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Higher-order asymptotic expansions of solutions to a
parabolic system of chemotaxis in R"

By

Tetsuya YAMADA *

Abstract

We consider the initial value problem for a system of chemotaxis, and give the higher-order
asymptotic expansions of bounded solutions.

§1. Introduction

In this article we study the initial value problem of the following system:

uy = Au — V - (uVv), reR" t>0,
(KS) vy = Av — v+ u, zeR" t>0,
u(z,0) = up(z), v(z,0) = vo(z), zeR",

where n > 1 and ug, vo, ;v0 € L*(R™) N B(R") (1 < j < n). Here and below B(R")
stands for the Banach space of all bounded and uniformly continuous functions on R
with the supremum norm.

This system is the mathematical model introduced by Keller-Segel [8], which is
describing aggregation phenomena of organisms due to chemotaxis, that is, the directed
movement of an organism in response to gradients of a chemical attractant. The function
u(x,t) corresponds to the population of the organism at place x € R™ and time ¢ > 0,
and v(z,t) the concentration of the chemical.

For (KS), it is well known that nonnegative solutions are global in time and bounded
when n = 1, but can blow up in finite time when n > 2. For example, we refer to
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Childress-Purcus [1], Herrero-Velazquez [4], Horstmann [5], Jager-Luckhaus [6], Nagai-
Senba-Yoshida [12] and reference therein.

As one of further study on (KS), it is an very interesting problem to deduce the
asymptotic profiles of bounded solutions to (KS) as ¢t — oo. Let us recall the previous
results for such works. It was shown in Nagai-Yamada [14] (see also Nagai-Syukuinn-
Umesako [13]) that every bounded solution (u,v) to (KS) decays to zero as t — oo and
approaches asymptotically the heat kernel with the self-similarity. These asymptotic
profiles in LI(R") (1 < g < o0) space decay at the rate t "(1=1/0/2-1/2 a5 t — oo if
n > 2, but at the rate t—(171/9/2-1/2 o9 ¢ as t — oo if n = 1. The reason is that the L9
estimates of the solution for n = 1 might not decay faster than those for n > 2. It was
proved in Kato [7] that under the assumption of Nagai-Yamada [14], the asymptotic
rates in LI(R") (1 < ¢ < 0o) space for n = 1 are improved to the rate ¢t~ (1=1/4)/2-1/2
by introducing a correction term, and obtained the precise asymptotic expansion of the
solutions to (KS). For further study of the asymptotic profile of bounded solutions to
(KS) in the case n = 1, adjusting the center of the heat kernel by use of a shift which are
suitably determined by the initial data and the nonlinear term, Nishihara [15] obtained
the decay estimates of difference between the solution and the heat kernel whose center
is adjusted. The decay estimates in this result are rather sharp, though he imposes
stronger assumptions on the initial date uo than ones in Kato [7].

For the higher-order asymptotic expansions in higher-dimensional case, Yamada
[18] introduced the correction term R(z,t) mentioned in the result of Kato [7] for the
case n = 1, and gave the higher-order asymptotic expansions up to n-th order for the
solutions to (KS) with certain space-time decay properties. To state this result in more
detail, we denote the heat kernel by

(1.1) G(z,t) = (4mt) ™21/ (4D)

and use the notations M, E., and F, , given by

(1.2) M, = - Y uo dy,
(1.3) Euop= /000 /n y* (14 s)PuVv dyds,
(14)  Fa,— /0 h / Y+ P (V) (s) — MEGVG)(1+ 5)) dyds,

respectively. Also, we introduce the correction term R(z,t) appearing in the higher-
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order asymptotic expansions as

(

W(z,t) — Py(x,t)log(1l +1t) if n=2,
(n—3)/2 9
B 2, e . S
W (z,t) Z 55 Pi(z,t) if nis odd with n > 3,
(1.5)  R(z,t) = =0

(n—4)/2 9

#) — —  P(x,t)— P, ) log(1+t

W(z,1) ; 5 —5; Li(@.1) = Pln2)2(z, 1) log(1 +1)

if n is even with n > 4,

where
t
(1.6) Wi(x,t) = Mg/ VG(z —y,t —s)- (GVG)(y,1 + s)dyds,
0 JRrn
_ Mg (_1)1) 2a0 /P
(1.7) Pi(z,t) = @) |a|%=i 2|a|a!p!A8x G (x,1+1).

Here we note that this correction term given by (1.5) is estimated as follows (see the
assertion (ii) of Lemma 5 in Yamada [18]):

(1.8) |R(t)|| e < CME(1 +t) A= D/2n/2 (4501 < g < 0).

Theorem 1.1 ([18]). Letn > 2,1 < q < oo and (u,v) be the solution to (KS)
on R™ x [0,00) satisfying

(1.9) sup (1 + |z))" " *(1+ t)“/2(|u(a:,t)| + |v(z,t)|) < o0.
z€R™,t>0
0<p<n

Then, under the conditions |z|"ug € L*(R™) and sup,cgn (1 + |z])" (Juo(z)| + |vo(z)]) <
00, the following assertions hold:

(7) If n is odd, then the integral E, , given by (1.3) converges for || +2p <n —1 and

(1.10) lim ¢"(1—1/9)/2+n/2

t—o00

—1)lal+p
ut)— Y %agafG(Ht)Ma

la|+2p<n

(—=1)leltr
+ Y, 55— VG(1+1): Eap+ R(t)
|| +2p<n—1 ap:

=0.

