim_{t \to T} u(x, t) = \sum_{q \in \mathcal{B}} m(q) \delta_q + f
\end{equation}

(1.5)
in the sense of measures as \(t \to T \), where \(\mathcal{B} \) is the set of blow-up points, \(\delta_q \) is the delta function whose support is the point \(q \in \overline{\Omega} \), \(m(q) \) is the constant satisfying \(m(q) \geq 8\pi \) if \(q \in \Omega \), and \(m(q) \geq 4\pi \) if \(q \in \partial \Omega \), and \(f \) is a nonnegative function in \(L^1(\Omega) \cap C(\overline{\Omega} \setminus \mathcal{B}) \).

Furthermore, Senba [24] showed that, if \(\Omega = \{ x \in \mathbb{R}^2 : |x| < L \} \), and if a radial solution \((u, v)\) blows up at \(t = T \), then (1.5) holds with \(\mathcal{B} = \{0\} \) and \(m(0) = 8\pi \), and \(u \) blows up in type II rate. For nonradial case, see [26].

In the case \(N = 3 \), Herrero et al [11], [12] have investigated the blow-up behavior of solutions by using matched asymptotic expansions. In [12] they showed that (1.2) has a sequence of self-similar blow-up solutions, and they in [11] showed the existence of Burgers like blow-up solutions which are not self-similar. These solutions consist of an imploding smoothed out shock wave that collapses into a Dirac mass when the singularity is formed, and blow up in type II rate. Later, Brenner et al [4] investigated the problem in the case \(3 \leq N \leq 9 \) by a numerical approach, and showed the existence and stability of both self-similar blow-up solutions and Burgers like blow-up solutions.

For a solution \((u, v)\) to (1.2), putting
\[
n(x, t) = \Theta u(x, \Theta t) \quad \text{and} \quad \phi(x, t) = -\Theta v(x, \Theta t)
\]
with \(\Theta = 1/\|u_0\|_1 \), we find that \((n, \phi)\) solves the problem
\[
\begin{aligned}
n_t &= \nabla \cdot (\Theta \nabla n + n \nabla \phi) & \text{in } \Omega \times (0, T) \\
\Delta \phi &= n & \text{in } \Omega \times (0, T) \\
\Theta \frac{\partial n}{\partial v} + n \frac{\partial \phi}{\partial v} &= 0 \text{ and } v = 0 & \text{on } \partial \Omega \times (0, T) \\
n(x, 0) &= n_0(x) & \text{in } \Omega,
\end{aligned}
\]
where \(n_0(x) = \Theta u_0(|x|) \) for \(x \in \Omega \). Note that \(n_0 \) satisfies \(\|n_0\|_1 = 1 \). Guerra and Peletier [10] considered the problem (1.6) in the case \(3 \leq N \leq 9 \). They in [10] characterize the blow-up behavior of solutions in terms of initial data, and showed that the solution behaves like a self-similar solution near the blow-up point.

In this note, we consider the system (1.2) in the case \(3 \leq N \leq 9 \), and derive criteria of the blow-up rate of solutions. In particular, we will identify an explicit class of initial data for which the blow-up is of type I rate.

To state our results, define \(U_0 \) and \(V_0 \), respectively, by
\[
U_0(r) = \frac{1}{r^{N-2}} \int_0^r s^{N-1} u_0(s) ds \quad \text{for } 0 \leq r \leq L
\]
and
\[
V_0(r) = \frac{U_0(r)}{r^2} = \frac{1}{r^N} \int_0^r s^{N-1} u_0(s) ds \quad \text{for } 0 \leq r \leq L.
\]
For the initial condition, we assume that

\begin{equation}
V_0'(r) \leq 0 \quad \text{for } 0 \leq r \leq L,
\end{equation}

where $' = d/dr$. It is easy to see that (1.9) holds if u_0 satisfies

\begin{equation}
u_0 \in C^1[0, L] \quad \text{and} \quad u_0'(r) \leq 0 \quad \text{for } 0 \leq r \leq L.
\end{equation}

Our first result is the following.

Theorem 1.1. Let $3 \leq N \leq 9$, and assume that (1.9) holds.

