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Abstract

Consider the problem A?u = coK (z)uPs, u > 0in Q, u = Au = 0 on 99, where Q is a
smooth bounded domain in R (N > 5), co = (N—4)(N=2)N(N+2),p = (N+4)/(N —4), p. =
p — e and K is a smooth positive function on Q.

Under some assumptions on the coefficient function K, which include the nondegeneracy
of its unique maximum point as a critical point of HessK, we prove that least energy solutions
of the problem are nondegenerate for ¢ > 0 small.

§1. Introduction

Consider the problem

A%y = oK (z)uPe in Q,
(1.1) u>0 in Q,
u=Au=0 on 0,

where 2 C RY(NN > 5) is a smooth bounded domain, ¢y = (N —4)(N — 2)N(N + 2),
pe =p—¢e,p=(N+4)/(N —4) is the critical Sobolev exponent with respect to the
Sobolev embedding H? N H}(Q) < LPT1(Q), and € > 0 is a small parameter. Here, K

is a positive function in C?(Q).
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We put an assumption on the coefficient function K:

(K): K € C?*(Q),0 < K(z) <1, K }(maxgK) = {zo} C Q with K(z¢) = 1, and g is
a nondegenerate critical point of K.

In the following, as solutions of (1.1) we consider only least energy solutions u. such
that

Jo |AucPda = inf Jo |Aul?dx
(Jo K (@) ue|pettd) 737 w0 (fo) K (2)[ufpettd) 75

We easily check that least energy solutions blow up in the sense that ||uc|p~(q) =

ue(z:) — 400 as € — 0, and that the maximum point x. of u. converges to a maximum
point of K in Q. Therefore we have z. — x¢ as € — 0, here by the assumption (K), z
is the unique interior maximum point of K.

In this note, we prove the nondegeneracy of least energy solutions to (1.1) when
e > 0 is sufficiently small, under the assumption (K). Here as usual, the nondegeneracy
of u. for small € means that the problem

A%, = cop K (z)uPe"tv.  in Q,

(1.2)
ve = Ave =0 on 0f2
admits no solution except for the trivial one for € > 0 small enough.

Theorem 1.1.  Let Q C RYN(N > 5) be a smooth bounded domain. Under the
assumption (K), least energy solution u. to (1.1) is nondegenerate for € > 0 small.

The precise asymptotic behavior of least energy solutions as ¢ — 0 when K # 1
was obtained in [6] under the assumption (K). Using this result, we prove Theorem 1.1
along the line of [7] and [8], the original idea of which comes from [4].

8§ 2. Preliminaries

In this section, we recall some facts which are needed in the sequel. Let G = G(z, 2)
denote the Green function of A? under the Navier boundary condition:

{A?G(-, 2) =6, in Q,

G(,z)=AG(-,z) =0 on 0N.

We decompose G as G(x,z) = I'(z,z) — H(x,z), where I'(z, z) is the fundamental
solution of A?:

1 _ 4N
T(z,2) = { N-DE-Zox jz =2, N =5,

01—410g|x—z|_1, N =4,
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where o is the volume of the (N — 1) dimensional unit sphere in RY and H(z, 2) is
the regular part of the Green function. Finally, let R(z) = H(z, z) denote the Robin
function of the Green function of A? with the Navier boundary condition. By the
maximum principle, we have R > 0 on  and R(z) — +o00 as z tends to the boundary
of Q. In the following, we set G = —AG. Then G is the Green function of —A under
the Dirichlet boundary condition, and satisfy

—~AG =G, —-AG =4, in Q,
G>0,G>0 in €,
G=G=0 on 0f2.

Lemma 2.1.  For any z € 2, there holds

20 [ (w2 () (52) s, = V- 0RE)

oG oG OR .
(2.2) . %(x,z)a—%(x,z)w(w)dsx = 8_22-(2)’ (i=1,---,N),
oG\ 0 [0G oG\ 0 [9G
/89 (8331> 925 (an> (& 2)dse % /89 (8361) 0z (8V30> (z:2)dsq
2
(2.3) O’R i,j=1,---,N).