La

(1) If n is even, then the integral E, , given by (1.3) converges for |a|+2p < n—2 and
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the one F, , given by (1.4) is well-deified for |a| +2p =n —1, and

(_1)|a|+P
ut) = > a!—p!agafc:(l + )M,

|a]+2p<n

(1.11) lim ((—1/a)/2+n/2

t—o0

(_1)|a|+p

LD

|| +2p<n—2

alp] VOLOPG(L+1) - Eup+ Pry_oy/2(t) log(l +1)

(=)l
+ > e VOROPG(L 1) Fay + R(1)|| =0,

a!
|a|+2p=n—1 p

where P, _9)/2(t) is the one given by (1.7) with i = (n — 2)/2.

La

(7i7) v also has the same asymptotic profile as u.

Remark. (i) For small initial data, there exists a unique solution to (KS) with
(1.9) by using the contraction mapping principle (see Theorem 3 in Yamada [18]).

(ii) In the case n = 2, the following lower bounds of decay rates for R(t) defined
by (1.5) is shown

(1.12) |R()||lpe > ecME(1+1)"2 for t>2.
For the proof of (1.12), see the assertion (iii) of Lemma 5 in Yamada [18].

Now we refer to several works, closely related to (KS). For the drift-diffusion
system related to (KS), it was shown in Kobayashi-Kawashima [9] that in the case
n > 3, the solutions converge to the heat kernel as ¢t — oo, and the asymptotic rates
in LI(R™) (1 < q < o0) space are t~"(1=1/0)/2=1/2 if n > 4 and t=30-1/0)/2=1/2]og ¢
if n = 3. Ogawa-Yamamoto [16] showed that the asymptotic rates in LI(R™) (1 <
g < o0) space for n = 3 given in Kobayashi-Kawashima [9] is improved to the rate
t—3(1=1/4)/2=1/2 1y introducing a correction term on the basis of the argument used in
Kato [7], and obtained the precise asymptotic expansions up to second order for the
solutions. The situation is rather similar to Theorem 1.1 above.

On the other hand, Fujigaki-Miyakawa [2] proved that under small initial data, a
solution of the incompressible Navier-Stokes equations with the decay properties like
(1.9) admits the higher-order asymptotic expansion in terms of the space-time deriva-
tives of Gaussian-like functions. The solution treated in Fujigaki-Miyakawa [2] decays
sufficiently faster because for the initial data in L!(R™), the average of initial data is
naturally zero by use of the divergence free condition for the initial data (see Miyakawa
[11]). Thus, the correction term does not appear in the asymptotic expansion in contrast
to (KS) and the drift-diffusion system.

The aim of this article is to show that in the case n > 2, bounded solutions to (KS)
admit the same higher-order asymptotic expansions as the solutions treated in Theorem
1.1. Our result is the following.
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Theorem 1.2. Assumen > 2,1 < q < oo, and let (u,v) be the solution to (KS)
on R™ x [0,00) satisfying

(1.13) ig}g(”U(t)“Lr + |lv(@)||or) < oo for r=1,00.

Then, under the condition |x|"ug € L*(R™), the assertions of Theorem 1.1 hold.

Remark. (i) In the case n > 2, the existence of bounded solutions to (KS) is
assured if |luol|z1, ||VvollL1, ||Vvo|lL~ are small enough, but ||ug|L~ not necessary
small (see Nagai-Syukuinn-Umesako [13]).

The proof of Theorem 1.2 can be basically obtained by applying techniques used in
Theorem 1.1. By the definition of solutions to (KS) (see Definition 2.1), we can write u
as

u(t) =e®uy — /0 e=9IAY . (uVw)(s)ds =: I, (t) — I5(t),

tA

where €'~ is the semigroup associated with the heat equation. Under the suitable

moment condition, the asymptotic expansion of I;(t) is obtained as follows:

(114) L) = Y (-p-r

alp! 030/ G(1+ )Mo + O(t_n(l_l/q)/z_n/z) (t — o00),
|l +2p<n -

where M, is the one given by (1.2) (for example, see Fujigaki-Miyakawa [2]), and is
not depending on whether n is odd or even. Thus, as mentioned in Theorem 1.1, it’s
believed that the difference of asymptotic expansions in the odd and even dimensional
cases is caused by I5(t).

Hereafter, let us consider only the asymptotic expansion of I5(t). To give this

(t=5)A with respect to the space-time

expansion, we expand the integral kernel of Ve
variable by virtue of Taylor’s formula. Then, the integral E, , given by (1.3) appears
in the asymptotic expansion of I5(t). This integral converges if |a| + 2p < n — 2, but

the convergence of it is not assured if |a| 4 2p = n — 1. The reason is that the estimate
(1.15) / |l Vo dy < C(1 + s)™"/271/2+el/2 (50, |a| < n)

is satisfied. Therefore, we can’t expect to obtain the asymptotic expansions in Theorem
1.1.