(i) Suppose U_0 satisfies $U_0(r) \leq 2$ for $0 \leq r \leq L$. Then a solution (u, v) of (1.2) does not blow up in finite time.

(ii) Suppose that $U_0(r) - 2$ has exactly one zero for $0 \leq r < L$ and $U_0(L) > 2$. If a solution (u, v) of (1.2) blows up in finite time, then the blow-up is of type I.

It should be mentioned that more general criteria will be given in Theorem 3.1 below.

As a consequence of Theorem 1.1, we obtain the following corollary.

Corollary 1.2. Let $3 \leq N \leq 9$, and assume that (1.9) holds. Suppose that $U_0(r)$ is increasing for $0 < r < L$. If a solution (u, v) of (1.2) blows up in finite time, then the blow-up is of type I.

Note that U_0 satisfies

\begin{equation}
(r^{N-1}U_0'(r))' = r^{N-1}(2u_0(r) + ru_0'(r)) \quad \text{for } 0 < r < L.
\end{equation}

Assume that u_0 satisfies (1.10) and

\begin{equation}
u_0'(r) + 2u_0(r) \text{ has at most one zero for } 0 \leq r \leq L.
\end{equation}

Then one easily see that $U_0'(r)$ has at most one zero for $(0, L]$, and that $U_0'(r) > 0$ for $0 < r < r_0$ and $U_0'(r) < 0$ for $r_0 < r \leq L$ if $U_0'(r)$ has a zero at $r_0 \in (0, L)$. Assume, in addition, that

\begin{equation}
\int_0^L s^{N-1}u_0(s)ds > 2L^{N-2}.
\end{equation}

Then $U_0(L) > 2$ and $U_0(r) - 2$ has exactly one zero for $0 \leq r < L$. By Theorem 1.1 (ii) we obtain the following:

Corollary 1.3. Let $3 \leq N \leq 9$, and assume that u_0 satisfies (1.10), (1.11) and (1.12). If a solution of (1.2) blows up in finite time, then the blow-up is of type I.
We recall here some sufficient conditions for blow-up in finite time by [2], [21].

Proposition 1.4. Let $N \geq 3$. Assume that one of the following (i)-(iii) holds:

(i) $U_0(L) > 2N$;

(ii) $U_0(L) \geq 4$ and U_0 satisfies, with some $T_0 > 0$,

\[U_0(r) \geq \frac{4r^2}{2(N-2)T_0 + r^2} \quad \text{for } 0 \leq r \leq L; \]

(iii) u_0 satisfies

\[\int_{|x| \leq L} |x|^N u_0(|x|) \, dx < \left(\frac{\|u_0\|_1^{(2N-2)/N}}{4(N-1)\omega_N} \right)^{N/(N-2)}, \]

where ω_N is the surface area of the unit sphere in \mathbb{R}^N.

Then a solution (u, v) of (1.2) blows up in finite time $t = T < \infty$. Furthermore, in the case (ii), the solution blows up at time T with $T \leq T_0$.

The blow-up of solutions was shown in the case (i) by Biler [3, Theorem 3]. We can show the blow-up of solutions in the case (ii) by the comparison argument, and in the case (iii) by following the argument due to Nagai [21, Theorem 3.1]. For the proof of Proposition 1.4, see [20].

As a consequence of Corollaries 1.2 and 1.3 and Proposition 1.4, we can show the existence of solutions which blow up with type I rate. As a simple example, let $u_0(r) \equiv \ell$ with $\ell > 2N/L$. Then a solution (u, v) of (1.2) blows up in finite time with type I rate by Corollary 1.2 and Proposition 1.4 (i). (See [10, Corollary 1.2].) For another example, let $u_0(r) = \ell G(r, \tau)$ with $\tau > 0$ and $\ell > 0$, where $G(r, t) = (4\pi t)^{-N/2}e^{-r^2/4t}$ is the heat kernel. Then (1.10) and (1.11) hold, and it is easy to see that

\[\|u_0\|_1 = \omega_N \int_0^L s^{N-1} u_0(s) \, ds \to \ell \quad \text{and} \quad \int_{|x| \leq L} |x|^N u_0(|x|) \, dx \to 0 \]

as $\tau \to 0$. Combining Corollary 1.3 and Proposition 1.4 (iii), we obtain the following:

Corollary 1.5. Let $3 \leq N \leq 9$, and let $u_0(r) = \ell G(r, \tau)$ with $\tau > 0$ and $\ell > 2L^{N-2}\omega_N$. Then there exists $\tau_0 > 0$ such that, if $\tau \in (0, \tau_0]$, then a solution (u, v) of (1.2) blows up in finite time with type I rate.