B 8z,~8zj (Z)’ (

Here v, is the outer unit normal at x € 0f).

Proof. See [3]:Lemma 3.1 and Lemma 3.3. Note that our sign convention is
different from that of [3]. By differentiating (2.2) with respect to z;, noting that

(g—,i(x, z)> vi(z) = gg (x,2), (%(w,z)) vi(z) = g—g(zc,z) on 0f), we see that (2.3)
holds. O

Lemma 2.2.  Let u. be a solution to (1.1) and v be a solution to (1.2). Denote
u. = —Aue and v. = —Av.. Then the following identities hold true:

fte=ama {(Ge) (5e) + (&) (32) o

(2.4) = o /Q ubv.(x — 2) - VK (z)dx

for any z € RN and

ou ov ou o oK
£ £ £ £ — pE
(2:5) Aﬁ(m)<w)+<w)<w)}m %L(m)%%“

fori=1,2,--- N.
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Proof. For smooth f, g, we have the formula

Aﬂm%w—m%ﬁm

3 OAf LAY of 9g
(26) a /aQ ( vy ) . ( vy ) fse /69 (3%) 89~ (a’/w) B ds:

Set we(z) = (x — 2) - Vue(z) + aeus(x) where a. = zﬁ' Direct computation yields
that

Aw, = (e +4)co K (2)uls + cop K (x)ul= "1 (x — 2) - Vue + couls (x — 2) - VK (2).

~lu., we have

Since v, satisfies A%v, = cop. K (z)uPe
(A2w.)ve — (A%v)we = (e +4 — peas)coK (z)ule v, + coubs (x — z) - VK (x)v, = 0.

Integrating this identity on £ with the formula (2.6), and noting that

for x € 09, we have (2.4).
On the other hand, differentiating the equation in (1.1) with respect to x;, we have

A? (g?) = copEK(a:)ugE_l (ZZE> + ¢o (gf) uls in Q.

8“5> and subtracting, we obtain

Multiplying this by v., and the equation of v. by (

o (32) (o (3) -0

Finally, integration by parts formula (2.6) yields (2.5). O

Next is the asymptotic result by [6]. In what follows, we use a symbol || - || to denote
the L° norm of functions.

Theorem 2.3. Let Q € RV, N > 5 be a smooth bounded domain. Let u. be a
least energy solution to (1.1) fore > 0 and let z. € Q2 be a point such that u.(z:) = |juc||.
Assume (K). Then after passing to a subsequence, the following estimate holds true:

There exists a constant C > 0 independent of € such that for any R. — oo with
re = Reflue| 5T — 0,

[luell

N—-4> fOT‘|33—:U€| Srea

(2.7) (1+||u5||N Tla—ael?)
ue(e) < ey for{lz —ae| > rinQ
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Furthermore, as e — 0,

|ze — 20| = O(Jlue[7?) N =5,
__2
[ve = xo| = o([Juc||"¥T) N =6,

(2.8) (1)

(2.9) 2)[luel® — 1,

(2.10) (3)lueflue (@) — 2(N = 4)(N = 2)onG(z,20) in Cipe(2\ {20}),
elluc]> — 2w R(x0) N =5,

(2.11) (4) § elluc|* = =3 AK (z0) + 48073 R(x) N =6,
ellucl| ™= — — oy AK (20) N=>T.

Now, consider the scaled function

_ 1 Yy
(212) 'ng(y) = Hu ||u6 ( pe—1 +x6) 9 y e Q&‘ = ||u6||
g

el

be

4_1(Q —e€).

U, satisfies 0 < u. < 1,4.(0) = 1, and

2~ Yy Y 3
A Ue = COK(W + xs)ugf mn QE,
Ue

U = At =0 on 0f)..

Since ||uc|| — oo as ¢ — 0 and z. does not approach to 9, we see Q. — RY. By
standard elliptic estimates, we have a subsequence denoted also by . that

(2.13) e — U compact uniformly in RY

as € — 0 for some function U. Passing to the limit, we obtain that U is a solution of
A?U = coUP in RV,
0<U<1,U(0)=1,
lim,| o U(y) = 0.