Here, by noting that the term —V - (uVv) is approximating the one —MZ2V-(GVG),
where My = [p, uody (see (2.11) of Lemma 2.6), the integral F,, given by (1.4)
converges for |a] + 2p = n — 1 due to the estimate

(1.16) / ]| (Vo) (g, 5) — ME(GVG) (. 1+ 5)| dy

SO(1+8) PRI (350, o] < ).
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Hence, using this fact and (1.14), and adding the correction term R(x,t) given by
(1.5), we estimate the error term in LI(R"™) (1 < ¢ < o0) space of asymptotic expansion
up to n-th order for u(t) as follows:

(1.17)
(—=1)lel+rp (—1)lel+r

ult) = Y a|—p!8§‘8§’G(1+t)Ma— >

la|+2p<n ' || +2p<n—2

« QP
P VIS G(1+1t) - Eu,

—1)lel+p
> (+V6;‘85G(1 1) Fop— Nu(t;t) — R(t) + o(t 3=/ 0)/2-n/2)
|| +2p=n—1 ap:

as t — oo, where E, p, F,, and N,(t;t) are the ones given by (1.3), (1.4) and (2.4)
with [ = n, z =t > 0, respectively (see Proposition 4.2). Then, there exists a difference
between the third and fourth terms on the right-hand side of (1.17) in the odd and even
dimensional cases since N,,(t;z) = 0(¢,z > 0) if n is odd, and

Nn(t; t) = P(n—2)/2(t) 10g(1 + t)

if n is even (see Lemma 2.3). As a consequence, this causes the difference between the
asymptotic expansions of solutions to (KS) in the odd and even dimensional cases.

Now, we should emphasize that there exists a difference between the proofs of
(1.15) and (1.16) in Theorems 1.1 and 1.2 which plays an important role in discussing
the higher-order asymptotic expansion. In Theorem 1.1, if the solution (u,v) to (KS)
satisfies the condition (1.9), then the L!-norm for the solution is bounded on [0, cc0), and
the decay estimates for the solution are obtained, which together with sup,cgn 450(1 +
|z|)™"|u(z,t)| < oo gives (1.15) and (1.16). On the other hand, the solution (u,v) to
(KS) with (1.13) treated in Theorem 1.2 satisfies the moment estimate (3.1) given in
Proposition 3.1 below under the condition |x|"ug € L!(R™). Hence, the estimates (1.15)
and (1.16) follow from the decay estimates for the solution and (3.1).

Before closing this section, for simplicity we use the following notation.

Zy =NU{0}, a= (a1, ,an) €LY, |a|=ai+ -+ an,
0 0
a’ aj = a. a? :8?1 '”agna V= (81,-" aan)-

9
8xj

0y =

For k € Nand 1 < ¢ < oo, we denote by |||z« the usual L¢(R™)-norm, and by W*¢(R")
the usual Sobolev space. The function f(-,t) with respect to z € R™ is defined by f(¢).

§2. Preliminaries

The aim of this section is to give the definition of solutions to (KS) and to collect
known results which will be used often in the proof of Theorem 1.2. Firstly, we begin
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with the definition of solutions to (KS). For this purpose, we define e* f(z) by

(@)= | Cla—y.0)fy)dy.
where G(x,t) is the heat kernel given by (1.1).

Definition 2.1. A function (u,v) on R™ x [0,7] (0 < T < o0) is said to be a
solution to (KS) on R™ x [0,T7] if u,v satisfy

u,v,0;v € C([0,T]; L*(R™)) N C([0,T]; BR™)) (1 < j < n),

and for all 0 < ¢t < T,

(2.1) u(t) = ePug — /0 =AY - (uVv)(s) ds,

t
(2.2) v(t) = e ey —I—/ e~ =9 e(t=5) 2 (5) ds.
0

Also, (u,v) is said to be a solution to (KS) on R™ x [0, 00) if (u,v) is a solution to (KS)
on R" x [0,7] for all 0 < T' < o0.

Remark.  Making use of the standard regularity argument for parabolic equations
(for example, see Ladyzhenskaya-Solonnikov-Uralt’seva [10]), we see that (u,v) is a
classical solution to (KS) on R™ x (0, 7], which satisfies

u,v € C((0,T); W24(R™) N CL((0, T); L7(R™))
for all 1 < ¢ < oo, and
dju, Av € C((0,T); L*(R™)) (1 < j < n).
The following lemma is the L?-estimates for the heat kernel defined by (1.1).
Lemma 2.2. Leta;,f€Zy (1<j<n)andl<qg<oo. Then
(2.3) 10207 G (t)|| e < Ct—"A-VO/2=1al/2=6 ¢ 5 (),
where C' is a positive constant depending on «, 3, n, q.

The following lemma is needed to obtain the higher-order asymptotic expansion of
u in more detail. The proof can be given by a direct calculation (see Yamada [18]).

Lemma 2.3 ([18]).  Let 1 <1 <n be a positive integer and set

(2.4) Ni(t;2) :=MZ Z ﬂ

|a|+2p=1—1

./Oz/nyo‘(1+s)p(GVG)(y,1+s)dyds (t,2 > 0).

i) VOLOrG(1 +t)-
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Then,

0 if 1 is odd,

(25) Nifti2) = Z
Py_oya(t) [y (1 +s) /227 ds  if L is even

fort,z >0, where My and P;(t) are the ones defined by (1.2) with o = 0 and (1.7) with
i = (l—2)/2, respectively.