We note that, in Corollary 1.5, the initial function u_0 converges to a Dirac delta function in the sense of measure as $\tau \to 0$. Thus this corollary suggests that self-similar blow-up may be seen even if initial function is close to a Dirac delta function.
Next, we consider the local blow-up profile of solutions to (1.2). Assume that V_0, defined by (1.8), satisfies

$$(1.15) \quad (V_0)_{rr} + \frac{N+1}{r}(V_0)_r + N(V_0)^2 + rV_0(V_0)_r \geq 0 \quad \text{for } 0 \leq r \leq L.$$

Guerra and Peletier [10] showed that, when $N \geq 3$ and (1.9) and (1.15) hold, any type I blow-up solution behaves like a self-similar solution near the singularity $x = 0$.

Our result is the following.

Theorem 1.6. Let $3 \leq N \leq 9$, and assume that (1.9) and (1.15) hold. If a solution (u, v) of (1.2) blows up in finite time, then the blow-up is of type I.

Remark. Define the average density function V by

$$(1.16) \quad V(r, t) = \frac{1}{r^N} \int_0^r s^{N-1} u(s, t) \, ds \quad \text{for } 0 \leq r \leq L, \ 0 \leq t < T.$$

It was shown by Guerra and Peletier [10, Theorem 2.3] that when $N \geq 3$ and (1.9) and (1.15) hold, if a solution (u, v) blows up in finite time $t = T$ with type I rate, then V satisfies

$$(1.17) \quad \lim_{t \to T}(T-t)V(\rho\sqrt{T-t}, t) = \Phi(\rho)/\rho^2$$

uniformly on compact set $|\rho| \leq C$ for every $C > 0$, where Φ is a certain positive function. Combining with Theorem 1.6, we find that when $3 \leq N \leq 9$ and (1.9) and (1.15) hold, if a solution (u, v) blows up in finite time, then (1.17) holds. Note here that the condition (1.15) ensures that $V_t \geq 0$ for all $0 < t < T$. (See (3.6) below.) It is still an open problem whether (1.17) holds for type I blow-up solutions without the condition (1.15).

We note that similar results hold for the well-studied problem for semilinear heat equation

$$(1.18) \quad \begin{cases} u_t - \Delta u = u^p & \text{in } \Omega \times (0, T), \\ u = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(|x|) & \text{in } \Omega, \end{cases}$$

where $p > 1$, $\Omega = \{x \in \mathbb{R}^N : |x| < L\}$, and $u_0(r)$ is nonnegative and nonincreasing for $0 \leq r \leq L$. A simple comparison argument shows that any blow-up solution satisfies

$$\liminf_{t \to T} (T-t)^{1/(p-1)} \|u(\cdot, t)\|_\infty > 0.$$

Assume that $u_0 = u_0(|x|)$ satisfies

$$(1.19) \quad \Delta u_0 + u_0^p \geq 0 \quad \text{in } \Omega.$$
By the maximum principle, the condition (1.19) implies that \(u_t \geq 0 \) for all \(0 < t < T \). Friedman and McLeod [6] showed that, if (1.19) holds, then any blow-up solution satisfies

\[
\lim_{t \to T} \sup_{T-t}^{1/(p-1)} \|u(\cdot, t)\|_\infty < \infty.
\]

Bebernes and Eberly showed in [1] that, under the condition (1.19), finite time blow-up solutions are asymptotically self-similar. Precisely, any solution \(u \) of (1.18) which blows up in finite time \(t = T \) satisfies

\[
\lim_{t \to T} (T-t)^{1/(p-1)} u((T-t)^{1/2}y, t) = \kappa
\]

uniformly on compact set \(|y| \leq C \) for every \(C > 0 \) with \(\kappa = (p-1)^{-1/(p-1)} \). It should be mentioned that Matos [19] later showed that any blow-up solution which satisfies (1.20) is asymptotically self-similar in the supercritical case without the condition (1.19). For the precise characterization of the behavior of blow-up solutions to (1.18), we refer to Giga and Kohn [7, 8, 9] in the subcritical case and Matano and Merle [17, 18] in the supercritical case.