According to the uniqueness theorem by Chang Shou Lin [5], we obtain

—4

(2.14) 0w = (503) ;

1+ yl?
In terms of 4. in (2.12), the estimate (2.7) reads

cU f <R.,
(2.15) Bay) < () or y| <
Cpm=  for {ly| > R} NQ,

where R. — o0 is any sequence as in the above.
Here, we recall a theorem by Bartsch, Weth and Willem [1].
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Lemma 2.4. Let vy be a solution to

2, _ —1 N
Avg = copUP~ g in RY,

Jan 1A dy < oo.

Then there exist a;j (j =1,2,--- ,N),b € R such that vy can be written as

N

_ . Yj 1—|y?
W= 2 T e T T e

§3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

We argue by contradiction. We assume there exists a non-trivial solution v. to
(1.2) satisfying [|ve|| = |Juc]|| for any € > 0.

Consider the scaled function

5 1
(31) ey = —v Ita], e =u
| Jue| ™5

Jue]|

Pe

T (Q - z.).

We see 0 < U, <1 and v, satisfies
A27~)€ = COpsK(+ —T + xg)ﬂga_lﬁg in Q,

lluell 4

(3.2) Ue = AV =0 on 092,

[0l (0. = 1-
By 0|/ (a.) = 1, elliptic estimate implies that
(3.3) U. — vy compact uniformly in RY
for some vy and vg satisfies
A%yy = copUP vy in RY.

Also by arguing as in [7], we have

(3.4) | 1aipay<c

[

for some C' > 0 independent of € > 0 small. By (3.4) and Fatou’s lemma, we also have

/]RN |Avg|2dy < C.
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Thus by Lemma 2.4, we have

1—y?
(3.5) Zaj 1+|y|2 (N—2)/2 +b(1+|y|2)(N—2)/2'

In the following, we divide the proof into three steps.
Step 1. b= 0.
Step 2. a; =0,5=1,---,N.
Step 3. vy = 0 leads to a contradiction.

First, by using the Kelvin transformation and a local supremum estimate for weak
solutions to a linear biharmonic equation by Caristi and Mitidieri [2], we can obtain the
pointwise estimate for the scaled function o., just as in [7] Lemma 3.1.

Lemma 3.1.  Let 0. be a solution of (3.2). Then we have the estimate
(3.6) [0=(y)| < CU(y), VyeQ.
for some C > 0.

Also by Lemma 3.1 and Theorem 2.3 (2.7), we have the following convergence
result. For a proof, see Lemma 3.2 in [7].

Lemma 3.2. Let w C Q2 be any neighborhood of ) not containing xo. Then we
have

(3.7) e |lve — —2(N — 2)(N — 4)onbG (-, 20) in C?(w).
Proof of Step 1. Here, we prove only the case N > 7. Proof of the cases N =5 and

N = 6 will be done by a similar argument; see [8] for the second order —A case.
Putting z = z¢ in (2.4) and multiplying ||u.||* N =%, we have

4 O||uelue \ [ O|luel|ve
——2 _ .
ol #5572 [ (= aw) ) (el ) (el a,

_ O||uc||Te 0||uel|ve
4 2 — .
/aQ((x %o) - V) ( vy oV, dsg

(3.8) = |Jue]| ¥ o / uPe v (x — x0) - VK (2)da.
Q

4
+ [uel ™=

As 4 < 2if N > 7, LHS of (3.8) converges to 0 as ¢ — 0. On the other hand,
by Taylor’s formula and the change of variables, we write