The following lemma is concerned with well-known L™ — L9 estimates of ' f, which
are proved by the Young’s inequality for convolution (see Y. Giga-M.-H. Giga [3]).

Lemma 2.4 ([3]). Letl<g<r<ooanda;,fe€Zs (1<j<n). Then
(2.6) (109072 f||Lr < CHT W aTUDRAAET Ly for f € LYR™),
where C' is a positive constant depending on «, 3,n,r,q.

Let (u,v) be the solution to (KS) with (1.13). Then the L%-estimates for the
solution have shown in Nagai-Yamada [14].

Lemma 2.5 ([14]).  Let n > 1. Then the following estimates hold:

(2.7) sup (1 + )" YD/ |u(t)|| e < 00 (1<qg<00),
>0

(2.8) sup (1 + t)"’(l_l/q)/2+l/2||Vv(t)||Lq <o (1<qg<o0).
>0

Furthermore, the following lemma, which is a key one to prove Theorem 1.2, gives
some L?-estimates for the solution. The proof is obtained by the calculations similar to
those in Kato [7] (see also Yamada [18]).

Lemma 2.6 ([7, 18]). Letn>1,1<q < oo and (u,v) be the solution to (KS)
with (1.13). Then, under the condition |z|ug € L*(R™), the following estimates hold:

(2.9) sup (1 4 ¢)"A=Y /241214 (t) — MoG(1 + t)|| 1« < oo,
t>0

(2.10) sup (1 4 t)"I=YD2HL | 9y(t) — MoV G(1 4 t)|| 1« < oo,
t>0

(2.11) sup (1 + )" A=Y a/24n/248L) (7)) (t) — MZ(GVG)(1 + t)|| e < o0,
t>0

where My is the one defined by (1.2) with a = 0.

Finally, to get the asymptotic behavior of v, we prepare the following lemma. The
proof is obtained by the arguments similar to those in Kato [7] (see also Yamada [18]).
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Lemma 2.7 ([7,18]). Letn>1,1<q < oo and (u,v) be the solution to (KS)
with (1.13). Then

(2.12) igg (1 + )"V O/240/24 11 (4) — y(t)]| pe < 0.

§3. Moment estimate

This section is devoted to the moment estimate of w in order to show Theorem 1.2.

Proposition 3.1 (moment estimate).  Let n > 2, and let | > 2 be an integer.
Then, under the condition |x|'ug € L*(R™), [o. |z/'u(x,t) dx is finite for t > 0, and

(3.1) / |z u(z, )| de < C(1L+H)Y% (t>0).

For this purpose, we introduce the following cut-off function (see Sugiyama [17]).

Lemma 3.2 ([17]).  Define the function v by

.

1 for 0<r <1,
_ 1—2(r—1)2 for 1<r<3/2,
vl = 2(2 — 1) for 3/2<r<2,
0 for r>2.

Then, the following assertions hold:
(i) ¥ € C[0,00) and ¢’ € W1>°(0, c0).

(13) Put ¢ (x) == (|x|/m) for x € R™, m € N. Then, there exist positive constants
¢i (i = 1,2) depending only on n such that

(3.2) IV (2)| < exm™ b (2)}'/? for z € R™,
(3.3) |AYy, ()] < com™  for a.a. x € R™,
x -V, <0 forxeR".

Using the cut-off function given in Lemma 3.2, we show the following lemma before
the proof of Proposition 3.1.

Lemma 3.3. Letk > 2 andm € N. Then, under the condition |x|Fug € L*(R™),
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we have

t
(3.5) / |x|k|u|¢m dr < || |a:|ku0|\L1 +k(k+n— 2)/ / |x|k_2|u|¢m dzds
R~ 0 n

t t
+C/ / |a:|k_2|u|da:ds+k/ / || ¥~ || [V |t dads
0 Jm<|z|<2m 0 JR»

t
+0// 2 [F = u| | Vo /2 deds (> 0).
0 Jm<|z|<2m

Proof. First, let 1, be the cut-off function defined in Lemma 3.2 and set
pe(z) =22 +e— e for z€R, e>0.
Multiplying the first equation of (KS) by |x|¥¢L(u)w,, and integrating by parts gives
36 5[ tetinds) = [ ate ) - Vuds
— / V - (uV)|z| oL (u)y, dx

Here we have used the equality 0;(p-(u)) = @L(u)uy.
Now, we estimate the first term on the right-hand side of (3.6). Noting that ¢ > 0,
oL (u)Vu = Vo (u) and V|z|* = k|z|F~2z, we have

60 = [ Vel Vuds
<=k [ ol V)i do— [ [o*Viulu) - Vi de
Making use of |<(2)| < |2| (z € R) and (3.4) implies that
~ [ el Ve do
e [ a2 Vo) do+ [l 0) A da

< [ fallull | da.
]Rn

Therefore, it follows from (3.3) that

(5.9 [ el Ve <2 [ el
m<|z|<2m
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Similarly,

(3.9)  —k / o2 Vi () da

:k/n(V(|x|k_2) ) e (u)thy, dx + kn/ 2" 20 (u) Yy, dx

n

—l—k’/ |x|k_2<,0€(u)(aj~V7,bm)dx

<h(k+n—2) / 2 F =2 uftpr, da.