This note is organized as follows: In Section 2, we will show the existence of a sequence of self-similar solutions to (1.1) with \(\Omega = \mathbb{R}^N \). In Section 3, we derive criteria of the blow-up rate of solutions, and give the proof of Theorems 1.1 and 1.6.

§2. Backward self-similar solutions

The proof of Theorems 1.1 and 1.6 are based on the study of the properties of backward self-similar solutions to the system (1.1) with \(\Omega = \mathbb{R}^N \). The system (1.1) with \(\Omega = \mathbb{R}^N \) is invariant under the scaling

\[
(u, v) \mapsto (u\lambda, v\lambda) = (\lambda^2 u(\lambda x, \lambda^2 t), v(\lambda x, \lambda^2 t))
\]

for \(\lambda > 0 \). A solution \((u, v) \) is called self-similar if \((u, v) = (u\lambda, v\lambda) \) for each \(\lambda > 0 \), and is called backward if \((u, v) \) is defined for all \(t < 0 \). By the transformation in the time, a backward self-similar solution has the form

\[
u(x, t) = \frac{1}{T-t} \phi(x/\sqrt{T-t}) \quad \text{and} \quad v(x, t) = \psi(x/\sqrt{T-t})
\]

for \(x \in \mathbb{R}^N \) and \(t < T \), where \((\phi, \psi) \) satisfies

\[
\begin{cases}
\Delta \phi - \nabla \cdot \left(\phi \left(\frac{x}{2} + \nabla \psi \right) \right) + \frac{N-2}{2} \phi = 0, & x \in \mathbb{R}^N \\
0 = \Delta \psi + \phi, & x \in \mathbb{R}^N.
\end{cases}
\]

We will obtain the existence of a sequence of self-similar solutions to (2.2) together with the properties of solutions. For the proof, see [20].
Theorem 2.1. Let $3 \leq N \leq 9$. Then the system (2.2) has radially symmetric solutions $\{(\phi_j, \psi_j)\}_{j=1}^{\infty}$ such that $\phi_j(r) > 0$ for $r \geq 0$ and $\phi_j(0) \to \infty$ as $j \to \infty$. For each $j = 1, 2, \ldots$, define

$$
\Phi_j(r) = \frac{1}{r^{N-2}} \int_{0}^{r} s^{N-1} \phi_j(s) ds, \quad r > 0.
$$

Then $\Phi_j(r) - 2$ has exactly $2j$ zeros on $(0, \infty)$ and no zeros on (R_0, ∞) with $R_0 = 2\sqrt{N-1}$. Furthermore, there exists a sequence $\{\alpha_j\}_{j=1}^{\infty}$ satisfying $0 < \cdots < \alpha_{j+1} < \alpha_j < \cdots < \alpha_1$ and $\alpha_j \to 0$ as $j \to \infty$ such that the following (i) and (ii) hold.

(i) For any constant $c > 0$,

$$
\inf_{0<r<\alpha_j} \frac{\Phi_j(r)}{r^2} \to \infty \quad \text{as} \quad j \to \infty.
$$

(ii) For any $\varepsilon > 0$, there exist a constant $c_0 = c_0(\varepsilon) > 0$ and an integer $j_0 = j_0(\varepsilon) \in \mathbb{N}$ such that if $j \geq j_0$ then

$$
\sup_{r \geq c_0 \alpha_j} |\Phi_j(r) - 2| < \varepsilon \quad \text{and} \quad \sup_{r \geq c_0 \alpha_j} |r \Phi_j'(r)| < \varepsilon.
$$

Remark. For each fixed $r > 0$, we have

$$
r^2 \phi_j(r) \to 2(N-2) \quad \text{as} \quad j \to \infty.
$$

In fact, it follows from (2.3) that

$$
r^2 \phi_j(r) = (N-2)\Phi_j(r) + r \Phi_j'(r) \quad \text{for} \quad r > 0.
$$

Since (ii) holds and $\alpha_j \to 0$ as $j \to \infty$, we obtain (2.4).