(RHS) of (3.8) =C1+Cy+C3+Cy
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where, putting b;; = 6226% (x0),

e—1 e—1
C1 = collue ||N APt 1—(Ref )N (et )/ b= v, E bijyiyidy,
Q

€ 1,7=1
Cy = 200Hu6|‘ﬁ+1’6+1_(%—1)]\7—(%_1)/ ’UJpE Z bz]yz Tej — $0j)dya
e 1,j=1
_4 _(ke—1
03 = COHIU'E”N_4+p5+1 ( 4 )N/ upE Z sz Tej — xOZ)(xE_] xOy)dya
Qe 2,7=1
_1 3
04 = CO”usHﬁ_FpE_'—l_(&T)N/ ’Ufga (O‘T + 2. — 1'0‘ ) dy
Qe U

By (2.15), (3.6), (2.9), (2.8) and the dominated convergence theorem, we see
2 | N-3_ 2
Co = 0(lucl 547 x 0 ([ Uuatu)aldy -+ o(1) ) x offucl| ¥5) = o),
Cs = O|jus |7+ 77%) x O ( [ ety +o(1>) x o |ue|~75) = o(1),
R

) /Q e e () (O (’W 3) ot 3;0|3)>

= O(ucl ) x Ol 4) < O ([ 0Pun(u)f* + )y +0(0)

= O(JJluc]~~=1)

Cs = O]

as e — 0. As for (1, we see

N—2
Ci = CO”UEH(T)E/ UPE Z bz]yzyjdy
Q

€ 1,j=1

— — 1— |y|2 2
ur bijyiy;dy = SbAK U?r du.
Co /]RN ( Z jYiy;ay = N (LUO)/ (y) (1 + |y|2)(N_2)/2 |y| Y

2,7=1 RN
Thus letting € — 0 in (3.8), we have
0=AK(xg) xb.

Hence we obtain b = 0, because our nondegeneracy assumption of xy assures that
AK(z9) < 0 strictly. O

Proof of Step 2.
In this step, we prove a; = 0,5 =1,2,--- , N in (3.5) by using the next lemma.
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Lemma 3.3. Assumeb=0 and a = (a1, -+ ,an) # 0 in (3.5). Then we have

No2 N oG
“ue:“mvs - 2(N - 2)01\’;% (8_%(5”’2)>

Z=X0

in C @\ {wo}).

Proof. Since —AD. = cop- K (z)uls"tv. in Q, v, = 0 on 99, the Green represen-
tation formula implies that

(3.9) Ue(x) = cope /Qé(:c,z)K(z)ugf_l(z)ve(z)dz

for any z € Q\ {zo}, here G(x,2) = —A,G(x, 2) is the Green function of —A under the
Dirichlet boundary condition. By a change of variables, we see

cop- /Q G, =) K (2)ul Y (2)vo(2)d

PE—l i ~ —1 ~
= cope||us||P (TN / G (@, y) K- (y)a2 Vo (y)dy

€

where G.(z,y) = G(z, HH% + x.) and K. (y) = K(””—_1 + z.). By (2.13) and
(3.3), we obtain ) E

uniformly on compact subsets of RY.
Now, let us consider the following linear first order PDE

ow o
Z a5 = a7 o(y), yeRY
j=1 y]

with the initial condition w.|p, = ﬁU”(y), where T', = {2 € R¥|z-a = 0}. Here,
the right hand side is assumed to be 0 outside of €2.. By the unique solvability, we have
the solution we of this problem with the estimate w.(y) = O(|y|~N*+3)) as |y| — oo,
since P 1. (y) = O(Jy|~N+9) by (2.15) and (3.6). Also we have

-1
(N +4)

L ety = g L o= (v71) ovm)

We — UP  uniformly on compact subsets on RY

and
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by the dominated convergence theorem. Using integration by parts, we have

&r;l aw
B () = copelue [P~ 25 >N/ C.a, 9K Zag “d

N
_(pe—1 8 —_—
= —copeJuclP—BFIN S /Q 5 (Gl ) Ko}y
j=1 e yi

= —copuc |-~V <L‘1>Zag | 5= (G oK)

z= L +x.
re — -
fluell 4

Note that p. — (B8N — (221) = —(N=2) + e(&72). Now, we see

Yy

Z=——p—7 T2
luell 4
oG — 0K
~ (G- (o)) K a) + Gloan) (57 (e
oG
= a—%(%%)

uniformly on compact subsets of RY as ¢ — 0, since x( is a critical point of K with
K (zp) = 1. Therefore, we have the convergence

N
el ¥4 (2) — — cop |~ "
€ € OP\N 1 N+2 =

J:

= 2(N —2)oy Z a; (g—z(x, z))

j=1

Z=X0

Z=X0
for any x € Q\ {zo}. Elliptic estimates implies this convergence holds true in C} (0 \

{zo}). This proves Lemma.