n

Hence, from (3.7), (3.8) and (3.9), we obtain

(3.10) — | V(a[*L(u)m) - Vuda
]Rn,

Sk(k—!—n—?)/ ||~ 2 ulepy, da:—l—C’/ |22 |u| d.
R™ mgl

z|<2m

25

Next, we estimate the second term on the right hand-side of (3.6). For this purpose,

we introduce the function (.(z) (z € R) as

e
VRt e(VARte+E)

Ce(2)
Since a direct calculation gives z¢l(z) = p-(2) + (-(2) (¢ € R), we have

— [ V- @)t (w)b da
Rn

= /n 2| (Ve (u) - V)tby, dz — / || Fupl (1) Avipy, dz

n

- / el (Ve () - o)~ / ol (pew) + Co(u)) Aviiy da

. / 12 - (e (u) V) o it — / (&G () Avy dt
R™ Rn

:k/ |x|k_2g05(u)(a:-Vv)wmda:—l—/ |x|kg05(u)(Vv-V¢m)da:
n ]Rn

—/ |x|kC€(u)Avwmdaz
Rn

k =Ll |V olib,, d k|| Vol [V, | d

<k [ ol all Vol do+ [ el Vol V] do

+ [ laltCw)|Avls e
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Using (3.2), we obtain

Ga) [ el Vel Vel dr <cm ™ [ ol ul Vo 12 d
Rn m<|z|<2m
<C |z F 7 ul [ Vol da.
m<|z|<2m
Similarly,
(3.12) /|x|kC€(u)wm|Av|dx§Cm\/E.
Rn

Here we have used the inequality (.(z) < v/ (z € R). Hence putting together (3.11)
and (3.12) implies that

(3.13) - V - (uVo) |z ol (u), dx
Rn

gk/ |x|k_l|u||Vv|wmdx+C/ |2 [F 7 |u| | Vo /2 de + C/e.
R™ m

<lz|<2m
Thus, substituting (3.10) and (3.13) into (3.6), we see that
d k k—2
(3.14) 7 |z pe(u)thy, dz ) < k(k+mn —2) |z|" ™% |u|y, dx
R™ n

+C/ 2|72 |u| da —I—k/ |z|* 7L [ul| [ Voltby, dx
m<|z|<2m R™

+ C'/ lz[* L u| | Vo /2 de + Cpv/e  (t > 0).
m<|z|<2m

Fix m € N and ¢t > 0. Integrating (3.14) from 0 to t and letting ¢ — 0, by
Lebesgue’s dominated convergence theorem, we obtain the desired estimate (3.5). O

Proof of Proposition 3.1. The proof is given by induction for [. First of all, we
shall show Proposition 3.1 for [ = 2. Assume that |z|?ug € L'(R™). It follows from
(3.5) with k£ = 2 that for t > 0,

(3.15) / e lulyom

t t
<|||z|?uo]| 1 +2n/ / [u|tm dxds—i—C’/ / |u| dzds
0 n 0 Jm<|z|<2m

t t
+2// |x||u||w|¢mdxds+c// |z||u||Vo|pl/? daeds.
0 JR» 0 Jm<|z|<2m

Making use of (2.7) with ¢ =1 and 0 < 9,,, < 1 implies that

¢ t
(3.16) Qn/ / |u|tpm, deds + C’/ / lu| dxds < Ct.
0 JRn 0 Jm<|z|<2m
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Now we estimate the fourth term on the right-hand side of (3.15). Applying the
Schwarz inequality and Lemma 2.5 gives

t
(3.17) 2// 2|l | V0| dzds
0 R»

|
¢ 1/2 1/2
SC’/ (/ |x|2|u|¢mdm) (/ |u||Vv|2¢mdx> ds
0 R™ R™

t 1/2
S/ C(1+ s)_”/2_1/2</ ||? ||t dx) ds.
0 R™

Similarly,

t
(3.18) o/ / || |u||Volpl/? deds
0 Jm<|z|<2m

t t
SC’/ / || [u|thy, dzds -I-C'/ / lu||Vv|? dzds.
0 Jm<|z|<2m 0 Jm<|z|<2m

Hence, substituting (3.16), (3.17) and (3.18) into (3.15), we see that

(3.19) (1+t)_1/ |2 u|t)p, dx
]Rn

1/2

t
§0+C(1+t)‘1/ (1+s>‘"/2((1+s)‘1/ |x|2|u|wmda:> ds
0 R™

t
+ C’/ (1+ s)_l/ || |u|t)y, drds
0 m<|z|<2m

t
—I—C’(l—l—t)_l// |u||Vv|? dzds.
0 Jm<|z|<2m

Putting M, (t) = (1 +t)~" [, |2|*|u|thm dz and applying the Schwarz inequality
and Lemma 2.5 to (3.19), we have

My (t) < c+c/t Mo (s)ds (> 0).