The existence of self-similar solutions was already shown by [11, 4, 23]. It seems, however, that the properties on the location of zeros and properties (i) and (ii) are new, and these properties play an important role in the proof of the theorems.

§ 3. Proof of Theorems 1.1 and 1.6 (sketch)

We restrict our attention to radially symmetric solutions to (1.2) of the form $u = u(r, t)$ and $v = v(r, t)$, $r = |x|$, and consider the system

$$
\begin{aligned}
 & r^{N-1} u_t = (r^{N-1} u_r)_r - (r^{N-1} uv_r)_r, & 0 < r < L, \ 0 < t < T, \\
 & 0 = (r^{N-1} u_r)_r + r^{N-1} u, & 0 < r < L, \ 0 < t < T, \\
 & u_r(0, t) = u_r(L, t) - u(L, t)v_r(L, t) = 0, & 0 < t < T, \\
 & v_r(0, t) = v(L, t) = 0, & 0 < t < T, \\
 & u(r, 0) = u_0(r), & 0 \leq r \leq L.
\end{aligned}
$$

(3.1)
Put

\[M = \int_0^L r^{N-1}u_0(r)dr. \]

Then, by the third formula in (3.1), it follows that

(3.2) \[\int_0^L r^{N-1}u(r,t)dr = M \quad \text{for } 0 \leq t < T. \]

Put \(\hat{u} \) by

\[\hat{u}(r, t) = \int_0^r s^{N-1}u(s, t)ds = -r^{N-1}v_r(r, t). \]

Here we have used the second formula in (3.1). Then the system (3.1) can be reduced to a single equation

\[\hat{u}_t = r^{N-1}(r^{1-N}\hat{u}_r)_r + r^{1-N}\hat{u}\hat{u}_r. \]

Define

(3.3) \[U(r, t) = r^{2-N}\hat{u}(r, t) = \frac{1}{r^{N-2}}\int_0^r s^{N-1}u(s, t)ds. \]

Then \(U \) satisfies

(3.4) \[U_t = U_{rr} + \frac{N-3}{r}U_r - \frac{2(N-2)}{r^2}U + \frac{(N-2)U^2 + rUU_r}{r^2} \]

for \(0 < r < L, 0 < t < T \) and

\[U(0, t) = \lim_{r \to 0} U(r, t) = 0 \quad \text{and} \quad U(L, t) = ML^{2-N} \quad \text{for } 0 \leq t < T. \]

Note here that, by using l’Hospital’s rule, we obtain

(3.5) \[\lim_{r \to 0} \frac{U(r, t)}{r^2} = \lim_{r \to 0} \frac{\int_0^r s^{N-1}u(s, t)ds}{r^N} = \frac{u(0, t)}{N} \quad \text{for } 0 < t < T. \]

Put \(V(r, t) = U(r, t)/r^2 \). Then \(V \) satisfies

(3.6) \[V_t = V_{rr} + \frac{N+1}{r}V_r + NV^2 + rVV_r \quad \text{for } 0 < r < L, 0 < t < T \]

and \(V(L, t) = ML^{-N} \quad \text{for } 0 < t < T \). We will show here that

(3.7) \[V_r(0, t) = \lim_{r \to 0} V_r(r, t) = 0 \quad \text{for } 0 < t < T. \]

In fact,

\[V_r(r, t) = \frac{1}{r} \left(u(r, t) - Nr^{-N} \int_0^r s^{N-1}u(s, t)ds \right) \]

\[= \frac{u(r, t) - u(0, t)}{r} - N \frac{\int_0^r s^{N-1}(u(s, t) - u(0, t))ds}{r^{N+1}}. \]
By using l’Hospital’s rule, we obtain
\[
\lim_{r \to 0} \frac{\int_0^r s^{N-1}(u(s, t) - u(0, t))ds}{r^{N+1}} = \frac{1}{N+1} \lim_{r \to 0} \frac{u(r, t) - u(0, t)}{r} = \frac{u_r(0, t)}{N+1}.
\]
Since \(u_r(0, t) = 0\) for \(0 \leq t < T\), we obtain (3.7).