Now, assume the contrary that a = (a1, -+ ,an) # 0. We multiply both sides of
(2.5) in Lemma 2.2 by [Jue||N=2/N=4 5 |ju ||~ to get

- Ollue[Te \ ( Ol | ¥ e Ollucluc | ( Olluc ¥
2
el [ / Q( el 170 g, 4 (e 1507,

(3.10)

L N=2 oK
= el [ (m«) et
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As e — 0, we see that

Olfuclfm.\ [ 0fluc|| ¥ 0| O|u.|| 71
Ue||Ug Ug N_4'Ue Ue || Ue Ue N_4'Ue
/39 ( ox; ) ( OV, ) dsz + ( 0x; > ( OV, ) dsa

tends to

N
AN —4)(N —2)%0% > a;x
j=1

L) 8 (5 o (22) 2 () o)

here we have used Theorem 2.3 (2.10), Lemma 3.3 and Lemma 2.1 (2.3). Thus we have
(LHS) of (3.10) tends to 0 as € — 0.
On the other hand, again we solve the linear PDE

a £ ~
(3.11) Z a; 28 = @i (y), yeRY
j=1 8yj

with the initial condition w.|r, = 537 UP"*(y), where I', = {z € R¥|z - a = 0}. Here as
before, the RHS of (3.11) is understood as 0 outside of §2.. The solution w, satisfies the
estimate w.(y) = O(|y| "2V 1) as |y| — oo, since @l (y) = O(UPT1(y)) = O(|y| )
by (2.15) and (3.6). As before, we have

-1
We — WU PTL uniformly on compact subsets on RY

and

-1 -1
/Q (y)dy — N ) Upde = WUNCN

by the dominated convergence theorem, where Cy = fo a J:]Tz; ~dr = 1“2(11“\1(/]\2[;2 Thus,



84 T. SATO AND F. TAKAHASHI

(RHS of (2.5)) x |Juc|| ™1 is

0K
Pe
; (8%) ub=v.dx

N-2 _ (pe—1 0K o
= cofuc Rt ( )( Yt ity
Q

. N-2
col|ue|| M=

0%i ) lue | 5
No2, (pemlyy 0K y N ow.
— coljuc I [ (ZE) (o n) Y ay ey
Q i/ el T j=1 Yi

we(y)dy

z=—YL + +tz.

_ _ N 4+p5 (pE l)N Y
colluel| Z / dy; {(8%1) (“u ||p5—1 +x5)}we(y)dy
Pe—1

pe—1
|| KR~ (2N - (L)Z%/ ((% s >(x)
i0Tj
luell 4

N
0?’K
_ (F2)e
Co (hm || el ) g a5 a%( )(21_1%/95 wg(y)dy>

1 82K
2NCOJNCN Z Y oz,01; O0x;0x; (o)-

Thus we have

N PK (50) = 0
a;————>(xg) = 0.
=1 J 8$16$ j
By our assumption of the nondegeneracy of xg, the matrix (%) (z¢) is invertible.

Therefore we obtain that a; =0 for all j =1,---, N. Thus we have proved Step 2. U

Proof of Step 3.

By Step 1 and Step 2, we have obtained that the limit function lim. ¢ v. = vy = 0.
Since ||Te|| o (0.) = 1, there exists y. € €2, such that ¥.(y.) = 1 and |y.| — oo, because
the above convergence 9. — vy = 0 is uniform on compact sets of RYV. But this is not
possible because of Lemma 3.1. This proves Theorem 1.1. O
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