Therefore it follows from the Gronwall inequality and Fatou’s lemma that the finiteness
of integral (1 +¢)~* [5,. |z[*|u| dz is ensured. Letting m — oo, by applying Lebesgue’s
dominated convergence theorem to (3.19), we observe that for ¢ > 0,

(3.20) (1 +t)_1/ |z)?|u| da
1/2

§C+C(1+t)_1/0t(1+s)_”/2((1+s)_1/n |a:|2|u|da:> ds.
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Fix n > 0. Since the inequality ab < na® + b*/(4n) (a,b > 0) holds, we obtain

C(1+1t)~" /Ot(l +5)""/2 ((1 + s)_l/

t t
§C’77(1-|—t)_1/ (1+8)_1/ |a:|2|u|da:ds+0n_1(l+t)_1/ (1+s) "ds
0 R™ 0

1/2
||l d:v) ds

n

<Cn~' 4 Cn sup [(1+8)_1/ |$|2IUIdx],

0<s<t

which together with (3.20) implies that

(3.21) sup [(1+s)_1/n|w|2|u|dw]

0<s<t

<C+Cn '+ Cn sup {(1—}—8)_1/ |x|2|u|dx]
R‘I’L

0<s<t

In (3.21) we take n > 0 such that Cn = 1/2. Then

sup [(1+8)_1/ |a:|2|u|da:} <C,

0<s<t

which establish the conclusion of Proposition 3.1 for [ = 2.
Supposing that Proposition 3.1 is true for [, namely, if |z|'ug € L'(R"), then the
integral [g, |z|'|u| dz is finite for all ¢ > 0, and

(3.22) / |z|'|u| dz < C(1+ )% (t>0),
we shall show that it is true for [ + 1.

Assume that |z|'Tlug € L*(R™). Since ug and |z|"*1ug are in L*(R"), |z|lug is so.
Hence the inequality (3.22) holds. Applying (3.5) with £ =1+ 1, we have

(3.23) / || u| )y, da
Rn
t
<INz ug|| 21 —l—(l+1)(l+n—1)/ / || [t dacds
0 n
t t
+c/ / |x|l_1|u|dazds—|—(l—|—1)/ / [ ][V oo dzds
0 Jm<|z|<2m 0 n
¢
—I—C’/ / |z |!u|[Vo|pt/? dzds (& > 0).
0 Jm<|x|<2m

Now we estimate the second term on the right-hand side of (3.23). By (2.7) with
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g =1, (3.22), and the Holder inequality, we observe that

(3.24) I+l +n- 1)/0 /n 2" Y u|ey, dzds

¢ (1-1)/1 1/1
SC’/ (/ |x|l|u|d:c> (/ |u|dx> ds
0o \Jrr R™

t
gC/ (1+5) D2 ds < C(1 +t)HD/2,
0

Similarly,

t
o3 of [ ks son gt
0 Jm<|z|<2m

Next we estimate the fourth and fifth terms on the right-hand side of (3.23). Using
(2.8) with ¢ = oo and (3.22) yields that

t t
(3.26) I+ 1)/ / |2 || Vo [tm dxds—l—C’/ / |2z |! [u||[Vo|pl/? deds
0 JRn» 0 Jm<|z|<2m

¢ t
SC/ (1 + S)—n/2—1/2+l/2 ds < 0/ (1 + 8)(1—1)/2 ds < C(l +t)(l+1)/2,
0 0
Therefore, substituting (3.24), (3.25) and (3.26) into (3.23) gives

/ || by, dz < O(1 4+ 1) D2 (2 > 0),
Rn

which together with Fatou’s lemma implies that the integral [, |z[""!|u|dz is finite for
all t >0, and [, |2|'"Hu|dz < C(14)+D/2 (£ > 0). As a consequence, Proposition
3.1 is true for [ 4 1. O

8§4. Proof of Theorem 1.2
The aim of this section is to prove Theorem 1.2. Now, we begin with the following
proposition.
Proposition 4.1.  Letn > 2,1 < q < oo and (u,v) be the solution to (KS) with
(1.13). Then, under the condition |z|"ug € L*(R™), the following assertions hold:
(i) The integral F, , given by (1.4) converges for |a| +2p <n — 1.
(ii) It holds that

(4.1) lim $r(1—1/a)/24n/2

t—o00

t
/ =AY . (uVv)(s) ds
0

(_1)|a|+p
- > A VRG(L 1) Fop— W()

la|+2p<n—1

La



30 TETSUYA YAMADA

where W (t) is the one given by (1.6).

Proof. First, we shall show the assertion (i) of Proposition 4.1. For this purpose,
by applying the moment estimate (3.1) given in Proposition 3.1, it is sufficient to prove
(1.16) introduced in Section 1, that is,

/ 11170 (5, 5) ~ MEGVG)(y, 1+ 5)] dy
<C(1L+4s) 2712 (5> 0, o] <),
where Mo = [, uo dy. Indeed, we prove (1.16) only for |a| > 0 since (1.16) for |a| =0

follows from (2.11). To show (1.16), we write [g. |y|!*!|(uVv)(y,s) — MZ(GVG)(y, 1+
s)| dy as follows:

[l @) . s) ~ MFGVG) . 1+ dy
< [l I90(5.5) ~ MoV Gy, 1+ )] dy
+ [ WM G .1+ 9ty ) — MoGla. 1+ )] dy
=: Li(s) + La(s).
Then, by (2.7) with ¢ = 1 and the moment estimate (3.1) with | = n, we have
/Rn lyl*luy. s)| dy =/Rn{|yI”IU(y, )YV uy, )1V dy
<lly"als) 1 us) 1" < 01+ 9)l172,
which together with (2.10) implies that

L1(s) < [90(s) = MoV G + 9w [ ol )] dy

< C(l + 8)—n/2—1+|a|/2.