Let \((\phi_j, \psi_j)\) be a radially symmetric solutions of (2.2) obtained in Theorem 2.1, and put \(\Phi_j\) by (2.3). Take \(T > 0\), and put
\[
U_j(r, t) = \Phi_j(r/\sqrt{T-t}) = \frac{1}{r^{N-2}(T-t)} \int_0^r s^{N-1} \phi_j(s/\sqrt{T-t})ds
\]
for \(0 \leq r \leq L\), \(0 \leq t < T\). Then \(U = U_j\) solves (3.4) and
\[
U_j(0, t) = 0 \quad \text{and} \quad U_j(L, t) = \Phi_j(L/\sqrt{T-t}) L^{-2}
\]
for \(0 < t < T\).

By the similar argument as in (3.5) we obtain
\[
\lim_{r \to 0} \frac{U_j(r, t)}{r^2} = \frac{\phi_j(0)}{N(T-t)} \quad \text{for} \quad 0 < t < T.
\]

Put \(V_j(r, t) = U_j(r, t)/r^2\). Then \(V = V_j\) solves (3.6) and
\[
(V_j)_r(0, t) = 0 \quad \text{and} \quad V_j(L, t) = \Phi_j(L/\sqrt{T-t}) L^{-2}
\]
for \(0 < t < T\).

By using the zero number properties of solutions for linear parabolic equations [5], we will derive criteria of the blow-up rate of solutions to (1.2) in terms of the function \(U\) defined by (3.3). We obtain Theorems 1.1 and 1.6 as a consequence of the following result.

Theorem 3.1. Let \(3 \leq N \leq 9\), and assume that (1.9) holds. Let \((u, v)\) be a radially symmetric solution of (1.2) for \(0 \leq t < T\), and define \(U\) by (3.3).

(i) Assume that there exist \(t_0 \in [0, T)\) and \(r_0 \in (0, L]\) such that
\[
U(r, t_0) \leq 2 \quad \text{for} \quad 0 \leq r \leq r_0 \quad \text{and} \quad U(r_0, t) \leq 2 \quad \text{for} \quad t_0 \leq t < T.
\]
Then the solution \((u, v)\) does not blow up at \(t = T\).

(ii) Assume that there exist \(t_0 \in [0, T)\) and \(r_0 \in (0, L]\) such that \(U(r, t_0) - 2\) has exactly one zero for \(0 \leq r \leq r_0\) and \(U(r_0, t) > 2\) for \(t_0 \leq t < T\). If the solution \((u, v)\) blows up at \(t = T < \infty\) then the blow-up is of type I.

It is clear that \(U_0\), defined by (1.7), satisfies \(U_0(r) = U(r, 0)\) for \(0 \leq r \leq L\). By the property (3.2) we see that \(U(L, t) = U_0(L)\) for \(0 \leq t < T\). Then, by applying Theorem 3.1 with \(r_0 = L\) and \(t_0 = 0\), we obtain Theorem 1.1 immediately.
Proof of Theorem 1.6. Assume that \((u, v)\) blows up at \(t = T < \infty\). By Theorem 3.1 (i) we have \(\left\{ r \in (0, L) : U(r, t) > 2 \right\} \neq \emptyset\) for any \(0 \leq t < T\). It is easy to see that there exist \(t_0 \in (0, T)\) and \(r_0 \in (0, L)\) such that \(U(r_0, t_0) > 2\) and \(U(r, t_0) - 2\) has exactly one zero for \(0 < r < r_0\). Note that the condition (1.15) ensures that \(V_t \geq 0\) for all \(t \in (0, T)\). Then \(U(r_0, t)\) is nondecreasing in \(t \in (t_0, T)\), and hence \(U(r_0, t) > 2\) for \(t_0 \leq t < T\). By Theorem 3.1 (ii), the blow-up is of type I. \(\square\)

We will give a sketch of the proof of Theorem 3.1. For the detail, see [20].

Proof of Theorem 3.1. (Sketch). (i) By using the comparison argument, we may assume that \(U(r, t) < 2\) for \(0 \leq r < r_0\) and \(t_0 < t \leq T\). Take \(\hat{T} > T\), and define \(\hat{U}_j\) by

\[
\hat{U}_j(r, t) = \Phi_j\left(\frac{r}{\sqrt{\hat{T} - t}}\right) \quad \text{for} \quad 0 \leq r \leq L, t_0 \leq t < \hat{T},
\]

where \(\left\{ \Phi_j \right\}_{j=1}^\infty\) is a sequence of function obtained in Theorem 2.1. By using the properties in Theorem 2.1, we will find that there exists \(j_0 \in \mathbb{N}\) such that, if \(j = j_0\), then

\begin{align}
\hat{U}_j(r, t_0) &> U(r, t_0) \quad \text{for} \quad 0 < r \leq r_0, \\
\hat{U}_j(r_0, t) &> U(r_0, t) \quad \text{for} \quad t_0 \leq t \leq T.
\end{align}

(3.10) (3.11)

Put \(V\) and \(\hat{V}_j\) by

\[
V(r, t) = \frac{U(r, t)}{r^2} \quad \text{and} \quad \hat{V}_j(r, t) = \frac{\hat{U}_j(r, t)}{r^2},
\]

respectively. Then \(V\) and \(\hat{V}\) solve (3.6) and satisfy \(V_r(0, t) = \hat{V}_r(0, t) = 0\) for \(t_0 \leq t < T\). It follows from (3.10) and (3.11) that

\[
\hat{V}_j(r, t_0) > V(r, t_0) \quad \text{for} \quad 0 \leq r \leq r_0 \quad \text{and} \quad \hat{V}_j(r_0, t) > V(r_0, t) \quad \text{for} \quad t_0 \leq t < T.
\]

Then, by the maximum principle, we obtain \(V(r, t) < \hat{V}_j(r, t)\) for \(0 \leq r \leq r_0, \ t_0 \leq t < T\). From (3.5) and (3.9) we see that

\[
\lim_{r \to 0} V(r, t) = \lim_{r \to 0} \frac{U(r, t)}{r^2} = \frac{u(0, t)}{N} \quad \text{and} \quad \lim_{r \to 0} \hat{V}_j(r, t) = \lim_{r \to 0} \frac{\hat{U}_j(r, t)}{r^2} = \frac{\phi_j(0)}{N(\hat{T} - t)}.
\]

This implies that \(u(0, t) < \phi_j(0)/(\hat{T} - t)\) for \(t_0 \leq t < T < \hat{T}\). Note that (1.9) implies \(u(0, t) = \|u(\cdot, t)\|_\infty\). Then \(\sup_{0 \leq t < T} \|u(\cdot, t)\|_\infty < \infty\), and hence \((u, v)\) does not blow up at \(t = T\).
(ii) For a continuous function ψ defined on an interval J, we define the zero number of the function ψ on J by $\mathcal{Z}_{J}[\psi] = \# \{ r \in J : \psi(r) = 0 \}$. We will find that $\mathcal{Z}_{[0,r_{0}]}[U(\cdot,t)–2] = 1$ for $t_{0} \leq t < T$, and we may assume that $T – t_{0} > 0$ is small enough so that

\begin{equation}
\frac{r_{0}}{\sqrt{T-t_{0}}} > R_{0},
\end{equation}

where R_{0} is the constant which appears in Theorem 2.1.

Define U_{j} by (3.8) for $j = 1, 2, \ldots$. First we show that, for each $j = 1, 2, \ldots$,

\begin{equation}
U_{j}(r_{0}, t) < U(r_{0}, t) \quad \text{for } t_{0} \leq t < T.
\end{equation}

Since $\Phi_{j}(r)–2$ has exactly $2j$ zeros on $(0, R_{0}]$ and no zeros on (R_{0}, ∞) by Theorem 2.1, we see that $\Phi_{j}(r) < 2$ for $r > R_{0}$. From (3.12) we obtain $U_{j}(r_{0}, t) < 2$ for $t_{0} \leq t < T$.

By using the properties in Theorem 2.1, we will find that there exists $j_{0} \in \mathbb{N}$ such that, if $j \geq j_{0}$, then $U_{j}(r_{0}, t) - U(r_{0}, t)$ has exactly one zero for $0 \leq r < r_{0}$. This implies that the blow-up is of type I. \hfill \square

References