Similarly, we obtain

LQ(S) < C(l +8)—n/2—1—|—|a|/2'

Here we have used the estimate sup,. (1 + s)*/27191/2|||yl*IVG (1 + s)| ;1 < co. Hence
the desired estimate (1.16) follows from these estimates.
Next, we are going to show (4.1). Let t > 2. We split fot =AY . (uVv)(s) ds as
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follows:

(4.2) /Ote(t_s)AV (uVv)(s)ds

= //t =AY . {(uV)(s) — MZ(GVG)(1 + 5)} ds
t/2

t/2
+ / IR {(uVo)(s) — ME(GVG)(1+ s)}ds + W (1),
0
where My = [, uo dy. Using

VG —yt—s)= ), y*(1+8)'VOTOFG(x, 1 +1) + Rn,

|a]4+2p<n—1

—1lel+p 1
Ro= Y M/ (1— 0)el=1ya(1 4 5)PVOOP Gz — Oy, 1 +t) df
0

Il
|a|4+2p=n, a-p:
la|>1
_1 n,;1]+1 1 - L 1
+ ( ([l_l])' / (1 — T)[T](l + S)[T]'i‘lvag 2 ]+1G(IIJ — v, 14¢— 7_(1 + 8)) dT,
o ) 0
we have
t/2 -1 || +p
/O (t=5)Ay (uVv)(s)ds = Z %V@g‘@fG(l +t)-

|a]+2p<n—1

t/2
. /0 / Y+ (W05, 5) ~ MGYG) (w1 + )} dyds

t/2
+/0 / Ru{(uV0)(y.s) ~ M§(GVG)(y. 1 + 5)} dyds.

Thus, substituting this equality into (4.2) and using the fact that the integral F, ,
converges for |a| +2p < n — 1, we find that

(_1)|a|+p a QP
i VORRG( 4 1) Fap = W(0)

(4.3) /O t IV (uVo)(s)ds — Y

la|+2p<n—1
= Il(t) —|— Ig(t) —|— Ig(t),
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where

Li(t) = /:2 =AY - (uVv)(s) ds,

Lt)=— > ﬂvagafc:(lﬂ)-

alp!
jal+2p<n—1 P

) /t: /n y“ (1 + s)P{(uVv)(y,s) — Mg(GVG)(y, 1+ )} dyds,
t)2
:/0 / Ro{(uVv)(y, s) — M2(GVG)(y,1 + s)} dyds.

We now estimate ||I;(t)||z« (i = 1,2,3) appearing in (4.3). By using Lemma 2.4
and (2.11), we have

L ()| e < c/ )2 (uV)(s) — M2(GVG)(1 + 8)| 1a ds

SC/ (t — s)~Y2g—n(1=1/a)/2=n/2-1 4
/2

< Ct—n(l—l/q)/2—n/2—l/2’

which implies that

(4.4) lim "(1=1/9/251/2| 1, ()| o = 0.

t—o00

For ||I2(t)| e, it holds from the Minkowski’s inequality, (1.16) and (2.3) that

a /P o0
> TRAC O [y,
|| +2p<n—1 a-p: t/2

< /R 05, 8) ~ MF(GVG) 1,1+ 5)] dy

[ 12(t)]|za <

< Z C(l + t)—n(l—l/Q)/2—|a|/2—p—1/2 /00(1 + S)—n/2—1—|—|oz|/2+p ds
la|4+2p<n—1 t/2

Sct—n(l—l/q)/2—n/2—1/2,

which yields that

(4.5) lim "/ D/24n2) L (1) || e = 0.

t—o0



HIGHER-ORDER ASYMPTOTIC EXPANSIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS 33
As for ||I3(t)||Le, using the Minkowski’s inequality and (2.3), we see that

1
(46)  |Rulze<C 3 /|y|'“'<1+s>p||va§afa<-—ey,1+t>||mde
0

|a|+2p=n,
la|>1

! n— n—1
+0/ 1+ )T val 2 TG~y 14t — 7(1+ 8))|| e dr
0
Sc(l+t)—n(1—1/q)/2—n/2—1/2 2 |y||a|(1+8)p
|a|+2p=n,
| >1
+ Ot — ) nA-VD/2-[251-8/2(1 4 g)lmF 4
Therefore, it follows from (1.16) and (4.6) that
t/2
||I3(t)HL‘I So(l +t)—n(1—1/q)/2—n/2—1/2 Z / (1 +S)—n/2—1—|—|oz|/2—|—p ds
|| +2p=n, 0
la|>1
t
+Ct—n(1—1/q)/2—[%]—3/2/ (14 5)~/2+254 g
0
Sct—n(l—l/q)/2—n/2—1/2 logt,

which yields that

(4.7) Jlim "=/ D/24n/2) 1 (t) | e = 0.
As a consequence, (4.1) follows from (4.3) through (4.7). O

The following proposition is a key one to obtain Theorem 1.2.

Proposition 4.2.  Under the assumptions of Proposition 4.1, the following as-
sertions hold:

(¢) The integral E, p given by (1.3) converges for |a| +2p < n — 2 and the one F,
given by (1.4) is well-defined for |a| +2p =n — 1.

(7i) The asymptotic behavior of u(t) is given by

—1)lal+p
O e (MO (1)—'838,{’G(1+t)Ma

!
|a|4+2p<n wp
(_1)|a|+p

DY

|| +2p<n—2

o VG +1) - Bay

_1\lal+p
+ Z LV@?@?GQ +1)- Fop+ Ny (t;t) + R(t)

|a]+2p=n—1

— 0

La
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as t — oo, where My, Ny,(t;t) and R(t) are the ones given by (1.2), (2.4) with
l=n, z=1t>0 and (1.5), respectively.

Proof. First, we recall from Proposition 4.1 that the integral F, , given by (1.4)
is well-defined for |a| 4+ 2p < n — 1. Moreover, we see that the integral E, , given by
(1.3) converges for |a| + 2p < n — 2 because using arguments similar to those in the
proof of (1.16) gives (1.15). Therefore we can get the assertion (i) of Proposition 4.1.

Next we are going to prove the assertion (ii) of Proposition 4.2. For this purpose,
we claim that the following equality holds:

—1)lal+p
(4.9) u(t)— > %8§8§’G(1+t)Ma
la|+2p<n e
(_1)|a|—|—p a QP
+ Y OA—p'V@mE)tG(l—i—t)-Ea,p
|| +2p<n—2 b

_1)lel+p
+ Z Lvc‘)g‘afG(l +1t) - Fop+ Nu(t;t) + R(t)

In!
jal+2p=n-1 P
—1)lal+p t
={emuo - Z %Qﬁ‘ﬁfG(l + t)Ma} - { / =AY - (uVv)(s) ds
|a]+2p<n ap: 0

(—=1)leltr
> = VOROPG(L 4 t) - Fop — W(t)

alp!
alt2p<n—1 P

=: M (t) + Ma(t),

where M,, N,(t;t), R(t) and W (t) are the ones given by (1.2), (2.4) with [ = n,
z=1>0, (1.5) and (1.6), respectively. Indeed, by making use of the convergence of
integral [;° [ (1 + 8)P(GVG)(y, 1 + s)dyds for |a| +2p < n — 2 and Lemma 2.3,
the correction term R(t) given in (1.5) has the following relation:

(_1)|a|+P
(4.10) No(t;t) + R(t) =W (t) = M§ Y

|| +2p<n—2

./OOO / y*(1+ ) (GVG)(y,1 + 5) dyds.

ol VOSOrG(1 +t)-
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Hence, it follows from (2.1) and (4.10) that

(_1)|a|—|—p «

ut) = Y Tp!&cé)fG(lth)Ma
la|+2p<n

(_1)|a|+P

DY

|| +2p<n—2

a AP
o VORHG(L+ 1) oy

—1)lel+p N
+| | > cor a)!p! VOg0{G(1+1) - Fayp+ Na(t;t) + R(t)
al+2p=n—1

0

tA (_1)|a|—|—p a qp ! (t—s)A
=< e uy — Z a!—gylamatG(1+t)Ma — /e V- (uVv)(s)ds

la|4+2p<n

(—=1)leltr
> == VONOG(1 +1) - Eay

I
|a]+2p<n—2 a-p:
—1)lal+p
+M; > %V@;@f(}(lﬂ)-
lor|4-2p<n—2 -

. /0°° / Y (14 )P (GVG)(y, 1 + 5) dyds

> ﬂvagafa(l 4 t)-Fop— W(t)}

1!
a.p.
|a|4+2p=n—1 p

=M, (t) + Ma(t).

This implies the desired equality (4.9).

35

To complete the proof of Proposition 4.2, we estimate ||M;(t)||r« (i = 1,2). For

[ My (t)]] s,
lim "=/ D/240/2|| My (8)]| e = 0

t—o00

follows from the method similar to that in Proposition 3.1 of Fujigaki-Miyakawa [2].

Also, for || Ma(t)||Le, applying (4.1) yields that

lim tn(l_l/q)/2+n/2HMQ(t)HLq = 0.

t—o00

Thus, these estimates and (4.9) yield the desired estimate (4.8).

O

Proof of Theorem 1.2. Lett > 2 and 1 < ¢ < co. Once the asymptotic expansion

of u is shown, that of v is obtained by Lemma 2.7. Hence we prove only the asymptotic

expansion of u.

In the odd dimensional case, we observe from the assertion (i) of Proposition 4.2

that the integral E,, given by (1.3) converges for |a| +2p < n — 2. Moreover this
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integral is well-defined for |a| 4+ 2p = n — 1 because the convergence of integral Fy, ,
given by (1.4) is assured due to the assertion (i) of Proposition 4.1 and the integral
Jn ¥ (1 + 5)P(GVG)(y,1 + s) dy is zero for |a] + 2p = n — 1. Therefore, we see that
the integral E, , given by (1.3) is well-defined for |a| 4+ 2p < n — 1, and the asymptotic
expansion (1.10) follows from (2.5) and (4.8).

On the other hand, in the even dimensional case, it follows from the assertion (i)
of Proposition 4.2 that the convergence of integral E, , given by (1.3) is well-defined
for |a| +2p < n — 2, and the integral F, , given by (1.4) converges for |a|+2p =n—1.
Furthermore, from (2.5) with Il =n, z =t > 0, we have

Np(t;t) = P—2y/2(t) log(1 + 1),

which together with (4.8) gives the asymptotic expansion (1.11). O
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